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ABSTRACT 

Synthetic Aperture Radar image formation algorithms typically use transform techniques that often requires trading between 
image resolution, algorithm efficiency, and focussed image scene size limits. This is due to assumptions for the data such as 
simplified (often straight-line) flight paths, simplified imaging geometry, and simplified models for phase functions. Many 
errors in such assumptions are typically untreatable due to their dependance on both data domain positions and image domain 
positions. The result is that large scenes often require inefficient multiple image formation iterations, followed by a 
mosaicking operation of the focussed image patches. One class of image formation algorithms that performs favorably divides 
the spatial and frequency apertures into subapertures, and perhaps those subapertures into sub-subapertures, and so on, in a 
tiered subaperture fashion. This allows a gradual shift from data domain into image domain that allows correcting many types 
of errors that limit other image formation algorithms, even in a dynamic motion environment, thereby allowing larger focussed 
image patches without mosaicking. This paper presents and compares focussed patch diameter limits for tiered subaperture 
(TSA) image formation algorithms, for various numbers of tiers of subapertures. Examples are given that show orders-of- 
magnitude improvement in non-mosaicked focussed image patch size over traditional polar format processing, and that patch 
size limits increase with the number of tiers of subapertures, although with diminishing returns. 

Keywords; Synthetic Aperture Radar, S A R ,  Subaperture, Algorithm, Imaging, Limits, Phase Errors, Migration 

1. INTRODUCTION 

Synthetic Aperture Radar (SAR) is used to form images of radar reflectivity over some scene of interest. The precision with 
which a reflectivity value can be assigned to a location is the resolution. S A R s  form an image from range soundings taken 
from discrete points in the space around the scene. This collection of spatial points is the synthetic aperture, and larger 
synthetic apertures are required for finer resolutions. The variation in range from each of the many spatial sample points to a 
particular scene location is unique from any other scene location, and, when measured by the phase of the radar return, is the 
doppler signature. This uniqueness allows the matched filtering of the spatial sample data to localize that scene’s reflectivity, 
but each location in the scene optimally requires its own matched filter, making matched filtering prohibitively expensive. 
Realizing that the range function doesn’t behave too differently for a neighborhood around some focal point, and the 
differences exhibit strong linear relationships with scene location, allows the use of transform techniques such as the Discrete 
Fourier Transform (DFT), or its fast implementation, the Fast Fourier Transform 0, to form an image with considerable 
improvement in computational efficiency. However, for large neighborhoods of scene locations, the linear relationships break 
down, making processing with a single transform less and less suitable as distance from the central reference point, or focal 
point, increases. The data exhibits ‘migration errors’ and ‘spatially variant phase errors’ which degrade image quality, 
ultimately beyond some tolerable threshold, which sets the scene size limit. This limit is less for finer resolution, and 
particularly troublesome as resolution approaches the nominal wavelength of the radar. The challenge becomes to mitigate the 
migration errors and spatialIy variant phase errors, and form images of large scenes at fine resolution using efficient transform 
techniques. 

A number of algorithms have been developed to form fine resolution images of large scenes.’ One of the most recent is ‘wave- 
number domain’, or ‘migration’ processing, which operates in the frequency domain. This technique requires a Iinear flight 
path and doesn’t tolerate flight path deviations (especially out-of-plane motion) very we11.6 Two fairly successful ima e 

which both operate to some degree in the azimuth time domain, making them capable of dealing fairly effectively with flight 
path deviations. However, both algorithms still have scene size limits that are especially severe as resolutions approach a 

formation algorithms for airborne SARs are ‘Polar Format’ processing, and ‘Overlapped Subaperture’ (OSA) processing, 1 9  

wavelength, such as is desired a t - m  and lower frequencies. Large scenes require multiple image formation operations 
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followed by a mosaicking of patches of finished subimages. Efficiency is lost when mosaicking requires too many subimages. 
This has led to the proposal of using multiple levels of tiered subapertures to form ever finer resolution intermediate images, 
and allow error corrections along the way, as an image formation strategy that can be scaled to much larger scene sizes than are 
currently 

This paper introduces and summarizes the analysis of generalized 'Tiered Subaperture' (TSA) techniques that are a supset  of 
both Polar Format processing and OSA processing. It is shown how tiers of subapertures in both azimuth and range can 
effectively mitigate both migration errors and spatially variant phase errors to allow virtually arbitrary scene sizes, even in a 
dynamic motion environment. This paper presumes a spotlight mode SAR with a linear-frequency-modulated (LFM) chirp 
that is deramped upon reception (stretch-processing3). These concepts are clarified in the appropriate sections. 

2. ONE DIMENSIONAL, ANALOGY 

Consider a function of the form 

f (n)  = expj[ wn + am2n2), -7c I - W 2  I o  I w 2  c 7c N / 2  I n I N / 2  - 1 

with known constant a, 0 c a << 1 . The challenge is to determine o with acceptable precision and accuracy within the range 
IwI I W 2 ,  and efficiently. 

If a were zero, the task would simply amount to a DFT across n. This locates w with resolution of about 27c/N , depending on 
window functions employed, and how specifically resolution is measured. For this case, larger N means finer resolution, 
without bound. 

For nonzero a, we must consider the quadratic phase term (quadratic in n). For small enough Q and/or small enough N, this 
term is sufficiently small, say I 7c/2,  and can be ignored. A reasonable criteria might then be 

Q I p J r n  , 

where p = 2n/N is the nominal resolution of the DFT. 

As an example, consider a signal that is the linear sum of four separate component signals, each of which can be expressed by 
equation (l), but with individual w from the set (0, 7c/4, 7c/2,37c/4). For all component signals, let N = 256 and Q = 0.0oO1. 
Figure 1 illustrates the DFT of the total signal. Clearly, resolution is lost as w is increased. 

Here we see the basic dilemma. By using the DFT, the finer the resolution p with which we wish to identify a, the smaller the 
range IR is over which we can acceptably resolve w. In SAR processing, the analogs are that frequency w corresponds to target 
distance from the scene center, or focal point. The frequency range Q cornsponds to scene diameter, and freguency resolution 
corresponds to S A R  spatial target resolution. For our analog, the challenge becomes to exceed the limit in equation (2). To do 
this we need to mitigate the effects of the quadratic phase term in equation (l), which is an error term that limits DFT 
processing. 

We do this by making a coarse resolution estimate of a, and use this to compensatefin) before proceeding with a fine 
resolution estimate. Conceptually, we make coarse resolution estimates of w by dividing the aperture into subapertures, as is 
illustrated in figure 3. Mathematically, we do this by splitting the domain of index n into groups of indices m1 and m2, as 
follows, 

n = m l + A 2 m 2  , - M , / 2  I ml I M , / 2  - 1, (3)  



where 4 is a data decimation factor, with subapertures overlapped by an amount (M1 - A2) . Overlapping subapertures is 
necessary to control sidelobes. Functionf(n) can be expanded to 

f ( n )  = f ( m l , T )  = expj[wA2m2+au (4) 

The strategy becomes to perform a DFT across index ml, and do this for each index value q, which will yield a coarse 
resolution estimate of CQ 
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Figure 1. DFT of signals with quadratic phase errors. 

.N’I 
One large aperture 

Aperture divided into supapertures 

Aperture divided into two tiers of supapertures 

Figure 2. Aperture divided into subapertures. 



-M,/2 I u1 5 Ml/2 - 1 .  (5 )  

Note how this estimate migrates with subaperture index value q. With large enough q, the migration will transcend several 
resolution cells (values of ul). Therefor, for any one value of ul ,  the migration has the effect of ‘windowing’ the data over 
index m2, as the amplitude peak moves into, and then out of, the appropriate resolution cell ul. Since we will ultimately want 
to perform a DFT across index q, and we wish not too much unnecessary windowing of the data, it is desirable for the 
migration to be no more than about one coarse resolution cell p = 2z/M1 in total, over all q for any w. The result of the 
first DFT can then be approximated with 

21CUl 
f l  (ul, m2) = CSincM1 [:( 0 - %]]expj( wA2m2 + a w  

sin ( x )  ( d N )  where csinc, ( x )  = sin ( x / N )  
The estimate of w allows us to compensate, or ‘focus’, equation (6) prior to a DlT across m2, in the manner 

= csincM 1 [ ?( w - ’$11 expj( (w - 6,) A2m2 + u( w2 - 0f)Aimi).  

The final DFT across m2 yields the final, best estimate of w as 

with a resolution of p2=2a/ ( A2M2) . 
Limiting migration to one resolution cell, and quadratic phase errors to I$?, allows an overall limit 

Q I p2 2-1/3 ( x u )  -2/3 , 

(7) 

(9) 

NmAA;h is larger than equation (2) by a factor 2”16 (aa)-’16 = 0.46370-l’~. 

Reconsider the earlier example of figure 1. Recall that u = O.OOO1. Processing this example with M1=16, M2=32, and A&, 
results in the estimates for w in figue 3. 

2.2. MultiDle Tiers of SubaDertures 

The question becomes “if one level of subapertures is good, will more levels of subapertures be better?” The short answer is 
“yes”. For N ,  number of tiers of subapertures one can generalize the results as follows. 

- ( 2 N r -  1) -@.+ 1) 

The improvement of each tier of subapertures is plotted in figure 4. 



Zero-padding prior to each DFT, thereby oversampling the output of the k* Dm by an independent factor aos, m, , further 
improves S2 to 

3. POLAR FORMAT S A R  PR- 

Consider a linear-FM chirp radar, collecting echo samples along a flight path at positions indexed by n. N / 2  5 n S N / 2  - 1 , 
with geometry defined in figure 5. The echoes are deramped and sampled at relative times indexed by i, 1/2 I i 5 1 /2  - 1 . 
The radar operates with center frequency on, chirp rate yn, and ADC sample period T,. The radar's sampled video signal can 
be described by 

0 

Figure 3. Example processed with one tier of subapertures. 

0' I 
t I I 

0 2 4 6 8 10 
Ns 

Figure 4. Limits on C2 for a = 0.0001. 



Figure 5. SAR geometry. 

(12) 
2yn X, (i, n) = A ( rs, ,) exp j [ w, + y,T,i] cosy~,cosa, (s,tancc, - sy + cr) + - ~ O S ~ J ~ C O S ~  
C 

where A (rs, ,) represents the amplitude of the echo from the target. The functions 6, and tp represent spatially variant error 
terms that can be described by polynomials in n. By adjusting q, and yn to compensate for variations in cosy, and cos a,, 
and sampling at equal increments in tan a, , equation (12) can be simplified to 

The processing strategy is then to resample along n as a function of (1+ (yoT,i) 10,) , followed by a 2-dimensional DFT 
over i and the resampled n. This can be accomplished by employing a chhp-Z transform (CZT) over n that incorporates the 
resampling, followed by a FFT over i. Recall that the CZT can be implemented with FlTs and vector multiplies. By limiting 
the largest quadratic error term in 5, to less than I$!, Walker calculated the size limit for an individual patch approximately to 
diameters 

where px is the nominal resolution in the x-direction at the scene center, lltcoll is the nominal range to the scene center, and 
is the nominal wavelength of the radar, h, = 2nc/wO. 

By accounting for error C p ,  a general quadratic phase error limit, elevation angles, and pulse widths, the patch diameter limits 
can be refined to 

D,14 . - .  . A  I D 1 4  Y , (15) 

where T e ~  = TsI is the effective pulse width of the radar. 



4. PROCESSING WITH TIERS OF SUBAPERTURES 

4.1. One Tier of Subatx rtures 

Now reconsider equation (13) where both indices i and n are each divided into a single tier of subapertures, analogous to 
equation (4), 

n = ml + A2m2,and i = k, +p2k2. 

Equation (1 3) then becomes 

The processing strategy is straightforward and is illustrated in figure 6. 

1. perform a CZT across ml, adjusting output sample spacing as a function of kl and k2. Use the resulting estimate of s, to 
compensate the phase of the result. 

2. perform a FFT across kl. Use the result to optimally estimate s, and sy to further compensate the phase of the result. 

3. perform a CZT across m2, adjusting output sample spacing as a function of k2. Use the result to again optimally estimate 
s, and sy to further compensate the phase of the result. 

4. perform a FFT across k2. The result is the complex S A R  image. 

Note that the error functions 6 ,  and 6,  formerly being polynomials in n, now contains a number of cross product terms 
between m1 and m2. The cross terms that are linear coefficients of the index being transformed manifest themselves as 
migration terms. Migration has the effect of windowing the data and thereby limiting the resolution of succeeding transforms. 
It is therefor necessary to limit migration to something on the order of one resolution cell across the entire aperture. This is 
done by limiting subaperture length, and hence subaperture resolution. Since migration affecrs succeeding transforms, 
resolution limits due to migration only affect the stages prior to the final transforms, and tend to dominate the effects of other 
error terms that broaden the impulse response. The final transform pair, however, are over data that contains no cross-product 
migration terms (or at least none that can’t be accommodated by the final CZT) and therefor have resolutions limited by 
spatially variant phase errors, specifically the quadratic component of the error function. 

- c 
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Figure 6. Processing with 1 tier of azimuth subapertures, and1 tier of range 
su bapertures. 



The first stage suffers migration, and when migration is limited to <T resolution cells, patch diameters are limited to 
ml 

where D, and Dy are the scene diameters in the x and y directions respectively, pX,l and pY,l are the resolutions in the x and y 
directions after the first CZT / FFT transform pair, and px,2 and py,2 are the resolutions in the x and y directions after the second 
and final CZT / FIT transform pair. We also define and h . 2  as the first stage’s pixel spacing in the x and y directions 
respectively. 

Limiting the quadratic component of the spatially variant phase errors to about t$ 

pair such that 
limits the final stage CZT / FFT transform 

”12 

Assuming that p ,  l= px, allows us to calculate overall limits by combining equations (18) thru (21) to yield 

which is an improvement over the limits given in equations (15). 

4.2. MUltiDk Tiers of SubaDertures 

Note that the initial sampling strategy along with the CZT make each stage a separate polar-format processed image formation 
step, but allows successive stages to achieve finer resolution. This strategy can be extended in a similar manner to an arbitrary 
number of tiers of subapertures. Any number N, tiers will require N,+1 stages of FFT / CZT pairs, partitioned with indices 



P P 

The architecture for such a scheme is illustrated in figure 7. Overall limits on patch diameters can then be extended to 

magnitude 

First Stage N,+1 Stage 

output 
image (phase compensation between transforms) 

Figure 7. Processing with N, tiers of azimuth subapertures, and N, tiers of 
range subapertures. 



For scene diameters less than this limit, and particularly when image aspect ratios are non-unity, Dx # D,, , the assumption that 
each stage’s output resolutions be equal in the x and y directions, p , may be relaxed, even to the point that a 
particular transform in some stage collapses to unity length, tha?a vanish&s. In any case, the relationship between 
intermediate resolutions need to be chosen to comply with the migration limitations, whereas the relationship between final 
resolutions need to concern themselves with spatially variant phase error limitations. 

= p,, 

5. EXAMPLES - LIMITS AND IMAGES 

Equations (25) and (26) can be parametrically plotted. Figure 8 does so for a UHF S A R  with nominal center frequency at 300 
MHZ. 

Sandia National Laboratories currently operates a SAR capable of collecting data in the UHF region of the spectrum. The SAR 
flies on a DeHavilland DH-6 (Series 300) “Twin Otter” aircraft. Figure 9 illustrates an image of a 2 km wide view of Estancia, 
NM, collected from a 4.6 km range with a 380 MHz center frequency and processed to 2 m resolution with polar format 
processing. Figure 10 illustrates the same data processed with one tier of subapertures in both range and azimuth. The 
subapertures allow focussing even in the lower comers of the view. 

6. DISCUSSION 

Employing subapertures increases the number of dimensions of the phase history model (initial data set). While seemingly 
more complicated, as each dimension is in turn processed, this strategy allows a gradual shift from the data domain to the 
image domain. In the process, we are at times partly in each domain, which allows us coarse resolution estimates of target 
positions as well as coarse resolution estimates of the S A R ’ s  aperture position. This in turn allows us to compensate phase 
errors that are functions of cross-coupled parameters from both domains, that is, spatially variant phase errors. This is why 
subapertures work. The limits on subaperture processing are due to migration terms in the coarse resolution position estimates. 
Controlling these requires limiting the stage-to-stage resolution enhancement. Therefore, patch diameter limits still do exist 
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Figure 8. UHF-band SAR (300 MHz). 



Figure 9. UHF image of Estancia, NM, processed to 2 m resolution with no subapertures. 

Figure 10. UHF image of Estancia, NM, processed to 2 m resolution with one tier of subapertures. 



for subaperture processing. These limits can, however, be extended by employing yet more tiers of subapertures. Each 
additional tier of subapertures enhances the achievable patch diameter, but with diminishing returns. The first tier offers the 
most relative improvement, and the second tier offers more relative improvement than the third tier, etc. Generally, azimuth 
patch diameters exceed range patch diameters, but this is true for polar format processing as well. Oversampling the coarse 
resolution outputs allows further improvement, although in the extreme this causes a degeneration of the algorithm to matched 
filtering. 

Tiered subapertures are most useful when image resolutions are desired to approach the wavelength of the SAR. This is no 
more desirable than with SARs operating in the UHF region of the spectrum, or lower. Traditional image formation algorithms 
might offer patch diameters of only a few hundred meters, whereas employing subapertures might push the limit to several 
kilometers. Wide angle images from Sandia Laboratories UHF S A R  have been successfully formed using range and azimuth 
subapertures. 
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