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Abstract

Linearized methods are presented for appraising image resolution and parameter

accuracy in images generated with two and three dimensional non-linear electromagnetic

inversion schemes. When direct matrix inversion is employed, the model resolution and

posterior model covariance matrices can be directly calculated. A method to examine how

the horizontal and vertical resolution varies spatially within the electromagnetic property

image is developed by exmining the columns of the model resolution matrix. Plotting the

square root of the diagonal of the model covariance matrix yields an estimate of how

errors in the inversion process such as data noise and incorrect apriori assumptions about

the imaged model map into parameter error. This type of image is shown to be useful in

analyzing spatial variations in the image sensitivity to the data. A method is analyzed for

statistically estimating the model covariance matrix when the conjugate gradient method is

employed rather than a direct inversion technique (for example in 3D inversion). A

method for calculating individual columns of the model resolution matrix using the

conjugate gradient method is also developed. Examples of the image analysis techniques

are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set

collected at the Lost Hills Oil Field in Central California.



Introduction

Great advances have been made over the last decade in two and three dimensional

electromagnetic imaging. In conjunction with these developments there have been several

analyses where linearized approximations (e.g. Torres-Verdl~ 1991, Zhou et al.,1 993,

Spies and Habashy, 1995) or non-linear inversion model studies (e.g. Alumbaugh and

Morrison, 1995) have been employed for experimental design. Additional work has also

been undertaken to posteriorly appraise lD electrical and electromagnetic inversion

results (e.g. Parker, 1980; Oldenburg, 1983; Dosso and Oldenburg, 1989 and 1991; Sen et

al., 1993), that is determine the resolution of, and estimate the error in the inverted the

lD model.

To date little work has been done on 2D and 3D posterior image appraisal for

electromagnetic inversion. Thus far the work that has been presented has focused on the

DC resistivity problem. Rarnirez et al. (1995) analyzed the diagonal of the model

resolution matrix (MRM, also known as the parameter resolution matrix) as

Jackson (1972) and Menke (1984), to analyze the resolution of cross hole DC

defined in

resistivity

surveys. They demonstrate that if the inverse of the diagonal is plotted, large

correspond to poor resolution while smaller values correspond to better resolution.

values

For a

non-linear analysis, Oldenburg and Li (1998) analyze the image resolution for surface DC

resistvity arrays through a depth of exploration study. Their scheme requires running two

successive inversions starting with different background models. Regions that show large

changes between the two inversions are poorly resolved, while those that show little

change are well resolved.
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For the posterior appraisal of 2D and 3D electromagnetic inversion results, we extend

the work of Ramirez et al. (1995) to include the analysis of the model covariance matrix

(MCM) (Menke, 1984; Tarantola, 1987) in addition to the MRM. The MCM estimates

how errors within the inversion process such as data noise and inappropriate apnori

assumptions about the model are mapped into parameter error. We also demonstrate how

these matrices can be estimated when iterative conjugate gradient methods rather than

direct inversion techniques are employed. The use of iterative solving methods becomes

important as the size of the inverse problem increases such that it is prohibitive to store

the sensitivity matrix.

It must be noted that the measures we are analyzing here are approximations that have

been linearized about the final model of an iterative, non-linear inversion process. Thus

the accuracy of this type of analysis in terms of resolving the full non-linear nature of the

problem is limited. However, as it will be demonstrated using both synthetic and field

cross well data sets, these calculations do yield valuable itiorrnation about image

resolution and accuracy.

2.5D Image Appraisal Using Direct Inversion

The inversion scheme employed in this portion of the analysis is a 2.5D version of

the scheme outlined in Newman and Alumbaugh (1997). The natural logarithm of the

updated model at iteration i+l is given by
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[( r(DA(i))+~(i)wTw~(D~(ln(m(~+l) – 1)= DA (0 (1)

where

() -()( )DA(’) ‘Da(’) _ DA(i) ‘D dm _ d(i)+ ~(i) ln(m(i)–1) . (2)

Here D is the data weighting matrix (the inverse of the estimated data standard

deviations), W represents the Laplacian smoothing matrix which stabilizes the inversion

process, k(i)is the tradeoff parameter at the ith iteration that weights model smoothness

against data fit, d~ is the measured data, d(~) the predicted data at the ith iteration, 1 the

i~+’)the updated model, and m(i) the current model.lower bound on the conductivity, m

A’‘i) is the logarithmically parameterized Jacobian or sensitivity matrix-computed from

the model at the ith iteration, which in component form is given by

(3)

where the j subscript refers to jth datum, and the k the kth model parameter, and A~~

represents the non-logarithmically paramaterized sensitivity matrix. Note, that the natural

logarithm

However,

of the model parameters is employed to enforce positivity constraints.

rather than employing the natural logarithm function as a vector operation as

implied in Equations (1) and (2), we actually compute the natural logarithm of each

element of the vector; it is been written in these equations as a vector operation for

notational simplicity. Finally,

assume that the values within

dimensionless.

when performing the natural logarithmic calculations, we

o
the brackets have been normalized such that they are
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For more details on the inversion procedure and how different components are

calculated, the reader is referred to Newman and Alurnbaugh (1997). However, a major

difference between this 2.5D scheme and the 3D scheme of Newman and Alumbaugh

(1997) is that here an lower/upper (LU) decomposition (Press et al., 1986) is employed

to directly compute the inverse matrix; the 3D scheme employs the iterative conjugate

gradient method as described below to determine the model update.

To demonstrate the applicability of the various appraisal techniques, we will employ

the model shown in Figure 1a which consists of two 2D blocks (0.5 S/m and a 0.25 S/m)

embedded in a 0.1 S/m whole space. Note, cross well data were chosen here due to the

fact that we had access to good quality field data. However, the methods presented here

will work on any type of recording geometry. Synthetic data were generated using the

code outlined in Newman and Alumbaugh (1995) for 16 vertical magnetic dipole (VMD)

sources in the left well, and 16 receivers in the right. A frequency of 1 KHz was

employed, and random noise with a standard deviation equal to 0.5°/0 of the data

amplitude were added to each datum. Fourteen iterations were needed to produce the

image in Figure lb. During this process the Z*error defined as the mean squared difference

between the weighted predicted and measured data was reduced from 5700 to 1, and the

tradeoff parameter (~) was reduced from 76,642 to 37.
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The Model Resolution Matrix

If we assume that in the linearized limit at iteration i we are very close to reproducing

the true model, then by performing a Taylor’s Series expansion about the true model iii

(see Appendix A) we can approximate Equation (2) as

&(;) = dm _ d(i) + A(i) ln(m(i) - 1)= A’‘i) ln(fi – i). (4)

This allows us to rewrite Equation (1) as

ln(m(i+l ) - 1)= MRMln(iii – 1) (5)

where

W=[(DA(i)r(D~(i))+a(i)wTw~((’)

is the model resolution matrix.

Notice that the MRM can be thought of as a filter which when applied to the true

model results in the imaged model. Ideally the MRM should be an identity matrix which

would imply perfect

underdetermined, and

resolution (Menke, 1984). However, because the problem is

because we are smoothing the model through the use of the

Laplacian smoothing matrix W, we can not resolve each parameter uniquely. Rather each

parameter value within the imaging region results from an averaging process, where the

averaging occurs over other parameters adjacent to the one of interest. The fhnction

describing this averaging process is defined by Backus and Gilbert (1968,1970) as the

resolution kernel or the ‘Point Spread Function’ (PSF). The greater the area (or volume)

over which this averaging occurs, the poorer the resulting resolution of an individual
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parameter, and the less the MRM resembles I, the identity matrix. In addition, as the

MRM continues to deviate from the identity matrix, the diagonal elements continue to

decrease in magnitude. Thus by plotting the elements of the main diagonal in the same

format as the model vector, we can discern the relative resolution from one point to

another within the image domain.

In Figure 2 we have plotted l/(4n*MRMti) which Ramkez et al. (1995) termed the

‘Resolution Radius’. Because we are taking the inverse of the diagonal, greater values infer

poorer resolution (greater spatial averaging), while smaller values infer better resolution.

Notice that we have better resolution near the wells than in the center of the image, and

poorer resolution at the top and bottom of the image. This agrees with what we would

expect from a cross well imaging xperiment. Also notice that we have better resolution
& ‘=@-+@-

within the conductive zones than outside them.

We believe that even more information can be provided from the MRM if we return to

the idea of it behaving as an averaging or low pass filter. The PSF defined by Backus and

Gilbert (1968,1 970) can be estimated at any point in the image plane by replacing the

ln(iii-1) in Equation (5) with a Kronecker Delta fiction centered at the point of interest,

i.e.;

where ~j is the Kronecker Delta vector with unity in the jth position and zeros

everywhere else. Examining this operation we find that it recovers the jth column of the
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MRM. Thus we can analyze the Backus-Gilbert spread function for any point in the

image plane by plotting the appropriate column of the MRM.

Examples of the PSF for four different locations within the model domain are given in

Figure 3. Notice that the spatial averaging, especially in the horizontal direction, is greater

towards the top of the imaging region than in the middle. Also note that better resolution

results near the wells than in the center of the imaging region.

It is obvious that plotting and analyzing the PSF for every location within the model

domain would be laborious. An alternative to plotting each and every PSF is to plot some

fi.mction that yields information on how the width of these averaging functions varies

spatially in the horizontal and vertical directions. Here we will employ the 50°/0 spread

width, which is defined as the full width of the PSF in either the horizontal or vertical

direction at those points where the amplitude is 50% of its maximum value. In the plots

in Figure 3, this would correspond to the distance between those points where the

normalized value is equal to 0.5.

Figure 4 shows the results of perilorming this operation at every point within the

image domain. The first thing that stands out over the analysis provided by Figure 2 but

that was apparent in Figure 3 is that the spread values are greater in the horizontal

direction than in the vertical, i.e., there is more averaging occurring horizontally then

vertically. This agrees with the results of Zhou et al (1993) and Alumbaugh and Morrison

(1995) who demonstrated that the vertical resolution is better than that of the horizontal

resolution for cross well EM data. An additional interesting note is that the vertical

spread appears to be independent of the conductivity structure, while the horizontal



8

spread is smaller in those areas associated with greater conductivity. This correlates with

the wave number domain analysis of Zhou et al. (1993) who showed for the cross well

EM cotilguration that the vertical resolution is dependent only

spatial sampling interval, while the horizontal resolution depends

well as this sampling interval.

on the source-receiver

on the conductivity as

The Posterior Model Covariance Matrix

A second tool that we can employ for image appraisal is the model covariance matrix

(Menke, 1984; Tarantol~ 1987, Meju, 1994). The main diagonal of this matrix estimates

how data noise, and errors in the apriori assumptions about the model, are mapped into

uncertainty in the parameter estimates. In our case the model errors revolve around the

assumption that that the model varies smoothly from one point to another through the

use of W. The off diagonals of the MCM detail how different parameters withh the

imaging region are correlated to one another. Because this is a linearized operation about

the final model in a nonlinear process, we are essentially determining the range of models

that exist about our final result with the requirement that they fit the data to the desired

error level. As shown in Appendix B,

here the MCM can be derived via a

given inTarantola(1987) to be

for the non-linear inverse formulation implemented

comparison to the Maximum Likelyhood Method

-[ )( ) ‘1MCM – (DA ‘i) T DA’(i) + l(i)WTW 1 (8)



Note, due to the logarithmic pararneterization

MCM in this form is dimensionless.

estimates in the units of (S/m)2 we

appropriate model parameters, i.e.,

9

(Newman and Alumbaugh, 1997), the

To correct for this and display the covariance

must multiply each element of MCM by the

MCMJ~ = (mj - lj)(mj - lj)MCMj~ (9)

However, as it will be shown later, it may not be necessary to perform this operation.

The most common method of analyzing the MCM is to plot the square root of the

diagonal component, or variance, which yields an estimate of the standard deviation of

each parameter . Figure 5a shows the estimated standard deviation for the test model

given by the

occur within

corrected MCM (Equation 9). Notice that the largest standard deviations

the conductive zones. Because the induction method is more sensitive to

conductors than resistors, one would think that these regions would contain low values of

uncertainty. In addition we would expect the greatest errors to be present at the top and

bottom of the image domain where there is very little sensitivity to the data.

We have found that we can overcome these apparent misconceptions somewhat by

normalizing the standard deviations (Figure 5a) by the imaged conductivities themselves

(Figure lb) and displaying the results in terms of a percentage of the parameter estimates.

Note that this is equivalent to skipping equation 9 and simply taking the square root of

the MCM given by Equation 8. Figure 5b shows that this operation produces an

uncertainty image that better agrees with what we would expect, that is the largest error
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occurs in those regions of low sensitivity of the model to the data, and smaller errors are

present within the conductors and next to the boreholes.

One can also plot the columns of the MCM to determine how parameters at different

locations within the imaging region are correlated to one another. However, we have found

these cross correlation plots offer less insight into the appraisal process than the other

methods discussed here, and thus we have chosen not to include any of this type of

analysis.

2.5D and 3D Image Appraisal using the Conjugate Gradient Method

As the size of the inversion problem grows, it becomes computationally prohibitive

()()“ T DA(i) + l(iJWTW matrix due to computer memoryto form and invert the DN ‘1)

limitations. In these cases it is often better to employ an iterative method such as the

Conjugate Gradient (CG) scheme developed by Hestenes and Stiefel (1952). This method

iteratively determines the solution (x) to the linear system of equations given by Kx=s

without inverting K. Assuming K is an n by n matrix and also that exact arithmetic is

employed, the method is guaranteed to converge to the correct solution within n iterations

as long as K is symmetric and positive definite. An additional benefit to using the CG

approach is that it is easily parallellizeable to run on massively parallel computer

architectures, whereas many matrix inversion techniques are not. This is essential as the

3D EM inversion problem is often computationally too demanding to run on normal serial

platforms (Newman and Alumbaugh, 1997).
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To solve our problem with this technique, we rearrange Equation 1 such that it reads

[( )( ) ] (D@rD~(i)(10)J)& (i) T J)~ (i) + A(i)wTw ln(~(i+l) – 1) =

We now use the CG method to solve for ln(rn(i+l) – 1). Mackie and Madden ( 1993) and

Newman and Alumbaugh (1997) have shown that when this method is employed for

solving the 3D magnetotelluric and controlled source EM inversion problems,

respectively, the A’‘i) matrix, and more importantly, the A’‘i)TA’‘i) matrix never needs

to be explicitly formed, thus saving computer memory. However, because we don’t

()()explicitly calculate the inverse of DA’‘i) T DN (i) + A(i)WTW, we can’t explicitly form

the MRM or the MCM. Therefore we need to apply a different approach to acquire the

information present in these posterior calculations.

It must be mentioned that one approach we could use to estimate both the MRNI and

the MCM is to approximate a singular value decomposition of the system via the

Lanczos method (Lanczos, 1950), which is related to the CG method. Scales (1989), Zang

and McMechan (1995), Minkoff (1996) and Vasco et al. (1998) all use this technique for

appraising seismic inversion results. However, a problem with this technique is that the

estimates of the eigenvalue/ eigenvector pairs are often corrupted by numerical round off

errors causing a loss of orthogonality in the Lanczos vectors. Although this problem can

be remedied by partial reorthogonalization schemes (Vasco et al., 1998), this adds

additional computational complexity to the problem as it is often difficult to determine

when this is needed. Because of this added complexity, and for the sake of consistency,
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we have chosen to employ methods to appraise the inversion results that use the slower

Conjugate Gradient scheme directly.

To demonstrate the use of the CG approaches analyzed here, in addition to the 2D

model given in Figure 1awe will employ a synthetic crosswell data set calculated for the

five well model shown in Figure 6a which was originally published in Alumbaugh and

Newman (1997). The 3D image produced by the synthetic data is shown in Figure 6b.

Note the conductive sediments overlying resistive basement, and the very conductive

‘blob’ near the center well at 30m depth which represents an injected salt water plume.

Imaging the latter was the main objective of thk exercise. The image employed 25 VMD

source positions in the center well using a 2.5 m source separation, and 11 receivers in

each receiver well with a receiver spacing of 5 m. More specifics of the inversion

pertaining to this image can be found in Alumbaugh and Newman (1997).

CG Determination of the Model Resolution Matrix

Because we cannot invert the appropriate matrix using the CG method , we can not

calculate the full MRM. However, we can form individual columns of it to examine the

PSF at selected points within the image region using the following technique. Rearranging

Equation 7 such that the matrix of interest is moved to the left hand side we obtain

[(DN(’))7DN(’))+A(’)WTW]‘~=(DA(i))TDA(i))sj=[(DN“1)
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wh=[(D~(’))7DA(i))]j ( ) (DA(’)’)‘atix>represents the jth column of the DA ‘i) T

and now serves as the source vector for the CG routine. By solving thk for several

different positions (different j’s) throughout the 2D or 3D imaging region, the spatial

variation in the model resolution can be deduced.

In Figure 7 we have plotted two different views of the point spread fimction for a

point within the Richmond image that was arbitrarily chosen to be x=-3m, y=-3m,

z=29m. The upper portion of the figure shows isosurfaces of the PSF at values of+ 30°/0

of the maximum, while the bottom shows the isosurface that exists at +60°/0 of the

maximum. A translucent horizontal plane has also been included at ~29m to visually

enhance the spatial variation of the function. Notice 1) the large region over which

averaging is occurring in order to produce a parameter value at the point of interest, and 2)

the large negative side lobe that exists.

In Figure 8 we have taken the analysis one step further by calculating the PSF at 36

points within the z=29m depth plane. A depth slice at z=29m from the image in Figure

6b is included in Figure 8a. Note; the image has been plotted in linear scale rather than

logarithmic, and the white dots designate the location of the five wells. The 50% spread

width calculated for the 36 PSFS are plotted in Figure 8b for the x direction, Figure 8Cfor

the y direction, and Figure 8d for the z direction. These images have been constructed by

determining the appropriate widths at the location of each PSF (designated by the black

dots in Figures 8b through 8d) and then interpolating using a Kriging routine. Although

this interpolation procedure may not yield the exact value at each point, it does yield a
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general sense of how the resolution varies spatially. The primary conclusion that can be

made via this analysis is that the resolution is better near the wells and in the regions

immediately between the center and outer wells, and poorer in those regions between the

outer well pairs. This poor resolution is due to the fact that there were no data calculated

with both the source and receiver positioned in adjacent outer wells. Also notice that as

expected fi-om our previous results, the vertical resolution is better than that of the

horizontal. However, this is only true in those areas immediately between the center and

outer wells; the vertical resolution is as poor as the horizontal in those areas along the

edges of the imaging region.

It must be mentioned why only 36 PSFS were calculated within a single plane. The

first concern is the amount of time it took to compute each column of the MRM. Due to

memory limitations we are not storing the Jacobian matrix in the 3D inversion scheme,

and thus it is essentially recomputed at every iteration within the CG algorithm.

Therefore if we run the CG routine for 60 iterations to ensure solution convergence and

accuracy, this corresponds to recomputing the Jacobian 60 times for each PSF that we

are interested in.

parallel platform.

This is a great amount of computational effort, even on a massively

A second reason for only computing 36 PSFS is that the algorithm was

constructed such that each column of the MRM is computed and then written to disk.

The various widths of each PSF are then determined in a post processing stage after all

the files have been moved to an appropriate computer. Manipulating this large amount of

data turns out to be a rather time and memory intensive process, and for these reasons,

only 36 PSFS were computed. A possibly more efilcient manner to construct the



k !,

15

algorithm would be to employ fewer iterations within the CG routine to save time, and

then compute the widths of each PSF within the inversion scheme such that the amount

of data written to disk is rather small.

CG Determination of the Posterior Model Covariance Matrix

To calculate the MCM when employing the CG technique, we employ the Monte Carlo

scheme proposed by Matarese (1993) for analyzing seismic travel time tomography. As

shown in Appendix B, this method was developed by comparing regularized inversion to

the Maximum Likelihood formulation of Tarantola (1987). We first linearize about the

final model produced by the iterative non-linear inversion scheme, and then construct L

()new source vectors DA’‘i) ‘D&l\i)

()
DA(i) ‘D@i)

‘(D~(i)rD(@m

by rewriting Equation (2) as

+ q) _ d(i) + ~(i) ln(m(i) – 1))+ A(i)WThl . (12)

Here &zis a random number vector of a variance equal to that of the estimated data noise,

and hl is a similar vector with a variance equal to l/ki (the meaning of this is discussed

more filly in Appendix B). The last iteration of the inversion is then repeated L times

using the final image as the starting point, and the covariance matrix calculated as

MCM’= ~& (ml - m(i+l))(ml – m(i+l))T. (13)

To demonstrate the wdidity of this technique, and its possible shortcomings, we have

d
,, J

calculated M M’ f ! our initial model image in Figure 1b using two different values of L.

u
i’/

As shown by comparing Figure 9a to Figure 5b, L=25 is not enough to provide a usefi.d
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estimate of the main diagonal of the MCM. However, for L =400 (Figure 9b) the

estimated MCM compares favorably to that calculated using the analytic technique.

However the image still appears to be somewhat ‘noisy’. Increasing the number of

iterations beyond 400 did not appear to decrease this noisy appearance, and thus one

draw back of the method is that we won’t be able to recover the exact MCM. However,

we believe that this result is still of high enough quality to provide usefid information.

To demonstrate the real benefit of this process, we again turn to the 3D simulation. In

Figure 10 we have plotted the estimated normalized standard deviations in two different

formats. In Figure 10a we have plotted the results in a format similar to Figure 6, while in

Figure 10b we have plotted the entire image volume with all values greater than 2% of the

parameter values made invisible. Inherently, regions of low standard deviation imply a

greater sensitivity of the model to the data. Thus these plots yield very valuable

information on regions that are well constrained versus those regions that are poorly

constrained. Notice 1) the regions of highest sensitivity are those regions immediately

between the center and the four outer wells (these correlate with the region of maximum

resolution in Fiawe 8) and 2) the sensitivity decreases withii the resistive basement. This

agrees with the findings in Alumbaugh and Newman (1997) who showed that there was

very little sensitivity to features within the basement for this particular model.

Analysis of a Cross Well Data Set

To demonstrate the use of the various appraisal methods on real da@ we have

applied the techniques to a cross well data set collected between two wells in the Lost



. . .

Hills Oilfield in the Central Valley of California. The data were collected in 1997 for

Bakersfield Energy Resources by Dr. Michael Wilt of Electromagnetic Instruments

(EMI), Inc. using a system built by EMI for Schlumberger-Doll Research. The purpose

of this survey was to provide a baseline before a water flood began such that the position

of the flood could be monitored over time. A VMD source operating at 1KHz was

employed in one well and the vertical magnetic fields measured in a second well located

approximately 86m away from the first (note: both wells were cased with fiberglass

rather than steel). As shown by the conductivity well logs in Figure 11, the geology

consists of gently dipping (7°) interbedded oil sands and shales. The data standard

deviation was assumed to be 3% of the data amplitude, and fifteen iterations were needed

to produce the image in Figure 11. During this process the X2error was reduced from 30

to 1, and the trade-off parameter ( ki) was reduced from 1688898 to 80. It must be noted

that to get a reasonable image, the smoothing in the horizontal direction was four times

greater than that in the vertical.

The first thing to point out in Figure 11 is that we have reconstructed the general

geology. The position of the low conductivity sand is imaged across the interwell region,

and corresponds very well with the well logs. Also notice that the routine is trying to

image more conductive regions that fall above and below the transmitter-receiver intervals.

Finally, the scheme is attempting to image the slightly less conductive zone that occurs

between 800 and 820m depth. However, it is unable to extend this zone all the way

across between the wells, and thus we see low conductivity features appearing only

immediately adjacent to the two wells.
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Questions we might hope the appraisal process to answer include why we can not

resolve the resistive zone between 800m and 820m depth as extending all the way across

between the two

appear in the well

wells, and why we can not resolve any of the finer structures that

logs? To determine the answers we turn to the MRM. In Figure 12 we

have plotted the 50% widths as calculated on a point by point

imaging region. Notice that as expected the vertical resolution is

basis throughout the

much better than the

horizontal. Also notice that the horizontal resolution is poorer &thin the resistive layer

than out side of it. More importantly with regards to our question, notice that the vertical

50’%spread near the center of the image is 4 times greater than that near the wells which

helps to explain why the resistive zone between 800 and 820m is not shown to extend all

the way across the image plane. That is, the greater amount of spatial averaging at the

center of the image is ‘smearing through’ the resistive layer. As an aside, notice that the

vertical spread width near the receiver well increases with increasing receiver separation in

those regions where the receiver sampling interval is irregular.

A second question we may ask is whether or not the conductive feature at the bottom

of the imagin egion is real, or if it is an artifact caused by incomplete data coverage in
K

this region? In Figure 13 we have plotted both the unnormalized and normalized standard

deviations as determined from the MCM. Notice that at the bottom of the figure we have

rather large standard deviations indicating a lack of sensitivity of the model to the data

within this region. Thus the conductor that appears extending upward from below the

interwell imaging regions is probably an artifact caused by a lack of data in this region.

/-’
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Discussion and Conclusions

In this paper we have analyzed the use of various linearized tl.mctionals for posterior

image appraisal and analysis for 2D and 3D non-linear electromagnetic inversion. In

addition to analytical forms that involve the inverse of a matrix, we have illustrated

methods to derive at least certain portions of these functions when iterative Conjugate

Gradient techniques are employed when direct matrix inversion is not available. In

adtltion, although we have focused on the crosswell EM problem here, that has only been

as a matter of convenience; the methods proposed here could be applied to linearized

inversion of any type of EM or other data set. Currently we are looking to apply these

techniques to magnetotelluric data as well as cross well GPR travel time data.

are whenOne question still unanswered is how reliable these linearized approaches

standard deviations in Figure 10 rangeanalyzing the nonlinear problem. For example the

between 0.5% and 4’XO,while in Figure 13b they are 2°/0 to 3°/0. We believe that these

estimates are rather small in magnitude given the complexity of the fill non-linear 2D and

3D inversion process. Furthermore we believe that these relatively small values are due to

the fact that we are linearizing about the final model rather than determining the MCM

through a non-linear process. It is conceivable that re-runnin g the full nonlinear inversion

L times with different data and smoothing vectors may yield very different results than

those achieved by linearizing about the final model of the iterative inversion process.

Nevertheless, these linear results appear quite reasonable and thus the linearized
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approximations are yielding valuable information about the accuracy and resolution

provided by the image, and the non-uniqueness of the inversion problem.
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Appendix A : Derivation of the Model Resolution Matrix

,> .,
. *

We start by rewriting the dm – d(i) term in equation (2) as

dm – d(i) = ~(i) ~(i) (Al)

where h(~) is the model update at the ith iteration. We now linearize about the current

model (m(i) ) and make the approximation that m(i+l) is linearly close to the true model,

fi, i.e.,

~(0 ~ ~_ m(d. (A2)

We can now use the following equations given in Newman and Alumbaugh (1997),

~(i) s (m(i) – l)61n(iii - 1) (A3)

and

i51n(iii– 1)= ln(iii - Q – ln(m(i) – 1), (A4)

to rewrite the above expression as

~(i) s (m(i) – I)[ln(iii – 1)– ln(m(i) – 1)1. (A5)

We now substitute this expression and equation (Al) into part of equation 2 to yield

[
&(i) ~ A’(i)(~(i) -1) ln(~ – 1)– In(m(i) - 1)]+ A’(i) ln(m(i) – 1)= A’(i) ln(iii – 1). (A6)

It is easy to see that when this is substituted into Equation (l), the expression for the

model resolution matrix given by Equations (5) and (6) results. (Note; this form agrees

with Meju’s (1994) form of the MRM for Marquardt Inversion if you replace the @ in

his Expression (9.4) with a kfi)WTW and don’t include an apriori model).
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Appendix B : Derivation of the Model Covariance Matrix

Here we expand on the work of Materese (1993) to derive a version of the posterior

model covariance matrix for the inversion method employed here, and a Monte Carlo

technique to determine it, that is similar to the Maximum Likelihood Method (MLM) of

Tarantola(1987) and Tarantola and Vallete (1982). Linearizing about a given model, the

MLM functional that they propose to minimize can be written as

S = [(dm – d(i) – A(~)(m(~+l) _ #)))T@ (dm – d(~) _ A(~)(m(~+l) _ m(~)))1 (Bl)

+(mref – m (~+l))Tc~l(mref – m(i+l)).

Here Cd is the data covariance matrix which contains specifics about the estimated data

errors, Cm is the apnori model covariance matrix which contains information about how

parameters within the model domain are correlated to one another, and mref is a reference

model. Often, Cm is precomputed to be equal to a constant variance times a spatially

varying function of some

where o; is an assumed

sort (Tarantola and Vallette, 1982), i.e.,

Cm= o;F (B2)

constant model variance and F describes how different points

within the model domain are correlated. Note, if the data error is uncorrelated, and because

‘]– DTD.our data weighting matrices are the inverse of the data standard deviations, cd –

Now let us write the minimization functional for our inversion technique, which is

given in Newman andAlumbaugh(1997, equation 1) as
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S= [(dm - d(i) _ A(i)(m(~+l) _ ~(~)))~DTD(dm _ d(i) _ A(i)(m(i+l) _ ~(i)) 1
+Xi) (Wm(i+l) )T(Wm(i+l)). (B3)

Notice that the difference between equations (Bl) and (B3) is the last term. Matarese

(1993) showed that the last term in this fictional can be written such that

S= [(dm - d(~) _ A(~)(m(i+l) _ m(~)))~DTD(dm _ d(~) _ A(i) (m(i+l) _ m(i))) 1
+7Ji)(0 – Wmi+l)T(O – Wmi+l ). (B4)

Making some simple substitutions, we can fhrt.herrearrange equation (B4) as

S= [(dm – d(i) _ A(i) (m(i+l) _ m(i)))~DTD(dm _ d(i) _ A(i)(m(i+l) _ m(i)))
1

[ 1
+ (n – Wm(i+l))~A(i)(n – Wm(i+l)) . (B5)

where n is a zero vector. Comparing this to Equation (B1) shows that rather than forcing

the inverted model to be close to a reference model, here we are attempting to force the

curvature between adjacent model parameters to be close to zero.

Minimizing equation (B 1) yields

[

~(i+]) = A(i)T(_JIA(i)+ c~l
1[ 1

‘1 A(i)Tc~l (dm – d(i) + A(i)m(i)) + c~lmmf (B6)

which is equivalent to Tarantola andValette’s(1982) equation 25. Similarly if we

minimize equation (B5) we arrive at

m(i+l) =

[

–1
A(i) TD~DA(i) + a(i)w~w 1

[ 1 (B7)A(#’D~D(dm _ d(i) + A(i)m(i)) + a(i)w~n .
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Tarantola (1987) gives an estimate of the posterior model covariance matrix for equation

(B6) to be

[ 1
–1

MCMml~ = A (#c~lA@ + C~l . (B8)

If we take the same term from equation 7, the MCM for our inversion scheme is given as

[

-1
MCMN~ = A(i) TDTDA(i) + A(i)WTW1 (B9)

which agrees with similar formulations for the inverse problem given inMeju(1994).

Tarantola(l 987) also derives a Monte Carlo method for estimating the fidl nonlinear

posterior model covariance matrix. This involves adding random data and reference model

vectors to equation (B6),

~(i+l) =

[ 1
–1

A(i) Tc~lA(i) + c~l .

[

A(~)Tql(d~ ––d(i) + q + A(i)m(i)) + c~l(mref + hl)1 (B 10)

and rerunning the full non linear inversion L times. Here Elis a random number vector of a

variance equal to that of the estimated data noise, and h~is a similar vector with a variance

equal to a;. The mean of the resulting L model vectors

non-linear MCM can be calculated using equation (13).

yields the final model, and the

Matarese linearized this process about the final model for his inversion technique

which yields a similar expression for our inversion method;
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~(i+l) =

[ 1
–1

A(i) TDTDA(i) + ~(i)w7Tw .

[

A(i)T~TD(dm–d(i)+q +A(i)m(i)) + A(i)WT(n + hl)1(Bll)

In doing so we are not only assuming that the data have errors present in them, but also

that our assumption that the curvature between adjacent model parameters being zero is

also in error, and the variance of that error is l/k. Note, dropping the zero vector, n, from

this expressio~ and accounting for the logarithmic pararneterization yields a form that is

consistent with that given in Equation (12).
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Figure Captions

Figure 1- (a) Two dimensional cross well EM test model used for demonstrating the

image appraisal techniques. The Xs in the left well represent vertical magnetic dipole

source positions, and the O’s in the right well positions where measurements of the

vertical magnetic field are made. The fl-equency of operation is 1KHz. (b) Non-linear

inversion results (see the text for a description of the inversion parameters).

Fig~e 2- meResolution fidius c~culated fromthe model resolution matrixfor tie

image shown in Figure lb.

Figure 3- The point spread functions at four different points within the imaging domain

as determined from the model resolution matrix for the image given in Figure lb.

Figure 4- The (a) horizontal 50% spread width and (b) vertical 50% spread width

throughout the imaging domain given in Figure lb as calculated from the model resolution

matrix.

Figure 5- Parameter uncertainty for the image given in Figure lb that has been estimated

via the main diagonal of the model covariance matrix. (a) Estimated parameter standard

deviations. (b) Estimated parameter standard deviations normalized by the image in Figure

lb.
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Figure 6- Three dimensional model and image of the Richmond Field Station simulation

given in Alumbaugh and Newman (1997). The results are shown in a series of depth slices

ranging in depth from 10m to 50 m depth. The five dots on the uppermost depth slice

represents the horizontal location of the five wells within the model, with the red

representing the center transmitter well, and the four blue dots representing the receiver

wells. Note, the color scale is logarithmic with red representing 1 S/m, and purple

representing 0.004S/m. (a) Model. (b) Image.

Figure 7- A three dimensional rendering of the point spread function for the point x=-

3m, y=-3m, z=29m within the image domain depicted in Figure 6. (a) Isosurfaces

describing the PSF values equal to + 33’?40of the maximum value. Green is + 30V0,blue is -

3OO/O.(b) Isosurface describing the PSF values equal to +67°/0of the maximum value.

Figure 8- (a) A conductivity depth slice at Z=29m for the image in Figure 6. The white

dots represent the well locations. (b) The 50?40spread width in the X direction, (c) the Y

direction, and (d) the Z direction. The black dots represent the points at which the PSF

was determined. Interpolation between the dots was accomplished via Kriging.

Figure 9- The main diagonal of the model covariance matrix for the image in Figure lb as

determined via the iterative method ofMatarese(1993). The results should be compared

to the analytic results given in Figure 5b. (a) L=25. (b)L=400.
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Figure 10- The square root of the main diagonal of the model covariance matrix for the

image in Figure 6 normalized by the parameter values. Red represents a standard deviation

of 4°/0of the parameter value, and blue 0.5°/0.(a) Depth slices of the standard deviation

presented in the same format as the image in Figure 6. (b) Volume rendering of the

standard deviation with all values greater than 2°/0of the parameter value made invisible.

Figure 11- Imaging results of the data set collected at the Lost Hills Oil Field in the

Central Valley of California. The image has been plotted with the induction logs collected

in each of the wells. X’s represent VMD source positions, and the O’s the receiver

points where measurements of the vertical magnetic field were made. The frequency of

operation was approximately 1KHz. The black lines across the image plane are simply

connecting the upper and lower most transmitters and receivers to better define the

optimalimagingregion.

Figure 12- The 50% spread widths in the (a) horizontal and (b) vertical direction for the

image in Figure 11.

Figure 13- The square root of the main diagonal of the model covariance matrix for the

image in Figure 11. (a) Estimated parameter standard deviations, and (b) estimated

parameter standard deviations normalized by the parameter values in Figure 11.
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Crosswell Model Conductivity Image
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