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SUMMARY & CONCLUSIONS

High integrity/high consequence systems must be safe and
reliable; hence it is only logical that both software safety
and software reliability cases should be developed. Risk
assessments in safety cases evaluate the severity of the
consequences of a hazard and the likelihood of it
occurring. The likelihood is directly related to system
and software reliability predictions. Software reliability
cases, as promoted by SAE JA 1002 and 1003, provide a
practical approach to bridge the gap between hardware
reliability, software reliability, and system safety and
reliability by using a common methodology and
information structure. They also facilitate early insight
into whether or not a project is on track for meeting stated
safety and reliability goals, while facilitating an informed
assessment by regulatory and/or contractual authorities.

1. INTRODUCTION
The concept of safety cases has been evolving since the
mid 1980s. A safety case is a generally accepted practice
for reporting data needed by contractual, regulatory,
and/or independent third-party certification authorities.
A generic safety case is structured to include: system
safety requirements and their allocation, assumptions
and/or claims based on pre-existing systems, evidence,
conclusions and recommendations. The safety case
addresses all components of system safety, including
hardware and software. It provides a systematic process
for collecting, analyzing, and interpreting data
throughout the lifecycle, which can be used as evidence
and for monitoring whether or not a project is on track for
meeting stated system safety goals. An equivalent
concept, software reliability cases, is needed to bridge the
gap between hardware reliability, software reliability,
system safety and reliability. Accordingly, this paper will
present an approach for implementing software reliability
cases, based on the new international standards SAE JA
1002, Software Reliability Program Standard{7} and SAE
JA 1003, Software Reliability Implementation Guide[8],
published by the Society of Automotive Engineers (SAE).
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Nomenclature list:

1. software safety: features and procedures which ensure
that a product performs predictably under normal and
abnormal conditions, thereby minimizing the likelihood of an
unplanned event occurring, controlling and containing its
consequences, and preventing accidental injury, death,

destruction of property and/or damage to the environment,

whether intentional or unintentienal.

2. software safety case: evidence collected throughout the
project lifecycle which proves that software safety
requirements are consistent with system safety requirements
and that they have been achieved, to enable an Authorizing
Body to gain assurance that the software is safe and fit for
purpose, in the intended operational environment.

3. software reliability: (1) the probability of failure-free
operation of a software program for a specified time under
specified conditions; (2) a set of attributes that bear on the
capability of software to maintain its level of performance
under stated conditions for a stated period of time.

—
4. software reliability case: evidence presented throughout
the project that software reliability requirements are
consistent with system level requirements, are achievable, are
understood by the development organization, and that
ambiguities have been resolved.

5. software surety: attributes of and activities associated
with achieving and assessing software safety, security, and
reliability.

2. SOFTWARE RELIABILITY CHALLENGE
Increased use of firmware and embedded software is blurring
the boundary line between sofiware and hardware.
Regardless, software is not hardware and it has unique
characteristics in relation to safety and reliability. In contrast
to hardware, software does not break, wear-out over time, or
fall out of tolerance. Hardware reliability models are based
on variability introduced in the manufacturing process and
the physics of failure. Many hardware reliability models do
not apply to software since software is not physical; i.e. it is
not possible to perform destructive testing on software.
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Consequently, different paradigms must be used to evaluate
software reliability.

There is an ongoing debate within industry, academia, and
the international standards community on whether or not
software reliability can in fact be quantified. Some standards
promote a qualitative assessment of software reliability while
others promote a quantitative assessment. J. Bieda[9] notes
that there is also a debate on whether software reliability
models should be time related or not. R. Rees[19] observes
that the main argument against a time-related software
reliability model stems from the fact that software failures are
not discovered until particular program or data sequences are
processed. In other words, the failure will occur the first time
the defective sequence is processed; however, this may have
been preceded by weeks or months of testing. Hence, the
time factor is often irrelevant.

Traditional software reliability growth and estimation
models are based on the number of errors found during
testing and the amount of time it took to discover them.
These models use various statistical techmiques, many
borrowed from hardware reliability assessments, to estimate
the number of errors remaining in the software and to predict
how much time will be required to discover them. These
models provide metrics which are useful for project
management, i.e. to determine when a commercial product is
ready for release and how much field maintenance will be
required.

Traditional software reliability models do not distinguish
between functional, performance, safety, reliability, or
security errors. These models do not distinguish between the
severity of the conmsequences of the errors (negligible,
marginal, critical, catastrophic) found or predicted to be
remaining in the software. Nor do they take into account
errors found: 1) by static analysis techniques, or 2) in phases
prior to testing. New software reliability models are being
developed to address these deficiencies[13].

Software safety is a component of system safety; likewise
software reliability is a component of system reliability.
Software safety and reliability requirements must be
consistent with and correspond to system safety and reliability
requirements. As a result, a reliability engineer is presented
with a challenge — how to integrate and interpret dissimilar
hardware and software reliability models in order to derive
system reliability, especially when working in a high
integrity/high consequence environment.

3. SOFTWARE SAFETY CASES
A software safety case, a component of a system safety
case, is evidence collected throughout the project lifecycle
which proves that software safety requirements are
consistent with system safety requirements and that they
have been achieved, to enable an Authorizing Body to
gain assurance that the software is safe and fit for
purpose, in the intended operational environment. The
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concept of a safety case has been well established in the
U.K. since the enactment of the Health and Safety at
Work Act of 1974. Safety cases are required in a number
of industries, such as aerospace, chemical, nuclear,
offshore, and railway. Different industries have specific
requirements regarding safety cases. For example,
railway safety cases (RSCs) are “a particular form of
safety case which places a legal obligation on an
organization to document their commitment to safety,
together with how proper discharge of these commitments
will be made in their respective activities... The RSC
provides assurances to the Authorizing Body that the
Duty Holder has management structures in place that will
identify hazards, assess risks and impose suitable and
sufficient control measures and that there will be
compliance with Railway Group Standards.”’{11] B.
Lawrence[15] reports that recent aerospace standards’
also levy an explicit requirement for safety case
development.

A safety case should present “a clear, defensible,
comprehensive and convincing argument, ... aimed at
identifying the risks inherent in operating a system,
demonstrating that the operating risks are fully
understood, that they have been reduced to an acceptable
level and are properly managed’[22]. Shaw[22]
emphasizes that, “Although one of the roles of a safety
case is for submission to an industry regulator, this should
not be its prime function.” Safety cases should also be
developed for the benefit of the system owners, to provide
insight into the risks associated with all aspects of :a
system, so that the risks can be better managed.

There are three generic categories of safety cases: system
design safety cases, system operational safety cases, and
system decommissioning safety cases. The operational
safety case is updated anytime modifications are made to
the system or operational procedures which could affect
safety. Cook([11] states that, “The safety case will be a
live document. It will be updated as ... data from actual
operation is collated to support, or otherwise, the
statements made in the justification.” From his
experience with the British Railway Business Systems
(BRBS), Tilloston[23] proposes a slightly different view.
He recommends the development of supplier safety cases,
user safety cases, and change control report safety cases.
The change control report safety cases capture all new
risks and all interfaces that have been changed, to

b Aerospace Recommended Practice (ARP) 4754
(1996), ‘Certification Considerations for Highly-
integrated or Complex Aircraft Systems,” Society of
Automotive Engineers (SAE).

- Aerospace Recommended Practice (ARP) 4761
(1996) ‘Guidelines and Methods for Conducting the
Safety Assessment Process on Civil Airborne Systems and
Equipment,” Society of Automotive Engineers (SAE).
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demonstrate that the system is “no less safe after the
enhancement has been applied than it was before.”[23]

The generic structure for a safety case includes: 1) a
discussion of the system safety requirements and their
allocation, 2) assumptions or claims based on experience
with pre-existing systems, 3) evidence, and 4) conclusions
and recommendations. A safety argument is made from a
combination of the assumptions or claims and evidence.
Bishop and Bloomfield[10] have identified three types of
arguments: 1) deterministic — arguments based on
axioms, proofs, logic, or prior research and experience, 2)
probabilistic — arguments based on failure rates, static
analysis, and/or assumptions about independence, and 3)
qualitative — arguments based on compliance with
standards and industry best practices.

Bishop and Bloomfield[10] and Shaw[22] point out that
information to support a safety argument will come from
multiple sources, such as the:  product and its
components, design and development process, capability
of development organization, performance of analogous
systems, industry experience with the effectiveness of
specific development methods and tools, and field
experience.  From observations on the CASCADE
project, Rivett[20] points out that conformity to standards
alone is insufficient justification for the safety argument
of the system — additional evidence is needed. He also
notes that a safety argument can provide an effective
means for documenting the view points of different
parties (developers, operators, and maintainers) in a
single document.

As K.M. Wright[25] observes, “Risk identification and

evaluation is performed using reliability and safety
analyses in a mutually supportive way.” Reliability
analysis identifies function criticality, failure effects, and
mission success criteria while developing reliability
predictions. Safety analysis identifies hazardous
conditions, the severity of their consequences, and the
likelihood of them occurring. Throughout the risk
identification and evaluation process, several interfaces
occur among reliability, safety, and security, i.e. surety
analyses; such as identification of safety-critical
functions, failure modes, and accident causes and
development of reliability predictions for safety critical-
functions. These interfaces occur, in part, as a result of
interaction between the fault tree analysis (FTA) and the
failure modes effects criticality analysis (FMECA).
Consequently, it is logical that a software safety case and
a software reliability case should be developed in parallel.
(Sez Figure 1.)

4. SOFTWARE RELIABILITY CASES
A software reliability case provides a justification of the
approach and documents evidence that verifies the
software meets reliability requirements. A software
reliability case provides convincing evidence that software
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has been designed, tested, and accepted using adequate
processes. The case demonstrates product characteristics
that a specified level of failure-free operation has been
achieved. It provides the necessary “bridge” to
understanding software’s relationship to potential
hardware and system failures. Evidence can be presented
in a variety of forms, but generally is represented by
quantitative and/or qualitative measures. Supporting
arguments and inferences also provide a level of
confidence that the evidence does indeed imply the
software reliability requirements have been achieved.

There are three generic types of software reliability cases:
1) pre-development software reliability case, 2)
development software reliability case, and 3) in-service
software reliability case. The pre-development software
reliability case provides an analysis of the supplier’s
approach to reliability achievement. It provides evidence
that: "

e the individuals and organizations involved are
capable of supplying software that is commensurate
with the reliability requirements of the proposed
system; :

e the software reliability plan is appropriate for the
proposed system reliability requirements;

s technical proposals and decisions upon which the
tender is based are appropriate for the proposed
system reliability requirements; and

e the supplier will be able to demonstrate reliability
achievement during the project.

During development, the supplier should update the
software reliability case with a summary and appraisal of
the results of the activities that contribute to the reliability
evaluation. By the time of acceptance into service, the
case should contain (or reference) the complete set of
evidence that the reliability requirements of the software
will be met. The software reliability case should describe
measurements taken of the software products and the
software engineering process that provide evidence
development is proceeding satisfactorily. Versions of the
case should be planned for appropriate milestones in the
software development lifecycle, for instance after
reliability tests and trials. The current version of the case
should be presented at design reviews and the outcome
included in the case. Versions of the case should be
managed under a configuration control mechanism to
ensure compatibility with development status.
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Figure 1. Joint Development of Surety Cases.

In-service software reliability management includes the
collection of operational data and the maintenance of an
in-service software reliability case. The case should
contain a description of field experience with the
software and an analysis of the impact of software failures
on system reliability. The analysis should address the
potential consequences of a failure, root causes,
mitigation strategies, and the lessons learned for the
software engineering process. In-service reliability data
can be used for:

e assessing or confirming reliability achievement;

e determining reliability impact when software is used
in a new environment;

o gathering experience on the performance of
particular methods, techniques and processes for the
benefit of future projects; and

* assessing effectiveness of change implementation
during software support.

A software reliability case presents arguments and
evidence that requirements can be achieved, will be
achieved, and have been achieved. For maximum effect,
the case should be developed and witnessed as
development decisions are made. It is not intended to be a
retrospective justification of the solution. The software
reliability case should be a readable overview of the
evidence that software meets its reliability requirements,
with references to project development records and the
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results of analyses of software components as appropriate.
The case should be a living document, proceeding
through a number of stages of increasing detail during the
project.

Like software safety cases, diverse types of evidence may

be used within complementary approaches to demonstrate

software reliability. Reliability evaluation of software with
stringent reliability requirements is especially difficult.

For most situations where stringent reliability

requirements are to be met, the supplier should plan to

provide diverse forms of evidence to cover each aspect of
software reliability. The general structure of a software
reliability case is very similar to a safety case. It contains:

1} claim - statement/requirement about a property of the
system or component;

2) evidence - facts, assumptions, or sub-claims derived
_from lower-level sub-arguments;

3) argument - logical information linking the evidence
to the claim using deterministic/analytical,
probabilistic, or qualitative measures; and

4) inference - the mechanism that provides the
transformational rules for the argument.

Direct evidence may be included in the form of:

1) defects collected during analysis, design, and coding,
typically generated from inspections or other peer
reviews, and evidence of corrections;

4
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2) results from testing, including reliability growth
modeling, statistical testing, data from tests and
trials, and performance testing, with an assessment of
its accuracy and relevance to operational use;

3) field data, including a description of any claims made
on the basis of previous in-service experience,
including a comparative analysis of relevant criteria;

4) results of any analytic arguments deployed to show
the absence of certain faults, and the assumptions on
which they are based; and

5) analyses of any third party software that is to be used
and a description of the way in which it will
contribute to software reliability, taking into account
any changes in operational environment and use
profile.

A software reliability case should also present indirect

evidence in the form of an overview of the software

engineering process to explain how it supports
achievement of the software reliability requirements.

Some items that might be included are:

1) An analysis of the methods, techniques and
procedures to be used, with an assessment of their
suitability for supporting the achievement of the
reliability requirements. This includes a description
of the generic types of software faults that will be
specifically addressed and minimized; an analysis of
reliability data from software developed using the
proposed or similar methods, techniques and; and a
justification of the choice of tools and support
software, with a description of the way in which
known problems (e.g. compiler faults) are to be
handled and recorded.

2) 2) A description of how reliability progress is to be
measured. This should include: measurements that
are to be taken during the software development
lifecycle of the performance of the software
engineering process; the verification and validation
strategy, including operational profiles, test
-coverage, and the means for generating tests; and
acceptance criteria for these measures. During
development, data should be recorded in the case and
compared with the acceptance criteria. Corrective
action to be taken if the acceptance criteria are not
met should be described.

3) Confirmation that the minimum levels of personnel
competency defined in management plans have been
achieved.

5. LINKING SOFTWARE SAFETY CASES AND
SOFTWARE RELIABILITY CASES
By linking software safety, security, and reliability cases
redundant analyses will be reduced, complementary
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analyses will be increased, cost will be reduced, personnel
will be utilized more effectively, and there will be broader
assurance that all aspects of software that affect the surety
of the system have been addressed. The development
stages can use any combination of software reliability,
safety, and security cases. Our recommendation is to
always use a software reliability plan-case structure, as
promoted by JA 1002 and JA 1003, for critical systems
and to combine the cases when safety and/or security are
a concern as well. It might be useful to call such a case a
surety case and include appropriate subparts to address
specific reliability, safety, and/or security concerns. N.
Schneidewind [21] provides an interesting approach for
the integration of software safety criteria, risk analysis,
reliability prediction, and stopping rules for testing.
Safety goals are defined in terms of reliability-related
measures such as remaining failures, time to next failure,
total test time, and risk criterion derived using these
measures. Techniques and methods that might be used to
support achievement and assessment of design and/or
performance objectives for a software surety (reliability,
safety, and security) case are listed in Table 1.

The required approvals will drive content of the software
reliability plan and case. In particular, a graduated level
of approval (with appropriate claims, arguments,
inference, and evidence) will normally be required. When
software safety is an issue, the legal aspects according to
the law, warranties, definitions and agreements on what
*“goods fit for purpose” and *satisfactory quality” mean,
and contractual agreements become a major part of the
approval strategy. The general strategy is to identify
surety activities that apply across as many of the approval
levels as possible and satisfy multiple surety concerns.

JA 1002 Software Reliability Program Standard[7] was
submitted for publication by SAE in June 1998 and is
available from SAE. JA 1002 relies on the simple concept
of a supplier-customer dialogue and partnership to define,
meet, and demonstrate assurance of software product
reliability requirements. This standard describes, within
a plan-case framework, what performance requirements
are necessary and is intended to be used by industries to
address market demands for reliable software products
that improve system productivity, time to market, and
cost-effective implementation. JA 1002 does not describe
or recommend specific software development practices.
However, JA 1003 Software Reliability Implementation
Guide[8] provides information about specific tasks that
contribute to the overall reliability goal and also includes
further details of plan and case development, like that
described in this paper.




Techmque/Method Surety Activity Case Focus
‘Safety Focus[4] . : e Bt '
Event Tree Analysis Fault prevention, identification, removal Design
Failure Modes, Effects, and Criticality Fault prevention, identification, removal Design
Analysis
Fault Tree Analysis Fault prevention, detection, removal Design
Hazard Analysis Fault detection, removal, tolerance Design
Mathematical Specification Verification | Fault prevention Design
Petri Nets Fault prevention Design
Sneak Circuit Analysis Fault detection, removal Performance
Software Change Analysis Fault prevention, detection, removal, Design
Specification Analysis Fault detection, removal Design
Testmg (fault tolerant) Fault detection, removal, tolerance Performance
“Reliability Focus([3] :

Analytical Arguments Failure estimation, prediction, assessment | Design, performance
Checklists Fault prevention Design

Cleanroom Fault prevention and tolerance - .| Design, performance
Defensive Programming Fault detection, removal, tolerance Design

Design Maturity Fault prevention Design

Design Reviews Fault prevention, detection, removal Design

Exhaustive Testing Fault detection, removal Performance

Fault Tolerance Verification Fault detection, removal, tolerance Design

Formal Inspections (In-Process Reviews) { Fault detection, removal Design

Formal Methods Fault prevention Design

Human Factors in Software Design Fault prevention Design
Object-Oriented Methods Fault prevention, detection, removal Design

Performance Testing Fault detection, removal Performance
Prototyping All Design, performance
Reliability Estimation Failure estimation Performance
Reliability Growth Modeling Failure estimation, prediction, assessment | Performance
Reliability Prediction Failure prediction Performance

Static Analysis Fault detection, removal Design

Statistical Testing Failure estimation, prediction, assessment | Performance
Structured Design Fault prevention Design

Testing Failure estimation, prediction, assessment | Performance

Fault detection, removal
Traceability Analysis Fault detection, removal Design
Use of Field Data Performance

Failure estimation, prediction, assessment
e

Reliability Focus[1]

Recommended Practice for Software | Failure estimation, prediction, assessment | Performance
Reliability

Reliability Estimation Models Failure estimation, prediction, assessment | Performance
- Exponential NHPP

- Non-Exponential NHPP

- Bayesian

Reliability Focus[2 e :

Software Development Process Models Fault prevention Design
Software Property Models Fault prevention Design
Stochastic Reliability Models Failure estimation, prediction, assessment Performance

Table 1 - Methods and Techniques Supporting Software Surety Cases
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