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Abstract 

Networks at major computational organizations are becoming increasingly complex. The 
introduction of large massively parallel computers and supercomputers with gigabyte memories 
are requiring greater and greater bandwidth for network data transfers to widely dispersed 
clients. For networks to provide adequate data transfer services to high performance computers 
and remote users connected to them, the networking components must be optimized from a 
combination of internal and external performance criteria. This paper describes research done at 
Sandia National Laboratories to model network data services and to visualize the flow of data 
fiom source to sink when using the data services. 
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Introduction 

Networks at major computational organizations are becoming increasingly complex. This 
complexity is being driven by the introduction of large massively parallel computers connected 
to widely dispersed client systems. For example, at Sandia National Laboratories an 1840 node 
Intel Paragon massively parallel computing system is available to computational scientists 
throughout the United States. 

The computational capacity of large compute servers allows scientists to process very large 
calculations which in turn generate large amounts of data. Data sets generated on the Sandia Intel 
Paragon average from 200 Megabytes to 18 Gigabytes. Data generated on these systems are 
typically off-loaded to remote fde or mass storage servers so that new calculations can be run to 
produce new data. Off-loaded data may be further processed by visualization servers to create 
animation sequences that are again saved to fde or mass storage servers where they will be 
retrieved for display on various remote clients. 

The computational environment described in the preceding paragraph requires high performance 
data transfer services. For networks to provide high performance data transfers, both hardware 
and software components must be optimized from a combination of internal and external 
performance criteria. In order to determine these criteria, the major data transfer services at 
Sandia were analyzed using a network modeling methodology called the packet train model. 

The packet train model, which describes network traffic as packet streams between pairs of 
nodes on the network, was developed during a study of traffic on a local area network at MIT 
[5] .  Since its development, the packet train model has been used to analyze network traffic to 
identify locality of reference in networks [5 ] ,  to analyze network delays caused by congestion 
and limited buffers [6] ,  and to characterize network traffic [7]. The study described in this paper 
used the packet train model in a more generalized object oriented fashion to describe and analyze 
components involved in network data transfers to and from mass storage systems. In addition, 
this paper describes prototype simulation and visualization software that was developed for this 
research. 

The following sections describe the packet train model in more detail, the object-oriented packet 
train model specification developed for this research, and the prototype simulation and 
visualization software developed for this research. Summary and conclusions from this research 
are also given. 

Packet Train Model 

Local area network (LAN) t rasc  studies have typically used a statistical model to describe 
packet arrival. The primary characteristics of these models are that packets are independent and 
the arrival of packets is based on a probability density function. In measuring traffic patterns in a 
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LAN at MJT, Jain and Routhier [SI found that the network packet arrival process can best be 
described in the context of a train model. 

In the packet train model, a train consists of a number of packets traveling in both directions 
between two network nodes. A Virtual train track is equivalent to a network node pair. The 
interval between packets on a given train is specified by the maximum allowed intercar gap 
(MAIG), which is a system parameter based primarily on network hardware and software 
between the two nodes. If no packets are seen between a pair of network nodes for the MAIG 
time, the current train has ended and the next packet for the virtual track is the first car, or 
locomotive, of the next train. The inter-train time is the time between the last car, or caboose, of 
the previous train and the locomotive of the next train. Inter-train time is largely dependent on 
types of network applications and their frequency of use. 

While the traffic train model has been used primarily for characterizing and analyzing physical 
networks, the same methodology can be used to characterize and analyze distributed software 
components. The packet train model for network packet arrival is especially appropriate for 
modeling data movement to and from mass storage systems. Client interfaces to mass storage 
systems are used primarily for bulk file transfers. As such, traffic between a mass storage system 
and its client is characterized by bursts. The probability that the next packet is part of the mass 
storage systedclient train is largely dependent on the average file size and the current length of 
the train. A characterization of the usage of the Network Storage Service at Sandia [4] found that 
even a stateless protocol like NFS exhibits the bursty nature of file transfers. 

Another reason that the packet train model is important for mass storage data movement is that 
the architectures of mass storage systems are being distributed to allow scaling for perfmance 
and capacity. In general, name space operations, such as file creation and file status listing, are 
performed by mass storage system components that are separate from components that move 
data. While the number of components involved in moving a block of data between the client 
and server storage is minimized, many client/server components may be involved in moving 
separate blocks of data in parallel. Each component of a mass storage system can exist on an 
individual network node. The following section describes how the packet train model can be 
used to model data transfers to and from a distributed mass storage system. 

A Packet Train Model of a Distributed Mass Storage System 

Architectures for mass storage systems are described in [3] and [l 11. The generic description in 
[3] and the implementation description in [ 1 11 both contain components that exist in all mass 
storage systems. These components are a name server, a bitfile server, some number of storage 
servers, a physical volume library, some number of physical volume repositories, and some 
number of movers. Each of these components is involved in some way when a file is transferred 
between a client and the mass storage system. Each component typically interacts with a 
metadata component that manages metadata required for the component's hctionality. In some 
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systems the metadata management component is internal to each server, while other systems 
provide a separate component that requires network traffic. For this study, communication to the 
metadata management component and its processing are considered part of the server processing. 
The functionality and communication characteristics of each component are discussed in more 
detail in the following paragraphs. 

The name server component of a mass storage system is responsible for mapping the name of a 
file to an object identifier in the mass storage system. For some systems, like the HPSS 
architecture described in [ 1 11, the name server is also the component that authorizes access to 
file objects. In providing these functions for a file transfer, the name server component primarily 
communicates with the client application at the start of a file transfer. 

The bitfile server component of a mass storage system provides a file abstraction for objects in 
the mass storage system that may reside in many physical storage locations. The bitfile server 
component allows access to mass storage files based on starting file offset and length. To provide 
this functionality, the bitfile server comunicates with the client application for each write or 
read request. The bitfile server then translates the client application request which contains 
starting file offset and length information to corresponding request(s) containing storage segment 
identifier, offset, and length, for one or more storage servers. In some mass storage system 
architectures, data must exist on the top level of the storage hierarchy before any can be 
transferred to the client application. In this case, the bitfile server would start a caching operation 
that would involve communication between multiple storage servers and movers to transfer the 
data from current storage to top level storage. Because caching is not the normal path for data 
transfers to/from mass storage systems, it was not considered in this model of mass storage 
network data traffic. After all data for an I/O request have been transferred, the bitfile server 
receives a reply message that indicates the success or failure of the data transfer. 

A storage server component of a mass storage system translates storage segments into locations 
on physical volumes of storage. A storage server typically deals with only one type of storage, 
e.g., disk or tape. The storage server also schedules mounting and dismounting of removable 
media in the mass storage system. When an I/O request is received from the bitfile server, the 
storage server translates the storage segment information to physical volume location 
information. If the physical storage volume required to complete the YO request is a removable 
volume, the storage server schedules all mounts required for the YO with the physical volume 
library component. No data movement is started until all physical volumes involved in the 
transfer are ready to transfer. The storage server communicates with mover components to 
initiate the read or write. Once all data for a request are transferred, the storage server receives 
status messages fkom all movers involved in the request. This information is converted to a reply 
to the bitfile server. 

The physical volume library component of a mass storage system manages all physical volumes 
in the system. This component receives requests from storage server component to mount or 
dismount physical volumes. Mounthismount requests from storage servers are converted to 
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mountldismount requests to the physical volume repository that contains the volume specified. 
The time required for mounting the physical volumes required for an I/O request is the greatest 
part of the startup time for an I/O request. In general, a mount is required only on the first request 
for I/O to a fde on the mass storage systems. 

Physical volume repositories are the components that communicate with robotic devices to 
mount or m o u n t  physical volumes. These components receive a request fkom the physical 
volume library component and communicate with a robot, which may be electronic or human, to 
cause the physical volume to be mounted on a device for reading/writing. As stated in the 
previous paragraph, the time required to mount the physical volume is the largest part of the 
startup time for an I/O request, but should only impact the first request. Consequently, physical 
volume repository component communication and processing plays a minor role in network data 
traffic in mass storage systems. 

The mass storage system components that play the largest role in network data traffic to and 
fkom mass storage systems are the mover components. A mass storage system mover is 
responsible for transfening data fi-om a source device to a sink device. A device can be a 
standard I/O device with geometry, such as tape or disk, or a device without geometry, such as 
network or memory. Mover components are involved in data transfer startup traffic because they 
communicate with the physical volume library component to verify that a particular physical 
volume is mounted and ready on an I/O device. They also communicate with the storage server 
component to receive redwrite requests and with other mover components when data are 
migrated or cached between storage levels in the mass storage hierarchy. The primary mover 
communication of interest to this study, however, is the communication with client applications 
that occurs as a result of a client readwrite request. 

The previous paragraphs have described the major internal components of a mass storage system. 
Another component, external to the mass storage system, is the client application. Mass storage 
systems typically support standard network-based interfaces as well as a programming interface. 
The implementation of the client application will affect the network traflic involved in a data 
transfer to/fiom a mass storage system. For example, the most widely available network 
interfaces for file transfer are the File Transfer Protocol (FTP) [9] and the Network File System 
( N F S )  [ 101 services. Both of these applications involve a client and a server process. In most 
mass storage systems, file transfers using these protocols cause data to be transferred fi-om the 
mover component to the FTP or NFS server component which forwards the data to the FTP or 
NFS client. A mass storage system like H P S S ,  however, allows data to be sent directly fkom the 
mover component to the client component. 

The analysis, described in the preceding paragraphs, of the communication and processing 
required in transferring files to and from mass storage systems indicates that the network traffic 
can be broken into four phases. These phases are the initial startup, the input/output request 
startup, the data movement, and the reply phase. 
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The initial startup phase determines the mass storage data to be transferred to the client and 
readies software and hardware to deliver the data. The initial startup phase involves 
communication between the client and the name server, the client and the bitfile server, the 
bitfile server and the storage server, the storage server and the physical volume library, the 
physical volume library and the physical volume repository, and the physical volume library and 
the mover. In packet train terminology, each of these component pairs can be considered a 
virtual track. Except for traffic involving the physical volume library, the "trains" that travel 
these tracks are short with small MAIGs. Because the communication involving the physical 
volume library includes latencies involved in mounting removable storage media, these "trains" 
will have large MAIGs relative to the others in this phase. 

The inputloutput request phase communicates requests for inputloutput fkom the client to a 
mover that has the storage device ready to receive or transmit the data. This phase involves 
communication between the client and the bitfile server, the bitfile server and the storage server, 
and the storage server and the mover. The trains that follow these tracks are short with small 
MAIGs. 

The data movement phase of network data traffic for mass storage file transfers is where the bulk 
of the traffic occurs. This phase consists only of comunication between the client and mover in 
architectures where an intermediate agent like FTP or NFS is not needed. If a server agent is 
used, this phase consists of communication between the client and the server agent as well as 
communication between the server agent and the mover component. Trains that follow these 
tracks are significantly longer than trains in the other phases. The actual train size will depend on 
file and inputloutput request block sizes. The MAIG value will be dependent on network and 
inputloutput device latencies. 

The reply phase of network data traffic for mass storage file transfers consists of the 
communication to relay the stabs of the file transfer to the various components involved in the 
transfer. This phase involves communications between the mover and the storage server, the 
storage server and the bitfile server, and the bitfile server and the client. If an intermediate agent, 
like FTP, is used it also includes communication between the intermediate agent and the client. 
Like communication in the initial and the inputloutput request phases, the trains that follow these 
tracks are short with small MATGs. 

This packet train analysis of network data traffic to/fkom mass storage systems indicates that file 
transfers typically involve a series of short trains to setup and request the data transfer, followed 
by a series of long trains to move the data, and another series of short trains to return status 
information. It suggests that performance improvements for large file transfers should focus on 
reducing latencies in networks and devices and maximizing request block sizes. Performance 
improvements for small file transfers must include latencies in setup and input/output request 
processing. 
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Object-Oriented Packet Train Model Specification 

The previous section described how the packet train model of network data traffic can be used to 
analyze a complex distributed software architecture. Verification of this analysis would require a 
simulation tool in which requests can be input and tracked throughout the system, with the 
results compared with actual system operation. As a start toward developing such a tool, the 
specifications for two major objects in the packet train model were developed in this research. 

The two primary objects in the packet train model of network data traffic are the packet train and 
the network nodes. The packet train object represents the data flowing on a virtual train track 
between two network node objects. The network node objects are the components that operate on 
packet trains. The following paragraphs describe the packet train and network node 
specifications in more detail. 

The packet train specification that was developed contains fields that can be used to determine 
train length, amount of time on the virtual track that runs fkom the source node to the destination 
node, the virtual tracks used, and counters to hold cumulative attributes for the packet train as it 
travels fi-om the source node to the destination node. The length of a packet train is determined 
from the number of cars in the train. The amount of time spent on the virtual track connecting the 
previous node to the current node is given by the MAIG value. Virtual tracks are identified by 
network node pairs. The previous virtual track is defined by the previous and current network 
nodes. The next virtual track is defined by the current and next network nodes. The total virtual 
track is specified by the source and destination nodes. The attribute counters defined for the 
packet train specification are cumulative delay, cumulative node count, and total error exposure. 

Packet train object operations include routing, dividing, merging, display, creation, and 
termination. A routing operation switches a packet train fkom one virtual track to another. The 
dividing operation splits a packet train into two or more packet trains. The merging operation 
combines two packet trains. The display operation outputs the packet train length, MAIG, 
number of cars, in-route time, and counter information. Packet train creation occurs at a source 
node and packet train termination occurs at the destination node. 

The network node object is the processing component in the packet train data traffic model. A 
network node object may represent a hardware or software component. It may be expanded into 
multiple layers represented by multiple nodes or collapsed into a single layer represented by a 
single node. Fields in the network node object identifl the node, the node layer, a list of adjacent 
nodes, and node characteristics. Node characteristics include input data bit rate, output data bit 
rate, maximum packet processing rate, maximum packet size and maximum train size. The 
values of the node characteristics determine the effect of node operations on a packet train. The 
network node object also contains queue structures that are used to receive and send packet trains 
and counters for each queue to maintain cumulative traffic information. 
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The operations defined for the network node object are construction, destruction, display, and 
process packet train. Network node construction occurs when a new node object is defined. The 
destruction operation removes a network node. The display operation outputs the current status 
of the network node queues and counters. The packet-train process function removes a packet 
train from an input queue, processes it based on node attributes, and routes the train(s) to the next 
virtual track. 

Prototype Simulation and Visualization of the Object-Oriented Packet Train Model 

As a preliminary step towards using the packet-train model in a simulation of network data 
traffic, a prototype simulation and visualization system was developed. As shown in the previous 
section, the packet train model easily lends itself to an object-oriented approach. The 
specification described above was rapidly translated into Ctr- software that was used to model 
some primitive network data traffic and network processing components. The Simulation 
generated packet trains at a source network node. The source node processed the created trains 
based on its node characteristics and its processing operation, which caused the packet train to be 
routed to the next network node. The next node processed the packet train based on its node 
characteristics and sent the train to the next node. The packet train was processed in this manner 
until it reached the destination node. 

A prototype visualization tool was developed in addition to the simulation prototype. This 
visualization tool made use of an emerging software package that provides a component 
approach to graphical interfaces. This sofbare, Tk and Tcl, was developed by John Ousterhout 
[8]. It allows an application to be build from a set of reusable components. This object-oriented 
approach allowed a rapid prototype for visualizing the simulation. 

The prototype visualization tool was started with a Tcl script that created displays for the 
network objects in the simulation. The visualization tool accepted input fiom a pipe file that was 
filled by the prototype simulation. Values fkom the pipe file were used to update the displays. As 
packet trains were received and processed in the simulation, the displays were updated to show 
the amount of traffic received and sent from each network node. 

Summary and Conclusions 

Improving the performance of network data services is becoming increasingly important as the 
need for a high performance networking infrastructure is recognized. Two of the major data 
services used in networks today are the File Transfer Protocol (FTP) and the Network File 
System (NFS). FTP and NFS services are used primarily in local area networks and campus area 
networks. The major systems used as source/sink for FTP and NFS data movement at Sandia are 
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mass storage systems. A study undertaken to determine the usage characteristics of these systems 
indicated that both FTP and NFS traffic between these systems and their clients is bursty. 

A network modeling methodology called the packet train model has been used to analyze and 
characterize network traffic on physical networks. This research extended the model to include 
the application software involved in file data movement to and from mass storage systems. Our 
analysis showed that file transfers typically involve a series of short trains to setup and request 
the data transfer, followed by a series of long trains to move the data, and another series of short 
trains to return status information. It suggests that performance improvements for large file 
transfers should focus on reducing latencies in networks and devices and maximizing request 
block sizes. Performance improvements for small fde transfers must include latencies in setup 
and input/output request processing. 

An object-oriented design of two major objects in the packet train model was defined, and 
prototype s o h a r e  was developed to simulate and visualize the flow of data from source to sink. 
Communication bottlenecks were visually apparent when communication failures were modeled. 
Our analysis indicates that the packet train model is well suited for simulating network data 
services. 
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