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1. Introduction

Owing to their simplicity, thethree-node triangle and four-node tetrahedron are often

used in textbooks to introduce the finite element method in two and three dimensions.

These elements are based on piecewise linear approximations that interpolate responses at

the nodes of the mesh. Because linear approximations are used, the spatial derivatives of the

responses are constant within each element. As a result, the elements can be implemented

very efficiently in finite element programs. Moreover, many automatic meshing programs

are based on creating triangular or tetrahedral elements.

Although the three-node triangle and four-node tetrahedron have several advantages, they

also possess significant shortcomings for problems in solid mechanics. One such shortcoming

is volumetric locking [I]. Meshes of tetrahedral elements or triangular elements in plane

strain often behave much too stiffly for nearly incompressible materials. Consequently, an

unreasonably large number of elements may be required to obtain satisfactory results. For

this reason and others, the linear triangle and tetrahedron are often avoided in practice.

Volumetric locking of finite elements can be reduced or eliminated altogether using a

variety of different approaches. One approach is to use higher-order interpolation functions

for the elements. The six-node triangle and ten-node tetrahedron use quadratic interpola-

tion functions and avoid many of the shortcomings of their constant strain counterparts.

Another approach is to adopt a mixed formulation for the elements where pressure is used as

a variable in addition to displacement. A third approach is to employ uniform reduced inte-

gration or selective reduced integration. The basic idea of reduced integration schemes is to

numerically integrate the volumetric strain energy with a lower-order quadrature rule than
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is used conventionally. Unfortunately, this approach cannot be applied to the three-node

triangle or four-node tetrahedron since both elements already use the simplest quadrature

rule possible.

The underlying cause of volumetric locking for the three-node triangle and four-node

tetrahedron is the presence of too many constraints for incompressible materials. As an

illustration, consider a square mesh of four-node quadrilateral elements in plane strain with

n elements per edge. The use of singl~point integration for the volumetric strain energy

imposes a constraint of zero volume change for each element. Thus, the total number of

constraints is n2, but this number is not large enough to cause volumetric locking. If,

however, a four-point quadrature rule is used, then additional constraints are introduced

and the mesh will lock. A similar situation

triangles. In this case, there are 2n2 volume

arises if each quadrilateral is

constraints as opposed to n2.

replaced by two

Taken together,

these constraints severely restrict the range of possible deformations of the triangular mesh.

The constraint ratio for volumetric response [1] is a simple measure used for determining

the ability of an element to perform well in incompressible and nearly incompressible appli-

cations. Stated simply, the constraint ratio is the ratio of the number of available degrees of

freedom to the number of incompressibility constraints. In the case of the quadrilateral mesh

cited above, this ratio is given by 2(n + 1)2/n2 (omitting boundary conditions). For large

values of n this ratio approaches the optimal value of 2. In three dimensions, the optimal

value of the constraint ratio is 3. The uniform strain elements presented in this study use

the interpolation functions of the original mesh, but each of the new “elements” is associated

with just a single node. As a result, optimal constraint ratios of 2 and 3 are obtained for

problems in two and three dimensions.
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The idea of associating elements (cells) with nodes is also used by finite volume [2] (F’V)

and finite volume element [3-5] (FVE) methods. These methods are sometimes referred to

as cell-centered finite differences and generalized box methods, respectively. To help explain

some of the similarities and differences between FV, FVE, standard finite element (F’13),

and the present uniform strain (US) approach, consider the mesh of thre+node equilateral

triangles shown in Figure 1. Dashed lines in the figure are formed by triangle edge perpen-

dicular bisectors and serve as element (cell) boundaries for FV, FVE and US. Based on

results presented in References 4 and 6, the coefficient matrix K for approximate solutions

to Poisson’s equation on this mesh is identical for FV, FVE and FE. In contrast, K is

different for US. To be specific, let kq,r denote the value in row q and column r of K. The

values of k12,20,k18,20and k25,20are all zero for FV, WE and F’J3, but they are nonzero

for US. Similar differences for the problems presented in Section 4 can lead to significant

performance differences between US and FE.

The uniform strain elements are based on concepts developed for the quadrilateral and

hexahedron [7] and extensions to other element types [8-9]. The elements do not require

the introduction of additional degrees of freedom and their performance is shown to be

significantly better than that of three-node triangular or four-node tetrahedral elements. In

addition, nodes inside the boundary of the mesh are observed to exhibit superconvergent

behavior for a set of example problems. The element formulations are quite simple and are

presented in Sections 2 and 3. Example problems demonstrating the performance of the

elements are provided in Section 4.



2. Element Formulation in Three Dimensions

Consider a mesh of four-node tetrahedral elements numbered from 1 to N.. Nodal coor-

dinates and nodal displacements are denoted by xiI and uiI, respectively, for i = 1,2,3 and

1 =1,.. ., N. The node numbers for element number J are denoted by J1, J2, J3 and J4.

The volume V~ of element number J can be expressed as

‘J=’det[iiiis] ‘1)
For each tetrahedral element, define (see Ref. 7)

BJik = ~vJ/~xiJk (2)

Substituting Eq. (1) into Eq. (2), one obtains

BJ1l = [(X2’, - x2.1. )(f%J2 - X,J,) - (X2J2 - X,J.)(X,J3 - x3J.)]/6 (3)

BJ12 = [(X2’, – X2J,)(X3J, – X3J.) – (~2.J, – X2J.)(X3JI – x3J,)~/6 (4)

BJ13 = [(~2JI - x2’,) (~3J, - ‘3J,) - (X2J, - ‘2’,) (X3J, - ‘3J.)]/6 (5)

~J14 = [(X2J1 – ~2J,) (X3.71 – X3’,) – (X2.J, – X2J,)(X3J1 – ~3J,)]/6 (6)

Similar expressions are obtained for the terms ~J2~ and ~J3k by cyclic permutation of the

first subscripted index on the right hand sides of Eqs. (3-6). It follows from Eqs. (1) and

(3-6) that
4

VJ = ~ xiJkB3ik z= 1,2,3 (7)
k=l

The basic idea of the following development is to associate new elements with each of the

nodes of the mesh. These elements use the interpolation functions of the original mesh, but
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their formulation is different from the four-node tetrahedron. Let ~~ denote the “volume”

of node number L which is defined”as

N,

I~L= ~ CYLJVJ (8)
J=l

where ~L~ are scalar constants. For the purposes of this study, a~~ is nonzero only if L

equals J1, Jz or J~. In other words, ~LJ is zero if node number L is not associated with

element number J. The constants in Eq. (8) are chosen to satisfy the constraint equation

for J= l,.. ., N.. Satisfaction of Eq. (9) ensures that the volume of each element in the

original tetrahedral mesh is accounted for properly.

Two options are considered for selecting the coefficients QJkJ. For Option 1,

QJ~J= 1/4 k=l,...,4 (lo)

and for Option 2,

~JkJ = vJk/(vJl + VJ2 + VJ3 + VJ4) k=l,...,4 (11)

where VJk k the volume of the region ~Jk inside tetrahedron (Jl, J2,J3,J4) consisting of all

points closer to node Jk than to the other three nodes of the tetrahedron. If the tetrahedral-

ization of the nodes in the mesh is Delaunay, then the volume associated with each internal

node equals the volume of the Voronoi cell for the node [10].

Rather than providing explicit expressions for VJk, we note that region ~J~ can be defined

equivalently in terms of seven linear inequality constraints. Let n~ denote a vector with the

5



same direction as the outward normal to the face of the tetrahedron opposite node Jm. This

vector can be expressed in terms of unit vectors ei associated with coordinates ~i as

nm = nlmel + nzmez + nsmes (12)

Similarly, the three vectors originating at node Jk and terminating at the other three nodes

of the tetrahedron are expressed as

rjk = rljkel + r2jke2 + r3jke3 j=l,2,3

Region ~Jk is then defined by all points (zl, X2,Z3) wh~chsatisfj the constraints

where

A=

and

nll n21 n3~

n12 n22 n32

n13 n23 n33

7214 n24 n34

rllk r21k r31k

r12k r22k r32k

r13k r23k r33k

Ax<b

xl

IX2 > b=
x3

nllxlJ2 + n21x2J2 + n31x3J2

n12xlJ3 + n22x2J3 + n32x3J3

n13XlJ4 + n23x2Jd + n33x3Jd

n14xlJ1 + n24x2Jl + n34z3Jl

rllk%llk + r21kx21k + r31kx31k

[

Tlzkxlzk + r2’2kx22k+ rszkxszk

rl&@13k + rzskxzsk + rsskxssk J

(13)

(14)

(15)

(16)Xijk = xiJk + rijk/z

The first four rows of Eq. (14) require all points to be inside the tetrahedron. The final

three rows require that all points be closer to node Jk than to the other three nodes of the

tetrahedron.

Determining the region defined by Eq. (14) is a standard problem of computational

geometry involving half-space intersections. Several computer programs are available in the

6
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public domain to find this region and its volume. The program used in this study is based on

the Quickhull algorithm [11]. User-callable routines for the Quickhull algorithm are availabIe

on the internet from the address http: //www. geom.mm. edu/locate/qhull.

For each of the new elements, define

Substituting Eqs. (7) and (8) into Eq. (17), one obtains

BLiz= f CtLJ(BJil~JII+ BJi2~J21+ BJi3~J31 + BJi4~J.1) (18)
J=l

and

Based on the uniform strain approach of Ref. 7, the nodal forces ~iz associated with the

element stresses for node L are given by

where 0$. are components of the Cauchy stress tensor (assumed constant throughout the

element). The uniform strain c; associated with node L is expressed in terms of nodal

displacements as

t; = BLU (21)

where

7
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and

[ 1
T

u = UII U21 U31 U12 U22 U32 “ “ “ UIN u2N u3N (24)

Elements based on the uniform strain approach have theappealing feature that they pass

first-order patch tests.

Forsmall deformations of a linear, elastic, isotropic material with Young’smodulus13

and Poisson’s ratio v, the element stiffness matrix for node L can be expressed as

K~ = ?LB~DBL (25)

where the material matrix D is given by

D=

and

2G+A A A 000
A 2G+A A 000
A A 2G+A O 0 0
0 0 0 GOO
o 0 0 OGO
o 0 0 00G

E Ev

‘=2(1+V) A = (l+V)(l - 22/)

(26)

(27)

Element stiffness matrices for the example problems in Section 4 can be calculated as

follows:

1. Calculate B~i~ for the original tetrahedral elements using Eqs. (3-6).

2. Calculate a~,~ using Eq. (10) or Eq. (11).

3. calculate ~L~l and VL using Eqs. (18) and (19).

4. Assemble BL and calculate KL using Eqs. (23) and (25).

8
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Notice that a standard finite element analysis using four-node tetrahedral elements requires

computations similar to those in Steps 1 and 4. The only additional computations required

are those in Steps 2 and 3.

In contrast to other uniform strain elements such as the eight-node hexahedron and four-

node quadrilateral, the elements used in the example problems do not require hourglass

control [7] to remove singularities from the stiffness matrix. Nevertheless, we have observed

the presence of non-physical, low-energy, modes of deformation from eigenanalyses of stiffness

matrices. If necessary, these modes can be stiffened effectively using a general method of

hourglass control [12]. Such stiffening was not required for the example problems, but it

may be necessary for transient dynamic analyses based on lumped mass matrices or static

problems with singularities.

3. Element Formulation in Two Dimensions

The element formulation in two dimensions is identical to that in three dimensions with

the exception that volume is replaced by area. The area A~ of element number J can be

Expressions analogous to Eqs. (2-9)

A 11 ~IJ. X,J,

are given by

(29)

BJII = (x,J2 – x,J3 )/2 BJ12 = (x2J, - x2J1)/z BJI, = (x2J1 - x2J,)/z (30)

BJ,I = (XIJ3 – xlJ,)/z BJ,2 = (~lJ1 – XIJ3)/Z BJ,3 = (~1.1, – ~lJ1)/z (31)

3

AJ = ~ xiJk BJik 2 =1,2 (32)
k=l

9



N,

&=~CYLJAJ L= I,..., N
J=l

~JIJ + ~J2J + ~.13J = 1

Again, two options are considered for selecting the coefficients aJ,J. For Option 1,

~J~J= 1/3 k=l,...,3

and for Option 2,

~J,J = AJ~/(AJl + AJ2 + AJ3) k=l,...,3

(33)

(34)

(35)

(36)

where AJ~ is the area of region RJ~ shown in Figure 2. Points a, b and c are located

at the midpoints of the three edges of triangle (Jl, J2, J3). The intersection point of the

perpendicular bisectors of these edges is denoted by p and has coordinates

xlp = [(~yJ1 + &J1)(~2J, - ~2J3) + (~?J2 + dJ2)(~2JS - ~2JI) +

(ziJ3 + ‘1J3)(X2JI - ‘ZJ2)]/(4AJ) (37)

Xzp = [(Z?J1 + ‘~Jl)(xlJs– ‘lJz)+ (z~J2+ ‘~J2)(zlJI – ‘lJs)+

(dJ, + dJ,)(~lJ, - ~lJl)]/(4A~) (38)

Notice that p can be either inside, outside, or on the boundary of the triangle. In addition,

all points within ~J~ are closer to node J~ than to the other two nodes. If the triangulation

of the nodes in the mesh is Delaunay, then the area associated with each internal node equals

the area of the Voronoi polygon for the node. If the coordinates of p are replaced by those

of the centroid of the triangle, then Eq. (36) simplifies to Eq. (35).

Expressions analogous to Eqs. (17-25) are given by

BLtl = 8.~L/8xa1

10
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(41)

(42)

(43)

(44)

[ 1
T

u= ‘ttll U21 U12 ?.@ “ “ “ UIN UZN (45)

KL = h~LB~DBL (46)

where h is the element thickness. The material matrix D for plane strain is given by

[

2G+A A O
D= A 2G+A O1 (47)

o OG

and for plane stress

‘=$[:: (1!/21 (48)

Element stiffness matrices for the example problems in Section 4 can be calculated as

follows:

1. Calculate BJz~for the original triangular elements using Eqs. (30) and (31).

2. Calculate aJ,J using Eq. (35) or Eq. (36).

3. Calculate ~L~~and AL using Eqs. (40) and (41).

4. Assemble BL and calculate KL using Eqs. (44) and (46).

11
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4. Example Problems

All the example problems in this section assume small deformations of a linear, elastic,

isotropic material with Young’s modulus _Eand Poisson’s ratio v. Element stiffness matrices

are calculated using the procedures outlined in the previous two sections. These matrices are

then assembled to form the stiffness matrix of the entire mesh. Equivalent nodal forces for

distributed loads are calculated using standard procedures for the thr~node triangle and

four-node tetrahedron since the same interpolation functions are used by the uniform strain

elements.

Calculated values of the energy norm of the error are presented for purposes of comparison

and for the investigation of convergence rates. The energy norm of the error is a measure of

the accuracy of a finite element approximation and is defined as

[/
e = (cfe– Eaad)T~(efe – ~

s-l
‘zwt)dV] “2 (49)

where Q denotes the domain of the mesh and ~fe and Eeradare the finite element and exact

strains, respectively. Recall that element strains are associated with the nodes of the mesh

with the present formulation. Consequently, finite eIement strains can be interpolated using

the linear interpolation functions of the original triangular or tetrahedral elements. Such an

interpolation is used to calculate e for the uniform strain elements.

4.1 Example 1, Plain Strain Bending Static Analysis

The first example is based on a plain strain bending problem presented in Ref. 1 and

shown in Figure 3. The displacement boundary conditions for the problem are given by

Ul(o, o) = U’(o, o) = Ul(o, c) = UI(zl,o) = o (50)

12
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NonZero values for the tractions are given by

012(0,q) = 014L,X2)= P(C2 – z;)/(21) (51)

and

011(0$Z2) = –PLz2/I (52)

where P is a given constant and 1 = 2~/3. The number of element edges in the horizontal

and vertical directions of the mesh equals 2n and n, respectively. Thus, the meshes shown

in Figure 3 have n = 4.

A problem with dimensions L = 16 and c = 2 is considered first. Results are presented

for the uniform strain elements with Option 1 (UT31) and Option 2 (UT32), the standard

three-node triangle (T3), the standard four-node quadrilateral with 2-point iterated Gaussian

quadrature (Q4), and the four-node quadrilateral with reduced selective integration (SQ4).

Note that element.type SQ4 is identical to Q4 with the exception that the volumetric strain

energy is integrated using single-point rather than two-point iterated Gaussian quadrature,

still an exact evaluation of the element area is obtained,

The vertical tip displacement U2(L,O) normalized with respect to the exact solution is

presented in Table 1 for v = 0.3. The same information is provided in Table 2 for a material

with v = 0.499, Notice that the calculated tip displacement is the most accurate for element

types UT’31 and UT32 for all values of n. It is evident from Table 2 that element types 7’3

and Q4 behave much too stiffly for values of v near 1/2. In contrast, element types UT3

and SQ4 do not suffer from volumetric locking for this problem. The poor performance of

element types T3 and Q4 becomes even more pronounced as v approaches the limiting value

of 1/2.

13



Plots of the energy norm of the error are shown in Figure 4 for P = 1, 1? = 107 and

v = 0.3. The same information is presented in Figure 5 for v = 0.499. Notice that the results

for UT31and UT32are consistently better than the others. Moreover, theslopesof the line

seaments for UT31 and UT32 are greater than unity. Slopes near unity are characteristic of

the asymptotic convergence rate of elements using linear or bilinear shape functions.

The fact that the slopes in Figures 4 and 5 are greater than unity for USP and UST3

is remarkable since linear interpolation functions are used to calculate the uniform strains

of the elements. Such behavior indicates that at least some of the nodes in the mesh exhibit

superconvergent behavior for the strains. That is, strains calculated at the nodes converge

at a rate higher than that for elements based on linear interpolation functions.

In order to investigate the superconvergent behavior further, it is useful to define the

energy norm of the error at the nodes as

[
en = (~fe _ ~ezad TD) (+_ &d 1/2)] (53)

Nodes with coordinates (~/2, c), (JZ/2,3c/4) and (~/2, c/2) are designated by pl, pz and

p3, respectively. Plots of e. are shown in Figures 6 and 7 for these three nodes. Notice

that the line segment slopes for p2 and p3 appear to be approaching an asymptotic value

of two. In contrast, the Iine segment slopes for pl appear to be approaching unity. These

observations support the idea that nodes internal to the mesh can exhibit superconvergent

behavior whereas those on the boundary do not. If this is true, one might expect the slopes

of line segments in Figures 4 and 5 to approach a value of two for very large values of n.

Slopes less than two may also be caused by the the energy norm of the error being dominated

by errors at or near the boundary.

14
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The second problem is identical to the first with the exception that the vertical dimension

c is reduced from 2 to 1/2. The vertical tip displacement U2(16, O) normalized with respect

to the exact solution is shown in Table 3 for u = 0.499. As before, the results are the most

accurate for element types UT31 and UT32. Comparison of Tables 2 and 3 shows an overall

reduction in accuracy for all the element types. These reductions, however, are much less

pronounced for the uniform strain elements. The stiffer response reported in Table 3 can be

attributed to spurious shear stresses associated with shear locking.

4.2 Example 2, Plain Strain Bending Dynamic Analysis

The second example is identical to the first with the exception that all displacement

boundary conditions and applied loads are removed. Of particular interest is the circular

frequency WIof the first bending mode of the structure. The frequency error ewis defined as

(54)

where w~ and w~ud are the finite element and exact circular frequencies of the first bending

mode. A consistent mass formulation was used for element types 7’3, Q4 and SQ4. The

mass matrix used for UT31 and UT32 was identical to that for 2“3. It is noted that use of

a lumped mass matrix for UT31 and UT32 results in the appearance of non-physical, low-

eneragy,deformation modes mentioned in Section 2. The “exact” solution for this problem

was obtained using twelve-node quadrilateral elements with n = 16.

Plots of the frequency error are shown in Figure 8 for a problem with dimensions L = 16,

c = 2 and material properties E = 107, v = 0.499 and mass density p = 2.6 x 10–4. A slope

of two is characteristic of the asymptotic rate of com-ergence of linear elements. Although

an asymptotic rate of convergence has not been attained for UT31 and UT32, it is clear that

15
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they produce much more accurate results than than element types T3 and Q4.

4.3 Example 3, Pure Bending

Example meshes for the remaining problems are shown in Figure 9. The meshes are

bounded initially by the six faces ZI = O,ZI = hl, Xz = O,Xz = hz, X3 = Oand X3 = h~. The

number of element edges in direction i for each mesh is designated by ni. The tetrahedral

meshes are obtained from the hexahedral meshes by decomposing each hexahedron into six

tetrahedral.

on

The third example deals with the classic problem of pure bending. The applied tractions

the face defined by Z1 = hl are given by

all(hl, X2,Z3) = (h2/2– Z2) (55)

The displacement boundary conditions for the example are specified as

U1(O,Z2,Z3) = ZL2(0,0, O) = U3(0,0,0) = U2(0,O,h3) = O (56)

The number of element edges in the three coordinate directions is given by nl = 2n, n2 = 2n

and n3 = n. Thus, the meshes shown in Figure 8 have n = 2.

A problem with dimensions hl = 10, h2 = 5 and h3 = 1 is considered first. Results are

presented for the uniform strain elements with Option 1 (UZ’’41) and Option 2 (UT42), the

standard four-node tetrahedron (774), the standard eight-node hexahedron with two-point

iterated Gaussian quadrature (H8), and the eight-node hexahedron with reduced selective

integration (SH8). Note that element type SH8 is identical to H8 with the exception that

the volumetric strain energy is based on the mean volumetric strain of the element..

The tip displacement U2(hl, h2/2,h3/2) normalized with respect to the exact solution is

presented in Table 4 for v = 0.3. The same information is provided in Table 5 for a materiaI

16
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with v = 0.499. Notice that the calculated displacement is the most accurate for element

type UT’42. Comparison of the two tables shows that the accuracy of the standard four-node

tetrahedron T4 and eight-node hexahedron H8 is diminished for values of v near 1/2.

Plots of the energy norm of the error are shown in Figure 10 ford material with E = 107

and v = 0.3. The same information is presented in Figure 11 for v = 0.499. Notice that

the results for the uniform strain elements are consistently better than UT4 and the other

element types. In contrast to the results for Example 4.1, the energy norm of the error for

the uniform strain elements appears to

element types. Slopes of unity are not

volumetric locking.

have a convergence

achieved in Figure

rate much closer to the other

11 for 7’4 and H8 because of

Nodes with coordinates (hi/2, h2,h3/2), (hi/2, 3hz/4, hs/2) and (hi/2, ha/2,hs/2) are

designated by pl, p2 and p3, respectively. Plots of e. (see Eq. 53) for the three nodes are

shown in Figure 12. hTotice that the line segment slopes for p2 and p3 are significantly larger

than those for pl. It is clear from the figure that an asymptotic rate of convergence for the

three points has not been attained, but the results for nodes internal to the mesh appear

to be converging to the exact solution at a rate significantly higher than those for nodes on

the boundary. Establishing the asymptotic rate of convergence for p2 and p3 requires the

extension of Figure 12 to much larger values of n.

The second problem is identical to the first with the exception that the dimension hz is

reduced from 5 to 1. The tip displacement U2(Izl, h2/2,h3/2) normalized with respect to the

exact solution is shown in Table 6 for v = 0.499. Notice that the results for UT41 and U“T42

are significantly better than those for the other element types. Comparison of Tables 5 and

6 shows an overall reduction in accuracy for all element types except UT4

17
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stiffer response reported in Table 6 for the other three element types can be attributed to

spurious shear stresses associated with shear locking.

The effects of shear locking is demonstrated even more clearly in Table 7 for a problem

with dimensions hl = 10, h2 = 0.1 and h3 = 0.02. For this problem the element aspect ratio

in the X1 —X2 plane is 50 to 1. Comparison of Tables 5 and 7 shows an overall reduction in

accuracy for all the element types. Nevertheless, these reductions are much less pronounced

for the uniform strain elements.

4.4 ExampIe 4, Second-Order Patch Test

The final example considers a problem with specified tractions on all six faces of the

mesh. Tractions on the faces are obtained from the stress-strain relation a = De where c is

the strain associated with the displacement field

Ul(xl, Z2, X3) = a(z~ + x; – 2X: + 2X1X2+ 2X1X3+ 5X2Z3) (57)

‘U2(Xl~X2~ X3) = a(x~ + xl – 2x~ + 2xzxs + 2xzxl + 5x3xl) (58)

~s(xl,xz,~s) = a(xy +x; – 2x; + 2X3X1+ 2xsxz + 5xlxz) (59)

Rigid body motion is constrained by the displacement boundary conditions

Ul(o, o, o) = o U2(0,o, o) = o U3(0,0, o) = o (60)

ZJ1(O,h2,O) = ah;

The number of element edges in

ZJ2(0,0, h3) = ah; u3(h1, 0,0) = ah; (61)

the three coordinate directions is specified as nl = n:

n2 = n and n3 = n. The dimensions for the problem are given by hi = 10 for z = 1,2,3. The

constant a is set equal to 4 x 10–6.
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One can confirm that the elasticity solution to the boundary value problem is given by

Eqs. (57-59). Inaddition, theelmticity solution hwnovolumetric strain. That is,

au~ + i?u~ 8U3 ~
—— .

ax~ 8X2 + az~ =
(62)

The energy norm of the error is reported in Table 8 for different values of v with n = 5. The

same information is presented in Table 9 for n = 6. Notice that the errors are the largest

for element types T4 and H8. Moreover, comparison of the tables reveals that increasing

the mesh resolution

and H8. The poor

volumetric locking.

relatively insensitive

5. Conclusions

has a smaller effect on improving the accuracy for element types T4

performance of these elements in this example can be attributed to

In contrast, the results for element types UT41, UT42 and SH8 are

to changes in values of v near 1/2.

A family of uniform strain elements was developed for meshes of three-node triangles

and four-node tetrahedral. The accuracy of the uniform strain elements was shown to be

significantly better than that of standard three-node triangular or four-node tetrahedral

elements. It was also demonstrateed that volumetric locking can be avoided without requiring

the introduction of additional degrees of freedom. Thus, one of the major shortcomings of the

three-node triangle and four-node tetrahedron is overcome. Example problems also showed

that the effects of shear locking are much smaller for the uniform strain elements than for

other lower-order elements.

Superconvergence of strains at nodes internal to the mesh was observed for a set of exam-

ples in two dimensions. Higher rates of convergence were also observed in three dimensions,

but the asymptotic rate of convergence was not established clearly. A mathematical analysis
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of the elements would be useful to provide an explanation for the observed behavior. It

is possible that a modified formulation for elements on the mesh boundaries could lead to

improved rates of convergence for the entire mesh.

The calculations required to form the stiffness matrix of the uniform strain elements

are very similar to those for the standard threenode triangle and four-node tetrahedron.

There is, however, greater coupling between degrees of freedom in the assembled stiffness

matrix of the entire mesh. Coupling may occur between two nodes in the mesh if a traversal

from one node to the other is possible over a single element edge or two connected edges.

Although this greater degree of coupling leads to more nonzeros in the assembkd matrix, the

improvements in accuracy outweigh the additional time required for matrix factorization.

The initial results from this study are promising, but additional applications to other

problems is needed to understand fully the strengths and weaknesses of the uniform strain

elements. We are currently investigating the performance of the elements for problems with

geometric and material nonlinearities. Several options are available for the treatment of

elements on material boundaries, but these need to be developed and investigated further.
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Table 1: NorrnaIized tip displacements for Example 4.1 with L = 16, c = 2 and v = 0.3.

n UT31 UT32 T3 Q4 SQ4
4 1.0134 1.0082 0.7677 0.9043 0.9162
8 1.0054 1.0037 0.9246 0.9714 0.9750
12 1.0027 1.0020 0.9635 0.9861 0.9880
16 1.0016 1.0013 0.9785 0.9917 0.9929

Table 2: Normalized tip displacements for ExampIe 4.1 with L = 16, c = 2 and v = 0.499.

n UT31 UT32 T3 Q4 SQ4
4 1.0094 0.9985 0.5862 0.3338 0.9407
8 1.0045 1.0036 0.7708 0.6328 0.9826
12 1.0023 1.0023 0.8546 0.7845 0.9916
16 1.0014 1.0015 0.8992 0.8612 0.9950

Table 3: Normalized tip displacements for Example 4.1 with L = 16, c = 0.5 and v = 0.499.

n UT31 UT32 T3 Q4 SQ4
4 0.9890 0.9725 0.1965 0.2350 0.4979
8 1.0010 0.9994 0.4727 0.5450 0.7960
12 1.0010 1.0005 0.6559 0.7263 0.8964
16 1.0007 1.0005 0.7643 0.8235 0.9383

Table 4: Normalized tip displacements for Example 4.3 with hl = 10, h2 = 5, h~ = 1 and
v = 0.3.

n UT41 UT42 T4 H8
2 1.1015 1.0484 0.6834 0.9053
4 1.0283 1.0137 0.8901 0.9746
6 1.0129 1.0064 0.9465 0.9886
8 1.0075 1.0036 0.9687 0.9936

. 23

7
SH8

0.9280
0.9805
0.9912
0.9950
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Table 5: Normalized tip displacements for Example 4.3 with hl = 10, hz =5, h~ = 1 and

[

n

2
4
6
8

v = 0.499.

T

UT41 UT42 T4

1.1058 1.0472 0.4638

1.0290 1.0136 0.6274
1.0135 1.0065 0.7036
1.0079 1.0036 0.7488

H8
0.7455
0.8293
0.8802
0.9142

SH8
0.9348
0.9823
0.9920
0.9954

Table 6: Normalized tip displacements for Example 4.3 with hl = 10, h2 = 1, h~ = 1 and
v =0.499.

rn UT41
2 1.0185
4 .1.0212
6 1.0114
8 1.0069 mUT42 T4 H8

1.0098 0.1273 0.2910
1.0145 0.3339 0.5740
1.0079 0.4931 0.7249
1.0033 0.6003 0.8110

SH8
0.3238
0.6566
0.8113
0.8843

Table 7: Normalized tip displacements for Example 4.3 with hl = 10, h2 = 0.1, h~ = 0.02
and v = 0.499.

[

n
2
4
6
8 T

UT41 UT42
0.1945 0.1553
0.7616 0.6523
0.9249 0.8735
0.9710 0.9465

T4

0.0016
0.0063
0.0141
0.0246

H8
0.0048
0.0188
0.0412
0.0708

SH8
0.0048
0.0188
0.0414
0.0713

Table 8: Energy norm of the error for Example 4.4 with n = 5.

0.4;000
0.49000
0.49900
0.49990
0.49999

UT41
2.3396
2.2740
2.2682
2.2676
2.2676

UT42
2.3278
2.2582
2.2517
2.2511
2.2510

2’

T4
4.6309
6.0322
6.5912
6.6744
6.6832

H8
2.3798
5.0768
7.5066
8.0389
8.0992

SH8
1.2771
1.2403
1.2368
1.2364
1.2364
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Table 9: Energy norm of the error for Example 4.4 with n =6.

r0.4;000
0.49000
0.49900
0.49990

L0.49999 T
UT41 UT42
1.9422 1.9265
1.8861 1.8683
1.8809 1.8629
1.8804 1.8623
1.8804 1.8623

T4
4.0547
5.6178
6.3465
6.4681
6.4813 I

H8 SH8
1.9943 1.0680
4.4775 1.0368
7.2394 1.0339
7.9761 1.0336
8.0638 1.0335
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Figure 1: Mesh of three-node equilateraltriangles.The dashed lines are formed by perpendicularbisectors
of the triangleedges and serve as element (cell) boundaries.



. ,
,

J3

c

JI J2
a

\“
.-/-

0

c

\

I

‘J1 I

I

\

I
‘J2I \

J{’
I “ J2

a

Figure2: Pointp is located at the intersectionof the perpendicularbisectors of the triangleedges and is equi-
distantfrom JI, J2and J3.AN points withinregion RJ~are closer to node J~thanto theother two nodes.
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Figure3: Triangularand quadrilateralmeshes for Example 4.1. Both meshes in the figure haven = 4.
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Figure4: Energy norm of the error for Example 4.1 with L = 16, c = 2, P = 1, E = 107andv = 0.3.
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Figure 5: Energy norm of the error for Example 4.1 with L = 16, c = 2, P = 1, E = 107andv = 0.499.
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Figure 6: Energy norm of the error at nodes pl, pz andp~ for Example 4.1 with L = 16, c = 2, P = 1, E = 107
andv = 0.3.



. .
i “. >

-9

-lo

-11

-12

–14

–15

-16

P1

n UT3’
UT32

I P29P3

–4.5

Figure7: Energy

-4 -3.5 -3 –2.5 -2 -1.5 -1

log(ll?z)

norm of theerror at nodes pl, p2 andp3 for Example 4.1 with L = 16, c =2, P = 1, E = 107
andV = 0.499.



. .

-3.5 -3 -2.5 -2
@(l/~)

Figure8: Frequency error for Example 4.2 with L = 16, c = 2, E =
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07, V = 0.499 and P = 2.6 X 10q.
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Figure 9: Tetrahedraland hexahedralmeshes for Examples 4.3 and4.4. Both meshes in the figure have
n1=4, n2=4andn3=2.
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Figure 10: Energy norm of theerror for Example 4.3 with h =10, h2=5, h3= l, E=107andv =0.3.
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Figure 11: Energy norm of theerror for Example 4.3 with hl = 10, hz = 5, h~= 1, E = 107andv = 0.499.
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Figure 12: Energy norm of the error atnodes pl, p2 andp3 for Example 4.3 withAl = 10, h2= 5, h3= 1,
E = 107and v = 0.3. Line segment slopes are shown adjacent to the segments.


