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ABSTRACT

We investigated multiple-rate difiision w a possible explanation for observed behavior

in a suite of singIe-well injection-withdrawal (SWIW) tests conducted in a fractured dolomite.

We fust investigated the ability of a conventional double-porosity model and a multirate

dif%sion model to explain the data. This revealed that the muhirate difhsion hypothesis/model

is most consistent with all available data, and is the only model to date that is capable of

matching each of the recovery curves entirely. Second, we studied the sensitivity of the SWIW

recovery curves to the distribution of diffhsion rate coefficients and other parameters. We

concluded that the SWIW test is very sensitive to the dkribution of rate coefficients, but is

relatively insensitive to other flow and transport parameters such as advective porosity and

dispersivity. Third, we examined the significance of the constant’ double-log late-time slopes

(-2. 1 to -2.8), which are present in several data sets. The observed late-time slopes are

significantly different than would be predicted by either conventional double-porosity or single-

porosity media, and are found to be a distinctive feature of mtiltirate diffusion under SWIW test

condkions. Fourth, we found that the estimated distributions of diffimion rate coefficients are

very broad, with the distributions spanning a range of at least 3.6 to 5.7 orders of magnitude.

.
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L INTRODUCTION

.
The f@t paper in this series [Meigs and Beauheim, this issue] describes the field-setting,

goals, design, implementatio~ and results of a suite of single-well injection-withdrawal (SWIW)

and multi-well convergent-flow (MWCF) tracer experiments conducted in the Culebra Dolomite

Member of the Rustler Formation at the Waste Isolation Pilot Plant (WIPP) Site in southeastern -

New Mexico. The second paper [Altman et al., this issue] discusses a number of possible

interpretations of the test results. They demonstrate that the SWIW recovery curves .ca.nnotbe

explained with a single-porosity model employing heterogeneity in hydraulic conductivity or

regional drift and suggest that the breakthrough curves cannot be explained without matrix

diffusion. The fourth and last paper in this series [McKenna et al., this issue] examines the

MWCF tracer tests that were conducted at the same locations as the SWIW tests. it4cKenna et al.

also compares results obtained from the two different types of test and discusses Iong-term

transport implications. Further information, including the complete data sets, is found in Meigs

et al. [1998].

The effects of multiple rates of mass transfer (or “multirate” mass transfer) have been

theoretically predicted in the past, and are now being observed in an increasing number of

laboratory experiments: these effects have no~ until now, been documented at the field-scale. In

this paper, we investigated the multirate M3?usion hypothesis as it relates to the SWIW tests. The

hypothesis postulates that a dktribution of apparent d.illixion coefficients and di~lon length-

scales is responsible for anomalous behavior (e.g., anomalously long tails and scale-dependent

rate coefficients) in many laboratory and field tracer experiments. As such, the goals of this

investigation were to (1) investigate the hypothesis that muhirate diffbsion could be responsible

for the observed recovery behavior in the Culebra SWIW tests; (2) develop a methodology for

.

estimating the distribution of rate coefficients responsible for the observed behavioq (3) examine

whether the hypothesis and resulting model are consistent with other hard and soft datq and (4)
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examine the significance of the late-time slope of the observed SWIW recoveq curve% a slope “

which is common to data collected from several single-well and multi-well tests.
.

As a model of mass transfer, multirate diffhsion invokes diffbsion between an advection-

dominated (“mobile”) zone and a diffision-dom@ated rock matrix (“immobile zone”) that is

heterogeneous at the pore-scale. The muk.irate dif@sion model [Haggerty and Gorelick, 1995;

1998] is essentially a modified double-porosity model [e.g., Neretrzieks, 1980, 1993; also see

Figure 1 and Section 3] consisting of advective porosity and diffbsive porosity, with diffhsion of

mass from one to the other described by a range of rate coefficients. There is now a grotig

body of literature documenting the existence, observability, and effects of multiple rates of mass

transfer on solute transport in the subsurface. Multiple rates of diffisive or sorptive mass

transfer are theoretically and intuitively reasonable [e.g., Ruthverz and Loughlin, 1971;

Villermaux, 1981; Rao et al., 1982; Cooney et al., 1983; Rasmuson, 1985; Wu and G&hwend,

1988; Brusseau et al., 1989; Fong and Midkey, 1990; Valocchi, 1990; Lafolie and Hayot, 1993;

Haggerty and Gorelick, 1995; Cunningham et al., 1997], and have now been observed and

modeled in a number of laboratory experiments [e.g., Ball and Roberts, 1991; Connaughton et

al., 1993; Pedit and Miller, 1994, 1995; Chen and Wagene4 1995, 1997; Culver et al., 199’7;

Werth et al, 1997; Haggerty and Gorelick, 1998; Lorden et al., 1998; and others]. However, to

date, there has been no reported field study that documents the effects of mukirate difhsion.

2. SINGLE-WELL INJECTION-WITHDRAWAL
TRACER TESTS

A suite of SWIW tracer tests was conducted in the Culebra Dolomite Member of the

Rustler Formation at the Waste Isolation Pilot Plant (WIPP) Site in southeastern New Mexico

[Meigs and Beauheinz, this issue; Meigs et al., 1998]. The Culebra is a 7-m-thick, variably

fractured dolomite with massive and vuggy layers, and is a potential pathway to the accessible

environment in the event of a radionuclide release from the WIPP. A total of three SWIW tests
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were performed at two multiple-well sites, designated as the H-11 and H-19 “hydropads”. ‘

SWIW tests were performed only at the central well at both hydropads. Two tests involved the
.

injection of two tracers each and one test involved a single tracer, resulting in a total of five “

SWIW data sets. The SWIW tests consisted of the consecutive injection of one or more slugs of

consexwative tracers into the Culebra Dolomite, followed by the injection of a Culebra brine

chaser (containing no tracer), and then by a resting period of approximately 18 hours. The

tracers were then removed from the formation by pumping at the same well until concentration

was close to or below detection levels. The majority of tracer was removed within “48.hours of

pumping, but quantifiable concentrations of tracer continued to be removed for over 1000 hours

(up to 50 days) at H-11 [AAeigsand Beauheim, this issue, Figure 6]. In this paper, we will refer

to the five data sets as fol~ows: (1) the first H-19 test (SWIW1), tracer 1 as H19S1-1; (2) the fust

H-1 9 test (SWIW1), tracer 2 as H19S1 -2; (3) the second H-19 test (SWIW2), only one tracer

added as H19S2; (4) the H-11 test (SWIW), tracer 1 as H1 l-l; and (5) the H-11 test (SWIW),

tracer 2 as H1 1-2. Details of the injected volumes, injection rates, pumping rates, etc., ae given

in Table 2 of Meigs and Beauheim [this issue].

3. MULTIRATE DIFFUSION: MATHEMATICAL

MODEL

In this section, we present and discuss the mathematical model used to describe

advective-dispersive solute transport with mukirate diffhsion. The solutioh to these equations .

are obtained in the Laplace domain and then numerically inverted using the de Hoog algorithm

[de Hoog et al., 1982]; the solutions are performed sequentially for each of the injectio~ resting,

and pumping periods. More details of the solution method are presented in Appendix A.

The multirate diffusion model is a distributed model of diffhsion representing a medium

with pore-scale heterogeneity in dlffixiive mass transfer. As conceptualized in this paper, the

muhirate diffusion model is similar to that described by Cunningham et al. [1997] and by
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Haggerty and Gorelick [199S]. Figure 1 illustrates fiacties and matrix (i.e., advective and

diffusive porosity) in a smaU volume of rock, where tie matrix is heterogeneous, with respect to

diflhsion, at spatial scales much smaller than a representative elementary volume (REV). It is

assumed that this sub-REV-scale heterogeneity is.replicated in approximately the same fashion

everywhere in the formation.

The multirate diffusion model is a generalization of the conventional double-porosity

model in that porosity is divided into two broad categories: advective porosity (where transport is

dominated by advection and dispersion) and dlffisive porosity (where transport is dominated by

diffusion). However, in the mukirate model the diffusion rate coefficient (ct~= DJZ2, see below)

is described by a distribution rather than a single value. The model assumes one-dmensional

diffusion along a distribution of individual pathways within matrix blocks. The distribution

describes the fraction of each diffusive pathway present in the rock. Although Figure 1 shows

cubic matrix blocks in the model, the pathways and the blocks can be any shape, provided that

each pathway is one-dimensional, homogeneous, and independent of other pathways. With these

criteria, each diflhsive pathway in the distribution can be modeled with a

dMusion equation.

one-dimensional

Variability in the diffbsion rate coefllcient is due to a combination of factors, including

variability in at least the following: (1) matrix-block size; (2) tortuosity; (3) pore geometry; (4)

restricted diffusion within pores (i.e., diftiion is slowed by small cross-sectional area of the

pore); and (5) interaction with pore walls, including sorption (though the tracers employed in our

experiments are believed to be non-sorbing). For further discussion on these sources of .

variability, see Pedit and Miller [1994], Haggerty and Gorelick [1995, 1998], and Pignatello and

Xing [1996].

The distribution of diffksion rate coefficients maybe defined in any appropriate manner,

but most commonly is defined as a statistical distribution. Culver et al. [1997], Cunningham et

al. [1997], and others have used a gamma distribution, while Pedit and Miller [1994, 1995],

Haggerty and Gorelick [1998] and others have employed a Iognormal distribution. We will
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employ a lognormal distribution; for a discussion of the reasoning behind this choice, see

Haggerty and Gorelick [1998].

The mathematical models presented here make the following important simplifications:

(1) the regional gradient is negligible; (2) the formation is isotropic, confined, horizontal,

homogeneous with respect to groundwater flow, and. is of constant thickness. The second set of

assumptions simply guarantees that flow is radially syrrimetric. This is much less significant for

an SWIW test than for other types of tests, particularly if the first assumption is valid, because

the tracer leaves the well and comes back to the well along the same path. Therefore, although

the second assumption is certainly violated within the Culebra dolomite, the effects on an SWIW

test are likely minimal [Altman et al., this issue].

The equations for solute transport into or out of a well, in the presence of a Iognormal

distribution of matrix diffhsion processes, is given by

where

1)
ad=+

1

(1)

(2a) -

(2b)

and

= $,11~

‘w $$. (2C)

and where c= [M-3] is the solute concentration in the advective porosity (e.g., fractures); ~(ad)

[JW..3]is the average solute concentration in the portion of the matrix associated with a particular
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MYwion rate coefflcien& ~~ [11~ is tie dlfision rate coefficient described in (2b), which is “ ‘“

contiguously distribute, b(@ [-] is the pDF of di~ion rate coeficien~, which we ass~e to .

be Iognonnal in (2a); ~~ol[-] is the toti capacity coefficient of the forgatio% which is tie ratio of

mass .in the matrix to mass in the fractures at equilibria, ct~[L] is the longitudinal dispersivity;

v [~ is the pore-water velocity; R~ [-) is the retardation factor in the advective porosity; r [L] is

the radial coordinate (positive away from well); t [Tl is time elapsed since the beginning of

injection of the f~st tracer; crd is the standard deviation of the log-transformed dlffiusion rate

coefficients; Pd is the natural log of the geometric mean of the diffmion rate coefflcientq Da

[L2/7’lis the apparent -ion coefficient in the matrix, which maybe defined most simply as

the product of the aqueous diffhsion coefficient of the tracer and diffusive .tortuosity, although

this expression may be modified to incorporate processes such& immobile zone sorptio~ 1[L]

is the length of the diffusion pathway within the matrix; $d [-] is the dlfisive porosity of the

formation; and R~ [-] is the retardation factor due to sorption within the diflisive porosity; @a[-]

is the advective porosity.

The time-derivative of the spatially averaged solute concentration in the matrix is given

by

(3a)

where cd [~L3] is the concentration at a point within the portion of the matrix associated with a

particular diffusion rate coefficien~ and z [L] is the coordinate along the pathway. Note that 1is .

a variable part of @, and therefore is implicitly dependent upon @+ The concentration at a point

within the portion of the matrix associated with a particular diffusion rate coefficient is given by

the solution to the difiision equation:

aCd(ad)~ a’c~(ad), ()< ad <-

---r--=a &’ (3b)
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The boundary condition for difiive mass tia.nsfer is that the concentration at the edge of the

matrix is equal to the concentration in the mobile zone:
.

()Cdad ‘c=, ()<(%d<- (3C)

To solve these equations we use the approach outlined by Hagger~ and Gorelick [1995,

1998], where we substitute a series of fust-order equations for the equations in (3a) and (3b) (see . “.

Appendix A). The substitution is done in such a way that the resulting solution for c. is

mathematically identical to that which would be obtained by solving the above eq~tions

directly. The solutions are obtained in the Laplace domain and then numerically inverted to the

time domain (see Appendix A).

To model the experiments for dlffision into a sphere [e.g., Rao et al., 1980; Ball and

Roberts, 1991], we also employ (l). However, equations (2a) and (3a-c) are replaced by the

following four equations, respectively:

Cd=ca, atz=l

(5)

(6a)

.

(6b)

where 8(cxd*)is the Dirac delta (w* represents a singIe value of ad instead of a distribution); and

1is now defined as the radius of the spherical matrix bloclq which is a constant.
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3.1. RadiaI1y Divergent F1OW(Injection Period)

For each of the three parts of an SWIW test (the injection, resting, and pumping periods),

the pore-water velocities, initial conditions, and boundary conditions differ. Let us first consider

the injection period.

The pore-water velocity in (1) duiing the injection period is given by . “.

Qinj
v=2nr@# (7)

where Qi~j [L3/Tl is the injection rate; and b [L] is the formation thickness. The boundary

conditions for use with (l), for conditions of radially divergent flow (iijection) are

(8a)

where rW[L] is the well radks and ci~jis the injected concentration (which may be a fimction of

time). Equation (8a) is the flux boundary at the well accounting for dispersion and (8b) is the

boundary condition at infinity during injection. Initial conditions for radially divergent flow are

that concentrations in both the advective and difisive porosities (i.e., matrix and fracture

porosities) are initially zero.

The equations described in this section must be solved over all space at the end of the

injection period. We solved these equations on a one-dimensional grid (since it is assumed that

concentrations change only radially away from the well). The grid used 25 equally-spaced nodes

and was terminated at a distance where mobile concentrations fell below 104 of injected

concentration. With this number of nodes placed to the edge of the concentration field, results

were insensitive to grid spacing. An independent mass balance calculation ensured all injected

mass was accounted for.
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3.2. No F1OW(Resting Period)

After the injection period, the well is turned off. During the resting period tie pore-water

velocity in the formation is assumed to be zero. This is justified because velocities near a well

very rapidly come to steady-state after a charige in pumping rate, even though heads may

continue to change for some time. This assumption is supported and discussed by Hiwvey et al.

[1994]. Therefore, (1) may be simplified to

(9)

and all other equations remain the same. In the absence of a velocity field, no boundary

conditions are required. Initial conditions for the resting period are taken as the concentrations at

the end of the injection period. Concentrations are solved at the end of the resting period,

spatially along the grid discussed above.

3.3. Radially Convergent Flow (Pumping Period)

The pore-water velocity in (1) during the pumping period is given by

v=– Qoui
2nr@&b (10)

where Qouf[L3/Tj is the pumping rate. We also assume that the velocity in (1O) is constant

because velocities quickly ‘come to steady-state ha radial system (see reasoning in Section 3.2). “

The boundary conditions for use with (l), for conditions of radially convergent flow (pumping)

are

(ha)

C==o r+= (1 lb)
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convergent flow are that concentrations (both advective and

grid (see the end of Section 3.1) are initially identical to those at
.

4. MODELING OF SWIW TESTS

In this section, we present two models of the SWIW tests. First, we present results from -

our effort to model the experiments using conventional (single-rate) diffusion into a spherical

matrix block and transport assuming radial flow. Second, we show the muhirate diffusion model

of the experimental results. We also present results from a sensitivity analysis with the mukirate

diffhsion model, including confidence bounds on the parameter estimates.

Parameters used by the models were defined in one of two ways: (1) values were fixed

based on knowledge of the tracer tests and the Culebra geology; and (2) values were estimated

by fitting the models to the data [Meigs and Beauheirn, this issue].

AIl parameters that could be fixed are shown in Table 1.

Estimation of parameters was done using a nonlinear least squares algorithm [e.g.,

Marquardt, 1963]. For each data set and model of that data we found the set of parameters that

minimized the sum of squared errors on the logarithm of concentrations. We estimated the

natural logs of those parameters that are strictiy positive-valued. For purposes of comparison,

we used the root-mean square error (RMSE), defined for natural logs of concentration and

corrected for the number of parameters estimated [e.g., Bard, 1974, p. 178]. A first-order
.

approximation to the estimated parameter covariance matrix ~P) is given by [e.g., Bard, 1974;

Draper and Smith, 1981]

V,= G2(JTJ)-1 (12)

where G is the replicate variance defining the uncertainty in concentration (assumed to be

uniform and equal to the RMSE), and J is the Jacobiaq which is the matrix of sensitivities of the
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model output to the parameter estimates. In the analyses that follow, Gpis the standard deviation

of the estimated parameter, which is the square root of the respective diagonal from VP
.

4.1. Conventional Double-Porosity and Radial Transport

Figure 2 shows the best obtainable fit of the conventional double-porosity model

(assuming spherical diffi.usion)to the H19S2 and H1 1-1 recovery curves. Modeling of the other

recovery curves are not shown for conventional double-porosity because the two attempts with

H19S2 and H1 1-1 clearly demonstrate that a conventional double-porosity model is inadequate.

The parameters estimated from these fits and the RMSES are given in TabIe 2.

We used only early-time data (first 50 hours) in the inversion procedure, roughly

corresponding to the advectiorddispersion-dorninated part of the recovery cwwe. This was

necessary because it was found that the conventional double-porosity model could not possibly

match the late-time data (see Figure 2). When matching the late-time data was attempted, other

estimated parameters in the model were made physically unreasonable (e.g., advective porosity

close to 100V0, or dispersivity larger than several meters, close to the spatial scale of the

experiment) and the estimation algorithm would fail. In dozens of scoping runs with a

conventional double-porosity model, no set of parameters was able to reproduce the late-time

slope of the data. For conventional double-porosity, the slope is -1.5 for times after the

advectivelydominated early part of the tes~ and before the diffusion time-scale of approximately

12/D=,[Tsang, 1995; Haderrnann and Heer, 1996]. At times greater than the -ion time-scale,

the double-log slope predicted for a conventional double-porosity model quickly goes to infinity
.

(in other words, the matrix is quickly emptied of solute once the time-scale of ditiion is

reached). For these reasons, we also decided not to produce confidence bounds on the parameter

estimates shown in Table 2.
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4.2. Multirate Diffusion and Radial Transport

Figures 3a-e show the muhirate diffusion models (assuming a lognonnal distribution of

rate coefficients) estimated born the five SWIW recovery curves.

From these figures we note two points. First the data of all five SWIW data sets are fit .

very well by the multirate diffusion model. The ~SE values (Table 3) range from 0.150 to .

0.424, which are 4 to 8 times smaller than the conventional double-porosity model for the same

respective SWIW data sets. This improvement over the conventional double-porosity model is

achieved with one additional estimated parameter. Secon& the models fit the observed recovery

curves over the entire range of dam including both early and late concentrations.

The parameters estimated from these fits, their 95% cotildence intervals (i.e., 2crP),and

the associated RMSES are given in Table 3. Since the natural logarithms of positive-valued

parameters were estimated, the cordldence intervals are on the logs of the. estimates for all

parameters except Pd. From Table 3, we note four points. First, the parameters indicate that the

estimated distribution of ct~ is very broad, spanning several orders of magnitude. Second, the

distribution of ctdappears to be different at H-n than at H-19. This is discussed below in more

detail. Third, pd and crdhave relatively small confidence intervals, while ~, and u~ generally have

very large cofildence intervals. In particular, we note that the confidence interval on the

estimate of advective porosity suggests that this parameter is essentially inestimable in an

SWIW test. Conversely, ad appears to be particularly weI1-measured by this type of test.

However, the terms “large” and “small” are somewhat subjective and a more detailed analysis is

given in the following sections. Fourth, parameters estimated from tests at the same well (with “

the exception of crdfor the H19S 1-2 recovery curve) have values that are statistically the same

(i.e., their confidence intervak greatly overlap).

Figure 4 shows the estimated cumulative distribution fimctions (CDFS) of the diffusion

rate coefficient for the five modeIs. The graph shows the cumulative matrix volume associated

with a difision rate coefllcient smaller than a given value. The variance of the estimated
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distribution is large for all tests, but is somewhat larger, in gener~, for the H-19 tests than for the

H-1 1 test. The estimated CDFS display 95% of the distribution spanning a range of 4.4 to 11.7”. ‘

orders of magnitude. We also note that the CDFS from the H-11 and H-19 tests appear to-be self-

consisten~ with the exception of CDF for H19S1-2, which has a different estimated ad than the

other two at H-19 (discussed in Section 5.2). .

Figure 4 contains a shaded region, indicating the portion of the CDF of dlfision rate

coeftkients that could be assayed (i.e., “observed”) by the tracer tests. Upper and lower limits

were calculated by considering the diffiive time-scale for different parts of the CDF. The

diffisive time-scale is the amount of time it takes for a solute to difkse into a particular regiou

and is roughly the inverse of the diffusion coefficient for a one-dimensional micropore [e.g.,

Crank, 1975]. For example, a one-dimensional micropore that is characterized by ad of

2.3 x 10-9s-l would require approximately 4.3 x 108 s (1 .20 x 105hr) for solute to difise iqto it. -

Therefore, it is unreasonable to expect that such a micropore would affect a tracer test at time-

scales 100 times smaller (on the order of 1200 hr, the time of the last data point in H1 l-l). This

reasoning is consistent with arguments based on Damkohler numbers [e.g., Bahr and Rubin,

1987]. Therefore, we draw an approximate Iower limit of the shaded zone at 2.3 x 10-9s-l. Thus,

the portion of the CDF with values of cxdsmaller than the shaded region corresponds to that part

of the diffusive porosity that could not be assayed by the SWIW tests. A longer-duration test

would be needed to “observe” that portion of the matrix.

On the other end of the time-scale spectrum, diffiuive mass transfer that is very fast will

be obscured by advective processes. Since we do not know the ratio of advective to diffusive ,

porosity, it is impossible to distinguish between pores dominated by advection and small

rnicropores into which diffusion occurs quickly. In other words, diffusive porosity that interacts

very rapidly with advective porosity is indistinguishable from the advective porosity itself
..

Therefore, the fastest observable difi%sion processes wiIl occur at a minimum of approximately 1

percent of transport time through the system. For our system, this initial recovery time also

includes the injection and resting time (a total of about 24 k), which corresponds to czdof
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1.2 x 10-3s-l. In reality, the fhstest observable difiion process is probably slower than this, but

this provides an approximate upper bound. Again, this reasoning is consistent with an argument

based on the Damkohler number.
.

The fringes of the estimated CDFS, lying outside the bounds in Figure 4, are highly

nonunique and are not supported by data. They appear on the CDF only because we have

chosen, a priori, a Iognormal distribution. We have the largest degree of conildence about the

part of the CDF near the center of the shaded region, with decreasing cofildence toward the

edges.

As discussed above, the estimated CDFS suggest that 95% of the distribution is spread

over 4.4 to 11.7 orders of magnitude. However, not all of this distribution is supported by data.

If the unsupported portions of the CDFS are ignored, the distributions are spread over 3.6 to 5.7

orders of magnitude. This spread should be considered a minimum, as a longer-d~ation

experiment would likely support a wider spread.

5. DISCUSSION

5.1.

In this subsection we discuss

estimated parameters.

The Jacobian

Sensitivity Analysis

the sensitivity of the multirate diffusion model to the

(sensitivity matrix of dependent variable to model parameter) can be .

normalized to allow comparison of parameters sensitivities through time and from one parameter

to another [Harvey et al., 1996]:

Pj~ciJij=~
(13)
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where Jij is the sensitivity of the modeled concentration at the iti time to thejti parameter, Ci is

the it~ component of the vector of normalized concentrations through time, and pj is ~%

component of the vector of estimated parameters. The Jacobian is a usefid ins&ent for

investigating the sensitivity of the model to the estimated parameters as a function of time [e.g.,

Wagner and Harvey, 1997], and gives insight into the correlation between estimated parameters.

A large vahte (either positive or negative) in the Jacobian indicates that the model, at a particular -

time, is sensitive to a given parameter; a small value would indicate that the model is insensitive

to the parameter. The parameter covariance matrix from (12) was also used to examine cross-

correlation.

Plots of the columns of the Jacobians for H1 1-1 and H19S2 are given in Figures 5a and

5b, respectively; each is representative of the sensitivity matrices computed for other SWIW tests

at their respective locations. In both plots, it is clear that the nature of all sensitivities changes

significantly between the advectiorddispersion- and mass transfer-dominated parts of the

sirmdations, a transition which occurs at roughly 40 hours at the H-11 well and roughly 30 ho~s

at H-19.

For H1 1-1, the sensitivity of the model to the mass transfer parameters is much larger

than to the flow parameters, and increases over time. The sensitivities to dispersitilty’ and

advective porosity are small and essentially constant for times greater than-40 hours, suggesting

strong correlation. Consequently, neither parameter can be estimated with any confidence. In

contrast the sensitivities of the mean and standard deviation of the distribution of log-di~lon

rate coefficients are larger and incr~e through time. Thus, the mass transfer parameters can be .

estimated with a reasonable degree of confidence, provided that good data are available at late

time. These conclusions are supported both by the covariances and by the cordidence intervals .

of the estimated parameters (see Table 3).

The sensitivity matrix for H19S2 exhibits greater complexity than H1 1-1. FirsL Pd shows

a fairly high degree of correlation with $- but the sensitivities are somewhat huger for $~than in

HI 1-1. This is explained as follows. The largest coefficients in the distribution of diffusion rate
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coefficients- represent near-instantaneous mass transfer. Hence, the corresponding diffisive “

porosity effectively acts as pm of the advective porosib (i.e., they me indistinguishable). The ‘

.fiaction of the distribution of difiion rate coefficients that are large is determined in pdrt by Ld

(kirger p~ means that the geometric mean of ad is larger and diffusive mass transfer is faster). “

Therefore, M determines the fraction of the diffusive porosity that is indistinguishable from

advective porosity. Consequently, K and $~ can be strongly correlated if Pd is relatively large

(as is the case in FH9S2). Nonetheless, calculated cotidence limits indicate that K can still be

estimated with reasonable confidence, though with somewhat less confidence than in HI 1-1.

Second, inH19S2, the sensitivities exhibit a higher degree of scatter and numerical error.

The scatter and oscillations in the sensitivity plot are due to numerical error at very low

concentrations and do not have physical significance. Sensitivities are calculated numerically as

derivatives, which are very sensitive to small numerical errors.

5.2. Discussion of Estimated Parameters and Comparison with Other Data - ‘

In this subsection, we will discuss the estimated parameters, their conildence intervals,

and compare these values to data external to the SWIW tests.

The values of $= and a~ (see Table 3) cannot confidently be estimated by the SWIW test:

both parameters have extremely large con.iidence intervals. In the case of $., the con.tldence

intervals span all possible values of advective porosity. Dispersivity has slightly smaller

confidence intervals, but the cotildence intervals still span all possible values. Surpris@gly,

however, all estimated values of both O. and ct~are in reasomble agreement with independent b

information. The estimated values of a~, for example, lie within the bounds of field-scale

dispersivities observed in other types of tests at similar scales [Gelhar et al., 1992]. The

advective porosities we estimate are within the range expected for fiacfured rock, and lie at the

upper end of the range observed from multi-well tests in the Culebra [McKenna et al., this issue].
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Advective porosity and dlspersivity are not estimable by m S?WW test because the flow

field is reversed in the middle of the experiment. Large and small values of these two parameters
.

result in very similar early-time breakthroughs, and the late-time breakthrough is almost

completely insensitive to the parameters. In contrast, difiision is not affected by the reversal of

the flow field. Additionally, the late-time breakthrough is very sensitive to diffusive mass

transfer. Consequently, the parameters describing the distribution of diffusion rate coefficients,

j.Ldand Gd(discussed below), are quite estimable in an SWIW test.

The parameters pd and Gd,are estimated with smaller confidence intervals relative to their

range of reasonable values. Because difhsion rate coefficients can vary over an extremely wide

range, 95°/0 confidence intervals on ~d of about * 1 to Z indicate a reasonable degree of

confidence for this parameter. The value of k(~d) appears to be well-estimated by the SWIW.

test also (with the exception of H19SI-2, which is a much shorter data set). Other thanH19S1-2,

the confidence intervals on ln(crj range from +0.24 to +0.30.

The mean and standard deviation of diffusion rate coefficients were both generally large~

for H-19 recovery curves than H-1 1 recovery curves This corresponds well to our current

understanding of the hydrogeology at the two hydropads. On the basis of advective porosities

inferred from MWCF tracer tests [McKenna et al., this issue], transmissivities determined for

many wells at the WIPP site [1701t, 1997], and examination of drill core [fIolt, 1997], it is

believed that advective transport in the Culebra dolomite at the H-11 hydropad tends to be

channeled along well-connected fractures that form comparatively direct flow paths. At the

H-19 hydropad, advective porosity consists not only of fracture porosity but also interparticle

porosity and vugs connected by microfiactures, and flow thus follows a more circuitous route

[Meigs et al., 1998]. Mass that is advectively transported near the H-1 1 hydropad experiences:

(1) exposure to a smaller surface area of matrix, resulting in less matrix diffiuion during a given

time- or space-scale of experiment and thus lower effective matrix diffusion rates; and (2)

incomplete exposure to the range of porosity types, resulting in a narrower spread to the

distribution of diffusion rate coefficients.
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The distributions of ad estimated from the SWIW tests appear consistent from test to test

and data set to data set, with the exception of HI 9S 1-2. The H-11 dati set and the other two
.

H-19 data sets yielded very similar values of w and ad for tests conducted at the same well. The

estimated vakes of Pd and ad for H19S1-2 are kirger and smaller, respectively, than for H19S2

and H19S 1-1. The cord3cence interval on ad for 1+19S1-2 is huge enough, however, that the

value of ad is very uncertain. The larger uncertainty and different estimates of Pd and cd at

H19S 1-2 may be due to two factors. First, the H19S1-2 data set is the shortest with several

hundred hours less data than the other H-19 data sets. The tracer sampled a smaller range of

mass transfer time scales and is therefore insensitive to the slowest rates of mass tiansfer. This

resulted in a larger estimated mean diffusion rate coeKlcient and a lower estimated standard

deviation. The influence of the time-scale of the experiment on the estimated parameters was

confirmed by performing a parameter estimation on a H19S1-1 data set truncated to the length of

the H19S1 -2 data. The resulting estimates for ~ and ad horn this scoping run were intermediate

between those from the H19S1-1 and H19S1-2 runs.

Second, the Culebra is heterogeneous. Of the three SWIWS at H-’19, the H19S1-2

injection was conducted over the smallest volume of the Culebra [Meigs and Beauheim, this

issue]. As a result, H19S 1-2 experienced the smallest amount of heterogeneity and, therefore,

may be expected to have a smaller estimated ad.

The CDFS of diffbsion rate coefllcients estimated from all recovery curves are very

broad. The portions of the CDFS that are supported by data span at least 3.6 to 5.7 orders of

magnitude (see Section 4.2). The significance of this for long-term solute transport in the

Culebra is as follows. Diffusive mass transfer results in the average solute transport velocity

decreasing as a function of time. A distribution of diffksion rate coefficients means that the

decrease in velocity occurs over a longer period of time than if there were a single diffksion rate

coeff~cient. A spread in the dfiion rate coefficients of 3.6 to 5.7 orders of magnitude means

that the tracer velocity will decrease over at least 4 to 6 orders of magnitude. Because this is a

minimum, it is possible that the tracer velocity could decrease over an even greater range in time.

.

.
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5.3. The Late-Time Slope of the Data

21

The SWIW data shown in Figure 3 have late-time slopes that are very nearly constant

after 200 hours. Plots of the derivatives of these log-transfotied data reveal that both H-II data

sets have a constant late-time slope of-2.1. The late-time slopes for HI 9S 1-1 and H19S2 are

both approximately -2.2, while the late-time slope for H19SI-2 is approximately -2.8. For al

five SWIW data sets, these slopes are remarkably different from those predicted for a

conventional double-porosity “model. For conventional double-porosity, the slope is -1.5 for

times after the advectively-dominated early part of the test, and before the difksion time-scale of

approximately Z*/Da,[Hadermann and Heer, 1996]. At times greater than the diffbsion tirne-

scale, the slope predicted for a conventional double-porosity model quickly goes to infiity.

Figure 6 shows the effect of varying cd from O (conventional double-porosity) to the

estimated vaIue of 3.57 for H11- 1. For the conventional double-porosity model, we see that the

slope of the graph is -1.5 from approximately 100 hr to 500 hr. However, after 500 hr, the slope

steepens considerably, and wouId ultimately go to -~ as all mass is removed from the single-rate

immobile zone. For the multirate diffusion models, the late-time slopes are constant with values

of-1.9 for Gd= 2.00, and -2.1 for cd = 3.5.

In all of the SWIW data sets, the late-time slope is both constant and steeper than -1.5.

We ran the mukirate model for a range of parameters (many are not shown), and found that the

late-time slopes are always constant and steeper than -1.5 for q greater than O. In additio~ data

from other types of tests (e.g., MWCF tests and one-dmensional column experiments @.h a

pulse or square-wave injection) also show straight-line recovery curves at late times with sIopes “

greater than -1.5, and scoping runs performed on these data have required non-zero values for Gd

in order to adequately match the entire length of the recovery curve. Therefore, we suggest that

a constant late-time slope steeper than -1.5 for a pulse-injection tracer test is diagnostic of

muhirate mass

influenced the

transfer. R is important to note, however, that other effects (not believed to have

SWIW tests we examined) may produce slopes similar to mukirate dfiioxy
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these include significant tracer drift, the injection well or port not being cleared of solute, or “

nonlinear sorption. These effects are matters for potential fbture research.
.

5.4. Conventional Double-porosity vs. Multirate Diffusion

A growing body of literature has concluded that muhirate diffision is a sigd5cant

phenomenon. The majority of this literature has shown that the estimated distributions of rate

coefficients have surprisingly large variances, even in relatively homogeneous media. It is not

straightforward to compare the various models directly because of different mathematical

formulations, but Pedit and Miller [1995], Culver et al. [1997], Werth et al., [1997], Haggerty

and Gorelick [1998], and Lorden et al. [1998] all found variability in mass transfer rate

coefficients that span many orders of maghitude. Our study, based on field experiments, adds to

this list: estimated variability in the diffhsion rate coeftlcient spans between at least 5 orders of

magnitude (see Figure 4). In our study, we fmd that it is impossible to fit all pats of the field

data using a conventional, single-rate double-porosity model (assuming diffision into spherical

blocks). It is possible to fit the earliest da~ but these data are dominated by advection rather

than mass transfer.

6. CONCLUSIONS

(1) A conventional double-porosity model incorporating distributed difbiou such as the

multirate diffusiori model presented here, appears necessary to represent the recovery curves in “

the SWIW tests in the Culebra dolomite. A conventional, single-rate double-porosity model,

assuming spherical diffusion, is not able to reproduce the observed late-time slope of the data.

This is a serious short-falling of the conventional double-porosity model, because the late-time

data are dominated by diil%sive mass transfer. The portion of the recovery cue matched well

by the conventional double-porosity model is dominated by advection and dispersion.
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(2) Parameter estimation and sensitivity analyses indicate that the SWIW tests in tie

Cdebra dolomite are generally insensitive to advective porosiw and dispersivity. This is due to

the reversing flow field, in which the tracer goes out from the well and returns to the well along
.

approximately the same flow path. However, the. SWIW tests appear to be particularly sensitive

to matrix diffusion, and fi-om these tests it is possible to estimate a d&ribution of diffiion rate””””-

coefficients with a reasonable degree of reliability, although care must be taken to address the

effects of data Iength and quality and the nonuniqueness of the estimated lognormal distribution

of diffksion rates outside the assay range of a given tracer test.

(3) The distribution of diffusion rate coefficients is particularly sensitive to late-time data.

In fact, the sensitivity to these parameters generally grows through time. Therefore, accurate

estimation of the distribution relies on accurate concentration data in the tail of the test where

the effects of matrix diffusion dominate the effects of advection and dispersion. It is unlikely

that distributions of rate coefficients can be estimated horn SWIW recove~ curves that either do

not contain the tad concentrations, or have very low-accuracy tails.

(4) The late-time slope of the recovery curves obtained horn SWIW tests in the Culebra

dolomite have constant double-log slopes between -2.1 and -2.8. Late-time slopes obtained from

conventional double-porosity models, however, are -1.5 before the diffision time-scale 12/Du

[Hadermann and Heer, 1996J and quickly go from -1.5 to a slope much steeper than -2.5 after

the ditiion time-scale. Therefore, a constant late-time slope between -2 and -3 is apparently

diagnostic of a distribution of diffusion rate. coefficients.

(5) The estimated distribution of diffixsion rate coefficients is very broad for the Culebra .

dolomite. The estimated CDFS, which assume a log-normal dMribution of rate coefficients, have

a standard deviation in In(czd)

by data are spread over at

from 2.56 to 6.87. The portions of these CDFS that are supported

least 3.6 to 5.7 orders of magnitude. Consequently, if these

distributions were accurate for the entire formation, it would take approximately this many

orders of magnitude in time to experience all of the mass transfer variability in the formation.

Therefore, the advection velocity of a solute in the Culebra would continue to slow over at least
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3.7 to 5.7 orders of magnitude in time and possibly much longer. Any experiments or rnodei~g
conducted within these time ties would need to accomt for a dktribution of mass transfer rate

coeffkients in order to accurately predict advective velocities on another time-scale. “

APPENDIX A: LAPLACE-DOMAIN SOLUTION

The purpose of this appendix is to derive the Laplace-domain solution for the advective-

dispersive equation in radial coordinates with muhirate difli.sion for (a) the injection perio~ (b)

the resting period; and (c) the pumping period.

Haggerty and Gorelick [1995, 1998] show that the solute transport and mass transfer

relationships given in (l), (2a), (3a), (3b), and (3c) can be re-written as follows:

(Al)

{H)1)
2

4am
- ~d.- n2(2j-1)2

. -

8~ti
exp -

20;~(am) = z @ (2j-l)2q#m
j=l

(A2)

where cm [MLZ3] is the concentration of the multirate immobile zones; P(oQ [-] is the .

distribution of frost-order rate coefficients; a. [1~ is the fwst-order (mukirate) rate coefficient

and all other parameters are exactly as previously defined. The same boundmy conditions apply

as discussed in Sections 3.1-3.3. The boundary condition given in (3c) has no equivalent in the

above equations, but is dealt with implicitly. Using equations (A1)-(A3) is completely

equivalent in every way to using equations (1) through (3c). However, it should be noted that

the immobile concentrations c. are only mathematical constructs, and are used solely for the
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purpose of “storing” mass. The advantage of using equations (A1)-(A3) is that they are

mathematically simpler to use, and eliminate the need to solve many difision equations for
.

concentrations withii a distribution of immobile zones (each of which would need to be

dlscretized using finite differences, finite elements, etc.) For a more complete description of this

approach to solving a muhirate diffwion problem, see Haggerty and Gorelick [1995, 1998].

We solve for concentrations after the injection period, resting period, and during the

pumping period by converting (A1)-(A3) to the Laplace domain. The solution to the d~fferential

equation(s) is found in the Laplace domain, and then concentrations are obtained by inverting

numerically to the time domain. Similar and related solutions have been documented extensively

by Chen [1985], Chen and Wooakide [1988], Harvey et al. [1994];Haggerty and Gorelick [1995,

1998]. Therefore, we will give only the solutions in the Laplace domain, and not the derivation.

A FORTRAN code was constructed to solve this problem and to estimate the parameters of the

distribution of diffusion rate coefficients for SWIW tests and for multi-well tracer tests. The

code is called STAMMT-R (Solute Transport And Muhirate Mass Transfer in Radial

coordinates) (Haggerty et al., 1999). The code has undergone QA

National Laboratories.

The solution in the Laplace domain to (A1)-(A3) during the

expressed nondimensionally as

()P-PO Ai(#y)
~=C~je~ —

2 h+!7140)–@hi’(?J/30)
2

where

~=p+~

qualification at Sandia

injection period can be

(A4)

(A5)

(A6)
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T=
Qrnjt

2zbQ@.

P=&

(A7)

.

(A8)

(A9)
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and wheres is the Laplace parameter, an overbar denotes the Laplace transform of a variable,

Ai’(*) is the derivative of the Airy fimctio~ p. indicates the value of p at r = rW, andy, indicates

the value of y at p = pW. The injected concentrations (ci~j) alSOmust be transformed into the

Laplace domain, as indicated in (A4). Although it is a simple matter to use a non-uniform

injected concentration, we asstie that injected concentrations begin at zero, then go

instantaneously to a uniform value for a given pulse length, and then instantaneously return to

zero. The Laplace transform of this square wave, which can be directly substituted into (A4) is

(A1O)

where T~j,i refers to the dimensionless time elapsed until the end of injection of the $’ tracer (or

chaser), and Ti@,i.l refers to the dimensionless time elapsed until the end of injection of the (i-l)

tracer (or chaser). Times are nondimensionaIized in the same way as in (A7). For our purposes,

we do not bother nondimensionalizing concentration as its nondimensional form does not change

the solution.

The solution in the Laplace domain to

expressed without need to nondimensionalize as

.

(A1)-(A3) during the resting period can be

..
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o~=coj, ,-b((xm)am
s 1+ s +(xm ‘am

o
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(Ali)

(A12)

where the concentrations with a prime (’) indicate the concentration in that location at the

beginning of the resting period. Concentrations are inverted at times defined since the beginning

of the resting period.

The solution in the Laplace domain to (A1)-(A3) during the pumping period can be

expressed nondimensionally as

where T is redefined as

(A13)

(A14)

.

where N is the number of tracer and chaser injections (i.e., the time term is the time since the end

of the rest period). Variables in (Al 3) are defined as follows:

(A15)

.
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and all other variables are as defined previously.
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Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Paper 3 Figure Captions

Conceptual model for multirate diHusion. Although the illustrated blocks are
cubes, the blocks may be of any shape. The volume of the rock shown in the
diagram is less than the REV,

Best fits of conventional double porosity models to the HI 1-1 and H19S2
data. Parameters are given in Table 2.

Best fits of n.y.dtirateWY&ion model to all SWIW data. Parameters are given
in Table 3.

Cumulative distribution fictions (CDFS) estimated from each of the SWIW
data. CDFS shown here correspond to the models shown in Figure 3 and the
parameters given in Table 3.

Normalized sensitivity for estimated parameters of muhirate diflision model
at H1 1-1 and at H19S2.

Sensitivity amdysis for ad (standard deviation of h(@) in mukkate diffiion

model. The curve for ~d = Ois equkdent to the conventional double porosity

model.
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parametec test
H1l-1 I H1l-2 I H19S2 I H19S1-1 H19S1-2

soluteinjectiontime [s] 8.16E+03 7.98E+03 7.32E+03 7.62E+03 7.95E+03
chaserinjectiontime[s] L54E+04 7.44E+03 1.46E+04 1.58E+04 7.83E+03

pauselen tm [s] 6.36E+04 6.36E+04 6.38E+04 6.22E+04 6.22E+04
in@ion rat%‘Qti [~3/s] L22E-04 L27E-04 1.16E-04 1.31E-04 L26E-04
P- ing rat%Q- [mJ/s] 2.24E-04 2.24E-04 . 2.74E-04 2.37E-04 2.37E-04

wellradius,r. [m] 0.065 0.065 0.113 0.113 0.113
thickness,b [m] 4.4 4.4 4.4 4.4 4.4

rnauix porosi~, $d[-] 0.160 0.160 0.147 0.147 0.147
gridradius[m]

L
8.00 8.00 3.75 3.75 3.75

Table 1:Fixedparametersusedin simulations.
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Test Loafmean [D~a’~ Advective Porosi~ Dispersivity RMSE

~d $. [-1 aL [-1
H19S2 -16.2 0.0540 0.159 1.27
H1l-1 -18.8 0.00714 0.458 0.527-

Table 2: Single-ratedoubleporosiy estimationresults.
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