
SANDIA REPORT
SAND942594 UC-705
Unlimited Release
Printed January 1997

Performance Modeling of
Network Data Services

Rena A. Haynes, Lyndon G. Pierson

SF29OOQf8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,

'express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

SAND942594
Unlimited Release

Printed January 1997

Distribution
Category UC-705

Performance Modeling of Network Data Services

Rena A. Haynes
Lyndon G. Pierson

Scientific Computing Systems
Sandia National Laboratories

Albuquerque, NM 87 185

Abstract

Networks at major computational organizations are becoming increasingly complex. The
introduction of large massively parallel computers and supercomputers with gigabyte memories
are requiring greater and greater bandwidth for network data transfers to widely dispersed
clients. For networks to provide adequate data transfer services to high performance computers
and remote users connected to them, the networking components must be optimized from a
combination of internal and external performance criteria. This paper describes research done at
Sandia National Laboratories to model network data services and to visualize the flow of data
fiom source to sink when using the data services.

Acknowledgment

The authors with to express special thanks to Jethro H. Greene for his work in developing
software to describe and process packet trains in an object-oriented design. His enthusiasm for
software development and object-oriented thinking kept the authors on the right track.

1

Table of Contents

Introduction .. 1

Packet Train Model .. 1

A Packet Train Model of a Distributed Mass Storage System .. 2

Object-Oriented Packet Train Model Specification. .. 6

Prototype Simulation and Visualization of the Packet Train Model 7

Summary and Conclusions ... 7

References .. 9

..
11

Introduction

Networks at major computational organizations are becoming increasingly complex. This
complexity is being driven by the introduction of large massively parallel computers connected
to widely dispersed client systems. For example, at Sandia National Laboratories an 1840 node
Intel Paragon massively parallel computing system is available to computational scientists
throughout the United States.

The computational capacity of large compute servers allows scientists to process very large
calculations which in turn generate large amounts of data. Data sets generated on the Sandia Intel
Paragon average from 200 Megabytes to 18 Gigabytes. Data generated on these systems are
typically off-loaded to remote fde or mass storage servers so that new calculations can be run to
produce new data. Off-loaded data may be further processed by visualization servers to create
animation sequences that are again saved to fde or mass storage servers where they will be
retrieved for display on various remote clients.

The computational environment described in the preceding paragraph requires high performance
data transfer services. For networks to provide high performance data transfers, both hardware
and software components must be optimized from a combination of internal and external
performance criteria. In order to determine these criteria, the major data transfer services at
Sandia were analyzed using a network modeling methodology called the packet train model.

The packet train model, which describes network traffic as packet streams between pairs of
nodes on the network, was developed during a study of traffic on a local area network at MIT
[5] . Since its development, the packet train model has been used to analyze network traffic to
identify locality of reference in networks [5] , to analyze network delays caused by congestion
and limited buffers [6] , and to characterize network traffic [7]. The study described in this paper
used the packet train model in a more generalized object oriented fashion to describe and analyze
components involved in network data transfers to and from mass storage systems. In addition,
this paper describes prototype simulation and visualization software that was developed for this
research.

The following sections describe the packet train model in more detail, the object-oriented packet
train model specification developed for this research, and the prototype simulation and
visualization software developed for this research. Summary and conclusions from this research
are also given.

Packet Train Model

Local area network (LAN) t rasc studies have typically used a statistical model to describe
packet arrival. The primary characteristics of these models are that packets are independent and
the arrival of packets is based on a probability density function. In measuring traffic patterns in a

1

LAN at MJT, Jain and Routhier [SI found that the network packet arrival process can best be
described in the context of a train model.

In the packet train model, a train consists of a number of packets traveling in both directions
between two network nodes. A Virtual train track is equivalent to a network node pair. The
interval between packets on a given train is specified by the maximum allowed intercar gap
(MAIG), which is a system parameter based primarily on network hardware and software
between the two nodes. If no packets are seen between a pair of network nodes for the MAIG
time, the current train has ended and the next packet for the virtual track is the first car, or
locomotive, of the next train. The inter-train time is the time between the last car, or caboose, of
the previous train and the locomotive of the next train. Inter-train time is largely dependent on
types of network applications and their frequency of use.

While the traffic train model has been used primarily for characterizing and analyzing physical
networks, the same methodology can be used to characterize and analyze distributed software
components. The packet train model for network packet arrival is especially appropriate for
modeling data movement to and from mass storage systems. Client interfaces to mass storage
systems are used primarily for bulk file transfers. As such, traffic between a mass storage system
and its client is characterized by bursts. The probability that the next packet is part of the mass
storage systedclient train is largely dependent on the average file size and the current length of
the train. A characterization of the usage of the Network Storage Service at Sandia [4] found that
even a stateless protocol like NFS exhibits the bursty nature of file transfers.

Another reason that the packet train model is important for mass storage data movement is that
the architectures of mass storage systems are being distributed to allow scaling for perfmance
and capacity. In general, name space operations, such as file creation and file status listing, are
performed by mass storage system components that are separate from components that move
data. While the number of components involved in moving a block of data between the client
and server storage is minimized, many client/server components may be involved in moving
separate blocks of data in parallel. Each component of a mass storage system can exist on an
individual network node. The following section describes how the packet train model can be
used to model data transfers to and from a distributed mass storage system.

A Packet Train Model of a Distributed Mass Storage System

Architectures for mass storage systems are described in [3] and [l 11. The generic description in
[3] and the implementation description in [1 11 both contain components that exist in all mass
storage systems. These components are a name server, a bitfile server, some number of storage
servers, a physical volume library, some number of physical volume repositories, and some
number of movers. Each of these components is involved in some way when a file is transferred
between a client and the mass storage system. Each component typically interacts with a
metadata component that manages metadata required for the component's hctionality. In some

2

systems the metadata management component is internal to each server, while other systems
provide a separate component that requires network traffic. For this study, communication to the
metadata management component and its processing are considered part of the server processing.
The functionality and communication characteristics of each component are discussed in more
detail in the following paragraphs.

The name server component of a mass storage system is responsible for mapping the name of a
file to an object identifier in the mass storage system. For some systems, like the HPSS
architecture described in [1 11, the name server is also the component that authorizes access to
file objects. In providing these functions for a file transfer, the name server component primarily
communicates with the client application at the start of a file transfer.

The bitfile server component of a mass storage system provides a file abstraction for objects in
the mass storage system that may reside in many physical storage locations. The bitfile server
component allows access to mass storage files based on starting file offset and length. To provide
this functionality, the bitfile server comunicates with the client application for each write or
read request. The bitfile server then translates the client application request which contains
starting file offset and length information to corresponding request(s) containing storage segment
identifier, offset, and length, for one or more storage servers. In some mass storage system
architectures, data must exist on the top level of the storage hierarchy before any can be
transferred to the client application. In this case, the bitfile server would start a caching operation
that would involve communication between multiple storage servers and movers to transfer the
data from current storage to top level storage. Because caching is not the normal path for data
transfers to/from mass storage systems, it was not considered in this model of mass storage
network data traffic. After all data for an I/O request have been transferred, the bitfile server
receives a reply message that indicates the success or failure of the data transfer.

A storage server component of a mass storage system translates storage segments into locations
on physical volumes of storage. A storage server typically deals with only one type of storage,
e.g., disk or tape. The storage server also schedules mounting and dismounting of removable
media in the mass storage system. When an I/O request is received from the bitfile server, the
storage server translates the storage segment information to physical volume location
information. If the physical storage volume required to complete the YO request is a removable
volume, the storage server schedules all mounts required for the YO with the physical volume
library component. No data movement is started until all physical volumes involved in the
transfer are ready to transfer. The storage server communicates with mover components to
initiate the read or write. Once all data for a request are transferred, the storage server receives
status messages fkom all movers involved in the request. This information is converted to a reply
to the bitfile server.

The physical volume library component of a mass storage system manages all physical volumes
in the system. This component receives requests from storage server component to mount or
dismount physical volumes. Mounthismount requests from storage servers are converted to

3

mountldismount requests to the physical volume repository that contains the volume specified.
The time required for mounting the physical volumes required for an I/O request is the greatest
part of the startup time for an I/O request. In general, a mount is required only on the first request
for I/O to a fde on the mass storage systems.

Physical volume repositories are the components that communicate with robotic devices to
mount or m o u n t physical volumes. These components receive a request fkom the physical
volume library component and communicate with a robot, which may be electronic or human, to
cause the physical volume to be mounted on a device for reading/writing. As stated in the
previous paragraph, the time required to mount the physical volume is the largest part of the
startup time for an I/O request, but should only impact the first request. Consequently, physical
volume repository component communication and processing plays a minor role in network data
traffic in mass storage systems.

The mass storage system components that play the largest role in network data traffic to and
fkom mass storage systems are the mover components. A mass storage system mover is
responsible for transfening data fi-om a source device to a sink device. A device can be a
standard I/O device with geometry, such as tape or disk, or a device without geometry, such as
network or memory. Mover components are involved in data transfer startup traffic because they
communicate with the physical volume library component to verify that a particular physical
volume is mounted and ready on an I/O device. They also communicate with the storage server
component to receive redwrite requests and with other mover components when data are
migrated or cached between storage levels in the mass storage hierarchy. The primary mover
communication of interest to this study, however, is the communication with client applications
that occurs as a result of a client readwrite request.

The previous paragraphs have described the major internal components of a mass storage system.
Another component, external to the mass storage system, is the client application. Mass storage
systems typically support standard network-based interfaces as well as a programming interface.
The implementation of the client application will affect the network traflic involved in a data
transfer to/fiom a mass storage system. For example, the most widely available network
interfaces for file transfer are the File Transfer Protocol (FTP) [9] and the Network File System
(N F S) [101 services. Both of these applications involve a client and a server process. In most
mass storage systems, file transfers using these protocols cause data to be transferred fi-om the
mover component to the FTP or NFS server component which forwards the data to the FTP or
NFS client. A mass storage system like H P S S , however, allows data to be sent directly fkom the
mover component to the client component.

The analysis, described in the preceding paragraphs, of the communication and processing
required in transferring files to and from mass storage systems indicates that the network traffic
can be broken into four phases. These phases are the initial startup, the input/output request
startup, the data movement, and the reply phase.

4

The initial startup phase determines the mass storage data to be transferred to the client and
readies software and hardware to deliver the data. The initial startup phase involves
communication between the client and the name server, the client and the bitfile server, the
bitfile server and the storage server, the storage server and the physical volume library, the
physical volume library and the physical volume repository, and the physical volume library and
the mover. In packet train terminology, each of these component pairs can be considered a
virtual track. Except for traffic involving the physical volume library, the "trains" that travel
these tracks are short with small MAIGs. Because the communication involving the physical
volume library includes latencies involved in mounting removable storage media, these "trains"
will have large MAIGs relative to the others in this phase.

The inputloutput request phase communicates requests for inputloutput fkom the client to a
mover that has the storage device ready to receive or transmit the data. This phase involves
communication between the client and the bitfile server, the bitfile server and the storage server,
and the storage server and the mover. The trains that follow these tracks are short with small
MAIGs.

The data movement phase of network data traffic for mass storage file transfers is where the bulk
of the traffic occurs. This phase consists only of comunication between the client and mover in
architectures where an intermediate agent like FTP or NFS is not needed. If a server agent is
used, this phase consists of communication between the client and the server agent as well as
communication between the server agent and the mover component. Trains that follow these
tracks are significantly longer than trains in the other phases. The actual train size will depend on
file and inputloutput request block sizes. The MAIG value will be dependent on network and
inputloutput device latencies.

The reply phase of network data traffic for mass storage file transfers consists of the
communication to relay the stabs of the file transfer to the various components involved in the
transfer. This phase involves communications between the mover and the storage server, the
storage server and the bitfile server, and the bitfile server and the client. If an intermediate agent,
like FTP, is used it also includes communication between the intermediate agent and the client.
Like communication in the initial and the inputloutput request phases, the trains that follow these
tracks are short with small MATGs.

This packet train analysis of network data traffic to/fkom mass storage systems indicates that file
transfers typically involve a series of short trains to setup and request the data transfer, followed
by a series of long trains to move the data, and another series of short trains to return status
information. It suggests that performance improvements for large file transfers should focus on
reducing latencies in networks and devices and maximizing request block sizes. Performance
improvements for small file transfers must include latencies in setup and input/output request
processing.

5

Object-Oriented Packet Train Model Specification

The previous section described how the packet train model of network data traffic can be used to
analyze a complex distributed software architecture. Verification of this analysis would require a
simulation tool in which requests can be input and tracked throughout the system, with the
results compared with actual system operation. As a start toward developing such a tool, the
specifications for two major objects in the packet train model were developed in this research.

The two primary objects in the packet train model of network data traffic are the packet train and
the network nodes. The packet train object represents the data flowing on a virtual train track
between two network node objects. The network node objects are the components that operate on
packet trains. The following paragraphs describe the packet train and network node
specifications in more detail.

The packet train specification that was developed contains fields that can be used to determine
train length, amount of time on the virtual track that runs fkom the source node to the destination
node, the virtual tracks used, and counters to hold cumulative attributes for the packet train as it
travels fi-om the source node to the destination node. The length of a packet train is determined
from the number of cars in the train. The amount of time spent on the virtual track connecting the
previous node to the current node is given by the MAIG value. Virtual tracks are identified by
network node pairs. The previous virtual track is defined by the previous and current network
nodes. The next virtual track is defined by the current and next network nodes. The total virtual
track is specified by the source and destination nodes. The attribute counters defined for the
packet train specification are cumulative delay, cumulative node count, and total error exposure.

Packet train object operations include routing, dividing, merging, display, creation, and
termination. A routing operation switches a packet train fkom one virtual track to another. The
dividing operation splits a packet train into two or more packet trains. The merging operation
combines two packet trains. The display operation outputs the packet train length, MAIG,
number of cars, in-route time, and counter information. Packet train creation occurs at a source
node and packet train termination occurs at the destination node.

The network node object is the processing component in the packet train data traffic model. A
network node object may represent a hardware or software component. It may be expanded into
multiple layers represented by multiple nodes or collapsed into a single layer represented by a
single node. Fields in the network node object identifl the node, the node layer, a list of adjacent
nodes, and node characteristics. Node characteristics include input data bit rate, output data bit
rate, maximum packet processing rate, maximum packet size and maximum train size. The
values of the node characteristics determine the effect of node operations on a packet train. The
network node object also contains queue structures that are used to receive and send packet trains
and counters for each queue to maintain cumulative traffic information.

6

The operations defined for the network node object are construction, destruction, display, and
process packet train. Network node construction occurs when a new node object is defined. The
destruction operation removes a network node. The display operation outputs the current status
of the network node queues and counters. The packet-train process function removes a packet
train from an input queue, processes it based on node attributes, and routes the train(s) to the next
virtual track.

Prototype Simulation and Visualization of the Object-Oriented Packet Train Model

As a preliminary step towards using the packet-train model in a simulation of network data
traffic, a prototype simulation and visualization system was developed. As shown in the previous
section, the packet train model easily lends itself to an object-oriented approach. The
specification described above was rapidly translated into Ctr- software that was used to model
some primitive network data traffic and network processing components. The Simulation
generated packet trains at a source network node. The source node processed the created trains
based on its node characteristics and its processing operation, which caused the packet train to be
routed to the next network node. The next node processed the packet train based on its node
characteristics and sent the train to the next node. The packet train was processed in this manner
until it reached the destination node.

A prototype visualization tool was developed in addition to the simulation prototype. This
visualization tool made use of an emerging software package that provides a component
approach to graphical interfaces. This sofbare, Tk and Tcl, was developed by John Ousterhout
[8]. It allows an application to be build from a set of reusable components. This object-oriented
approach allowed a rapid prototype for visualizing the simulation.

The prototype visualization tool was started with a Tcl script that created displays for the
network objects in the simulation. The visualization tool accepted input fiom a pipe file that was
filled by the prototype simulation. Values fkom the pipe file were used to update the displays. As
packet trains were received and processed in the simulation, the displays were updated to show
the amount of traffic received and sent from each network node.

Summary and Conclusions

Improving the performance of network data services is becoming increasingly important as the
need for a high performance networking infrastructure is recognized. Two of the major data
services used in networks today are the File Transfer Protocol (FTP) and the Network File
System (NFS). FTP and NFS services are used primarily in local area networks and campus area
networks. The major systems used as source/sink for FTP and NFS data movement at Sandia are

7

mass storage systems. A study undertaken to determine the usage characteristics of these systems
indicated that both FTP and NFS traffic between these systems and their clients is bursty.

A network modeling methodology called the packet train model has been used to analyze and
characterize network traffic on physical networks. This research extended the model to include
the application software involved in file data movement to and from mass storage systems. Our
analysis showed that file transfers typically involve a series of short trains to setup and request
the data transfer, followed by a series of long trains to move the data, and another series of short
trains to return status information. It suggests that performance improvements for large file
transfers should focus on reducing latencies in networks and devices and maximizing request
block sizes. Performance improvements for small fde transfers must include latencies in setup
and input/output request processing.

An object-oriented design of two major objects in the packet train model was defined, and
prototype s o h a r e was developed to simulate and visualize the flow of data from source to sink.
Communication bottlenecks were visually apparent when communication failures were modeled.
Our analysis indicates that the packet train model is well suited for simulating network data
services.

8

References

Comer, Douglas. Internetworking with TCP/IP: Principles, Protocols, and Architecture.
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1988.

Cargill, Tom. C++ Proaamming Style. Addison-Wesley Publishing Company, Reading,
MA., 1992.

Garrison, R., et al. (eds.), Reference Model €or Open Storage Systems Interconnections:
Mass Storage Reference Model Version 5, IEEE Storage System Standards Working
Group (P1244), September 1994.

Haynes, Rena A. "Network Storage Service Usage Characteristics", Digest of Papers,
Twelfth IEEE Symposium on Mass Storage Systems, (April, 1993), 241-247.

Jain, Raj, and Shawn A. Routhier. "Packet Trains--Measurements and a New Model for
Computer Network Traffic", lEEE Journal on Selected Areas in Communications, Vol.
SAC-4, No. 6, (September, 1986), 986-995.

Joudeh, Ihab A,, and Eric B. Hall. "Delay Analysis for Packet Trains over Computer
Communication Networks", Cat. No.
92CH3120-3, Washington, D.C., (May, 1992), 13/7-14.

Heimlich, Steven A. "Traffic Characterization of the NFSNET National Backbone",
USENIX Conference Proceedings, Washington, D.C., (January, 1990), 207-227.

Ousterhout, John K. Tcl and the Tk Toolkit. Addison-Wesley Publishing Company,
Reading, MA., 1994.

Postel, J. and J. Reynolds. File transfer protocol (FTP). Request for Comments 959,
Network Information Center, October 1985.

Sandburg, R., D. Goldberg, S. Kleiman, D. Walch, and B. Lyon. "Design and
Implementation of the Sun Network Filesystm", USENIX Conference Proceedinm,
Berkeley, CA.,(June, 1985), 119-130.

Teaff, D., Cope, R., and R. Watson. "The Architecture of the High Performance Storage
System (HPSS)", Fourth NASA GSFC Conference on Mass Storage Systems and
Technologies, College Park, MD, March 28-30, 1995.

9

DISTRIBUTION:

2MS 0806
1 0806
1 066 1
1 0807
1 0807
5 0807
1 0188
1 901 8
5 0899
2 0619

L. G. Pierson, 46 16
T. J. Pratt, 4616
W. D. Swartz, 4818
R. M. cahoon,49 18
J. P. Noe, 491 8
R. A. Haynes,49 18
C. E. Meyers, 4523
Central Technical Files, 8523-2
Technical Library, 44 14
Review & Approval Desk, 12630
For DOE/OSTI

	Introduction
	Packet Train Model
	A Packet Train Model of a Distributed Mass Storage System
	Object-Oriented Packet Train Model Specification
	Prototype Simulation and Visualization of the Packet Train Model
	Summary and Conclusions
	References
	J P Noe

