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ABSTRACT

We investigated multiple-rate diffusion as a possible explanation for observed behavior
in a suite of single-well injection-withdrawal (SWIW) tests conducted in a fractured dolomite.
We first investigated the ability of a conventional double-porosity model and a multirate
diffusion model to explain the data. This revealed that the multirate diffusion hypothesis/model
is most consistent with all available data, and is the only model to date that is capable of
matching each of the recovery curves entirely. Second, we studied the sensitivity of the SWIW
recovery curves to the distribution of diffusion rate coefficients and other parameters. We
concluded that the SWIW test is very sensitive to the disfribution of rate coefficients, but is
relatively insensitive to other flow and transport parameters such as advective porosity and
dispersivity. Third, we examined the significance of the constant double-log late-timek slopes
(-2.1 to -2.8), which are present in several data sets. The observed late-time slopes are
significantly different than would be predicted by either conventional double-porosity or single-
porosity media, and are found to be a distinctive feature of multirate diffusion under SWIW test
conditions. Fourth, we found that the estimated distributions of diffusion rate coefficients are

very broad, with the distributions spanning a range of at least 3.6 to 5.7 orders of magnitude.
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1. INTRODUCTION

The first paper in this series [Meigs and Beauheim, this issue] describes the ﬁeld:setting,
goals, design, implementation, and results of a suite of single-well injection-withdrawal (SWIW)
and multi-well convergent-flow (MWCF) tracer experiments conducted in thé Culebra Dolomite
Member of the Rustler Formation at the Waste Isolation Pilot Plant (WIPP) Site in southeast¢m-
New Mexico. The second paper [Altman et al., this issue] discusses a number of possible
interpretations of the test results. They demonstrate that the SWIW recovery curves jcannot be
explained with a single-porosity model employing heterogeneity in hydraulic conductivity or
regional drift and suggest that the breakthrough‘ curves cannot be explained without matrix
diffusioh. The fourth and last paper in this series [McKenna ef al., this issue] examines the
MWCF tracer tests that were conducted at the same locations as the SWIW tests. McKenna etal
also compares results obtained from the two different types of test and discusses long-term
transport implications. Further information, including the complete data sets, is found in Meigs
et al. [1998].

The effects of multiple rates of mass transfer (or “multirate” mass transfer) have been
theoretically predicted in the past, and are now being. 6bserved in an incfeasing number of
laboratory experiments: these effects have not, until ’now, been documented at the field-scale. In
this paper, we investigated the multirate diffusion hypothesis as it relates to the SWIW tests. The
hypothesis postulates that a distribution of apparent diffusion coefficients and diffusion leﬁgth-
scales is responsible for anomalous behavior (e.g., anomalously long tails and scale-dependent
rate coefficients) in many laboratory and field tracer experiments. As such, the goals of this
investigation were to (1) investigate the hypothesis that multirate diffusion could be responsible
for the observed recovery behavior in the Culebra SWIW tests; (2) develop a methodology for
estimating the distribution of rate coefficients responsible for the observed behavior; (3) examine

whether the hypothesis and resulting model are consistent with other hard and soft data; and (4)
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| examine the significance of the late-time slope of the observed SWIW recovery curves a slope .
which is common to data collected from several single-well and multi-well tests.

As a model of mass transfer, multirate diffusion invokes diffusion between an acivection—
dominated (“mobile) zone and a diffusion-dominated rock matrix (“immobile zone”) that is
heterogeneous at the pore-scale. The multirate diffusion model [Haggerty and Gorelick, 1995, ;
1998] is essentially a modified double-porosity model [e.g., Neretnieks, 1980, 1993; also see
Figure 1 and Section 3] consisting of advective porosity and diffusive porosity, with diffusion of
mass from one to the othér described by a range of rate coefficients. There is now a growing -
body of literature documenting the existence, observability, and effects of multiple rates of mass
transfer on solute transport in the subsﬁrface. Multiple rates of diffusive or sorptive mass
transfer are theoretically and intuitively reasonable [e.g., Ruthven and Loughlin, 1971;
Villermaux, 1981; Rao et al., 1982; Cooney et al., 1983; Rasmuson, 1985; Wu and Géchwend,
1988; Brusseau et al., 1989; Fong and Mulkey, 1990; Valocchi, 1990; Lafolie and Hayot, 1993;

Haggerty and Gorelick, 1995; Cunningham et al., 1997], and have now been observed and
modeled in a number of laboratory experiments [e.g., Ball and Roberts, 1991; Connaughton et
al., 1993; Pedit and Miller, 1994, 1995; Chen and Wagenet, 1995, 1997; Culver et al., 1997;
Werth et al., 1997, Haggerty and Gorelick, 1998; Lorden et al., 1998; and others]. However, to

date, there has been no reported field study that documents the effects of multirate diffusion.

2. SINGLE-WELL INJECTION-WITHDRAWAL
TRACER TESTS

A suite of SWIW tracer tests was conducted in the Culebra Dolomite Member of the

Rustler Formation at the Waste Isolation Pilot Plant (WIPP) Site in southeastern New Mexico
[Meigs and Beauheim, this issue; Meigs et al., 1998]. The Culebra is a 7-m-thick, variably
 fractured dolomite with massive and vuggy layers, and is a potential pathway to the accessible

environment in the event of a radionuclide release from the WIPP. A total of three SWIW tests
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were performed at two multiple-well sites, designated as the H-11 and H-19 “hydropads”:
SWIW tests. were performed only at the central well at both hydropads. Two tests ﬁvolved the
injection of two tracers each and one test involved a single tracer, resulting in a total of five
SWIW data sets. The SWIW tests consisted of the consecutive injection of one or more slugs of

conservative tracers into the Culebra Dolomite, followed by the injection of a Culebra brine
chaser (containing no tracer), and then by a resting period of approximately 18 hours. The
tracers were then removed from the formation by pumping at the same well until concentration
was close to or below detection levels. The majority of tracer was removed within 48 hours of
pumping, but qﬁéntiﬁable concentrations of tracer continued to be removed for over 1000 hours
(up to 50 days) at H-11 {Meigs and Beauheim, this issue, Figure 6]. In this paper, we will refer
to the five data sets as follows: (1) the first H-19 test (SWIW1), tracer 1 as H19S1-1; >(2) the first
H-19 test (SWIW1), tracer 2 as H19S1-2; (3) the second H-19 test (SWIW2), only one tracer
added as H19S2; (4) the H-11 test tSWIW), tracer 1 as H11-1; and (5) the H-11 test (SWIW),

tracer 2 as H11-2. Details of the injected volumes, injection rates, pumping rates, etc., are given .

in Table 2 of Meigs and Beauheim [this issue].

3. MULTIRATE DIFFUSION: MATHEMATICAL
| MODEL -

In this section, we present and discuss the mathematical model used to describe
advective-dispersive solute transport with multirate diffusion. The solutions to these equations
are obtained in the Laplace domain and then numerically inverted using the de Hoog algorithm
[de Hoog et al., 1982]; the solutions are performed sequentially for each of the injection, resting,
and pumping periods. More details of the solution method are presented in Appendix A.

The multirate diffusion model is a distributed model of diffusion representing a medium
with pore-scale heterogeneity in diffusive mass transfer. As conceptualized in this paper, the

multirate diffusion model is similar to that described by Cunningham et al. [1997] and by
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Haggerty and Gorelick [1998]. Figure 1 illustrates fractures and matrix (i.e., advective and
diffusive porosity) in a small volume of rock, where the matrix is heterogeneous, with respect to
diffusion, at spatial scales much smaller than a representative elementary volume (REV). Itis -
assumed that this sub-REV-scale heterogeneity is replicated in approximately the same fashion
everywhere in the formation. |

The multirate diffusion model is a generalization of the conventional double-porosity
model in that porosity is divided into two broad categories: advective porbsity (where transport is
dominated by advection and dispersion) and diffusive porosity (where transport is dominated by
diffusion). However, in the multirate model the diffusion rate coefficient (0, = D/, see below)
is described by a distribution rather than a single value. The model assumes one-dimensional -
diffusion along a distribution of individual pathways within matrix blocks. The distribution
describes the fraction of each diffusive pathway present in the rock. Although Figure 1 shows
cubic matrix blocks in the model, the pathways and the blocks can be any shape, provided that
each pathway is one-dirnenéional, homogeneous, and independent of other pathways. With these
criteria, each diffusive pathway in the distribution can be modeled with a one-dimensional
diffusion equation.

Variability in the diffusion rate coefficient is due to a combination of factors, including
variability in at least the following: (1) matrix-block size; (2) tortuosity; (3) pore geometry; (4)
restricted diffusion within pores (i.e., diffusion is slowed by small cross-sectional area of the
pore); and (5) interaction with pore walls, including sorption (though the tracers employed in our
experiments are believed to be non-sorbing). For further discussion on these sources of
variability, see Pedit and Miller {19941, Haggerty and Gorelick [1995, 1998), and Pignatello and
Xing [1996].

The distribution of diffusion rate coefficients may be defined in any appropriate manner,
but most commonly is defined as a statistical distribution. Culver et al. [1997], Cunningham et
al. [1997], and others have used a gamma distribution, while Pedit and Miller [1994, 1995],
Haggerty and Gorelick [1998] and others have employed a lognormal distribution. We will
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employ a lognormal distribution; for a discussion of the reasoning behind this choice, see
Haggerty and Gorelick [1998]. | '
' The mathematical models presented here make the folléwing important simplifications:
(1) the regional gradient is negligible; (2) the formation is isotropic, confined, horizontal, - |
homogeneous with respect to groundwater flow, and is of constant thickness. The second set of
assumptions simply guarantees that flow is radially symmetric. This is much less significant for
an SWIW test than for other types of tests, particularly if the first assumption is valid, because
the tracer le;aves the welli and comes back. to the well along the same path. Therefore; although
the second assumption is certainly violated within the Culebra dolomite, the effects on an SWIW
test are likely minimal [Alfman et al., this issue]. |

The equations for solute transport into or out of a well, in the presence of a lognormal

distribution of matrix diffusion processes, is given by

ac‘z Jm b(ad‘a 5:1((14) dor, = } ) {TalelaC,,) y dc,
0

%7 /T or\ R, or | R,or .
\ R s 0
o) B i @) -]
()= V2o 0, P\~ 202 28)
where
g | @)
and
B ___¢de
ot =
¢nRa (20)

and where ¢, [M/L?] is the solute concentration in the advective porosity (e.g., fractures) ; é}(ad)

[M/L?] is the average solute concentration in the portion of the matrix associated with a particular
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diffusion rate coefficient; oy [1/T] is the diffusion rate coefficient described in (2b), Wl'.liCh is
continuously distributed; b(cz) [-] is the PDF of diffusion rate coefficients, which we assume to |

be lognormal in (2a); ﬁ ot [-] is the total capacity coefﬁcieht of the formation, which is the ratio of
mass.in the matrix to mass in the fractures at equilibrium; oy [L] is the longitudinal dispersivity;
v [L/T] is the pore-water velocity; R, [-] is the retardation factor in the advective porosity; r [L] is

the radial coordinate (positive away from well); ¢ [7] is time elapsed since the beginning of
injection of the first tracer; 0, is the standard deviation of the log-transformed diffusion rate
coefficients; |14 is the natural log of the geometric mean of the diffusion rate coefficients; D,
[L?/T] is the apparent diffusion coefficient in the matrix, which may be defined most simply as
the product of the aqueous diffusion coefficient of 'the tracer and diffusive tortuosity, although
this expression may be modified to incorporate processes such as iﬁxmobile zone sorption; / [L]
is the length of the diffusion pathway within the matrix; ¢, [-] is the diffusive porosity of the
formation; and R, [-] is the retardation factor due to sorption within the diffusive porosity; ¢, [-]

is the advective porosity.

The time-derivative of the spatially averaged solute concentration in the matrix is given

by

a5(e) 1 [ deo)
Tzfj —g5—dz, 0<o <o
° (3a)

where c,; [M/L?] is the concentration at a point within the portion of the matrix associated with a
particular diffusion rate coefficient; and z [L] is the coordinate along the pathway. Note that / is
a variable part of 7, and therefore is implicitly dependent upon ¢;. The concentration at a point

within the portion of the matrix associated with a particular diffusion rate coefficient is given by

the solution to the diffusion equation:

dcfo d*clo
g(td)'—'D, adz(zd)’ .0<q’d<°°

(3b)
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The boundary condition for diffusive mass transfer is that the concentration at the edge of the

matrix is equal to the concentration in the mobile zone:

_ cd(ocd)=c, , O<a <o

B3¢

To solve these equations we use the approach outlined by Haggerty and Gorelick [1995,
1998], where we substitute a series of first-order equations for the equations in (3a) and (3b) (see
Appendix A). The substitution is done in such a way that the resulting solution for ¢, is
mathematically identicai to that which would be obtained by solving the above equations
directly. The solutions are obtained in the Laplace domain and then numerically inverted to the
time domain (see Appendix A).

TQ model the experiments for diffusion into a sphere [e.g., Rao et al, 1980; Ball and

Roberts, 1991], we also employ (1). However, equations (2a) and (3a-c) are replaced by the

following four equations, respectively:

B(ct) = B wd(ct})

(4)

1
3E
_a—-cd(tad) = % J Zz%_iﬁ dz , ;=0

0 )
dc; D, a( 2ac‘,)
of  z20z 2oz (62)
c;=¢,, atz=l (éb)

where &oz*) is the Dirac delta (o* represents a single value of o, instead of a distribution); and

I is now defined as the radius of the spherical matrix block, which is a constant.
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3.1. Radially Divergent Flow (Injection Period)

For each of the three parts of an SWIW test (the injection, resting, and pumping periods),
the pore-water Velocities, initial conditions, and boundary conditions differ. Let us first consider
the injection period.

The pore-water velocity in (1) during the injeétion period is given by

Qm]

v= 2nrd,b

()

where O, [L%/T] is the injection rate; and b [L] is the formation th1ckness The boundary

condmons for use with (1) for conditions of radlally divergent flow (injection) are

C,— 0‘1."37“ = Ci atr=r, )
o, 0 r— oo
Ea (8b)

where r,, [L] is the well radius and ¢, is the injected concentration (which may be a function of
time). Equation (8a) is the flux boundary at the well accounting for dispersion and (8b) is the
boundary condition at infinity during injection. Initial conditions for radially divergent flow are
that concentrations in both the édvectivé and diffusive porosities (i.e., matrix and fracture
porosities) are initially zero.

The equations described in this section must be solved over all space at the end of the
injection period. We solved these equations on a one-dimensional grid (sincg it is assumed that
concentrations change only radially away from the well). The grid used 25 equally-spaced nodes
and was terminated at a distance where mobile concentrations fell below 10* of injected
concentration. With this number of nodes placed to the edge of the concentration field, results

were insensitive to grid spacing. An independent mass balance calculation ensured all injected

mass was accounted for.
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3.2. No Flow (Reéting Period)

After the injection period, the well is turned off. During the resting period the pore-water
velocity in the formation is assumed to be zero. This is justified because velocities near a w.ell
very rapidly come to steady-state after a change in pumping rate, even though heads may

continue to change for some time. This assumption is supported and discussed by Harvey et al.

[1994]. Therefore, (1) may be simplified to

?5% + J \b(ad)?—‘c‘%({‘:ll d(ld =0
0 ®

and all other equations remain the same. In the absence of a velocity field, no boundary
conditions are required. Initial conditions for the resting period are taken as the concentrations at -
the end of the injection period. Concentrations are solved at the end of the resting period,

spatially along the grid discussed above.
3.3. Radially Convergent Flow (Pumping Period)
The pore-water velocity in (1) during the pumping period is given by

Qo
2nrd,b

U=
(10)

where Q,,, [L%/T] is the pumping rate. We also assume that the velocity in (10) is constant
because velocities quickly come to steady-state in a radial system (see reasoning in Section 3.2).

The boundary conditions for use with (1), for conditions of radially convergent flow (pumping)

are
(11a)

C¢=0 ¥ —>o0 (11b)
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Initial conditions for radially convergent flow are that concentrations (both advective and
diffusive) at every point on the grid (see the end of Section 3.1) are initially identical to those at

the end of the resting period.

4. MODELING OF SWIW TESTS

In this section, we presént two models of the SWIW tests. First, we present results from
our effort to model the eXperiments us_ing conventional (single-rate) diffusion into a spherical
matrix block and transport assuming radial flow. Second, we show the multirate diffusion model
of the experimental results. We also present results from a sensitivity analysis with the multirate
diffusion model, including confidence bounds on the parameter estimates.

Parameters used by the models were defined in one of two ways: (1) values were fixed
based on knowledge of thé tracer tests and the Culebra geology; and (2) values were e.;,timated
by fitting the models to the data [Meigs and Beauheim, this issuel.
All parameters that could be fixed are shown in Table 1.

Estimation of parameters was done using a nonlinear least squares algorithm [e.g.,
Marguardt, 1963]. For each data set and model of that data we found the set of parameters that
minimized the sum of squared errors on the logarithm of concentrations. We estimated the
natural logs of those parameters that are strictly positive-valued. For purposes of comparison,
we used the root-mean square error (RMSE), defined for natural logs of concentration and‘
corrected for the number of parameters estimated [e.g;, Bard, 1974, p. 178]. A first-order

approximation to the estimated parametef covariance matrix (V,) is given by [e.g., Bard, 1974;

Draper and Smith, 1981]

v, =) (12)

where © is the replicate variance defining the uncertainty in concentration (assumed to be

uniform and equal to the RMSE), and J is the Jacobian, which is the matrix of sensitivities of the
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model output to the parameter estimates. In the analyses that follow, o, is the standard deviation

of the estimated parameter, which is the square root of the respective diagonal from V,,.

4.1. Conventional Double-Porosity and Radial Transport

Figure 2 shows the best obtainable fit of the conventional double-porosity model
(assuming spherical diffusion) to the H1952 and H11-1 recovery curves. Modeling of the other
recovery curves are not shown for conventional double-porosity because the two attempts with
H19S2 and H11-1 clearly demonstrate that a conventional double-porosity model is inadéquate.
The parameters estimated from these fits and the RMSEs are given in Table 2.

We used only early-time data (first 50 hours) in the inversion procedure, roughly
corresponding to the advection/dispersion-dominated part of the recovery cﬁrve. This was
necessary because it was found that the conventional double-porosity model could not possibly
match the late-time data (see Figure 2). When matching the late-time data was attempted, other
estimated parameters in the model were made physically unreasonable (e.g., advective porosity
close to 100%, or dispersivity larger than several meters, close to the spatial scale of the
experiment) and the estimation algorithm would fail. In dozens of scoping runs with a
conventional double-porosity model, no set of parameters was able to reproduce the late-time
slope of the data. For conventional double-porosity, the slope is -1.5 for times after the
advectively-dominated early part of the test, and before the diffusion time-scale of approximately
I%/D,, [Tsang, 1995; Hadermann and Heer, 1996]. At times greater than the diffusion time-scale,
the double-log slope predicted for a conventional double-porosity model quickly goes to infinity
(in other words, the matrix is quickly emptied of solute once the time-scale of diffusion is

reached). For these reasons, we also decided not to produce confidence bounds on the parameter

estimates shown in Table 2.
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4.2. Multirate Diffusion and Radial Transport

Figures 3a-e show the multirate diffusion models (assuming a lognormal distribution of
rate coefficients) estimated from the five SWIW recovery curves. | _

From these ﬁgures we note two points. First, the data of all five SWIW data sets are fit
very well by the multirate diffusion model. The RMSE values (Table 3) range from 0.150 to
0.424, which are 4 to 8 times smaller than the conventional double-porosity model for the same
respective SWIW data sets. This imprqvement over the conventional double-porosity model is
achieved with one additional estimated paré.meter. Second, the models fit the observed recovery
curves over the entire range of data, including both early and late concentrations.

The parameters estimated from these fits, their 95% confidence intervals (i.e., 26,), and
the assoéiated RMSEs are given in Table 3. Since the natural logarithms of positive-valued
parameters were estimated, the confidence intervals are on the logs of the estimates for all
parameters except [1;. From Table 3, we note four points. First, the parameters indicate that the
estimated distribution of o is very broad, spanning several orders of magnitude. Second, the
distribution of o, appears to be different at H-11 than at H-19. This is discussed below in more

“detail. Third, pt,; and o, have relatively small confidence intervals, while ¢, and o, generally have‘
very large confidence intervals. In particular, we note that the confidence interval on the
estimate of advective pofosity suggests that this parameter is essentially unestimable in an
SWIW test. Conversely, 64 appears to be particularly well-measured by this type of test.
However, the terms “large” and “small” are somewhat subjective and a more detailed anaiysis is
given in the following sections. Fourth, parameters estimated from tests at the same well (with
the exception of o, for the H19S1-2 recovery curve) have values that are statistically the same
(i.e., their confidence intervals greatly overlap).

Figure 4 shows the estimated cumulative distribution functions (CDFs) of the diffusion
rate coefficient for the five models. The graph shows the cumulative matrix volume associated

with a diffusion rate coefficient smaller than a given value. The variance of the estimated
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distribution is large for all tests, but is somewhat larger, in general, for the H-19 tests than for the
H-11 test. The estimated CDFs display 95% of the distribution spanning a range of 4.4 to 11.7 -
orders of magnitude. We also note that the CDFs from the H-11 and H-19 tests appear to be self-
consistent, with the exception of CDF for H19S51-2, which has a different estimated o4than the
other two at H-19 (discussed in Section 5.2). |

Figure 4 contains a shaded region, indicatiﬁg the portion of the CDF of diffusion rate
coefficients that could be assayed (i.e., “observed”) by the tracer tests. Upper and lower lirﬁits
were calculated by considering the diffusive time-scale for different parts of the CDF. The
diffusive timé-scale is the amount of time it takes for a solute to diffuse into a particular region,
and is roughly the inverse of the diffusion coefficient for a one-dimensional micropore [e.g.,
Crank, 1975]. For example, a one-dimensional micropore that is characterized by o, of
23x107 5! w0uld require approximately 4.3 x 10% 5 (1.20 x 10° hr) for solute to diffuse into it.
Therefore, it is unreasonable to expect that such a micropore would affect a tracer test at time-
scales 100 times smaller (on the order of 1200 hr, the time of the last data point in H11-1). This .
reasoning is consistent with arguments based on Damkohler numbers [e.g., Bahr and kubin,
1987]. Therefore, we draw an approximate lower limit of the shaded zone at 2.3 x 10°s!. Thus,
the portion of the CDF with values of o, smaller than the shaded region corresponds to that part
of the diffusive poroSity that could not be assayed by the SWIW tests. A longer-duration test
~ would be needed to “observe” that portion of the matrix.

~ On the other end of the time-scale spectrum, diffusive mass transfer that is very fast will
be obscured by advective processes. Since we do not know the ratio of advective to diffusive
porosity, it is impossible to distinguish between pores dominated by advection and small
micropores into which diffusion occurs quickly. In other words, diffusive porosity that interacts
very rapidly with advective porosity is indistinguishable from the advective porosity itself.
Therefore, the fastést observable diﬁ'usion processes will occur at a minimum of approxin;z;.tely 1

percent of transport time through the system. For our system, this initial recovery time also

includes the injection and resting time (a total of about 24 hr), which corresponds to o, of
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1.2x 107 s, In reality, the fastest observable diffusion process is probably slower than this, but
this provides an approximate upper bound. Again, this reasoning is consistent with an argument
based on the Damkohler number. |

The fringes of the estimated CDFs, lying outside the b‘ounds in Figure 4, are highly
nonunique and are not supported by data. They appear on the CDF only because we have
chosen, a priori, a lognormal distribution. We have the largest degree of confidence abdut the
part of the CDF near the center of the shaded region, with'decreasing confidence toward the
edges. ‘

As discussed above, the estimated CDFs suggest that 95% of the distribution is spread
over 4.4 to 11.7 orders of magnitude. However, not all of this distribution is supported Ey data.
If the unsupported portions of the CDFs are ignored, the distributions are spread over 3.6 to 5.7
orders of magnitude. This spread should be considered a minimum, as a longef-duration

expeﬁment would likely support a wider spread.

5. DISCUSSION

5.1. Sensitivity Analysis

In this subsection we discuss the sensitivity of the multirate diffusion model to the

estimated parameters.

The Jacobian (sensitivity matrix of dependent variable to model parameter) can be

normalized to allow comparison of parameters sensitivities through time and from one parameter

to another [Harvey et al., 1996]:

_Piaci
L-;——g—g‘p—i

(13)
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where J;; is the sensitivity of the modeled concentration at the /™ time to the j® parameter, C; is
the i™ component of the vector of normalized concentrations through time, and p; is j®
compohent of the vector of estimated parameters. The Jacobian is a useful instru.ment_ for
investigating the sensitivity of the model to the estimated parameters as a function of time [e-g.,
Wagner and Harvey, 1997], and gives insight into the correlation between estimated parameters.
A large value (either positive or negative) in the Jacobian indicates that the model, at a parﬁcuiar

time, is sensitive to a given parameter; a small value would indicate that the model is insensitive
to the parameter. The parameter covariance matrix frdm (12) was also used to examine cross-
correlation.

Plots of the columns of the Jacobians for H11-1 and H19S2 are given in Figures 5a and
5b, respectively; each is representative of the sensitivity matrices computed for other SWIW tests -
at their respective locations. In both plots, it is clear that the nature of all sensitivities changes
significantly between the advection/dispersion- and mass transfer-dominated parts of ‘the
simulations, a transition which occurs at roughly 40 hours at thg H-11 well and roughly 30 hours
at H-19.

For H11-1, the sensitivity of the model to the mass transfer parameters is much larger
than to the flow parameters, and increases over time. The sensitivities to dispersivity and
advective porosity are small and essentially constant for times greater than 40 hours, suggesting
strong correlation. Consequently, neither parameter can be estimated with any confidence. In
contrast, the sensitivities of the mean and standard dcviatibn of the distribution of 1og;diﬁ'usion
rate coefficients are larger and increase through time. Thus, the mass transfer parameters can be
estimated with a reasonable degree of confidence, provided that good data are available at late
time. These conclusions are supported both by the covariances and by the confidence intervals
of the estimated parameters (see Table 3). |

The sensitivity matrix for H19S2 exhibits greater complexity than H11-1. First, y; shows
a fairly high degree of correlation with ¢,, but the sensitivities are somewhat larger for ¢, than in

H11-1. This is explained as follows. The largest coefficients in the distribution of diffusion rate




HAGGERTY ET AL.: CONVERGENT-FLOW TRACER TESTS IN A FRACTURED DOLOMITE, 3 18
coefficients represent near-instantaneous mass transfer. Hence, the corresponding diffusive

porosity effeétively acts as part of the advective porosity (i.e., they are indistinguishable). The

fraction of the distribution of diffusion rate coefficients that are large is determined in pért by p4
(larger 4 means that the geometric mean of 0y is largef and diffusive mass transfer is fasterj.
Therefore, {14 determines the fraction of the diffusive porosity that is indistinguishable from
advective pqrosity. Consequently, |4 and ¢, can be strongly correlafed if p4 is relatively large
(as is the case in H19S2). Nonetheless, calculated confidence limits indicate that L4 can still be
estimated with reasonablé confidence, though with somewhat less confidence than in H11-1.
Second, in H19S2, the sensitivities exhibit a higher degreé of scatter and numerical error.
The scatter and oscillations in the sensitivity plot are due to numerical .error at very low
concentrations and do not have physical significance. Sensitivities are calculated numerically as

derivatives, which are very sensitive to small numerical errors.

5.2. Discussion of Estimated Parameters and Comparison with Other Data

In this subsection, we will discuss the estimated parameters, their confidence intervals,

and compare these values to data external to the SWIW tests. o
The values of ¢, and o; (see Table 3) cannot confidently be estimated by the SWIW test:
both parameters have extremely large confidence intervals. In the case of ¢,, the confidence
intervals span all possible values of advective porosity. Dispersivity has slightly smaller
| confidence intervals, but the confidence intervals still span all possible values. Surprisingly,
however, all estimated values of both ¢, and o, are in reasonable agreement with independent
information. The estimated values of o, for example, lie within the bounds of field-scale
dispersivities observed in other types of tests at sizﬁila: scales [Gelhar et al., 1992]. The
advective porosities we estimate are within the range expected for fractured rock, and lie at the

upper end of the range observed from multi-well tests in the Culebra [McKenna et al., this issue].
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Advective porosity and dispersivity are not estimable by an SWIW tést because the flow
field is reversed in the middle of the experiment. Large and small values of these two parameters
result in very similar early-time breakthroughs, and the late-time breakthrough is almost
completely insensitive to the parameters. In contrast, diffusion is not affected by the reversal of
the flow field. Additionally, the late-time breakthrough is very sensitive to diffusive mass
transfer. Consequently, the parameters describing the distribution of diffusion rate coefficients,
M4 and o4 (discussed below), are quite estimable in an SWIW test.

The parameters j1; and G, are estimated with smaller confidence intervals relative to their
range of reasonablé values. Because diffusion rate coefﬁcients can vary ovér an extremely wide
range, 95% confidence intervals on py of about = 1 to 2, indicate a reasonable degree of
confidence for this parameter. The value of In(G,) appears to be well-estimated by the SWIW-
test also (with the exception of H19S1-2, which is a much shorter data set). Other than H19S1-2,
the confidence intervals on In(Gy) range from +0.24 to +0.30.

The mean and standard deviation of diffusion rate coefficients were both generally larger
for H-19 recovery curves than H-11 recovery curves. This corresponds well to our current
understanding of the hydrogeolbgy at the two hydropads. On the basis of advective porosities
inferred from MWCEF tracer tests [McKenna et al., this issue], transmissivities determined for
many wells at the WIPP site [Holt, 1997], and examination of drill core [Holt, 1997], it is
believed that advective transport in the Culebra dolomite at the H-11 hydropad tends to be
channeled along well-connected fractures that form comparatively direct flow paths. At the
H-19 hydropad, advective porosity consists not only of fracture porosity but also interpafticle
porosity and vugs connected by microfractures, and flow thus follows a more circuitous route
[Meigs et al., 1998]. Mass that is advectively transported near the H-11 hydropad experiences: B
(1) exposure to a smaller surface area of matrix, resulting in less matrix diffusion during a given
time- or space-scale of experiment and thus lower effective matrix diffusion rates; and (2)

incomplete exposure to the range of porosity types, resulting in a narrower spread to the

distribution of diffusion rate coefficients.
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T_he distributions of o4 estimated from the SWIW tests appear consistent from test to tesi
and data set to data set, with the exception of H19S1-2. The H-11 data set and the other two
H-19 data sets yielded very similar values of j14 and o4 for tests conducted at the same ;Vell. The
estimated values of gy and o4 for H19S1-2 are larger and smaller, respectively, than for H19S2
and H19S1-1. The conficence interval on ¢4 for HI9S1-2 is 1arge enough, however, that the
value of G4 is very uncertain. The larger uncertainty and different estimates of p; and o4 at
H19S1-2 may be due to two factors. First, the H19S1-2 data set is the shortest, with several
hundred hours less data than the other H-19 data sets. The tracer sampled a smaller range of
mass transfer tﬁne scales and is therefore insensitive to the slowest rates of mass transfer. This
resulted in a larger estimated mean diffusion rate coefficient and a lower estimated standard
deviation. The influence of the time-scale of the experiment on the estimated parameters was
confirmed by performing a parameter estimation on a H1951-1 data set truncated to the length of
the H19S1-2 data. The resulting estimates for |14 and 64 from this scoping run were intermediate
between those from the H19S1-1 and H19S1-2 runs.

Second, the Culebra is heterogcneo‘us. Of the three SWIWs at H-19, the H19S1-2
injection was conducted over the smallest volume of the Culebra [Meigs and Beauheim, this
issue]. As a result, H19S1-2 experienced the smallest amount of heterogeneity and, therefore,
may be expected to have a smaller estimated ©4.

The CDFs of diffusion rate coefficients estimated from all recovery curves are very
broad. The portions of the CDFs that are supported by data span at least 3.6 to 5.7 orders of
magnitude (see Section 4.2). The significance of this for long-term solute transport in the
Culebra is as follows. Diffusive mass transfer results in the average solute transport velocity
decreasing as a function of time. A distribution of diffusion rate coefficients means that the
decrease in velocity occurs over a longer period of time than if there were a single diffusion rate
coefficient. A spread in the diffusion rate coefficients of 3.6 to 5.7 orders of magnitude means
that the tracer velocity will decrease over at least 4 to 6 orders of magnitude. Because this is a

minimum, it is possible that the tracer velocity could decrease over an even greater range in time.
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5.3. The Late-Time Slope of the Data

The SWIW data shown in Figure 3 have late-time slopes that are very nearly constant
’after 200 hours. Plots of the derivatives of these log-transformed data reveal that both H-11 data
sets have a constant late-time slope of -2.1. The late-time slopes for H19S1-1 and H19S2 are
both approximately -2.2, while the late-time slope for H19S1-2 is approximately -2.8. For all
five SWIW data sets, these slopes are remarkably different from those predicted for a
conventional double-porosity model. For conventional double-porosity, the slope is -1.5 for
times after the advectively-dominated early part of the test, and before the diffusion time-scale of
approximately °/D,, [Hadermann and Heer, 1996]. At times greater than the diffusion time-
scale, the slope predicted for a conventional double-porosity model quickly goes to infinity.
-Figure 6 shows .the effect of varying 6, from 0 (conventional double-porosity) to the
estimated vélue of 3.57 for H11-1. For the conventional double-porosity model, we see that the
slope of the graph is -1.5 from approximately 100 hr to 500 hr. However, after 500 hr, the slope
steepens considérably, and would ultimately go to -o- as all mass is removed from the single-rate
immobile zone. For the multirate diffusion models, the late-time slopes are constant, with values
of -1.9 for 6;,=2.00, and -2.1 for 64=3.5.
In all of the SWIW data sets, the late-time slope is both coMt and steeper than -1.5.
We ran the multirate model for a range of parameters (many are not shown), and found that the
late-time slopes are always constant and steeper than -1.5 for 6, greater than 0. In addition, data
from other types of tests (e.g., MWCEF tests and one-dimensional column experiments with a
pulse or square-wave injection) also show straight-line recovery curves at late times Wlth slopes
greater than -1.5, and scoping runs performed on these data have required non-zero values for 64
in order to adequately match the entire length of the recovery curve. Therefore, we suggest that
a constant late-time slope steeper than -1.5 for a pulse-injection tracer test is diagnostic of
multirate mass transfer. It is important to note, however, that other effects (not believed to have

influenced the SWIW tests we examined) may produce slopes similar to multirate diffuéion;
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these include significant tracer drift, the injection well or port not being cleared of solute, or

nonlinear sorption. These effects are matters for potential future research.

5.4. Conventional Double-porosity vs. Multirate Diffusion

A growing body of literature has concluded that multirate diffusion is a significant
phenomenon. The majority of this literature has shown that the estimated distributions of rate
coefficients have surprisingly large variances, even in relatively homogeneous media. It is not
straightforward to compare the various models directly because of different matheniatical
formulations, but Pedit and Miller [1995], Culver et al. [1997], Werth et al., [1997], Haggerty
and Gorelick [1998], and Lorden et al. [1998] all found variability in mass transfer rate
coefficients that span many orders of magnitude. Our study, based on field experiments, adds io
this list: estimated variability in the diffusion rate coefficient spans between at least 5 orders of
magnitude (see Figure 4). In our study, we find that it is impossible to fit all parts of the field
data using a conventional, single-rate double-porosity model (assuming diffusion into spherical

blocks). It is possible to fit the earliest data, but these data are dominated by advection rather

than mass transfer.

6. CONCLUSIONS

(1) A conventional double-porosity model incorporating distributed diffusion, such as the
multirate diffusion model presented here, appears necessary to represent the recovery curves in
the SWIW tests in the Culebra dolomite. A conventional, single-rate double-porosity model,
assuming spherical diffusion, is not able to reproduce the observed late-time slope of the data.
This is a serious short-falling of the conventional double-porosity model, because the late-time
data are dominated by diffusive mass transfer. The portion of the recovery curve matched well

by the conventional double-porosity model is dominated by advection and dispersion.
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2) Parametér estimation and sensitivity analyses indicate that the SWIW tests in the |
Culebra dolomite are generally insensitive to advective porosity and dispersivity. This is due to
the reversing flow field, in which the tracer goes out from the well and returns to the well along
. approximately the same ﬂow path. However, the SWIW tests appear to be particularly sensitive
to matrix diffusion, and from these tests it is possible to estimate a distribution of diffusion rate” "~
coefficients with a reasonable degree of reliability, although care must be taken to address the
effects of data length and quality and the nonuniqueness of the estimated lognormal distribution
of diffusion rates outside the assay range of a given tracer test.

(3) The distribution of diffusion rate coefficients is particularly sensitive to late-time data.
In fact, the sensitivity to these parameters generally groWs through time. Therefore, accurate
estimation of the distribution relies on accurate concentration data in the tail of the test, where
the effects of matrix diffusion dominate the effects of advection and dispersion. It is unlikely
that distributions of rate coefficients can be estimated from SWIW recovery curves that either do
not contain the tail concentrations, or have very low-accuracy tails.

(4) The late-time slope of the recovery curves obtained from SWIW tests in the Culebra
dolomite have constant double-log slopes between -2.1 and -2.8. Late-time slopes obtained from
conventional double-porosity models, however, are -1.5 before the diffusion time-scale /D, -
- [Hadermann and Heer, 1996}, and quickly go from -1.5 to a slope much steeper than -2.5 after
the diffusion time-scale. Therefore, a constant late-time slope between -2 and -3 is apparently
diagnostic of a distribution of diffusion rate‘co(cfﬁcients.

(5) The estimated distribution of diffusion rate coefficients is very broad for the Culebra .
dolomite. The estimated CDFs, which assume a lognormal distribution of rate coefficients, have
a standard deviation in In(c;) from 2.56 to 6.87. The portions of these CDFs that are supported
by data are spread over at least 3.6 to 5.7 orders of magnitude. Consequently, if these
distributions were accurate for the entire formation, it would take approximately this many
orders of magnitxide in time to experience all of the_mass transfer variability in the formation.

Therefore, the advection velocity of a solute in the Culebra would continue to slow over at least
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3.7 to 5.7 orders of magnitude in time and possibly much longer. Any experiments or modeling
conducted within these time frames would need to account for a distribution of mass transfer rate

coefficients in order to accurately predict advective velocities on another time-scale.

APPENDIX A: LAPLACE-DOMAIN SOLUTION -

The purpose of this appendix is to derive the Laplace-domain solution for the advective-
dispersive equation in radial coordinates with multirate diffusion for (a) the injection i)eriod; (b)
the resting period; and (c) the pumping period. |

Haggerty and Gorelick [1995, 1998] show that the solute transport and mass transfer
relationships given in (1), (2a), (3a), (3b), and (3c) can be re-written as follows:

doc ) acm(am) 1a'(TOLL‘U‘8c) Uac
£+ | Boy) do.,, =
e | e

t t m—7Jr\ R, Oor| R,or (Al)

,,.(_43__) "
8 Btot “2(2].-1)2

e -
2«/27: (27-1) 0, P 207

(A2)

cm(am) = am[c, - c,,,(am)] , 0<0o,<e | (A3)

where ¢, [M/L’] is the concentration of the multirate immobile zones; B(o,) [-] is the
distribution of first-order rate coefficients; o, [1/T] is the first-order (multirate) rate coefficient;
and all other parameters are exactly as previously defined. The same boundary conditions apply
as disbussed in Sections 3.1-3.3. The boundary condition given in (3¢) has no equivalent in the
above equations, but is dealt with implicitly. Using equations (A1)-(A3) is completely
equivalent in every way to using équations (1) through (3c). However, it should be noted that

the immobile concentrations c,, are only mathematical constructs, and are used solely for the
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purpose of “storing” mass. The advantage of using equations (A1)-(A3) is that they are
mathematically simpler to use, and eliminate the need to solve many diffusion equations for
concentrations within a distribution of immobile zones (each of which would'neéd to be
discretized using finite differences, finite elements, etc.) For a more complete description of this
approach to solving a multirate diffusion problem, see Haggerty and Gorelick [1995, 1998].

We solve for concentrations after the iﬁjecﬁon period, restiné peripd, and during the
pumping period by cdnvcrting (A1)-(A3) to the Laplace domain. The solution to the differential
equation(s) is found in the Laplace domain, and then concentrations. Aare obtained by inverting -
numerically to the time domain. Similar and related solutions have been documented extensively
by Chen [1985], Chen and Woodside [1988], Harvey et al. [1994); Haggerty and Gorelick [1 995,
1998]. Therefore, we will give only the solutions in the Laplace domain, and not the derivation.
A FORTRAN code was constructed to solve this problem and to estimate the parameters of the
distribution of diffusion rate coefficients for SWIW tests and for multi-well tracer tests. The
code is called STAMMT-R (Solute Transport And Multirate Mass Transfer in Radial
coordinates) (Haggerty et al., 1999). The code has undergone QA qualification at Sandia

National Laboratories.

The solution in the Laplace domain to (A1)-(A3) during the injection period can be

expressed nondimensionally as

 en Aip'y)
e e R
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and where s is the Lapléce paramefer, an overbar denotes the Laplace transform of a variable,
AP’(*) is the derivative of the Airy function, p,, indicates the value of p at 7 =r,, , and y, indicates
the value of y at p = p,. The injected concentrations (c;,) also must be transformed into the
Laplace domain, as indicated in (A4). Although it is- a simple matter to use a non-uniform
injected concentration, ; we assume that injected concentrations begin at zero, then go
instantaneously to a uniform value for a given pulse length, and then instantaneouslyr return to
zero. The Laplace transform of this square wave, which can be directly substituted into (A4) is |

&P (5 Tin;',i) —exp (5 Tx’nj,i-l)
o 5 (A10)

where Tiy;, ; refers to the dimensionless time elapsed until the end of injection of the i™ tracer (or
chaser), and Ty, 1) refers to the dimensionless time elapsed until the end of injection of the (i-1)
tracer (or chaser). Times are nondimensionalized in the same way as in (A7). For our purpc;ses,
we do not bother nondimensionalizing concentration as its nondimensional form does not change
the solution.

The solution in the Laplace domain to (A1)-(A3) during the resting period can be

expressed without need to nondimensionalize as
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where the concentrations with a prime (‘) indicate the concentration in that location at the
beginning of the resting period. Concentrations are inverted at times defined since the beginning

of the resting period.

The solution in the Lapiace domain to (A1)-(A3) during the pumping period can be

expressed nondimensionally as

c, = exp(— —F;—"’) J ) € exp(%—) 7(&) g1(p, s, é) d€
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where T is redefined as |
chi(t - trest - ;-_-il tinj, i)
T= 2mb, 0. R,

(Al4)

where N is the number of tracer and chasér injections (i.e., the time term is the time since the end
of the rest period). Variables in (A13) are defined as follows:
. " b, o, .,
Aol -clo)+ | Lt clon o).
° (A15)
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and all other variables are as defined previously.
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Figure 1:

Figure 2:
Figure 3:

Figure 4:

Figure 5:

Figure 6:

Paper 3 Figure Captions

Conceptual model for multirate diffusion. Although the illustrated blocks are

cubes, the blocks may be of any shape. The volume of the rock shown in the
diagram is less than the REV. '

Best fits of conventional double porosity models to the H11-1 and H19S2
data. Parameters are given in Table 2.

Best fits of multirate diffusion model to all SWIW data. Parameters are given
in Table 3. ’

Cumulative distribution functions (CDFs) estimated from each of the SWIW
data. CDFs shown here correspond to the models shown in Figure 3 and the
parameters given in Table 3.

Normalized sensitivity for estimated parameters of multirate diffusion model
at H11-1 and at H19S2.

Sensitivity analysis for o4 (standard deviation of In{(a)) in multirate diffusion

model. The curve for o4 =0 is equivalent to the conventional double porosity
model.




parameter: test:

Hi1-1 H11-2 H1982 | H19S81-1 H19S1-2
solute injection time [s] 8.16E+03 | 7.98E+03 | 7.32E+03 | 7.62E+03 7.95E+03
chaser injection time [s] 1.54E+04 | 744E+03 | 146E+04 | 1.58E+04 7.83E+03

pause length, tres [s] 6.36E+04 | 6.36E+04 | 6.38E+04 | 6.22E+04 6.22E+04
injection rate, Qu [m3/s] 1.22E-04 | 1.27E-04 | L16E-04 | 131E-04 1.26E-04
pumping rate, Qo [m?/s] | 2.24E-04 | 2.24E-04 | 274E-04 | 2.37E-04 2.37E-04
well radius, r [m] 0.065 0.065 0.113 0.113 0.113
thickness, b [m] 4.4 44 4.4 44 44
matrix porosity, ¢d [-] 0.160 0.160 0.147 0.147 0.147
erid radius [m] 8.00 8.00 3.75 3.75 375

Table 1: Fixed parameters used in simulations.




Test | LogImean (D./a“)] | Advective Porosity | Dispersivity | RMSE
Ha 9, [] oy [-]

H19S2 -16.2 0.0540 0.159 1.27

Hil-1 -18.8 0.00714 0.458 0.527 °

Table 2: Single-rate double porosity estimation results.
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