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ABSTRACT

Silicide Schottky contacts can be as large as 0.955 eV (EV+ 0.165 eV) on

n-type silicon and as large as 1.05 eV (EC-0.07 eV) on p-type silicon. Current

models of Schottky barrier formation do not provide a satisfactory

explanation of occurrence of this wide variation. A model for understanding

Schottky contacts via screened pinning at defect levels is presented. In the

present paper it is shown that most transition metal silicides are pinned

approximately 0.48 eV above the valence band by interstitial Si clusters. Rare

earth disilicides pin close to the divacancy acceptor level 0.41 eV below the

conduction band edge while high work function silicides of Ir and Pt pin close

to the divacancy donor level 0.21 eV above the valence band edge. Selection

of a particular defect pinning level depends strongly on the relative positions

of the silicide work function and the defect energy level on an absolute energy

scale.
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INTRODUCTION

There have been a

attempted to systematize

large number of papers published which have

Schottky barrier contacts to silicon. Correlations

between the barrier height and the silicide heat of formation[l, 2], work

function[3], core level shifts[4], and Miedema electronegativity [5, 6] have been

explored. Other works have proposed defect pinning models [7-9]. In the

present work it is demonstrated that defect pinning is the dominant

mechanism. Selection of the defect which determines the barrier height is

sensitive to the work function of the silicide contact. Furthermore, the

measured barrier height does not pin exactly to the defect level as charge

transfer from, or to, the silicide is screened at the interface. A model for

screened pinning at defects has recently been developed and applied

successfully to Schottky contacts to GaAs [10]. The same model is applied to

silicon to identify divacancy levels, vacancy clusters and interstitial clusters as

pinning levels for silicide Schottky contacts to silicon.

The central feature of the present investigation is a model for Schottky

barrier contacts which emphasizes the role of near surface defects in

determining the Schottky barrier height. “Near surface” implies that the

defects are within a decay length of the silicide electron wave function into

the silicon at the interface. Defects within this region form resonant bonds

with the silicide. If the defect density is sufficiently large the interracial charge

dipole set up between the silicide and the defect resonance in the silicon

determines the Schottky barrier height. Application of the model requires a

data set describing silicide barrier heights to silicon, knowledge of the silicide

work functions, and the energy levels of defects and defect clusters in silicon.

A new silicide barrier height data set was compiled for the present
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work. Most previous attempts to understand silicide/silicon Schottky barrier

heights refer to review papers (see for example [11]) for the “characteristic”

barrier heights of silicide contacts. Ultimately these review papers trace the

majority of these values to an early paper by Andrews and Phillips [1] who

cite Schottky barrier values for a number of silicide contacts to n-Si referring

to unpublished work for details of fabrication. This has been largely accepted

due to the assertion that specific silicide contacts yield highly reproducible

barrier heights. Examination of the subsequent literature shows process

dependent variation over a range as large as 0.18 eV and dependent on

process history. This is especially true of low work function silicides. While

high work function silicides are less process dependent the belief that all

silicides have a unique barrier height must be revised.

The second essential component of the analysis is the availability of

good work functions for the silicides. The values used in the present work

are computed from the metal and silicon work functions using an average

charge transfer model[12]. The work functions of the metallic elements from

rows three through six of the periodic table were reviewed. Experimental

silicide work function data were compiled and compared with theoretical

prediction. For those metals whose work function was greater than that of

silicon excellent agreement between theory and experiment was found. For

the metals with work functions less than the silicon work function the

silicides separated into two groups, one containing rare earths and one

containing transition metals. k each group it appeared that a surface effect

systematically increased the linear slope relating the experimental work

function relative to the

that the average charge

theoretical value. In the present

transfer theory correctly predicts

work it is assumed

the “bulk” silicide
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work function as appropriate to the application of the screened pinning

model for the barrier height.

Finally, the credibility of the model depends upon being able to

successfully correlate Schottky barrier data with known defect energy levels.

The model is able to distinguish between donor (hole trap) and acceptor

(electron trap) type defects. While several studies of radiation and

implantation induced defects were considered[13-27] it was found that the

data could be explained in terms of the accepted divacancy (VJ levels,

ensemble vacancy (VJ and silicon interstitial (Q cluster levels [28-33]. Unless

specifically noted the silicide contacts considered were formed by the

deposition of an elemental metal on a silicon surface followed by an anneal

sequence. The end product is typically a polycrystalline silicide in contact

with the silicon. Since a substantial amount of silicon is consumed in the

silicidation the silicide interface is assumed to be clean although impurities

may be snowplowed ahead of the reaction front or oxygen may diffuse to and

accumulate at the interface. Neglecting impurity effects, it is assumed that

silicidation does generate a high concentration of intrinsic defects within a

few nanometers of the interface which ultimately determine the Schottky

barrier height.

THEORY

The model for screened piming at defects has been described previous

in the context of Schottky contacts to GaAs[lO]. In the absence of defects a

Schottky barrier height would be determined by the Fermi level in the metal

and the intrinsic chemical potential of the semiconductor. Bond charge

transfer at the interface tries to align the two level. Perfect alignment is not
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achieved as charge transfer is limited by screening. The strength of the

screening is a function of the interracial permittivity which is in turn

determined by the individual bulk permittivities of the two materials

brought into contact as

I/&i= [l/Em(A)+ l/E=(B)]/2 (1)

Assuming that the silicide is metallic and approximating its permittivity as

infinite the interracial permittivity is simply ~i = 2sm(Si). With this definition

of the interracial permittivity the intrinsic silicide barrier on n-type Si would

be

$b. = %@hi + [$’ - $ni5ii/(1- l/&i) (2)

where $* is the intrinsic chemical potential of Si relative to the vacuum level,

$~~i is the metal silicide work function and @,n,,~ is the Schottky-Mott barrier

height. The Schottky-Mott barrier is the difference, $tii - A, between the

silicide work function and the electron affinity of silicon. Assuming a room

temperature band gap of 1.12 eV for Si the electron affinity is A = 3.90 eV.

Defining an intrinsic barrier height as $~~*= $“ - A, Equation 2 maybe

rewritten as

%.= $b.”+ [$b.~M- $b.*]/&io

In this format Equation 3 is similar to the expression

(3)

presented in the

ViGS/MIGS model for Schottky barrier heights[34]. In fact, $~~”locates the

charge neutrality level, as defined by those models, relative to the conduction

band edge. The difference is in the form of the screening factor which appears

here simply as Ei = 2&m(Si). In the case of a nonideal interface the measured

barrier height is determined by aligning a defect level within the Si band gap

to the silicide Fermi level. If the defect level is located relative to the vacuum

level as EPti (as it pins the interface Fermi level) define the unscreened defect

5



t

pinned barrier as ~~~’= EPti - A. The final result for screened pinning at a

defect level is obtained by substituting $~.’ for $~n’ in Equation 3.

For Equation 3 to be applied it must be true that $fii locates the silicide

Fermi level relative to the vacuum level and that $“ locates intrinsic

chemical potential of silicon relative to the vacuum level. In prior work it

has been argued that the surfaces of “good” polycrystalline metals

characteristically have a zero net surface dipole and that the polycrystalline

work function of a metal does indeed locate the Fermi level relative to the

vacuum[12, 35]. In the same context the polycrystalline work function of Si

was estimated to be $* = 4.66 eV. The error in this valuation is believed to be

on the order of A 0.05 eV. Experimental values for the work functions of

metal silicides were compiled and compared with the predictions of an

average charge transfer (ACT) model[12]. The ACT model is similar in spirit

to the screened pinning model for Schottky barrier formation in that

electronegativity equalization is screened by a factor derived from the atomic

polarizability (the analog of the permittivity). Excellent agreement was

obtained for silicides formed from metals with work functions $~ greater than

$*. This group includes most of the late transition metals. For metals with $~

< $* a linear correlation was found to hold separately for the rare earth

elements and the early transition metals. For both groups the slope was

identical and greater than the slope predicted by the ACT model. This

behavior was proposed to be a surface phenomena of compounds comprised

of one metallic element and one covalent element. In this work it will be

assumed that the theoretical ACT work function of the transition metal

silicides properly locates the bulk chemical potential. While this assumption

cannot be rigorously justified it will be shown to be entirely consistent with

the interpretation of the data. Furthermore, a large number of
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technologically relevant silicides fall in the group

by this assumption.

In the formation of silicide contacts metals

~~ > $* and are not affected

are deposited on silicon and

annealed at temperatures which are typically greater than 300 “C. This

temperature is sufficient for both vacancies and interstitial silicon to

agglomerate into clusters. Assuming that the silicidation process generates

large number of intrinsic defect near the reaction front it is reasonable to

expect cluster defects to play an important role in controlling the barrier

height. While there are several papers describing the properties of point

defects produced by radiation damage in silicon the references found to be

most valuable to the present work describe cluster defect levels detected in

self-ion implantation and annealing studies[28-33]. The primary defect

involved in Schottky barrier pinning appear to be an interstitial cluster

a

Si

ensemble, I., at EV + 0.48 eV. This level behaves as a donor (hole trap). The

second most important defect is the divacancy V2. For low work function

silicides, particularly the rare earth silicides, the Schottky barrier is pinned

close to the Vz acceptor level at EC- 0.41 eV. For the very high work function

silicides of Ir and I?t the Schottky barrier pins close to the Vz donor level at EV

+ 0.21 eV. Vacancy clusters, V=, have been correlated with ensemble acceptor

level located at EC-0.55 eV. Evidence for pinning at either Vz or V.,

depending upon processing history is evident in the data to be presented.

The clusters pinning the Schottky barrier height are visualized as being

roughly planar with n less than 10[15, 36, 37]. Identifying them with bulk

cluster levels is problematic as the formation kinetics and stability of these

levels is certainly affected by their close proximity to the silicide/silicon

interface. Near surface vacancies are introduced at Si(ll 1)-7x7 surface

annealed above 700 ‘C to relive strain[38]. Subsurface interstitial are known
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to stabilize the Si(113)-3x2 surface[39]. These defects have also, by assumption,

formed resonant bonds with the silicide although the defects have no metal

atoms as first nearest neighbors. This feature appears to allow the defect to

retain much of its bulk character in silicon as well as in GaAs. The fact that

they are coupled to the silicide does appear to render them less susceptible to

hydrogen passivation that free clusters/defects further from the

which do not couple to the evanescent silicide wave functions.

interface

DISCUSSION

Application of the screened defect pinning model is illustrated in

Figure 1. The experimental data points are shown as triangle and squares for

contacts to (I11) and (100) silicon surfaces, respectively. Schottky barrier

heights to n-type Si, $~~,are shown as solid symbols while Schottky barriers to

p-type silicon are shown as open symbols representing the equivalent n-type

barrier computed as (E~- $J. The horizontal scale is the silicide work

function which nominally locates the silicide work function relative to the

vacuum level. The vertical dashed lines locate the Si conduction and valence

band edges relative to the vacuum level. The valence band edge is placed at

5.02 eV as determined by photoemission measurements on an unpinned

hydrogen terminated Si(lll) surface[40, 41]. The vertical axis runs from O to

1.12 eV, the room temperature Si band gap. The solid diagonal line spanning

the band gap shows the variation of the ideal Schottky-Mott barrier on silicon.

The predictions of the screened defect pinning model for pinning at the

divacancy levels, the interstitial and vacancy cluster ensemble levels, and the

charge neutrality level, $*, are shown. The slope of these lines is determined

entirely by the permittivity of Si and the assumption that the silicide
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permittivity is infinite. The Schottky barrier height coincides with the defect

level energy where the pinning model prediction intersects the Schottky-Mott

prediction. Table I lists the silicides for which barrier heights are plotted in

Figure 1, the silicide work function, and the references from which the barrier

height data for each silicide was taken. The silicide work functions were

computed according to the

Reference [12].

The data in Figure 1

average charge transfer model described in

can be separated into two groups. The first group

contains only the rare earth silicides (reSi) which have work functions less

than 4.0 eV and pin at defect levels in the upper half of the band gap. The

second group consists of transition metal silicides (tnzSi) which have work

functions greater than 4.1 eV. The silicides with $~~i <4.5 eV have barriers

determined by vacancy related defects. Those with $~~i>4.5 eV pin near the

interstitial cluster level at Ev + 0.48 eV. For the reSi contacts the silicide work

function is above the divacancy level in the absence of interracial charge

transfer. The divacancy is an acceptor and charge flows from the silicide into

the divacancy. With screening the final barrier height for pinning exclusively

to a V2 level is slightly less than 0.4 eV. Vacancy clusters are known to give

rise to a deep level transient spectroscopy (DLTS) peaks at EC-0.47 eV and EC-

0.55 eV. Under appropriate processing conditions peaks the formation of V.

appears to be enhanced as demonstrated by the data for GdSiz, most of the

open square symbols just below the Si conduction band edge. That V. clusters

are also acceptors is consistent to the data points falling above the Schottky-

Mott line. The behavior of ErSil,p, the mostly triangular symbols just above

the Si conduction band edge, is qualitatively different. These contacts tend to

favor the filling of states above the divacancy level. The one solid triangle

with $~n= 0.29 eV just below the conduction band edge is for what is
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nominally ErSiz. Er does not typically form a thin film disilicide on Si and

this data point probably does correspond to the lower work function ErSil.T.

Aside from noting that there are several acceptor type defects in the upper

third of the Si band gap no attempt will be made identify those levels between

the conduction band edge and the divacancy level. There is insufficient data

to make a convincing assignment.

The lowest work function hnSi is HfSi with $tii = 4.2 eV. This is the

only tvzSi with published Schottky barrier data which has a work function

above the Vz level. It is also the only tv&i which pins to the V2 level for

appropriate processing conditions. For the three data points for (111) p-type

contacts (open triangles) the effective n-type barriers increase monotonically

with decreasing silicidation anneal temperature. For GdSiz contacts the

barrier height was found to depend on the anneal time, anneal temperature

and the thickness of the metal deposited prior to reaction. Hf metal is unique

in that it has the lowest work function of all of the transition metals with $~ =

3.9 eV. This is coincident with the Si conduction band edge. There was an

early reports of Hf/p-Si Schottky contacts with the barrier pinned at EC-0.22

eV [42]. This report generated considerable discussion and the result was

ultimately attributed to oxygen contamination at the Hf /Si interface [43, 44].

The vacancy-oxygen pair defect introduces a bulk acceptor level at EC-0.17 eV

and anneals out at about 325 “C [45]. The low Hf work function is above the

V-O level prior to interface formation and charge maybe readily transferred

into this acceptor. Annealing to form the silicide apparently dissociates the

V-O complex and favors the formation of V2, V., or V~-0~ pinning levels[46].

With increasing work function the next four silicides (MnSi, HfSi2, TiSiz,

ZrSiJ have work functions between the Vz level and the deepest V. level.

Generally, these appear to pinto the V. level at EC-0.55 eV as do the largest
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barriers for GdSiz and HfSi. The largest Schottky barrier in this range, MnSi

with $~~-0.76 eV, is attributed to an impurity related (carbon?) midgap defect

level.

The remaining silicides have work functions very close to or below the

level of the~ cluster level. The~level hasdonor character and for these

contacts the interracial dipole is characteristic of charge transferring from the

Si defect levels to the silicides. Pinning at this level dominates the behavior

of the high work function silicides. The donor character is evident in Figure

1 as the Schottky barrier data is below the Schottky-Mott line. When the

silicide work function becomes deeper than the divacancy donor level it too

can pin the Schottky barrier height. The very highest work function silicides

are PtSi and Pt2Si for which $tii is deeper than the Si valence band edge. As

near the conduction band edge, crossing the valence band appears to affect the

stability of interracial defects. Pinning at the Vz donor is evident for PtSi

contacts although there is a tendency to pin higher in the gap for most of the

data. There are two possible explanations for this behavior. First, there is a

known secondary interstitial cluster level at Ev + 0.29 eV. Second, there is the

possibility that pinning is at a vacancy cluster. The evolution of the donor

state of vacancy clusters has not been studied and is suggested as a logical

corollary to the evolution of acceptor vacancy cluster states in the upper half

of the band gap. Both GdSiz and HfSi are process sensitive following vacancy

related levels. Of the high work function tvzSi’s those pinning close to Vz

donor level show a greater process sensitivity than those pinning close to the

I. level.

While there are a multitude of point defects known to exist in silicon

Schottky barrier pinning is dominated by divacancies, vacancy clusters and

interstitial clusters. The preferred pinning level is determined by the relative

11



positions of the silicide work function, the silicon band edges and the silicon

defect levels located inanabsolute frame of reference. Pinning at acceptor

type defects controls barrier heights in the upper half of the band gap while

pinning at donor is the rule in the lower half of the gap. The ability of the

model to separate behavior relative to band edges and defect levels is taken as

evidence that the computation of the silicide work functions is correct. If it

were not, the behaviors of ErSil,T, GdSi2 and HfSi would not be explicable as

the measured work functions are much larger than the calculated values.

The present model is also consistent with reported variation of the

temperature dependence of Schottky barrier heights. Acceptor states in the

upper band gap typically track the conduction band with temperature while

the donor states typically track the valence band edge. ErSil,T contacts pinned

to the Vz acceptor level are tied to the conduction band edge [47]. CoSiz, TiSiz,

WSi2 and Cu&i contacts tied to the ~ donor level are tied to the valence band

edge. PtSi, pinning close to the Vz level donor level, is also tied to the

valence band edge [47, 48]. Theoretical considerations indicate that defect

levels may have mixed parentage from both the conduction and valence

bands and consequently have a temperature dependence less than that of the

band gap. Laterally inhomogeneous contacts pinning at two, or more,

different defect levels are also expected to have intermediate temperature

dependencies as well [49].

Closely related to temperature dependence of a Schottky contact is its

pressure dependence. Using the intrinsic stress of as-deposited metals, varied

by deposition conditions, it can be shown that W, pinning at the ~ level, has a

barrier height on p-type Si which is largely independent of stress in the

system while the n-type barrier is strongly dependent on stress [50, 51]. The

barrier height on n-type Si was observed to vary by a little over 0.05 eV as a
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function of stress in the as-deposited W. Much of the scatter in the data

presented in Figure 1 is attributed to intrinsic stress in the silicide/silicon

contacts as a function of processing conditions. While the effect of intrinsic

stress on sputter deposited metal Schottky contacts has been documented less

work has been reported for silicide contacts. What is known is that strain in

the as-deposited metal does have a small effect on the silicide formation

reaction rate [52] and that the interracial strain is nonuniform under a silicide

contact with strong variation occurring near the edges [53-56]. For large area

contacts the effect of strain would be largely invisible if it were uniform across

the contact. “Patchy” Schottky contacts are typically assumed to have regions

of different barrier heights which are homogeneous within each patch [57].

The origin of the distinct barriers occurring within each region has not been

adequately explained. Within the present model distinct barrier height may

arise from local variations in defect

local variation in interracial strain.

will play an increasingly important

height of a Schottky contact [59].

type, contamination level[58], or from

As device dimensions shrink, edge effects

role in determining the effective barrier

Strain effects may also explain barrier height variations around

dislocations as detected by ballistic electron emission microscopy (BEEM) [60].

Dislocations in thin CoSi2 contacts to (111) and (100) Si have been studied by

BEEM. Variation of the barrier height on the order of 0.06 eV is observed

when scanning across dislocations on (100) Si but not on (111) Si. Given the

spatial scale the barrier height variation the dislocation core on (100) Si would

have to produce a defect level at least 0.3 eV above that present at the

surrounding interface. Interracial strain will introduce both hydrostatic and

shear strains in the silicon. Hydrostatic strain affects both interfaces

identically. Shear strain affects only the (100) surface and will lift the
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degeneracy of the 6-fold degenerate X symmetry conduction band edge

driving two minima up or down in energy and four in the opposite direction

depending on the sign of the strain. In the vicinity of the dislocation the

shear strain is relived and the minima which have been driven down relax

upward in energy toward the strain free location. The magnitude and

direction of the barrier height variation across dislocations at (100) interfaces

is consistent with just this kind of strain relaxation phenomenon.

What this work has not covered is unannealed elemental contacts and

epitaxial contacts. The deposition of pure metals often results in the

formation of a thin reacted silicide layer at the interface. In some cases, such

as l?d and Co, crystalline silicides are formed upon room temperature

deposition of the metal on a clean Si surface [61, 62]. Description of a thin

interracial silicide in terms of the work function variation across the

metal/ silicide/ silicon structure is problematic when the silicide is only a few

atomic layers thick. Second the barrier height of an as deposited metal contact

will be sensitive to the method of deposition as all methods are known to

introduce defects in the silicon well away from the interface and to introduce

variable amounts of strain into the deposited metal [51, 63-69]. In epitaxial

where a crystalline silicide is grown by codeposition at an elevated

temperature an atomically smooth interface with coherent registry of the two

crystals may be obtained. In NiSi2 A and B type contacts the long range

coherency of the atomic structure of the interface can generate an intrinsic

dipole on the order of a tenth of an eV [70-74]. The A type interface pins close

to the I. level. It is possible that the intrinsic dipole is simply superimposed

on of the defect dipole at the B type interface and that it too pins at the ~ level.

Finally, the present paper takes the literature values for barrier heights

and silicide compositions at face value. Barrier evolution in the silicidation
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process can beinfluences bymetal deposition kduced damage. Several

studies have been done to evaluate the damage introduced during sputter

deposition. Vacancy related defects with concentrations which decay

exponentially away from the metal/ silicon surface are implicated. The type

and extent of the damage represents variation in the “initial conditions” for

the silicidation reaction. Different initial near surface defect profiles result in

slightly different final barrier heights. Similar observations can be made for

the effect of different surface cleaning treatments of the silicon prior to metal

deposition. [29, 75-81]

Extraction of barrier heights is sensitive to the ideality of the contact

and the sophistication of the analysis performed on the measured diode

response. Nonidealities can arise from lateral inhomogeneities in the barrier

height, due either to strain or local variations in defect type and density. Near

surface dopant profiles “may be modified with the formation of near surface p-

n junctions or the simple compensation of dopants by low concentrations of

deep levels which more than about a nm from the interface. When current-

voltage characteristics are used to assess barrier heights the analysis is often

made by assuming that there is a bias range where thermionic current

dominates. The presence of other current conduction paths introduces error

into the analysis, especially for small barrier heights. A substantial amount of

the scatter in the data is certainly related to the complexity involved in

extracting a barrier height from experimental data [57, 82-87].

CONCLUSIONS

15

This work has combined three essential concepts to demonstrate the

dominance of defect pinning of the Schottky barrier height for silicide/silicon



contacts. The first is the use of the screened pinning model to correlate defect

level pinning with variation in the silicide work function. The second is the

use of silicide work functions as corrected by the average charge transfer

model to represent the bulk Fermi level in the silicide relative to the vacuum

level. The third is the assertion that interstitial and vacancy clusters (as small

as VJ are the defects to be associated with pinning the Schottky barrier height.

This is consistent with contact formation by solid phase reaction of a

metal/ silicon couple. The model is also sensitive to the correct location of

the silicon band edges relative to the vacuum level. This has been possible

only recently with the characterization of hydrogen passivated silicon

surfaces. With this model it is now possible to estimate the range and

stability of specific silicide Schottky contacts to silicon as well as their

temperature dependence. Low work function silicide pin to vacancy related

defects in the upper half of the band gap. These silicide are prone to be

process sensitive as Vz and several V. cluster are sufficiently stable to

determine the barrier height. Vacancy levels are tied to the conduction band

giving temperature independent barriers to n-type Si and temperature

dependent barriers to p-type Si. High work function silicides pin to donor

type defects in the lower half of the band gap. These defects are tied to the

valence band giving rise to a reversal of the temperature dependencies of n-

and p-type Si contacts. Most of these contact are relatively insensitivity to

process history. The significant exceptions are Pt silicides which are

postulated to tract donor type Vn defects close to the valence band edge. The

conventional wisdom that silicide barrier heights are highly reproducible is

supported only for silicide with work functions in the range 4.38-5.02 eV

which pin to the I. cluster level.
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Silicide

DySi2

SmSil,T

HoSiz

ErSil,T

ErSi2

GdSiz

YSilT

YSi2

ScSi

HfSi

HfSiz

TiSi2

ZrSiz

MnSi

VSiz

NbSi,

FeSi

WSi2

MoSi2

Cu$i

CoSi2

RhSi

PdzSi

Ni$i

$fii (ev)

3.76

3.72

3.89

3.85

3.92

3.93

3.85

3.93

3.94

4.20

4.33

4.36

4.40

4.33

4.51

4.51

4.57

4.62

4.64

4.65

4.76

4.83

4.98

5.00

$bn/~b~‘eferences

[$3]

[89, 90]

[88]

[91-93]

[47, 88, 94]

[88, 95]

[91, 96]

[88]

[97j

[42, 98-100]

[99, 100]

[101, 102]

[103, 104]

[98, 105]

[106, 107]

[108]

[109]

[110]

[85, 111]

[112]

[47, 113, 114]

[103, 104]

[115-117]

[115, 118]
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NiSi

NiSi2

IrSi

IrSi~

Pt2Si

PtSi

TABLE I

4.92 [115]

4.84 [115]

5.00 [119, 120]

4.84 [121]

5.17 [118]

5.05 [118, 122-125]

The table provides a list of the silicides for which Schottky

barrier data has been collected and presented in Figure 1. The silicide work

function and references to the Schottky barrier data for each silicide are given.

No reliable citations were found for TaSiz($tii =4.25 eV)which hasa

nominal characteristic barrier of $~~= 0.59 eV [I].
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FIGURE CAPTIONS

Figure 1) Schottky barrier heights to n-type Si ($~~)are shown as solid

triangles and squares for contacts to (111) and (100) Si surfaces, respectively.

Schottky barriers to p-type silicon are shown as open symbols representing the

equivalent n-type barrier computed as (E~ - $~P). The horizontal scale is the

silicide work function which nominally locates the silicide work function

relative to the vacuum level. The vertical dashed lines locate the Si

conduction (3.90 eV) and valence band (5.02 eV)edges relative to the vacuum

level. The vertical axis runs from O to 1.12 eV, the room temperature Si band

gap. The solid diagonal line spanning the band gap shows the variation of

the ideal Schottky-Mott barrier on silicon. The labeled solid line indicate the

prediction of the screened pinning model for several defect levels.
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