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-4bstract 

For many years, ECGs and vectorcardiograms have been the tools of choice for non- 
invasive diagnosis of cardiac conduction problems, such as found in reentrant tachycardia or 
WoH-Parkinson-White (WPW) syndrome. Through skillful analysis of these skin-surface 
measurements of cardiac generated electric currents, a physician can deduce the general 
location of heart conduction irregularities. Using a combination of high-fidelity geometry 
modeling, advanced mathematical algorithms and massively parallel computing, Sandia’s 
approach would provide much more accurate information and thus allow the physician to 
pinpoint the source of an arrhythmia or abnormal conduction pathway. 
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1 Introduction 
For many years, ECGs (electrocardiograms) and vectorcardiograms have been the tools of 
choice for non-invasive diagnosis of cardiac conduction problems. Through skillful analysis 
of these skin-surface measurements of cardiac generated electric currents, a physician can 
deduce the  nature and general location of heart conduction irregularities. Once located, the 
offending tissue is often ablated in order to reestablish normal electrical function. However, 
there is a need for accuracy improvement since often more tissue than necessary is ablated 
in order to ensure that all the offending tissue is removed. 

Using advanced computational mathematics and massively parallel (MP) computers, we 
planned to studied the correlation of the electric current measurements on the patients’ body 
to electrical activity within the heart with greatly improved accuracy. Our approach would 
provide more accurate location information and allow the physician to pinpoint the source 
of an arrhythmia or an abnormal conduction pathway, such as in reentrant tachycardia or 
Wolff-Parkinson-White (WPW) syndrome. This would, in turn, reduce the invasiveness of 
the ablation procedure. 

Our improved approach proceeded on three fronts. First, through the use of advanced 
imaging techniques, image processing and data segmentation algorithms, highly accurate, 
three-dimensional models of the conductive anatomy of the patients thorax were generated. 
This model was then used to generate a finite-element mesh for analysis. This lead to the 
second innovation - a novel algorithm for solving the inverse problem involved in deter- 
mining electro-static potential on the surface of the myocardium given a finite number of 
measurements on the surface of the thoracic cavity. This algorithm was implemented in 
the MP finite-element code MPSalsa [l] for solution of the resulting fourth order PDE. 
The use of the MP code allowed for the solution of a much larger number of unknowns 
in the discretized system and thus promoted the use of high fidelity geometry models and 
improved overall solution accuracy. In the following description of the work we discuss the 
three areas on which significant advancements were made or were planned for the improved 
ECG inverse problem. We conclude with some general remarks on the project. 

2 Geometry Acquisition, Segmentation and Meshing 
To improve outcome and to reduce cost, a surgeon would like to know the location of a 
cardiac conduction defect before starting an intervention to correct the problem. Solving 
the inverse electrocardiographic problem from a patient’s surface ECG based on an idealized 
model of human anatomy is not accurate enough to make a clinically-relevant estimation. 
By substituting information on the particular anatomy of the patient, we can set up a 
patient-specific inverse problem. Numerical solution of the specific problem may allow an 
estimate of conduction defect location that is accurate enough to be effective in planning 
the surgical intervention. 

We have worked with the Department of Veterans Affairs in Albuquerque to obtain 
patient-specific anatomy information by magnetic-resonance imaging acquisitions and have 
developed methodology and software to reduce these data to the 3D anatomy geometries 
that define the boundaries of regions of the patient’s anatomy with disparate electrical 
properties. Subsequent meshing of these regions and numerical solution of the inverse 
electrocardiographic problem then form a basis for estimating the location of any conduction 
defects. Within the scope of this project, we completed four acquisitions on the thorax 
of three different healthy volunteers using the Siemens ”GBS I11 Magnetom” magnetic- 
resonance imaging equipment at the Department of Veterans Affairs in Albuquerque. 

All of these acquisitions were gated to the cardiac cycle. As we gained experience, we 
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I Date I Patient 
1 13-APR-1994 I Dierrert, Carl 

Figure 1 : Magnetic-Resonance thoracic cavity image acquisitions 

tuned the pulse sequence to yield better observations. The first two acquisitions observe the 
heart only at its rest (diastolic) phase. In the last two acquisitions, we were able to time 
the repeated measurements to observe the heart at twelve points in its cycle. All of these 
data are archived at Sandia National Laboratories, and are maintained by Carl Diegert. 

Our methodology for finding the boundaries that divide the patient’s anatomy into re- 
gions of electrically-similar material is described in two phases. First is a model building 
phase. The input to the model building phase is the collection of files that constitute 
the acquisition data from a series of magnetic-resonance observations. These data include 
multiple, spatially-sampled arrays of imaging information (12-bit reconstructed voxel val- 
ues), as well as information on the geometry of these acquisitions (in-plane resolution, slice 
thickness, patient orientation. etc.). The output from the model building phase are lists of 
triangular facets that define the boundary of the patient’s skin. the boundary of the lungs, 
the extent of the heart muscle, the extent of the ribs, etc. Our software writes these lists 
in any one of three data formats: (1) our own ”dmp” format, (2) Advanced Visual Systems 
”geom” format, and/or (3) Microsoft SoftImage ”hrc” format. 

Figure 2 shows the boundary surfaces for Carl Diegert’s skin, lungs, and heart tissue, as 
recovered from the magnetic-resonance acquisition performed on July 6 ,  1994. 

The work flow and software tools that accomplish the model-building phase are: 

a After the magnetic-resonance acquisition is complete, the digital data that comprise 
the acquisition are resident at the hospital on the same computer that controls the MR 
machine. During this project, we arranged for an Internet connection to the hospital’s 
imaging center. The first step in the model-building phase is to use this connection 
to transfer the imaging data to the computers at Sandia National Laboratories. 

a At Sandia, we then use our software to convert the digital data format used at the 
hospital to Sun Microsystem’s ”visualization file format” (program siemens2vff). 
The model-building phase continues with a less structured, highly interactive anal- 
ysis of the dataset. During this analysis we rely heavily on collaboration with the 
clinically-trained staff at the hospital for guidance. The Internet connection speeds 
this interaction by enabling our tools for video conferencing, tools for shared white- 
board and shared tools for image annotation and editing. The tools we use to coax 
the needed boundaries from the observations fall into four categories: 

1. Our software for estimating iso-surface boundaries, with surface estimates given 
as lists of triangular facets (program vengine). 

2. Our software for filtering, simplifying (decimating) and organizing (connected 
component analysis) faceted geometries (program tmunch) . 

3. A high-end ”paint” program (program Matador from Parallax Software). We 
us& this tool to create the mat images that guide the automatic segmentation 
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Figure 2: Example of Tissue Segmentation for Thoracic Cavity Showing heart in red, lungs 
in blue and skin in peach. 
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processing done by programs vengine and tmunch. 
4. Our "plug-in" modules and the supporting high-end software tool for 3D content 

creation (the Softimage environment from Microsoft). We apply tools in this 
category to understand and to manipulate 3D boundary geometries. 

After model-building is complete, we start a mesh-generation phase. Early in this 
project, we concluded that the free-form regions defined by patient anatomy like heart 
muscle and ribs, could not be automatically divided into hexahedral (brick) elements 
by any currently-available software package. We therefore decided to accept the extra 
difficulties that arise when the subsequent inverse problem is solved on a computational 
mesh formed from tetrahedral, rather than from hexahedral, elements. 
Our experiments with a leading commercial CAD system showed that we could apply 
this software to automatically generate quality computational mesh datasets from the 
sorts of free-form boundary geometries we anticipated. That is, the meshing phase 
was to  be: 

e Apply our "plug-in" modules, together with a supporting, high-end CAD software 
tool to generate a computational mesh from the boundary geometries (the I-DEAS 
Master Series system from SDRC). 

Unfortunately, we were unable to set up the large scale computational meshes that 
capture the detail inherent in our boundary geometries. The bottleneck proved to be the in 
the commercial CAD system: the commercial system was unable to accept the long lists of 
facet geometry that comprise our boundary geometries. We did write the plug-in modules 
that insert this information directly into a executing copy of the CAD system, thus using 
the most efficient mechanism for communicating with this software. However, when we used 
this mechanism to feed a few thousand facets of boundary to the CAD process, the CAD 
software accepted the geometry, then died. Whatever processing the CAD software did 
to verify the (already correct) topology of our facet list simply took too long and tripped 
timers that other parts of the CAD system use to automatically recover from errors. We 
could use our plug-in module to load and mesh regions defined by short lists of facets, as 
this protective time-out did not kick in. When feeding what we consider geometries of 
modest size - a few thousand facets - to the CAD software, the software decided that its 
own processing was taking so long that there must be something wrong. In this case, the 
CAD package neatly closed up shop, without producing any computational mesh. Support 
from the vendor under their third-party developers program confirmed the problem, but did 
not offer any workable means of overcoming it. 

By developing a technology for giving our estimate of boundary geometry as a collection 
of NURB patches, we believe that the mesh generation phase using the same commercial 
CAD s o h a r e  tool would become workable. In fact, it was by experimenting with using the 
commercial tool to mesh this sort of geometry that we settled on the whole approach. At that 
time we did not understand the high overhead that lies deep within the commercial software 
and is associated with each facet it accepts. To use this software effectively on complicated 
geometries, one must make each patch represent much more than a tiny, flat triangular facet. 
That is, the commercial package offers no special-case processing to economically process a 
great many simple flat facets. Instead, the commercial package substitutes a high-overhead, 
degenerate NURB patch for each and every flat facet we feed it. Our early experiments 
with the commercial package were correct in that the package can effectively mesh complex 
geometries. What we learned is that these geometries must be given as a short list of NURB 
patches, rather that long lists of simple, flat facets. 
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Giving estimates of boundaries as a collection of NURB patches is a difficult problem 
that we could not solve in the context of this project. One author (Carl Diegert) has 
received subsequent funding under DOE’S Math and Information Computer Sciences (MICS) 
program to pursue the estimation problem. If he can develop a workable method for this 
sort of estimation, we would like to return to the inverse electrocardiography application 
and construct some clinically-useful estimates of conduction defect location. 

3 Inverse Problems in Electro-statics Using Fourth Or- 
der Partial Differential Equations 

Suppose we are interested in solving Laplace’s equation in a region V that has an exterior 
boundary 5-22, and an interior boundary 01. Suppose also that we know both the function 
4 and its normal derivative on the exterior boundary but have no information on the 
interior boundary: 

v24=0 f o r x E V  

4=f 072 0 2  

4,, = g on 0 2  

This is an ill-posed problem. The ill-posedness arises from the fact that although in theory 
one could determine the function 4 from this data, we could perturb the data f and g by 
an arbitrarily small amount and change our answer by a finite amount. This is caused by 
the unbounded growth of the high frequencies. 

Although this is a mathematically ill-posed problem, one can still expect to be able to 
find approximate solutions to this problem if one does not demand too much information 
from the high frequencies. People have solved problems like this by discretizing the system 
of equations to get a linear system of equations, and then performing a singular value 
decomposition or regularization of the resulting matrix [2, 3, 4, 51. In the former case, the 
linear system is approximated numerically, but the information associated with the smallest 
singular values is given very little weight. In the latter method, the governing PDE is recast 
into a well-posed one through the addition of terms. 

These methods are not easily implemented using standard finite element codes because 
of the difficulty of obtaining a singular value decomposition of very large sparse matrices as 
well as difficulties associated with discrete regularization approaches. We propose a tech- 
nique that avoids this difficulty by discretizing a well-posed partial differential equation that 
approximates the solution to the ill-posed problem. This differential equation is motivated 
by the following variational problem, 

minI(q5) = a I V2q5 l2 +Xq52 dw 

subject to the constraints 
$ =  f on 0 2  

4n = g on 0 2  

As the parameter X approaches zero, the solution to this variational problem will very 
nearly satisfy Laplace’s equation and will continue to satisfy the boundary conditions. Sup- 
pose that 4 is a solution to this variational problem and $ is an arbitrary perturbation to 
this solution. To first order we have 

d I  = I ( 4  + $) - I(4) = 1 V24V2$ + dv + . . . 
V 
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We now use the identity 

V24V2$ = V . (V$V2$) - V * ($VV24) + $A2$ 

along with Green's identity to show that 

Here we have assumed that $ = $n = 0 on 0 2  since #J and 4,, are specified on that surface. 
In order to have 61 vanish for all $ we must have 

A2#J + A 4  = 0 

-- av2* - 0 on 01 
d n  
v ' ~ , = o  on 01 

We now argue that this is in fact a well-posed system. To do this we need to show 
that the solutions exist, are unique, and that they depend continuously on the data. The 
existence and uniqueness are related to each other through Fkedholms alternative. For a 
finite dimensional space if we have an n x n system of equations Ax = b, we can solve this 
for all b if and only if there is no nontrivial solution to Ax = 0. For a finite dimensional 
system showing uniqueness is equivalent to showing the existence of the solutions. We 
are dealing with an infinite dimensional space, so this argument requires some delicate 
functional analysis. We will not supply the functional analysis, but will note that the 
functional analysis works for all of the commonly used elliptic equations, so we doubt that 
it will fail here. With all of this in mind we now show that this system of equations has no 
non-trivial solutions when f = g = 0. 

To do this we multiply the partial differential equation by 4 and integrate over V to get 

(A2$ + Ad) 4 dv = 0 

Applying the same integration by parts that we used in our variational problem we find 
that 

I V2$ l2  +Ad2 dv = 0 

If X > 0 we conclude that 4 
In order to  show that this problem depends continuously on the initial data, it is sufficient 

to show that it is not ultra-sensitive to the high frequencies. In order to do this it is sufficient 
to show that we can actually solve our system of equations with our boundary conditions 
specified on a plane. For example, we need to show that we can solve the system of equations 

A2$+Xq5=0 for z > O  

0. 



Massive1.y Parallel Finite-Element Solution 7 

It is a straightforward matter to solve this system of equations using Fourier transforms. 
We can similarly solve the system of equations with the boundary conditions specified at  
the surface GI. The conclusion is that out system of equations with X > 0 is a well-posed 
system. 

4 Massively Parallel Finite-Element Solution 
Here the overall parallel implementation framework for an unstructured finite-element dis- 
cretization and solution approach to the equations developed above is described. This 
implementation is capable of approximating solutions to the partial differential equations 
(PDE’s) in complex 2D and 3D geometries. The focus in the development of this code 
has been primarily directed towards both the FEM implementation of (1) and the parallel 
performance of important kernel operations in such MP unstructured applications. These 
include the distributed sparse matrix creation and the kernels of the iterative solution meth- 
ods based on preconditioned Krylov techniques. 

4.1 Finite-Element Approximation 
Equation (1) is a fourth order system and FEM solutions of this system require C1 continu- 
ous elements - elements which are not efficient in two-dimensions and nonexistent in three. 
Thus, we reduce the order by introducing an auxiliary variable E such that 

024 = E 

which allows us to express (1) as 

where we have gone from a single fourth order PDE to two second order PDE’s. resulting 
in an additional unknown. Notice also that the boundary conditions have changed. 

Using a standard Galerkin FEM approximation to (2), we approximate a general un- 
known 4 with 

n 

d =  # J Q J @ , Y > Z )  
J=l 

where Q J ( z ,  y, z )  is a global representation of the FEM basis function at the node J .  This 
is a fairly standard procedure, which, when combined with Green’s theorem reduces the 
order of an individual PDE by one. For further information on how this is implemented, 
see,[l]. Ultimately, this results in a sparse system of linear equations 

A x = b  (3) 

where the components of the vector x E Rn are the global values of the unknowns 4 and 5 
at the nodal points (or, at least, approximations thereof). 
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Another significant issue with this implementation is the difficulty in implementing the 
boundary conditions. Notice in (2) that we have both a Dirichlet and a Neumann boundary 
condition applied over both boundaries. While this is perfectly acceptable mathematically, 
it is diEcult to  implement in a FEM approximation using the standard techniques. 

4.2 Finite-Element Mesh Partitioning for MP Computing 
Considering a typical complex unstructured grid as in Figure 3 the following comments 
about the general structure of a parallel FEM implementation can be made. First, it is 
evident from Figure 3 that a general, automated method for subdividing and assigning an 
unstructured computational mesh to the MIMD computer is necessary. An ad-hoc method 
would prove unusable for a large class of complicated meshes and the resulting parallel 
communication efficiency would be difficult to predict, access and control. For the imple- 
mentation described here, a general graph-partitioning utility for unstructured meshes 161 
developed at Sandia National Laboratories is used. With this utility the basic parallel MIMD 
implementation on p processors is as follows. Consistent with the choice of the nodal based 
FEM scheme, it is necessary to load balance the work associated with the matrix setup and 
solution by partitioning the n nodes among the p processors’. The load balance algorithm 
partitions the n nodes into p sets of Ln/pJ or Ln/p + 11 FEM nodes2 and then maps these 
sets to the p processors of the parallel computer such that the overall interprocessor commu- 
nication cost is minimized. After the required load balance and mapping, the FEM code can 
then set up the distributed interaction (coefficient) matrix. This distributed sparse matrix 
roughly corresponds to a rectangular submatrix of the global interaction matrix. Thus, each 
processor, in parallel, performs the necessary element integrations and constructs a local 
set of equations for each of the nodes for which it is responsible. In this implementation, 
these equations are fully summed and actually correspond to a complete row of the corre- 
sponding global interaction matrix. The union of these distributed rectangular submatrices 
is therefore equivalent to a serial global interaction matrix. 

After construction of the distributed sparse matrix, a library of parallel Krylov solvers 
(PCG in this case) is called. On each processor, the solvers operate on the local sparse 
matrix and local solution vector using a combination of global structured and unstructured 
communication t o  achieve the parallel solver kernels. 

4.3 Parallel CG Solver and Distributed Sparse Matrix Data Struc- 
tures 

Here, we discuss M P  performance issues associated with the Krylov-subspace methods used 
for iterative solution of the sparse, linear equations given in (3). The main kernels are 
the matrix-vector product, DAXPY operations and vector inner products. The key to  
performance in these solvers is typically the efficiency of the matrix-vector multiply kernel 
and, within this, the communication it requires. For these parallel kernels to operate as 
efficiently as possible, the interprocessor communication times during the required matrix- 
vector multiplies must be minimized. In turn, key to this minimization is the data structures 
in which both the distributed sparse matrix and the distributed vectors are stored. 

Logically, each processor is given a set of nodes for which it is responsible. Thus, in the 
formation of the sparse matrix and vectors, each processor will have a set of rows in both the 
spzirse matrix and any associated vectors, each corresponding to unknowns located at “its” 

‘Other choices such as element based schemes are possible. The relative performance of such schemes 
should not vary greatly for reasonable implementations of either the nodal or the elemental schemes. 

Laj is the floor function which returns the largest integer, m E I such that m < a. 
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~ ~ _ _ _ _  

Figure 3: Canine heart unstructured mesh. 
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nodes. We let xl E Rnl be the vector of unknowns for which processor 1 is responsible and 
nl is the number of these unknowns. In addition, assume that these unknowns exist at nodes 
which make up a continuous partition of the graph of the mesh. Then, in order to complete 
the matrix-vector product, processor Z will need additional values of x which reside on other 
neighboring processors. These values are required to complete the interactions between 
processor Z’s “border” unknowns and its “external” unknowns. That is, if X l b  c XI are 
the border unknowns of processor I ,  these unknowns interact with border unknowns on 
neighboring processors via the connectivity of the FEM mesh. These border unknowns on 
neighboring processors are referred to as processor Z’s external unknowns. Figure 4 gives an 
illustration of this partitioning. 

Processor 1 

0 Internal Nodes 

0 BorderNodes ofhocessor I 

0 External Nodes of Processor I 

Figure 4: Unstructured mesh partitioning illustrating the internal, border and external 
nodes 
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Given the partitionings and unknown-distinctions (internal, border and external) de- 
scribed above, a distributed sparse matrix storage scheme [7] is used. On each processor, 
the node numbers are reordered such that the first nin nodes are the internal nodes of the 
processor, the next n b  are the border nodes and the last ne are the external nodes. Also, 
the aforementioned nl is given as n1 = nin + n b .  Thus, the last ne members of the vector 
must be obtained by communicating with their “owning” processors. Once this portion of 
the vector is filled, the matrix-vector product may be computed. 

Note that the number of messages is equal to the number of neighboring processors 
and that the size of each message is directly proportional to  the number of external nodes 
associated with the specific processor. Further, if the processor is not a physical neighbor, 
the message may have to  traverse several processors in order to arrive at its destination. 
These three factors, number of messages, size of each message and the distance each message 
must travel, are critical in determining the speed of the matrix-vector products. All of 
these factors are influenced to some degree by the load balance of the problem. For a more 
complete description of the load balance methods available through the code used in this 
study, see 161. 

5 Remarks 
This work was overtaken from a project whose PI had left Sandia and was refocused approx- 
imately one year into the grant. While the new method has shown significant promise in 
simple, test problems, difficulties arose on two fronts which prevented the timely completion 
of the project. First, obtaining quality solid models for meshing was never completed and 
thus accurate geometry information for a true ECG solution could not have been performed. 
Second, as mentioned above, implementation of the boundary conditions was difficult and 
while the work was progressing, it was never completed. 

Further funding for the project was sought but, given Sandia’s change in focus away 
from biomedical research, none was forthcoming. The authors still feel strongly that this 
work has the capability of improving standard ECG results and should be pursued. 
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