
OCT 22

SANDIA REPORT
SAND96-2331 • UC-405
Unlimited Release
Printed September 1996

MPSalsa
A Finite Element Computer Program for
Reacting Flow Problems
Part 2 - User's Guide

DECEIVED
®oy o 5 ms
QSTl

A. Salinger, K. Devine, G. Hennigan, H. Moffat, S. Hutchinson, J. Shadid

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-94AL85000

Approved for public release, distribution is unlimited.

SF2900Q(8 81;

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an accoxint of work sponsored by an
agency of the United States Government. Neither the United States Govern­
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod­
uct, or process disclosed, or represents that its use would not infringe pri­
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern­
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A08
Microfiche copy: A01

SAND96-2331 Distribution
Unlimited Release Category UC-405

Printed September 1996

MPSalsa
A FINITE ELEMENT COMPUTER PROGRAM FOR REACTING FLOW PROBLEMS

PART 2 - USER'S GUIDE12

A. Salinger3, K. Devine4, G. Hennigan3, H. Moffat5, S. Hutchinson3, J. Shadid3

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract Follows

1. This document can be downloaded from: http://www.cs.sandia.gov/CRF/mpsalsa.html
2. This work was partially funded by Department of Energy, Mathematical, Information, and Computational

Sciences Division, and was carried out at Sandia National Laboratories, operated for the US Department of
Energy under contract no. DE-ACO4-94AL85000.

3. Parallel Computational Sciences Department (org. 9221).
4. Parallel Computing Sciences Department (org. 9226).
5. Chemical Processing Science Department (org. 1126).

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

http://www.cs.sandia.gov/CRF/mpsalsa.html

Acknowledgments

We would like to thank Professor Michael Jensen for preparing a number of the fluid
mechanics examples and for urging the development of the output routines, and Aaron Thomas
for benchmarking an early version of the code. We would also like to thank Ed Boucheron for
identifying many instances of undesirable functionality so that we could remove them from the
code. Finally, we would like to thank Rod Schmidt for his careful reading of this document.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use­
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe­
cific commercial product, process, or service by trade name, trademark, manufac­
turer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Abstract

This manual describes the use of MPSalsa, an unstructured finite element (FE) code for
solving chemically reacting flow problems on massively parallel computers. MPSalsa has been
written to enable the rigorous modeling of the complex geometry and physics found in
engineering systems that exhibit coupled fluid flow, heat transfer, mass transfer, and detailed
reactions. In addition, considerable effort has been made to ensure that the code makes efficient
use of the computational resources of massively parallel (MP), distributed memory architectures
in a way that is nearly transparent to the user. The result is the ability to simultaneously model
both three-dimensional geometries and flow as well as detailed reaction chemistry in a timely
manner on MP computers, an ability we believe to be unique.

MPSalsa has been designed to allow the experienced researcher considerable flexibility in
modeling a system. Any combination of the momentum equations, energy balance, and an
arbitrary number of species mass balances can be solved. The physical and transport properties
can be specified as constants, as functions, or taken from the Chemkin library and associated
database. Any of the standard set of boundary conditions and source terms can be adapted by
writing user functions, for which templates and examples exist.

The user can choose between a steady-state solution, an accurate transient run, a pseudo-
transient method for relaxing stiff steady-state problems, and a continuation run for analysis of the
system's steady-state behavior with respect to a parameter.

Through the input file, the user has considerable control over the nonlinear and linear
solution strategies in order to find the fastest and most robust method for solving a given problem.
The nonlinear solver includes an inexact Newton method and a backtracking strategy. For solving
linear systems, a number of Krylov-based iterative methods along with several choices for
preconditioners are available through the Aztec library.

A large set of example problems is included in Appendices to familiarize the user with the
capabilities and choices within MPSalsa. These examples serve to illustrate MPSalsa capabilities
and to provide a variety of input files to use as templates for closely related application problems.
Many of these examples can be run on a single processor or on multiple parallel processors.

Table of Contents
1. Introduction 1
2. Pre-Processing and Running MPSalsa 5

2.1. Mesh Generation 5
2.2. Mesh Partitioning / Load Balancing 6
2.3. Chemkin Interpreter 7
2.4. Guacamole 8
2.5. Serial and Parallel I/O Utilities 9
2.6. Compiling MPSalsa 11
2.7. Running MPSalsa 13

3. The Input File 14
3.1. General Specifications 14
3.2. Solution Specifications 17
3.3. Solver Specifications 21

3.3.1. Nonlinear Solver Subsection 22
3.3.2. Linear Solver Subsection 24

3.4. Chemistry Specifications 27
3.5. Enclosure Radiation Specifications 29
3.6. Material Specifications 29
3.7. Boundary Condition Specifications 33

3.7.1. Generalized Surfaces 33
3.7.2. Boundary Conditions 35

3.7.2.1. Mass Fraction Boundary Conditions 39
3.7.2.2. Precedence of Boundary Conditions 40

3.8. Initial Condition/Guess Specifications 40
3.9. Output Specifications 42
3.10. Parallel I/O Specifications 45
3.11. Function Data Specifications 48

4. User Functions 50
4.1. Material Properties 50

. 4.1.1. Heat Capacity 50
4.1.2. Thermal Conductivity 51
4.1.3. Density 51
4.1.4. Viscosity 51
4.1.5. Volumetric Source Terms 51

4.2. Boundary Conditions 57
4.2.1. Accessing BC_DATA in User Functions 58

4.3. Generalized Surfaces 61
4.4. Initial Condition/Guess 62
4.5. Exact Solutions 63
4.6. Output 64
4.7. Continuation 65
4.8. Function Data 66

i i i

5. Solution Strategies 70
5.1. Getting to a Steady State 70
5.2. Picking a Linear Solver and Preconditioner 71
5.3. Mesh Sequencing 71
5.4. Continuation 73

6. Future Development 76
Appendix A. Included Functions 77

A.l. Boundary Conditions 77
A.1.1. Surface Chemistry Boundary Conditions 77
A. 1.2. Danckwerts' Boundary Conditions 78
A.1.3. Spinning Disk Boundary Conditions 80

A.l.3.1. Spinning Disk in the xy-Plane 80
A.l.3.2. Spinning Tilted Disk 80

A. 1.4. Mass Fraction Dirichlet Boundary Conditions expressed as Mole Fractions 81
A.1.5. Outflow Boundary Condition 82

A.2. Look-up Tables 83
A.3. Output 84

A.3.1. Evolution of the Solution at a Point 84
A.3.2. The Solution along a Line 85
A.3.3. Information on a Side Set 86

A.4. Interprocessor Communication Utilities 88
A.4.1. Synchronization 88
A.4.2. Broadcast 89
A.4.3. Global Sum, Maximum, and Minimum . 90

Appendix B. Mass Transfer Examples 91
B.l. Diffusion in an Annulus 91
B.2. The SoretEffect 94
B.3. Si3N4 Equilibrium 96
B.4. Surface Reaction 99

Appendix C. Fluid Mechanics and Heat Transfer Examples 103
C.l. Navier-Stokes 3D Exact Solution 103
C.2. Lid-Driven Cavity Problem 104
C.3. Hydrodynamically Developing How in an Infinite Parallel Plate Channel 107
C.4. Thermally Developing Flow in an Infinite Parallel Plate Channel 109
C.5. Vortex Shedding from a Circular Cylinder I l l

Appendix D. CVD Reactor Examples 118
D.l. SPIN Comparison 118
D.2. Rotating Disk Reactor 121
D.3. Tilted Reactor 126

References 132

IV

1. Introduction

In this report, the practical details and interface for running the suite of computer codes
called MPSalsa are presented, along with a number of example problems. A companion theory
manual provides the equations and solution methodology [42]. Employing unstructured meshes
on massively parallel (MP) computers, MPSalsa is designed to solve two- or three-ciimensional
problems that exhibit coupled fluid flow, heat transport, species transport, and chemical reactions.
The equations defined in MPSalsa for fluid flow and mass conservation are the momentum
transport and the total mass continuity equations for incompressible or variable density
Newtonian fluids (Navier-Stokes equations). The heat transport equation and an arbitrary number
of species transport-reaction equations are coupled with each other through chemical reaction
source terms and with the fluid flow equations through property variation and body force terms.

MPSalsa employs unstructured grids, using the ExodusH finite element database for its
input and output files [40]. Therefore, it can be used in conjunction with the CUBIT mesh
generation package [24], as well as other mesh generation packages that support the ExodusII
standard. A number of pre- and post-processing routines for the ExodusH database can be used.
Currently, two- and three-dimensional grids with Cartesian coordinates are supported.

From its inception, MPSalsa has been designed for distributed memory MIMD computers
with thousands of processors. It also runs on traditional serial workstations and networks of serial
workstations. Interprocessor data communication and global synchronization are accomplished
by a small number of message passing routines. These routines have been ported to many
different message passing protocols, including the MPI standard [34] and the native nCUBE and
Intel Paragon protocols. To achieve efficient parallel execution, the unstructured finite element
mesh is partitioned or load-balanced in a pre-processing step. Each processor is assigned nodes
from the mesh such that the computational load is balanced and the total amount of information
communicated between neighboring processors is minimized. A general, automated method for
subdividing an unstructured computational mesh is necessary. An ad-hoc or by-hand method
would prove to be unusable for large meshes, and the resulting parallel communication efficiency
would be difficult to predict, assess and control. In our implementation, we have used a general
graph and mesh partitioning utility, Chaco [22], developed at Sandia National Laboratories.

MPSalsa uses a finite element (FE) method to approximate the solution to the transport
equations for momentum, total mass, thermal energy, and individual gas-phase chemical species.
The approach is designed for low Mach number flows where an algorithm employing an implicit
coupling between the pressure and velocity field is required. The discretization method is a
Petrov-Galerkin finite element method (PGFEM) with pressure stabilization [25]. For more

1

highly-convective flows that are still laminar, a streamwise-upwinding (SUPG) stabilization is
available [3, 48]. Each processor is responsible for calculating updates for all the unknowns at
each of its assigned FE nodes. Each processor also stores and performs operations on the rows in
the fully-summed, distributed matrix associated with these unknowns. Along processor
subdomain boundaries, replicated FE unknowns, called "ghost unknowns," are stored and
updated through interprocessor communication. These ghost unknowns are quantities needed for
the local residual calculation and matrix-vector multiplication on a processor. Interprocessor
communication occurs for each step of the iterative solution of the linear system as well as for
each outer step in the non-linear and time-transient algorithms. This communication constitutes
the major unstructured interprocessor communication cost in the program, and its algorithm has
been extensively optimized within MPSalsa [43].

MPSalsa includes the option of using the Chemkin library to provide rigorous treatment of
ideal-gas multicomponent transport, including the effects of thermal diffusion [28]. Chemical
reactions occurring in the gas phase and on surfaces are also treated by calls to Chemkin [28] and
Surface Chemkin [5], respectively. Thus, MPSalsa can handle varying numbers and types of
chemical reactions and species in a robust manner. For example, the code can handle the complex
temperature and pressure dependence predicted for unimolecular reactions (using the Troe
parameterization [14]), important for chemical vapor deposition (CVD) systems which typically
run at sub-atmospheric pressures. Surface site fractions and bulk-phase mole fractions are defined
on all reacting surfaces using the Surface Chemkin package. Through this method, complex
Langmuir-Hinshelwood-type [30] and precursor adsorption surface mechanisms, characteristic of
many real CVD and catalysis surface systems, can be incorporated into the reacting flow analysis
code. The capability of modeling simple dilute species transport and reaction, without the need of
linking to Chemkin, is also included in MPSalsa.

Both steady and transient flows may be analyzed. The time integration methods include
true transient, pseudo-transient, and steady implicit solvers. The steady solver can be driven by a
continuation routine for efficient parameter study of a system. A fully-implicit, fully-coupled
Newton routine is implemented for robustness. The Jacobian matrix includes all coupling
between the equations and unknowns, and neglects only terms due to the variation of physical
properties calculated by Chemkin. A full numerical Jacobian that includes all terms is also
available. The nonlinear solver has additional features for speed and robustness, including an
inexact Newton approach and a backtracking algorithm.

After construction of the distributed sparse matrix, the FE application calls the Aztec
library of parallel, preconditioned Krylov solvers [26, 43, 44]. On each processor, the solvers
operate on the local distributed sparse matrix and local solution vector using a combination of

2

global structured communication and unstructured communication to implement the parallel
solver kernels. A substantial set of preconditioners is available, including several versions of ILU
factorization, a domain-decomposition method. Although these advanced preconditioners require
considerable memory, they provide a huge gain in robustness.

Solution output from the program is achieved through several means. Output can be
written to either a standard serial ExodusII file format [40] or a parallel extension of the ExodusII
file format [23]. This extension consists of an individual standard serial ExodusII file for each
processor with extra arrays that map the local numbering scheme on an individual processor to the
global numbering scheme and encode the necessary communication information. The format can
be used on both MP computers, such as the Intel Paragon, and distributed computing systems,
such as groups of workstations. This parallel I/O capability can be used with today's primitive
parallel I/O facilities with nearly linear speedup. A small but growing number of specialized
output functions that analyze the solution and write solution information in non-ExodusJJ. formats
have been written for specific applications.

This report serves to document the user interfaces within MPSalsa and to provide several
example problems. Chapter 2 describes several important pre-processing steps needed to carry out
numerical simulations in an MP environment and the user interfaces to them. Section 2.1 gives a
general description of mesh generation capabilities for ExodusII meshes. Section 2.2 describes
how to run "exoIHb," an ExodusII interface to the Chaco package described above. Section 2.3
describes how to set up and run Chemkin. Section 2.4 describes the pre-processor, "guacamole,"
which is used to set up and manipulate the ExodusII serial output file. Section 2.5 describes the
serial and parallel I/O capabilities of the code. Section 2.6 gives some information on how to
compile the code, and Section 2.7 shows how to run it.

MPSalsa is controlled by a large input file, in which the user can change everything from
the number of processors to the convergence criteria for the linear solver routine. Chapter 3
describes the MPSalsa input file line by line. For instance, the problem type, which indicates
which equations are to be solved, is specified in the General Specifications section, described in
Section 3.1. Material properties and equations of state are described in Section 3.6. MPSalsa has
extensive facilities for incorporating boundary conditions, which are documented in Section 3.7.

The user can extend the models past what has been pre-defined within MPSalsa [42].
Functions can be written to represent variations in physical properties, additional source terms,
and special boundary conditions, any of which can be dependent on the current solution, position,
or time. In addition, functions can be written for specifying an initial guess, for testing the
MPSalsa solution with an analytic solution, and for specifying a continuation parameter. The
interfaces to these routines are described in Chapter 4.

3

Chapter 5 involves a general discussion of some solution strategies that can help the user
tune MPSalsa for a specific application. MPSalsa implements a number of advanced numerical
solution procedures for solving systems of nonlinear PDEs. The optimal choice of these methods
can be difficult and, thus, we include a section to aid in this selection. Section 5.1 describes
strategies for reaching steady-state solutions. There are many choices and parameters in the
MPSalsa input file that control the solution algorithm and can greatly effect speed, convergence
behavior, and robustness. This chapter is intended to introduce the user to some of these options.

Appendix A lists and describes some user functions for application-specific boundary
conditions and output routines (e.g., Danckwerts' boundary condition and time history output).

The next three appendices contain example problems. Appendix B covers four simple
examples with mass transfer, most of which can be run on a single processor. Appendix C covers
a set of fluid mechanics and heat transfer problems on refined two-dimensional meshes. Appendix
D contains three models for Chemical Vapor Deposition (CVD) reactors which involve flow, heat
transfer, and mass transfer on three-dimensional meshes.

4

2. Pre-Processing and Running MPSalsa

This chapter details the steps needed to run a successful MPSalsa simulation. It is
recommended that the user first try this process with some example problems before starting on a
new problem. There are several preprocessing steps that need to be done for every new mesh
before running the MPSalsa program itself. They reflect the added complexities of conducting
numerical simulations in a massively parallel computing environment. These steps include mesh
generation, load balancing (only for multi-processor problems), and running the "guacamole"
pre-processor for setting up the serial ExodusII output file and checking the input file for errors.
For problems that get information from the Chemkin library, the Chemkin interpreter must also be
run to create input files for the Chemkin suite of subroutines.

2.1. Mesh Generation

MPSalsa uses the ExodusII [40] finite element database format for storing the mesh and
solution information. The FASTQ [1] package can be used to generate two-dimensional meshes,
and either CUBIT [24] or FASTQ with GEN3D [17] can be used to create three-dimensional
meshes. All of the mesh generation is done on workstations.

During mesh generation, parts of the mesh are grouped as separate element blocks and
identified with an integer element block ID. In the Materials Specifications section of the
MPSalsa input file, the element block IDs of the computational domain are associated with a
material, which may have different transport properties and constitutive models than other
materials. Not all element blocks created in the mesh generation and stored in the ExodusII mesh
file need be associated with a material, in which case such element blocks are not included in
MPSalsa's computational domain. Note, however, that severe load imbalances may result, since
load balancing is currently conducted only over all element blocks defined in an ExodusII file.

All surfaces where boundary conditions will be applied must be identified as node sets or
side sets during mesh generation. The application of boundary conditions is simpler if all surfaces
that share the same boundary conditions for all equations are grouped into the same node set or
side set. A node set is a list of nodes, while a side set contains sides of elements. Node sets can
have Dirichlet conditions applied to them, but cannot support Neumann or Mixed conditions
which require integration over the surface. Side sets may have all types of boundary conditions
applied (Dirichlet, Neumann, or Mixed), since the elemental information is available to compute
surface integrals.

5

2.2. Mesh Partitioning / Load Balancing

When running MPSalsa on more than one processor, the mesh is partitioned into
subdomains so that each processor "owns" a set of nodes. To assure that the work load is balanced
among the processors, an equal number of nodes is assigned to each processor. At the same time,
an optimal partition will minimize the amount of interprocessor communication needed to build
the finite element residuals and Jacobian matrix by grouping neighboring nodes together on one
processor.

The Chaco [22] package, developed at Sandia, is a general graph partitioning program. We
use the application "exoUlb" to run Chaco to partition the nodes of a finite element mesh stored in
the ExodusII database. The "exolflb" program creates partitioning information and writes it in a
load-balance file (with a ".neml" extension) in the NemesisI format [23]. (Note that this interface
to the load balancer is new as of May, 1996, so many of the example problems have load balance
files with the old naming convention, including the ".exoll" extension.) The load balance file
contains information about the nodes owned by each processor and about "ghost nodes," which
are owned by another processor but needed for residual calculations. With this information, the
communication pattern for updates of ghost nodes for the mesh may be generated without any
interprocessor communication.

The utility "exoIUb" is run on a serial workstation and requires either command line
parameters or a small input file to specify the name of the ExodusII mesh, the number of
processors to partition it into, and the partitioning method. There are a variety of options for the
partitioning algorithm, but we generally use the multilevel method [21]. An example of the input
file, often called "input-ldbl," is shown in Figure 2.1. The only lines that are commonly changed
are the input ExodusII file name and the number of partitions (processors), which is expressed as
a product of two integers on the last line. Although any pair of integers whose product is 32 would
also partition the mesh for 32 processors, the 4x8 designation would minimize communication for
running on a rectangular set of processors that has dimensions 4x8. For hypercube-based
machines, the argument for the Machine D e s c r i p t i o n line may be designated as
HYPERCUBE = n, where n is the dimension of the hypercube.

Additional options for "exoJJIb" parameters, including how to visualize the resulting mesh
decomposition, may found in the "exolflb" manual page, the Chaco User's Guide [22], and the
Nemesis User's Guide [23].

To partition the mesh, type the following command:
> exolllb -a input-ldbl

6

INPUT EXODUSII PILE = box200.exoll
GRAPH TYPE = NODAL

DECOMPOSITION METHOD = MULTIKL, NUM_SECTS=1
SOLVER SPECIFICATIONS = TOLERANCE=2.Oe-3,USE_RQI,RQI_VMAX=200

MACHINE DESCRIPTION = MESH= 4x8

Figure 2.1. Sample input file, usually named "input-ldbl, "for the e x o l l l b load balancing command.

The load-balance file created from the file in Figure 2.1 will be named "box200-m32-bKL.nemI."
The root name is the same as the ExodusII mesh file, the "m" signifies a mesh architecture,
followed by the number of processors, while the "bKL" term refers to the multilevel method [21]
with Kernighan-Lin improvement [29]. For information on the partitioning algorithm, see the
Chaco [22] and NemesisI [23] manuals.

2.3. Chemkin Interpreter

Kinetic and transport data, such as the mixture viscosity, mixture thermal conductivity,
multicomponent diffusion coefficients, and reaction rates, can be computed using the Chemkin
library [28]. If Chemkin is to be used, information on the species and reactions for both the gas
and surface phases must be supplied in the Chemkin and Surface Chemkin [5] input files. We use
the convention that these files have ".gas" and ".sur" extensions. For example, the mechanism for
the deposition of silicon nitride from SiF4 and NH3 in H2 carrier gas is contained in the files
"Si3N4.gas" and "Si3N4.sur." These input files must be interpreted once to form linking files that
can be efficiently read into MPSalsa. The current version that is installed in MPSalsa, Chemkinll,
creates binary linking files, so the interpreter must be rerun on every new machine.

A utility shell script called "interp" for executing the interpreters on a front-end
workstation or the MP machine itself has been created and resides in the "bin" directory for each
machine and operating system (e.g., "$MPSALSA_HOME/arch/sgi/bin/interp" for an SGI
workstation, and "$MPSALSA_HOME/arch/smostoin/interp" for SUNMOS, where
$MPSALSA_HOME is the directory in which all MPSalsa libraries and utilities have been
installed). For all machines, interp can be run on the command line followed by the root name of
the Chemkin data files, for instance:

> interp Si3N4

7

for the silicon nitride mechanism. On the Intel Paragon, it can be run this same way using the
"paragon" executable (for the OSF operating system) or using the "smos" executable (for
SUNMOS).

The "interp" command is a script that runs three separate interpreters: "ckinterp" for the
gas-phase chemistry mechanism, "skinterp" for the surface-phase chemistry mechanism, and
"tranfit" for the dilute multicomponent gas-phase transport properties [5, 27, 28]. Several recent
publications include further details and examples of application programs using the Chemkin
libraries [6,7,33].

The "interp" utility creates three linking files needed for MPSalsa execution: "chem.bin,"
"surf.bin," and "tran.bin." In addition, two links to databases are created ("tran.dat" and
"therm.dat"). The other files that are created are not needed. The names of the three "*.bin" files
can be changed, but they must be specified in the Chemistry Specifications section of the input file
(see Section 3.4).

When "interp" is run on a workstation, copies of the "*.bin" linking files are also created:
"chem.bin.ws," "surf.bin.ws," and "tran.bin.ws." The "guacamole" pre-processor, described in
Section 2.4, automatically adds the ".ws" extension to the file names given in the input file before
looking for the files. The Chemkin binary files created on a parallel machine will not overwrite
the ".ws" files, so "guacamole" can be run on one processor using the same input file as the
parallel run.

MPSalsa will soon be upgrading to the newest Chemkin version, ChemkinlJI, which
allows for the creation of ASCII (and, therefore, machine-independent) linking files, which will
greatly simplify the use of the interpreter.

2.4. Guacamole

A pre-processing routine called "guacamole" runs on a single processor and has two main
purposes: to error-check the input file and to produce a serial ExodusII output file, creating fields
and header information for user-defined output variables. This utility uses the same I/O routines
as MPSalsa. The command for executing the pre-processor is

> guacamole <input-file>
where <input-file> is the name of the MPSalsa input file, and is, by default, "input-salsa." The
executable is normally in the "bin" directory for the current workstation, so for an SGI
workstation, the executable is "$MPSALSA_HOME/arch/sgi/bin/guacamole." The preprocessor
sets up header information in the ExodusII output file, which requires that all variable information

8

be predefined. However, once the variables are defined, time series data of arbitrary size may be
efficiently output to the ExodusII file.

When "guacamole" creates the ExodusII output file, it writes all the mesh information to
the file and creates space for the output of the solution variables. Therefore, whenever the mesh
changes or the number of variables changes, "guacamole" must be rerun. For example, if a user
has been running a fluid-mechanics problem (Problem Type f l u id_f low) and decides to add
the energy equation (Problem Type f luid_flow_energy) and request output of the
temperature unknowns, "guacamole" must be rerun. It must also be rerun if the user redefines the
selection of solution components to be included in the output file.

If "guacamole" is not run to generate the output file and scalar output of the results is
requested, then MPSalsa will quickly terminate with the message:

check_output_specs: WARNING, output file "outputjile.exoll" does not exist!
[ex_open] Error: failed to open outputjile.exoll read only

exerrval = -1
ERROR returned from ex_open on Processor 0!

2.5. Serial and Parallel I/O Utilities

MPSalsa may be run using either serial (i.e., scalar) or parallel I/O facilities. The least
complicated way to run MPSalsa is by using the scalar input - scalar output mode. A diagram of
what is involved is included in Figure 2.2. As an initial step, "guacamole" is run to create the
serial ExodusII output file. The pre-processor "guacamole" parses the MPSalsa input file to
determine the user's choice of variables to output. When Chemkin is being used, "guacamole"
also parses the Chemkin linking files to obtain the number of gas-phase species and their
character string names.

The user is now ready to run MPSalsa in scalar I/O mode, either on one or on many
processors. In MPSalsa, processor 0 first reads the MPSalsa input file and, when Chemkin is to be
used, the Chemkin linking files. This information is broadcast to all processors. Then, processor 0
reads the serial load balance file, and its information is broadcast to all nodes and processed in
parallel. Once this step is done, each processor knows which nodes it "owns," and additionally,
which nodal information it needs from other processors. Processor 0 then reads the ExodusII
mesh file and broadcasts its information to all processors. Each processor searches the messages
for mesh information that it needs. Finally, each processor renumbers elements and nodes
contiguously in its local memory. Local-to-global mapping vectors are retained for output
processing.

Alternatively, MPSalsa can do I/O on the parallel file system using the NemesisI package
[23], as depicted in Figure 2.3. The parallel format is a multiple file format, with the number of

9

SERIAL FRONT END PARALLEL COMPUTE NODES
Input-salsa

chem.bin
surf.bin
tran.bin

Q input.exoll J

Reserve Space for Output fields

(output.exollY

Figure 2.2. Scalar Input - Scalar Output mode for I/O. The Broadcast and Fan-in routines have the
potential to create I/O bottlenecks.

files equaling the number of processors. A file name's suffix denotes which processor owns the
file. The file structure within each parallel file is similar to the serial format, with the addition of
local-to-global mapping information. It includes all load-balancing information contained in the
serial load balance file as well as all information needed to set up the local computing
environment on a processor, including ghost-node and communication information.

The parallel I/O capability is enabled in MPSalsa via compilation flag options. The pre­
processor "guacamole" must be run to include user-defined header information in the output file.
The "ex2pex" utility, part of the NemesisI package [23], is run next on the parallel computer. It
translates the serial ExodusII file into the parallel file format and stores the parallel files on the file
system to be used for MPSalsa's parallel I/O. It requires exactly the number of processors that
will be used in the subsequent MPSalsa calculation. When MPSalsa is executed, processor 0 reads
the input file and broadcasts its information to all processors as in the serial I/O case. However, in
the parallel I/O case, each processor then reads its own parallel ExodusII file to initialize the
mesh. Parallel solution output occurs in a reverse fashion, with each processor writing its own
portion of the solution vector to its own output file.

For visualization of results, results in a set of parallel ExodusII files must be collected to a
serial ExodusII file. A utility "pex2ex" is currently being developed that will automatically
combine parallel ExodusII files into one ExodusII file. Until it is completed, however, two

10

SERIAL FRONT END PARALLEL COMPUTE NODES

Figure 2.3. Parallel I/O capabilities of MPSalsa.

methods of obtaining serial ExodusII files exist. Both serial and parallel output may be specified
for the run (see Section 3.9). This option will produce complete ExodusII files containing results
from all time steps on both the serial and parallel file systems. If only the final result in a set of
parallel ExodusII files is desired, the user can restart MPSalsa using the final result as the initial
condition read from the parallel file system (see Section 3.8), maintaining the same stopping
criteria as were used in the original computation, and specifying serial output. MPSalsa takes one
Newton step to recognize that the stopping criteria are satisfied and writes the result to the serial
file system.

2.6. Compiling MPSalsa

MPSalsa can be compiled on a number of different architectures. The GNU "make"
program should be used to process the two-level Makefile structure. Machine-specific makefiles

11

have been created since the message-passing routines, compiler names, and compiler options vary
between machines. The source code usually is installed in a directory named "*/Salsa." This
directory usually has the following files and subdirectories (identified by appending "/"):

> Is
CVS/ Obj_ncube/ Obj_sgi/ Obj_sun/
CVS-CFile-Header Obj_ncube_ps/ Obj_sgim4/ el/
CVS-MFile-Header Obj_paragon/ Obj_smos/ md/
Makefile Obj_paragon_ps/ Obj_smos_ps/ pe/
Obj_alpha/ Obj_puma/ Obj_sol/ ps/
Obj_hp/ Obj_puma_ps/ Obj_sp2/ rf/

The source code for MPSalsa is stored in the last five subdirectories, which have two-character
names. The directories starting with "Obj_*" hold the compiled object files, dependency files, and
the executable ("salsa") for a specific machine/operating system. All of the parallel machines
have the additional option of compiling for parallel I/O, for which there are the separate
directories with the "_ps" suffix.

To compile for a specific machine/operating system, the GNU make utility "gmake" is
used. The target is the same as the extension on the "Obj_*" directory. For example, to compile
for a Silicon Graphics workstation, a user would type

> gmake sgi
in the "*/Salsa" directory. To compile for the Intel Paragon with the SUNMOS operating system,
a user would type

> gmake smos
on a workstation that has cross-compilers installed.

MPSalsa runs on top of several software packages. Before MPSalsa may be linked, these
packages must be compiled and stored in architecture-dependent directories. For example, the
following directories are used to store libraries, include files, and binaries for SGI computers:
$MPSALSA_HOME/arch/sgi/Ub, $MPSALSA_HOME/arch/sgi/include, $MPSALSA_HOME/
arch/sgi/bin, where $MPSALSA_HOME is the directory in which all MPSalsa libraries and
utilities have been installed. Pointers to these directories are included in the top level MPSalsa
Makefile. The first I/O package needed is NetCDF [37], the underlying format of the ExodusII
unstructured finite element package [40]. ExodusII is the next package that needs to be installed.
The other I/O package needed is NemesisI [23], the parallel extension to ExodusII. In addition,
the Chemkin libraries [5, 27, 28] are needed if the user wants to use this database for ideal gas
transport and gas- and surface-phase reactions. The Chaco package is need for load balancing
[22]. MP linear solvers within MPSalsa are implemented in the Aztec package [26], which in turn

12

needs to have the Y12 package of sparse matrix linear solver routines [49]. Aztec, as well as a few
of the other packages, require LAPACK [31] and BLAS [4] as well.

2.7. Running MPSalsa

The successful compilation of MPSalsa results in the creation of an executable in the
machine-dependent subdirectory, "*/Salsa/Obj_xxx/salsa." MPSalsa can be run on workstations
by executing the program with the input file name as the argument, i.e.,

> salsa <input-file>
The default input file name is "input-salsa."

On the Intel Paragon with the SUNMOS version of MPSalsa (whose executable is in the
"Obj_smos" subdirectory), MPSalsa can be executed with the following command,

> yod -sz <np> salsa <input-file>
where np is the number of processors. The value of np must agree with the number of processors
specified in the input file and the number of processors that the mesh was partitioned for.
Execution of the "yod" command will spawn an MPsalsa job in the compute partition of the
Paragon. As described in Section 2.5, either a serial file or a set of parallel files on the parallel file
system must have been initialized previously for solution output to occur. Best results are
obtained when both the executable and the VO files are stored on local Paragon disks, rather than
on nfs-mounted disks.

13

3. The Input File

In MPSalsa, problem-specific parameters are specified through an input file, which has the
default name of "input-salsa." The input file is organized into 11 sections. The inclusion of certain
sections is mandatory (General, Solution, Solver, Material, Boundary Condition and Initial
Condition/Guess Specifications); other sections are optional (Enclosure Radiation, Output,
Parallel I/O and Function Data Specifications). The Chemistry Specifications section is required
only for problem types for which mass balance equations are solved (see Table 3.1). Each section
is identified by MPSalsa by a unique section header, shown between two dashed lines in all of the
examples below. MPSalsa does not parse a section unless it can find the section's header. If a
required section's header is not found, MPSalsa generates an error message and exits. If an
optional section's header is not found, no error message is generated.

Each section is made up of several lines. Each line consists of a keyword followed by an
equals sign and arguments that can be strings, integers, flags, or real numbers. In this chapter,
each line of input is described and the type of acceptable argument is given in italics. When there
are a small number of choices for an argument, such as yes or no, they are represented using the
format {yes | no}. Optional text is listed between square brackets, such as [int], and input
lines that are optional are completely enclosed in square brackets. For these input parameters,
MPSalsa assigns the default value that is specified in the text.

3.1. General Specifications

General aspects of an MPSalsa execution are specified in the General Specifications
section of the input file. Items such as the type of equations to be solved and the number of
processors to be used in obtaining a solution are given in this section. This section is required and
must begin with the General Specifications header, as illustrated in Figure 3.1.

General Specifications

Problem type
Input FEM file
LB file
Output FEM file
Number of processors
Cartesian or Cylindrical
Stabilization
Debug

when 2D

= whole_enchilada
= cvd-reacl.exoll
= cvd-reacl-m256-bKL.nemI
= cvd-reacl-out.exoll
= 256
= Cartesian
= default
= 3

Figure 3.1. General Specifications example section.

14

Problem type = string

The problem type input file line tells MPSalsa which equations are to be solved. MPSalsa
can solve the Navier-Stokes equations in conjunction with the continuity equation, an energy
equation, and an arbitrary number of species mass balance equations. Currently being tested are
equations for flow in porous media and the k and e equations for modeling turbulent flow, which
will be detailed in future releases of this document. Equations for modeling plasma and
electromagnetism may be incorporated in the future, as may the capability of using a pre-
computed velocity field in the convective terms of the energy and species transport equations (for
decoupled physics).

The current strings recognized by MPSalsa and the equations that they enable are listed in
Table 3.1.

Equation Type —>

Number of Equations in Type —»

Problem Type i

f l u i d _ f l o w

e n e r g y _ d i f f

m a s s _ d i f f

f l u i d _ f l o w _ e n e r g y

f l u i d _ f l o w _ m a s s

energy_mas s _ d i f f

who1e_ench i1ada

Momentum

Dim

X

X

X

X

Total Mass

1

X

X

X

X

Energy

1

X

X

X

X

Species Mass

NS

X

X

X

X

Table 3.1. The seven currently recognized strings for the Problem Type input file line are listed, and the
governing equation types that each flag enables are indicated. The number of equations associated with each type is
shown in the second row, where Nj^im is the number of spatial dimensions in the problem and N$ is the number of

species, specified in Section 3.6.

Input FEM f i l e = filename

This line specifies the name of the input ExodusII file containing the FEM geometry
information. This file usually has a ".exoll" extension. It can include a path specification. This file
must exist prior to the run.

15

[LB f i l e = filename]

This line specifies the name of the load-balance file for runs to be performed on more than
one processor. It can include a path specification. The file must be in the NemesisI format, and
usually has a ".nemT extension. (Older files have the ".exoH" extension.) This input line is read
only for runs performed on multiple processors. Default = none; error if not specified for multi­
processor runs.

[Outpu t FEM f i l e = filename]

This line specifies the name of the ExodusII output file. This file is also used to provide
initial solution data for restarts, which are specified on the S e t I n i t i a l C o n d i t i o n / G u e s s
input file line in Section 3.8. The file name can include a path specification. This ExodusII file
must exist prior to the run, having been generated by the "guacamole" preprocessor (see Section
2.4). Visualization of the FE solution uses this file. This input line is used only for scalar I/O; for
runs utilizing parallel I/O, special file names are generated (see Section 3.10). Default = none;
error if not specified for restarts or runs with scalar output.

[Number of p r o c e s s o r s = integer]

This line is used to specify the number of processors that will be utilized in solving the
problem. For multiprocessor runs, this number must match the number of processors that the
mesh was partitioned for. Default = 1.

[C a r t e s i a n o r C y l i n d r i c a l when 2D = string]

This line specifies what coordinate system to use for 2D problems. Currently the only
valid value is C a r t e s i a n . Future choices will include C y l i n d r i c a l _ 2 and
C y l i n d r i c a l _ 3 for axisymmetric problems with two or three momentum balances to be
solved. Default = C a r t e s i a n .

[I n t e r p o l a t i o n o r d e r = string]

This line specifies the interpolation order for all quantities in the finite-element model.
Valid options are l i n e a r and q u a d r a t i c . Default = l i n e a r .

[Stabilization = {default) supg}]

There are currently two choices for stabilization of the FE equations: d e f a u l t and
supg. The d e f a u l t option is a pressure-stabilized Petrov Galerkin method [25, 48], which

16

allows the use of equal-order interpolation of the pressure and velocity primitive variables. The
supg option activates the streamwise-upwinding Petrov-Galerkin stabilization scheme [3] in
addition to the pressure stabilization. Streamwise upwinding improves convergence to highly-
convected solutions (high Reynolds number flows) and reduces the amplitude of oscillations in
the solution. Default = d e f a u l t .

[Debug = integer]

This line specifies how much information should be output to stdout during the run of
MPSalsa, as well as how much summary information the linear solver library should output. The
value of integer must lie in the range [0, 10], with 2 being a common value. Examples are:

Debug = 0

Debug>0

Debug>6

Debug>9

Default = 2.

3.2. Solution Specifications

Minimal info is printed to stdout; only a summary of
important flags and entries into important code segments are
printed.

Along with the above information, timing information and
summary information on the global FE model (not the local
processor FE model), node sets, side sets, and boundary
conditions are printed. The solver library prints out residual
summaries as well.

Along with the above information, summary information on
the local processor FE model is printed. Processor-based
vector quantities such as residual, initial guesses, and
solutions are included. Processor-based communication
summaries and local-to-global mapping information are
also printed.

Along with the above information, information on the local
matrix is printed. This can be a significant amount of
information and is really meant to debug smaller problems
in detail.

The Solution Specifications section of the input file allows the user to choose the desired
solution type, such as steady-state or time-dependent, and to control aspects of the solution

17

procedure, such as the time step size. This section of the input file is mandatory and must begin
with the Solution Specifications header, as shown in Figure 3.2.

Solution Specifications

Solution Type
Order of integration/continuation
Step Control
Relative Time Integration Error
Initial Parameter Value
Initial Step Size
Maximum Number of Steps
Maximum Time or Parameter Value

= transient
= 1
= on
= 4.0e-3
= 100.0
= 1.0e-5
= 75
= 100.0

Figure 3.2. Solution Specifications section example.

In the rest of this section, each line of the Solution Specifications section is described
separately. Since time-dependent and continuation runs both take steps from one solution to the
next, many of the lines have dual meanings depending on the solution type.

So lu t ion Type = string

This line specifies the type of solution desired, which can be one of the following five
strings: s teady, t r a n s i e n t , pseudo, c o n t i n u a t i o n , and o p t i m i z a t i o n . If the
s t e a d y string is specified, the code will attempt to solve the steady-state version of the
governing equations (with no time derivative terms). The rest of this section of the input file is
then ignored.

When the solution type is t r a n s i e n t or pseudo, the time-dependent equations will be
solved. A t r a n s i e n t run attempts to follow the solution in a time-accurate manner by keeping
the integration error under a specified tolerance, while the pseudo option is used to time step to
a steady state (or past uninteresting transient behavior) by aggressively increasing the time step
size regardless of the error in the time integrator. The specifics of the integration and stepping
scheme can be manipulated with the subsequent input file lines.

The c o n t i n u a t i o n solution type is used to solve for a series of steady-state solutions
as a function of a parameter. The steady-state versions of the governing equations are solved, the
continuation parameter is incremented and a new steady-state solution is sought. The subsequent
lines in this section are used to control the run. The user has the flexibility of choosing any
combination of physical properties and boundary condition values as the continuation parameter,
but must do so by programming the routine u s e r _ c o n t i n u a t i o n in file
"rf_user_continuation.c" and recompiling (see Section 4.7 and Section 5.4).

18

The opt imi z a t i o n solution type is not currently a supported feature, but has been used
successfully for one application [8]. This solution type is similar to continuation, but instead of a
single parameter being incremented within MPSalsa, a set of parameters is changed by an
external optimization program. MPSalsa must be modified to calculate and write out an objective
function after every solution for the optimization package to use.

[Order of i n t e g r a t i o n / c o n t i n u a t i o n = integer]

This flag has separate meanings depending on whether the solution type is time-dependent
(t r a n s i e n t or pseudo) or con t inua t i on . For t r a n s i e n t or pseudo solutions, this
flag has a value of 1 for first-order Forward-Euler/Backward-Euler predictor/corrector
integration, and a value of 2 for a second-order Adams-Bashforth/Trapezoid-Rule scheme. (The
second-order scheme starts with pair of first-order steps to get started.) Default = 1.

For c o n t i n u a t i o n runs, this flag can have a value of 0 ,1 , or 2. A value of 0 turns on
zero-order continuation, where the solution at the previous step is used as an initial guess for the
current step. (This is equivalent to changing the value of the continuation parameter in the input
file and restarting from the previous solution.) A value of 1 selects first-order (or Euler-Newton)
continuation. In this case, the tangent to the previous solution with respect to the continuation
parameter is calculated numerically, and is used to calculate an initial guess for the current
solution. For problems whose solutions vary linearly with respect to the continuation parameter,
this guess should be the correct solution. A flag value of 2 selects arc-length continuation, which
is not currently implemented. This option will allow the user to follow steady-state solution
branches that pass through turning points with respect to the continuation parameter. Default = 1.

[Step Control = {on | off}]

The Step Cont ro l input line is read for t r a n s i e n t , pseudo, and
c o n t i n u a t i o n solution types, and can have values of on or off. When step control is on, the
step size will be adjusted after successful steps. For t r a n s i e n t runs, the step size is chosen as a
function of the value of the R e l a t i v e Time I n t e g r a t i o n E r ro r (described below). For
pseudo and c o n t i n u a t i o n runs, the step size will always be increased following a
successful step, with the increase depending on the ratio of the number of Newton iterations
needed for convergence divided by the maximum number of Newton iterations allowed. If the
value of the Step Cont ro l is off, the step size is never increased. For any of the solution
types and either of the flag values, the step size is cut in half after a failed step (i.e., when a
converged solution is not found in the maximum number of Newton iterations). Default = on.

19

[Re l a t i ve Time I n t e g r a t i o n E r ro r = float]

The R e l a t i v e Time I n t e g r a t i o n E r r o r input line is used only for t r a n s i e n t
solutions. This line sets the target for the error incurred on each time step. A value of the time
integration error is calculated using the difference between the predicted and corrected value of
the solution by the method of [20]. If this estimated error is twice the value set in the input file, the
time step is rejected and the time step size is cut in half. Otherwise, if Step Cont ro l is on, the
ratio of the input error value and the estimated error are used to pick the next step size. The value
of the R e l a t i v e Time I n t e g r a t i o n E r ro r must be greater than the So lu t i on
R e l a t i v e E r r o r Tolerance, which is input in the Solver Specifications section to set the

_3
convergence criterion for the linear solver. Default = 10 .

[I n i t i a l Parameter Value = float]

The I n i t i a l Parameter Value input line is used only for continuation runs. The
number is the initial value of the continuation parameter. See Section 4.7 for details on the
implementation of continuation. Default = none, which is an error for continuation runs.

[I n i t i a l Step Size = float]

The I n i t i a l Step Size input line is used for t r a n s i e n t , pseudo, and
c o n t i n u a t i o n runs. The value is the size of the first time step for time integration runs and the
first continuation parameter step size for continuation runs. When Step Cont ro l is off, this
step size stays constant throughout the run as long as each step converges. Default = none, which
is an error for t r a n s i e n t , pseudo, and c o n t i n u a t i o n runs.

[Maximum Number of S teps = integer]

This input line is used for t r a n s i e n t , pseudo, and c o n t i n u a t i o n runs. When this
maximum number of steps is reached, the program will terminate. Default = 1000.

[Maximum Time or Parameter Value = float]

This input file line is used for t r a n s i e n t , pseudo, and c o n t i n u a t i o n runs. When
this value is exceeded by the time value in time-dependent runs or the continuation parameter in
continuation runs, the program will terminate. Default = none.

20

3.3. Solver Specifications

The Solver Specifications section of the input file controls the nonlinear and linear solver
routines used in MPSalsa. It is a required section of the input file. An example of this section,
including the Solver Specifications header, is found in Figure 3.3. Each line is discussed below.

Solver Specifications

Override Default Linearity Choice

— nonlinear solver subsection:

Number of Newton Iterations
Use Modified Newton Iteration
Enable backtracking for residual reduction
Choice for Inexact Newton Forcing Term
Calculate the Jacobian Numerically
Solution Relative Error Tolerance
Solution Absolute Error Tolerance

— linear solver subsection:

Solution Algorithm
Convergence Norm
Preconditioner
Polynomial
Scaling-
Orthogonalization
Size of Krylov subspace
Maximum Linear Solve Iterations
Linear Solver Normalized Residual Tolerance

=

-
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=

default

15
no
no
4
no
1.0e-3
1.0e-8

gmres
0
no_overlap_ilu
LS,1
row_sum
classical
25
50
1.0e-6

Figure 3.3. Solver Specifications section example.

[Override Defaul t L i n e a r i t y Choice = string]
This input line can be set to three possible strings: d e f a u l t , l i n e a r , or non l inea r .

The code decides whether the set of governing equations are linear or nonlinear depending on the
problem type specified at the top of the input file. For instance, an energy_dif f problem is
assumed to be linear, while a f lu id_f low_energy problem is assumed to be nonlinear. If
users decide to override this default, as would be needed, for example, when using a temperature-
dependent thermal conductivity with an otherwise linear heat equation, they can set the flag to
l i n e a r or non l inea r . Default = de f au l t .

21

3.3.1. Nonlinear Solver Subsection

[Number of Newton I t e r a t i o n s = integer]
This line specifies the maximum number of Newton iterations that MPSalsa will allow in a

single nonlinear solve. If this maximum is reached and the convergence criterion has not been
met, the nonlinear solve ends unsuccessfully. For steady-state problems, MPSalsa terminates with
a fatal error. For time-dependent problems, a convergence error is triggered for the current time
step, and control is returned to the time stepping routine. Currently, the time stepping routine
reverts to a Backward Euler method, halves the time step, and tries again. Similarly for
continuation problems, the continuation algorithm cuts the parameter step-size in half and
attempts to resolve the problem. Default = 25.

[Use Modified Newton Iteration = {yes | no}]
A modified Newton iteration uses a previously-computed preconditioning matrix for the

Newton step, instead of recomputing the preconditioner from the Jacobian at the current solution.
This option is not yet supported. Default = no.

[Enable b a c k t r a c k i n g f o r r e s i d u a l r e d u c t i o n = {yes | no | d e f a u l t }]
When a Newton iteration causes the norm of the residual to increase rather than decrease,

backtracking will not accept the update. Instead, the algorithm looks in the same direction as the
solution update from the Newton iteration. Performing residual calculations along the solution
path given by this direction, it finds the solution that minimizes the residual [9,10]. Backtracking
has been shown in some cases to help converge to a steady-state when Newton's method without
backtracking failed. The d e f a u l t flag disables backtracking for t r a n s i e n t runs but enables
backtracking for all other solution types (pseudo, s teady, and con t inua t ion) . Default =
d e f a u l t .

[Choice fo r Inexac t Newton Forc ing Term = integer]
An inexact Newton's method uses Newton's method with an iterative linear solver, where

the linear solver method (e.g., GMRES) is not forced to fully converge at each step. The
reasoning behind this method is that it is a waste of computational time to fully solve the linear
system when the nonlinear system itself is far from a converged solution. Inexact Newton steps
are controlled by a single parameter, etajc, which is the required drop in the ratio of the norm of
the residual to the initial norm of the residual for a given linear solve. A normal Newton's method
uses a small, constant value for etajc so that each linear solve is accurate, as it would be when

22

using a direct solver. This is the case when the inexact Newton forcing term is set to 4, with the
etajc tolerance value given by the L inear Solver Normalized Res idual Tolerance
input line below. Other values for the inexact Newton forcing term, 0-3, allow for larger values of
etajc, so that each Newton iteration takes less time; however, more Newton iterations are often
required for convergence. The possible values for the flag are summarized in Table 3.2. Default =
0.

Flag Value

0-1

2

3

4

Choice for etajc in Inexact Newton's Method

Eisenstat and Walker, Method 1 [9, 10]

Eisenstat and Walker, Method 2a

Eisenstat and Walker, Method 2b

Linear Solver Normalized Residual Tolerance ("Exact Newton")

Table 3.2. This table summarizes the choices for the Inexact Newton forcing term. The variable etajc is the required
drop in the linear residual for a successful linear solve.

[Calculate the Jacobian Numerically = {yes | no}]
A fully numerical Jacobian may be used in MPSalsa for debugging purposes. Instead of

the Jacobian matrix being computed analytically, the residual equations for each element are
recomputed one extra time for each unknown in the element while that unknown is numerically
perturbed. A forward difference formula is used to calculate the Jacobian contributions. For
problems with large numbers of unknowns per node, the numerical Jacobian can be more than an
order of magnitude slower than the analytic Jacobian, in part because rigorous property
evaluations for multicomponent gas equations are very expensive. The numerical Jacobian is a
powerful tool for debugging changes to the governing equations as well as for checking the effect
of physical property variations — some of which are ignored in the analytic Jacobian but included
in the numerical one — on the convergence behavior. Default = no.

[So lu t ion R e l a t i v e E r r o r Tolerance = float]
[So lu t ion Abso lu te E r r o r Tolerance = float]

These two flags set the tolerances that are used in calculating the convergence criterion for
the update vector in the nonlinear solver. This criterion is

N ig i

TrY—r^r <l-0, (3.1)

23

where e^ and eA are the relative and absolute tolerances entered in the above input lines, 5{. is the
update for the unknown xt, and N is the total number of unknowns. The quantity on the left side
of this inequality is what is output from the solver as the update norm.

The convergence of the nonlinear solver requires that the above inequality be met and that
the nonlinear residual drop by two orders of magnitude from its original value. (This ratio is

_3
output by the code as the "Ratio of scaled residual_k/residual_0.") Default: e^ = 10 and

>* - 1 0 ~ 8 -

3.3.2. Linear Solver Subsection

[So lu t ion Algor i thm = string]
This flag chooses the linear solution algorithm from the Aztec package. The choices are

listed in Table 3.3. For a description of the different methods, see the Aztec manual [26]. Default
= gmres.

Keyword

gnures

t f q m r

e g

c g s

c g s t a b

l u

Linear Solution Algorithm

Restarted General Miriirnized Residual Method

Transpose-Free Quasi Minimum Residual Method

Conjugate Gradient Method

Conjugate Gradient Squared Method

Stabilized Biconjugate Gradient Method

Full sparse LU factorization (available only on 1 processor)

Table 3.3. This table enumerates the choices of linear Solution Algorithm-/2ag. The strings in the left columns are the
keywords recognized by MPSalsa.

[Convergence Norm = integer]
There are five choices for the norm that measures the progress of the linear solver. These

are described in Table 3.4. The most common choice is 0, since this corresponds to the norm in
the GMRES method. Default = 0.

[P r e c o n d i t i o n e r = string]
This flag chooses the preconditioning method. For many problems, a good preconditioner

is essential if the linear solver is to converge. The more robust preconditioning methods require
more memory. Table 3.5 lists the available options for the preconditioner flag. Default =
no_over l a p _ i lu.

24

Convergence Norm Specified Norm
0

1

2

3

4

II *B A °ll Ik Ik/Ik lb

\\rk\\2/\\b\\2

I|r12/||A|L

H-/(WIJ*1I+IHJ

(I N

^ i= 1 ^
£/?N +eA7 >

1/2

7&We 3.4. The five choices for the Convergence Nona flag are shown. The linear system is Ax-b, for which at each
iterate k (in the linear solution algorithm), r* = b- Ax*. The tolerances En and £« are those used by the nonlinear

solver (Eq. (3.1)). For nonlinear problems, an initial guess ofx—0 is used, so choices 0 and 1 are equivalent.

Keyword

f u l l _ o v e r l a p _ i l u
f u l l _ o v e r l a p _ b i l u

d i a g _ o v e r l a p _ i l u
d i a g _ o v e r l a p _ b i l u

n o _ o v e r l a p _ i l u
n o _ o v e r l a p _ b i l u

p o l y

s g s

j a c o b i

none

Preconditioner

ILU(0) and Block-ILU(0) with one level of overlap between processors.

ILU(O) and Block-ILU(0) with overlapping of diagonal blocks between
processors.

ILU(0) and Block-ILU(0) with no overlapping between processors.

Polynomial preconditioner, with the order specified by the next input line.

Domain decomposition, no overlap, symmetric Gauss-Seidel.

Jacobi preconditioner.

No preconditioner applied.

Table 3.5. This table enumerates the choices for the Preconditioneryfog. The strings in the left columns are the
keywords recognized by MPSalsa. The Sca l ing file line has more options that can be used in combination with

these.

[Polynomial = {LS | NS}, integer]
When a polynomial preconditioner is selected in the previous input line, this line specifies

the type of polynomial and the order. The two choices for the polynomial type are "LS" for least-
squares, and "NS" for Neumann series. The polynomial order is an integer that must be preceded
by a comma. For a least-squares polynomial, the choices for the order are 0-9, while for the
Neumann series the choice is O-infinity. Default = LS, 3.

25

[Sca l ing = string]
The Seal ing option specifies what type of scaling is done by the linear solver at the start

of the linear solve. Scaling is similar to preconditioning but is carried out only once at the
beginning of the linear solve. Each scaling option may be used in conjunction with any choice of
a P recond i t i one r , although only the symmetric scaling options should be used with the
conjugate gradient preconditioner. The available scaling options are listed in Table 3.6. Block
Jacobi scaling uses Gaussian elimination to invert the diagonal (Nu x Nu) blocks of the matrix,
where Nu is the number of unknowns per node. The inverted block is then multiplied into the
matrix and right-hand side. Row-sum scaling uses a diagonal matrix as the preconditioner, with
the row sums as the diagonal entries. Default = row_sum.

Keyword

b l o c k _ j a c o b i

sym_diag

row_sum

none

Scaling Method

Right hand scaling using the inverted diagonal block.

Symmetric (right and left) scaling using the matrix diagonal.

Right hand scaling with the sum of the absolute values of the column entries.

No scaling.

Table 3.6. This table enumerates the choices for Scal ing. The strings in the left columns are the keywords
recognized by MPSalsa.

[Orthogonalization = {classical | modified}]
For the GMRES method, the vectors of the Krylov subspace must be made orthonormal.

The two options for the Gram-Schmidt orthogonalization method are c l a s s i c a l and
modif ied [18]. While the modified method is more stable numerically, its parallel
implementation is significantly more costly. In our experience, classical orthogonalization has
worked well for the problems we have solved. Default = c l a s s i c a l .

[Size of Krylov subspace = integer]
For the restarted GMRES method (So lu t ion Algori thm choice gmres), the Krylov

subspace size is the number of Krylov vectors to store before restarting. With higher values of this
number, convergence of the linear solver is more robust, but more memory is needed. Each
directional vector that is saved requires an amount of memory equivalent to an entire solution
vector. For finding steady states of large problems, this number can often (and should for
maximum efficiency) exceed 100. Default =64.

26

[Maximum Linear Solve I t e r a t i o n s = integer]
This line specifies the maximum number of iterations allowed in any given linear solve.

When this maximum is reached before the residual has been reduced by the specified amount (as
specified by the Choice for Inexac t Newton Forc ing Term and Linear Solver
Normalized Residual Tolerance input lines), the linear solver terminates and an error
condition is returned to the calling program. For nonlinear problems, the solution is accepted
nonetheless and the next Newton step is started. For restarted GMRES, this number is usually
picked to be a small integer multiple (2 or 3) of the Krylov subspace size. Default = 300.

[Linear Solver Normalized Residual Tolerance = float]
For linear problems and nonlinear problems for which the Choice for Inexac t

Newton Forc ing Term = 4, this input line specifies eL, the drop in the residual required by
the linear solver before it terminates successfully. The linear residual is checked after every
iteration of the linear solver, so the solver does not do more iterations than necessary. Default:

-4 -6
eL = 10 for nonlinear problems; eL = 10 for linear problems.

3.4. Chemistry Specifications

The Chemistry Specifications section of the input file allows control over much of the
reaction and diffusion processes for problems with mass transfer. This section is required only if
the Problem Type indicates that mass balance equations are to be solved (see Table 3.1). A
sample section of the input file, including the Chemistry Specifications header, is shown in Figure
3.4.

Chemistry Specifications

Energy equation source terms
Species equation source terms
Pressure (atmospheres)
Thermal Diffusion
Multicomponent Transport
Chemkin file
Surface chemkin file
Transport chemkin file

= on
= on
= 1.0
= off
= stefan_maxwell
= chem.bin
= surf.bin
= tran.bin

Figure 3.4. Chemistry Specifications section example.

[Energy equation source terms = {on | off}]
This flag allows the user to turn on and of f the energy source terms due to chemical

reactions. Default = on.

27

[Species equation source terms = {on | off}]
This flag allows the user to turn on and of f the chemical reactions in the interior of the

domain. Surface reactions are controlled separately through the boundary condition section.
Default = on.

[Pressure (atmospheres) = float]
For problems with a CHEMKIN material type (see Section 3.6), the ideal gas equation of

state is used to calculate the reaction rates and physical properties, such as density. This flag sets
the thermodynamic pressure in the domain, which is assumed to be nearly constant. The local
deviation of the pressure due to hydrodynamics, which is captured by the pressure unknown for
fluid flow problems, is assumed to be negligible for the low Mach number applications that
MPSalsa is written for. This input line is not generally relevant for other material types, although
a user could write their own material property functions that use this quantity, which is named
P therm in the code. Default = 1.0.

[Thermal Diffusion = {on | off}]
Thermal diffusion — also called the Soret effect ~ can be turned on or of f by this flag.

Thermal diffusion can become a significant contributor to mass transfer when gas species of
greatly varying molecular weights are exposed to a steep thermal gradient. This flag may be
turned off to save computational time when the effect is small, or to simplify the equations for
better convergence behavior. The thermal diffusion term can be responsible for a modest increase
in time for the matrix fill. Currently, the thermal diffusion term is nonzero only for the CHEMKIN
material type. Default = on for CHEMKIN materials.

[Multicomponent Transpor t = string]
This flag will, in the future, allow the user to switch between different diffusion

formulations for multicomponent transport. Currently, mixture-averaged diffusion is the only
option, and is specified by the mixture_avg flag. Stefan-Maxwell and Dixon-Lewis
formulations are planned, and will take the flag values s t e f an_maxwell and d ixon_lewis .
These flags are recognized but not included. Default = mixture_avg.

[Chemkin file = chem.bin]
[Surface chemkin file = surf.bin]
[Transport chemkin file = tran.bin]

These three input lines specify the names of the data files for problems that use Chemkin
for the material properties. The Chemkin interpreter program "interp" (see Section 2.3) creates

28

these files with the following names, which are also the defaults: chem.bin, s u r f . b i n ,
t r a n . b i n .

3.5. Enclosure Radiation Specifications

Enclosure radiation algorithms that are used in the Coyotell code [16] are being included
in MPSalsa. However, this capability is still under development and is not yet supported. The
input-file section shown in Figure 3.5 may be included; however, it is optional.

Enclosure Radia t ion S p e c i f i c a t i o n s

Enclosure Radia t ion source terms = off

Figure 3.5. Enclosure Radiation Specifications section example.

3.6. Material Specifications

In the Material Specifications section of the input file, the user can set the physical
properties of the system. The computational domain can consist of multiple materials, each with a
unique set of properties; at present, however, the same physics (i.e., governing equations) must be
solved in all materials. A multi-physics capability is under development.

An example of the Materials Specifications section is given in Figure 3.6. This section is
required by MPSalsa. It differs from the previous sections in that it is mostly free-format. Only
the first two lines and the last line are required.

Number of M a t e r i a l s = integer
This line must be the first fine of the Materials Properties section. It specifies the number

of materials (usually one) that make up the computational domain. For multiple materials, the
input lines that are described below are repeated multiple times. The materials are assigned to a
block of elements in the mesh using the ELEM_BLOCK_IDS line described below.

The first line for each material specifies the material type, material ID, and material name,
and has the format:

Mater ia l_Type = integerjd *Material_Name"
The Mater ia l_Type string can be one of several keywords. These keywords are listed in
Table 3.7. The CHEMKIN type is special, in that it tells MPSalsa to get the material properties
from the Chemkin database. The integerjd is a unique integer identification (ID) number for the
material. The user can supply any string, within quotes, as the Material_Name, which is only
echoed back by MPSalsa in place of the integer ID.

29

Material ID Spec

Number of Materials
BOUSSINESQ
ELEM_BLOCK_IDS = 1 2

NUM_SPECIES
SPECIAL_SPECIES

SPECIES_NAME
SPECIES_NAME
SPECIES_NAME

DIFF_COEFF
DIFF_COEFF
DIFF_COEFF

WTSPECIES
WTSPECIES
WTSPECIES

DENSITY
CP
VISCOSITY
THERMAL_CONDUCT
VOL_EXPNS
G_VECTOR
0_V0LUME_VAR-

XMF_0
XMF_0
XMF_0
U_INIT = 10.0
T_INIT = 298.0

ifications

= 1
= 0

= 3
_EQN = yes

1 Yk_0
2 Yk_l
3 Yk_2

Yk_2 0.4
Yk_0 0.5
Yk_l 0.6

Yk_0 1.0
Yk_l 1.0
Yk_2 1.0

= 1.0
= 2.0
= 3.0
= 1.0
= 5.0
= 0.0, 9.8, 0.0
= Q_xx_yy

Yk_0 0.2
Yk_l 0.1
Yk_2 0.6

END Material ID Specifications

"3Yk-gas"

Figure 3.6. Material ID Specifications section example.

The assignment of the physical and transport properties for the current material follow the
Mater ia l_Type line until they are terminated by the line:

END M a t e r i a l ID S p e c i f i c a t i o n s
Any entries after this line are ignored.

The material properties can follow in almost any order and all have default values. The
only ordering that is required is that the number of species (NUM_SPECIES) must be specified
before the species names (SPECIES_NAME) are given, and that the species names must be given
before the species-dependent properties (DIFF_COEFFs WTSPECIES, XMF_0) are specified.

30

Material Type

SOLID, NEWTONIAN

BOUSSINESQ

CHEMKIN

Description

Usual equations; isotropic conductivity, body force = p g .

Body force term replaced by linear Boussinesq approx. in Temperature.

All physical and transport properties calculated from Chemkin —ideal gas equation
of state. Properties vary with thermodynamic state.

Table 3.7. List o/Material_Type designators recognized by MPSalsa.

Keyword

ELEM_BLOCK_IDS

G_VECTOR

Argument

integer list

3 float

Default

0,0,0

Description

List of element blocks, as specified by the mesh generator,
that compose the current material.

The x-, y-, and z-components of the gravity vector. The
units are arbitrary except for CHEMKIN materials, where

cgs units are the default.

Table 3.8. General Keywords: first of four tables listing and describing keywords recognized for the specification of
material properties.

Keyword

DENSITY

VISCOSITY

CP

THERMAL_CONDUCT

VOL_EXPNS

TJSTAUGHT

Q_VOLUME

Q_VOLUME_VAR

VTSCJDISSP

Argument

float or
VARIABLE_PROP

float or
VARIABLE_PROP

float or
VARIABLE_PROP

float or
VARIABLE_PROP

float

float

float

fnjname

Default

1.0

1.0

1.0

1.0

0.0

0.0

Description

A floating-point argument sets a constant density
value; the VARIABLE_PROP flag tells MPSalsa to get

the value from the function "user_density."

A floating-point argument sets a constant viscosity
value; the VARIABLE_PROP flag tells MPSalsa to

get the value from the function "user_viscosity."

A floating-point argument sets a constant heat
capacity; the VARIABLE_PROP flag tells MPSalsa to

get the value from the function "user_Cp."

A floating-point argument sets a constant thermal
conductivity; the VARIABLE_PROP flag tells

MPSalsa to get the value from the function
"user_cond."

Volumetric expansion coefficient (units are inverse
temperature); used only for BOUSSINESQ materials.

Reference temperature for BOUSSINESQ
approximations.

Constant volumetric source added to the heat balance.

A volumetric source computed by the function
fnjname and added to the heat balance.

Causes viscous dissipation terms to be added to the
heat balance; this flag is not currently implemented.

Table 3.9. Fluid and Thermal Properties: second of four tables listing and describing keywords recognized for the
specification of material properties.

31

Keyword

NUM_SPECIES

SPECIES_NAME

WTSPECIES

DIFF_COEFF

SPEC_SPECIES_EQN

Y_VOLUME

Y_VOLUME_VAR

JACOBIAN_SRC_TERMS_VAR

Argument

integer

integer,
string

string, float

string, float

{yes 1 no}

float

fn_name,
{SINGLE 1

MULTIPLE}

fnjname

Default

0

1.0

yes for
CHEMKIN
materials;

no,
otherwise.

Description

Number of species for problems that include
mass transfer.

The integer ID of the species, between 1 and the
entry for NUM_SPECIES, followed by the

name of the species.

The molecular weight of species string, where
string is a SPECIES_NAME input above.

WTSPECIES should be given for each species.

The diffusion coefficient of species string,
where string is a SPECIES_NAME input

above. DIFF_COEFF should be given for each
species.

When this flag is y e s , the last species equation
is replaced by the requirement that the sum of

the mass fractions is one. For CHEMKIN
material types, the default value of y e s may

not be overridden.

A constant volumetric source term that is the
same for all species.

Volumetric source term for each mass balance
computed by the user-specified function

fn_name. SINGLE or MULTIPLE indicates
whether the function returns one equation's
source term at a time or the entire vector of

source terms at once.

If this string is present, the function,/7t_wame is
used to compute the Jacobian entries due to the
source terms; otherwise, a numerical Jacobian

is computed.

Table 3.10. Mass Transfer Properties: third of four tables listing and describing keywords recognized for the
specification of material properties.

The recognized strings (or keywords) that can be used to specify material properties are
listed and described in Table 3.8, Table 3.9, Table 3.10, and Table 3.11. The strings are organized
into separate tables only for this document; there are no distinctions in the code.

The ELEMENT_BLOCK_IDS line in Table 3.8 is required for each material type. All
element blocks in the computational domain (see discussion in Section 2.1) must be specified in
one and only one material-type section.

For CHEMKIN material types, the number of species and their names are specified in the
Chemkin linking files. Additionally, the molecular weights, diffusion coefficients, mixture
viscosity, mixture heat capacity, mixture thermal conductivity, multicomponent diffusion

32

Keyword

U_INIT

V_INIT

W_INIT

P_INIT

T_INIT

XMF_0

Argument

float

float

float

float

float

string,float

Description

The initial value for the x-component of all the velocity unknowns.

The initial value for the y-component of all the velocity unknowns.

The initial value for the z-component of all the velocity unknowns.

The initial value for all of the pressure unknowns.

The initial value for all of the temperature unknowns.

The initial species mole fractions, which are translated to mass
fractions and assigned to the mass-fraction unknowns. The string is
the name of the species, which comes from the SPECIES_NAME

line or the Chemkin data file.

Table 3.11. Initial Value Specifications: fourth of four tables listing and describing keywords recognized for the
specification of material properties.

coefficients, mixture density, and volume expansion coefficient are all specified or calculated
from Chemkin functions. It is an error to redefine them in for a CHEMKIN material.

3.7. Boundary Condition Specifications

Generalized surface vectors and boundary conditions for a problem are specified in the
Boundary Condition section of the input file. This section is required by MPSalsa. An example for
a WHOLE_ENCHILADA problem is given in Figure 3.7.

3.7.1. Generalized Surfaces

A generalized surface is a side set in the ExodusII file for which the outward normal and
tangential vectors of the corresponding geometric surface are given in the input file. These vectors
may be used to specify side-set boundary conditions in the surface's normal and tangential
directions. The number of generalized surfaces included in the input file is listed first.

Number of g e n e r a l i z e d s u r f a c e s = integer
The format for specifying each generalized surface follows.

GENERAL I ZED_SURFACE side_set_number number_of_vectors
TANGENT {real real [real] j Junction_name}
[TANGENT {real real [real] j function_name}]
[NORMAL {real real [real] \ function_name}]

where

side_set_number = the side set ID number in ExodusII, and

33

Boundary Condition Specifications

Number of Generalized Surfaces = 2
GENERALIZED_SURFACE 4 2

TANGENT 0.8 0.6 0.
TANGENT -0.6 0.8 0.

GENERALIZED_SURFACE 5 3
NORMAL user_normal
TANGENT user_tangentl
TANGENT 0. 0. 1.

Number of BC = 12
BC = T_BC DIRICHLET SS 1 INDEPENDENT 300. 0
BC = T_BC NEUMANN SS 5 INDEPENDENT f_xx_yy 1

BC_DATA = 1.0 2.0 0.5
BC = T_BC MIXED SS 4 DEPENDENT jbc_fn 0.5 0.1 0.2 f_fn 0
BC = P_BC DIRICHLET NS 9 INDEPENDENT 1. 0

BC = U_BC DIRICHLET SS 1 INDEPENDENT 0. 0
BC = VEL_TAN1_BC DIRICHLET GS 1 INDEPENDENT f_xy_spin_disk 1

BC_DATA = 100.0 0. 0.

BC = V_BC DIRICHLET SS 1 INDEPENDENT 0. 0
BC = VEL_TAN2_BC DIRICHLET GS 1 DEPENDENT f_xy_spin_disk 1

BC_DATA = 100.0 0. 0.

BC = W_BC DIRICHLET SS 1 INDEPENDENT -9. 0
BC = VEL_NORM_BC DIRICHLET GS 1 DEPENDENT surface_chemkin_bc 0

BC = Y_BC DIRICHLET SS 1 INDEPENDENT f_mole_fraction 1
SPECIES_LIST = 2 1 4 3
BC_DATA = 1.232900e-04 1.095458e-02 9.889221e-01 0.0

BC = Y_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0
SPECIES_LIST = ALL

Figure 3.7. Example of the Boundary Condition Specification section of the input file.

number_of_vectors = the number of vectors used to describe the surface.

Two orthogonal unit tangent vectors should be given for 3-D problems; one unit tangent vector
suffices for 2-D problems. The unit outward-normal vector is optional; for boundary conditions in
the outward normal direction, MPSalsa uses a vector normal to the mesh geometry if a vector
normal to the surface is not specified.

The outward normal vector and tangent vectors on the surface are described on the
following line(s). Either the coordinates of a vector or the name of a function returning the vector
may be used to specify the vectors (see Section 4.3). The example in Figure 3.7 includes two
generalized surfaces. The first consists of side set 4 with two unit tangent vectors; since a normal
vector is not specified, outward normal vectors on the surface are computed within MPSalsa. The

34

second consists of side set 5 with the outward normal vector returned by u s e r _ n o r m a l , a
tangent vector returned by u s e r _ t a n g e n t l , and a constant tangent vector.

MPSalsa numbers the generalized surfaces (starting from one) in the order they appear in
the input file. Boundary condition statements for generalized surfaces reference the generalized
surface number assigned by MPSalsa as their setjd (see Section 3.7.2). Alternatively, the number
of the side set for which the generalized surface is described can be specified; MPSalsa associates
the appropriate generalized-surface definition with the side set.

3.7.2. Boundary Conditions

The number of boundary conditions included in the input file is specified before the
boundary conditions are listed:

Number of BC = integer
Each boundary condition has the following format:

BC = bc_name bcjype setjype setjd dependenceJlag bc_yalues num_datajines
where

bc_name = {U_BC I V_BC I W_BC I T_BC I P_BC ! Y_BC I VEL_NORM_BC I

VEL_TAN1_BC I VEL_TAN2_BC};

bcjype = {DIRICHLET I NEUMANN I MIXED};

setjype = {NS I SS I GS}

setjd = side set ID number, node set ID number, or generalized surface number;

dependenceJlag, = {DEPENDENT I INDEPENDENT};

bc_values is described in Table 3.13; and

num_datajines = integer.

The bcjiame indicates the variable to which the boundary condition should be applied.
Possible values for bcjiame are listed in Table 3.12. All velocity boundary conditions on a side
set must be specified in the same coordinate system; normal and tangential velocity boundary
conditions (VEL_NORM_BC, VEL_TAN1_BC, VEL_TAN2_BC) may not be used with U_BC,
V_BC, or W_BC on the same side set.

35

bc_name

U_BC

V_BC

W_BC

T_BC

P_BC

Y_BC

VEL_N0RM_BC

VEL_TAN1_BC

VEL_TAN2_BC

Variable to which the boundary condition is applied.

velocity in the ^-direction.

velocity in the y-direction.

velocity in the z-direction.

temperature.

pressure.

mass fractions.

velocity in the direction normal to the surface. Note: only Dirichlet BCs are
valid for VEL_NORM_BC.

velocity in the direction of the first tangent vector (given by a generalized
surface) to the surface. Note: only Dirichlet BCs are valid for VEL_TAN1_BC.

velocity in the direction of the second tangent vector (given by a generalized
surface) to the surface. Note: only Dirichlet BCs are valid for VEL_TAN2_BC.

Table 3.12. Boundary condition names and their corresponding variables.

The bcjype indicates the type of boundary condition to apply. Three types of boundary
conditions are implemented in MPSalsa: Dirichlet, Neumann, and Mixed (Robin). Dirichlet
boundary conditions have the following forms:

y = fit, x, u, P, T, Y) for U_BC, V_BC, W_BC, P_BC, T_BC or Y_BC, (3.2)

n • u = f{t,x, u, P, T, Y) for VEL_NORM_BC, and (3.3)

t • u = fit, x, u, P, T, Y) for VEL_TAN1_BC and VEL_TAN2_BC, (3.4)

where y = ux,u2, u3, P, T, or Y is the unknown whose boundary condition is assigned, n and t
are unit outward-normal and tangential vectors specified in a generalized-surface definition or
computed by MPSalsa, and / is a function of time t, position x, and the solution variables u , P,
T, and Y at x .

Neumann boundary conditions take the form

n • % = f(*>x'u> p> T> Y) , qc = -XVT, for the temperature equation, (3.5)

n • jjt = fiU x> u> P> T,Y),jk= p YkVk, for the k mass fraction equation, and (3.6)

(Tn) l = fit, x, u, P, T, Y) for the f momentum equation, (3.7)

where n is the unit outward normal vector, A is the mixture thermal conductivity, p is the
mixture density, V. is the diffusion velocity of species k, and T is the shear stress tensor.

36

Mixed boundary conditions replace the function / on the right-hand side of (3.5)-(3.7)
with

h(y-y0)+aflt,x,u,P,T,Y), (3.8)

where a is a floating-point constant, and h = h(t, x, u, P, T, Y) and y0 = y0(t, x, u, P, T, Y) are
functions of time t, position x, and the solution vector at x.

In MPSalsa, DIRICHLET boundary conditions replace the finite-element equation for an
unknown. NEUMANN and MIXED boundary conditions add a surface integral contribution to the
finite-element equation for an unknown. Only DIRICHLET boundary conditions are currently
implemented for VEL_NORM_BC, VEL_TAN1_BC, and VEL_TAN2_BC. NEUMANN and MIXED
types will be added for these boundary conditions in the future. Pressure boundary conditions
(P_BC) may also be only of type DIRICHLET. All other boundary conditions may be of any
type.

The ExodusII side or node set to which the boundary condition is applied is specified by a
setjype and the setjdjium. The setjype is SS for a side set, NS for a node set, or GS for a
generalized surface side set. The setjdjium is the number of the side or node set in the ExodusII
file, or the number'of the generalized surface defined in the input file. NEUMANN and MIXED
boundary conditions may be applied only to side sets or generalized surfaces; DIRICHLET
boundary conditions may be applied to node sets, side sets, or generalized surfaces.

Boundary condition functions / , h, and y0 in (3.2) - (3.8) may depend on the solution. If
terms resulting from this dependence are to be included in the Jacobian matrix, the
dependence Jlag should be set to DEPENDENT; otherwise, the dependence Jlag should be set to
INDEPENDENT. Mixed boundary conditions should be labeled DEPENDENT only if at least one
of the functions / , h, or y0 depends on the solution. For INDEPENDENT mixed boundary
conditions, the analytic Jacobian contribution

^-(h(t,x)[y-y0(t,x)] +afit,x)) = h(t,x)

is computed by MPSalsa and included in the Jacobian.

The bcj>alues vary depending on bcjype and dependence Jlag; the correct combinations
of arguments are listed in Table 3.13. The values off,h, and y0 in (3.2) - (3.8) may be given by
a real number or a function. The value of a in (3.8) is a real number. Analytic Jacobian entries
may be given for DEPENDENT boundary conditions through specification of a
jacobian Junction jiame, a function that returns the partial derivative of the boundary condition

37

with respect to the solution unknowns. If no jacobian Junction_name is specified, a numerical
Jacobian is used for DEPENDENT boundary conditions. Many functions for / , h, and yQ and their
analytic Jacobian entries are included in MPSalsa; see Section 4.2 and Appendix A.l.

bc_type

DIRICHLET

DIRICHLET

NEUMANN

NEUMANN

MIXED

MIXED

dependence Jlag

INDEPENDENT

DEPENDENT

INDEPENDENT

DEPENDENT

INDEPENDENT

DEPENDENT

bc_yalues

\fJunction_name \f_real]

\jacobianJunction_name] {fJunction_name \f_real}

{fJunction_name \f_real]

\jacobianJunctionjmme] {fjunctionjiame \f_real}

{hJunction_name 1 hjreal} {yOJunction_name 1 yO_real]
{a_real} {fJunction_name \fjreal}

\jacobianJunction_name] {hJunction_name 1 hjreal}
{yOJunction_name 1 yOjreal] {a_real} \fJunction_name 1
f_real}

Table 3.13. Boundary condition specification ofbc_yaluesfor various bc_types and dependence Jlags.

Additional data may be passed to boundary condition functions through the use of
BC_DATA lines. The number of these lines for a boundary condition is given as the last entry,
num_datajines, on the BC line. BC_DATA lines are formatted as follows:

BC_DATA = datajype datajalues
where

datajype = {FLOAT I INT I INTEGER I FUNCTION}; and

data_values = a list of real numbers (for datajype FLOAT), integers (for datajypes INT
and INTEGER), or function names (for datajype FUNCTION). These data values are stored in
one-dimensional arrays associated with the boundary conditions and may be accessed by user-
defined functions. See Section 4.2.1 for examples of the use of these values.

Examples of each type of boundary condition are included in Figure 3.7. A few examples
are detailed below.

BC = P_BC DIRICHLET NS 9 INDEPENDENT 1. 0
A Dirichlet boundary condition value of 1 is applied to pressure unknowns in node set 9.

BC = VEL_NORM_BC DIRICHLET GS 1 DEPENDENT surface_chemkin_bc 0
A Dirichlet outward-normal velocity boundary condition is applied to velocity unknowns

on the first generalized surface listed in the input file. The value of the boundary condition is

38

file:///fJunction_name
file:///f_real
file:///jacobianJunction_name
file:///f_real}
file:///f_real
file:///jacobian
file:///f_real}
file:///fjreal}
file:///jacobianJunction_name
file:///fJunction_name

computed in function s u r f a c e _ c h e m k i n _ b c (see Appendix A.1.1). Since the boundary
condition is DEPENDENT but no analytic Jacobian function is specified, numerical Jacobian
entries for the boundary condition are computed.

BC = T_BC NEUMANN SS 5 INDEPENDENT f_xx_yy 1
BC_DATA = 1.0 2.0 0.5
A Neumann boundary condition is applied to the temperature equations for nodes in side

set 5. The value of the boundary condition is computed in function f_xx_yy. No Jacobian
entries for the boundary condition are generated since the boundary condition is INDEPENDENT.
BC_DATA values of 1.0, 2.0, and 0.5 are passed to function f_xx_yy for use in computing the
boundary condition value.

BC = T_BC MIXED SS 4 DEPENDENT j b c _ f n 0 . 5 0 . 1 0 .2 f_fn 0

A Mixed boundary condition of the form

n qc = 0.5 (7 / - 0.1) + 0.2 f_fn (t, x, u, P, T, Y)

is applied to the temperature equations for nodes in side set 4. The boundary condition is
DEPENDENT; function j bc_ f n(t, x, u, P, T, Y) is called to compute analytic Jacobian entries
for the boundary condition terms.

Default: If no boundary condition is specified for an unknown in a node- or side-set, a
natural boundary condition with value 0 is applied to the equation for the unknown. Thus, the
default boundary condition for temperature, mass fractions or velocities is effectively NEUMANN
with f{t, x, u, P, T, Y) = 0 in (3.5), (3.6), or (3.7), respectively.

3.7.2.1. Mass Fraction Boundary Conditions

A mass fraction boundary condition (Y_BC) may be applied to one, some or all of the
species unknowns in the node or side set. The SPECIES_LIST input line indicates to which
species the boundary condition should be applied. This line must directly follow the BC
statement.

SPECIES_LIST = {ALL | list of species numbers \ list of species names}
The keyword ALL states the boundary condition should be applied to all species in the problem.
Individual species may be listed by number or name, where the name is given either in the
Materials Specifications (see Section 3.6) or the Chemkin files.

39

All Y_BC boundary conditions are specified in terms of mass fractions rather than mole
fractions. DIRICHLET boundary conditions may also be specified as mole fractions via the
function f_mole_f r a c t i o n included in MPSalsa (see Section A. 1.4).

3.7.2.2. Precedence of Boundary Conditions

For unknowns at nodes where two or more side or node sets intersect, Dirichlet boundary
conditions always have precedence over other types of boundary conditions. That is, if a node has
unknowns upon which Dirichlet and, say, Neumann boundary conditions are specified, the
Dirichlet boundary condition is the boundary condition imposed. Moreover, the first Dirichlet
boundary condition in the input file for such an unknown is the one applied. If a node belongs to
more than one node or side set, as Node A does in Figure 3.8, the first Dirichlet boundary
condition for each unknown at that node is the one applied. In Figure 3.8, the Dirichlet boundary
condition for node set 2 would be applied to Node A.

^ ^ B ~ ~ " " " " \ Node Set 1 □
Node A —^—E£i \ \ Node Set 2 •

BC = T_BC DIRICHLET NS 2 INDEPENDENT 300. 0
BC = T_BC DIRICHLET NS 1 INDEPENDENT 100. 0

Figure 3.8. Example demonstrating the precedence of Dirichlet boundary conditions. Node A belongs to
both node set 1 and node set 2. Its temperature would be set to a value of 300 in this example.

3.8. Initial Condition/Guess Specifications

In the Initial Condition/Guess Specifications section of the input file, users can specify
what type of initial guess or initial conditions to use. This section is required by MPSalsa. An
example is shown in Figure 3.9. MPSalsa's initial guess for the solution vector is established in
several steps. The first step involves preprocessing the solution vector by setting all solution
components to a value of zero. Next the Set I n i t i a l Condi t ion/Guess line described
below is processed. Then, if the solution is not being read from an ExodusII file, all solution
variables are set to their "INIT" values specified in the Material Specifications section of the input
file, if any are specified. (For example, this is where the condition that the sum of the mass

40

fractions must equal one is enforced for CHEMKIN material types.) Finally, an additional user-
supplied function may be invoked as the last step. The remainder of this section describes each of
the lines in the Initial Condition/Guess Specifications section of MPSalsa's input file.

Initial Condition/Guess Specifications

Set Initial Condition/Guess = constant 0.0
Apply Function = no
Time Index to Restart From = 1

Figure 3.9. Example of Initial Condition/Guess Specifications section of the input file.

[S e t I n i t i a l C o n d i t i o n / G u e s s = string [value]]
This line is used to specify how to initialize the solution vector after the initial default

processing is carried out. Valid options for this line are listed below:

= c o n s t a n t [value]
This option initializes all components of the solution vector that do not have
material defaults to the constant value value. Default: value = 0.

= random
This option randomly assigns initial solution vector values in the interval [0,1].

= e x o I I _ f i l e

Previously stored solution values in the Output FEM file, named in the General
Specification Section, are used as initial values. This option is used for restarts.

Default = c o n s t a n t 0.

[Apply f u n c t i o n = {functionname | no}]

A user-written function can be specified on this line to process the initial guess. This
function is executed after the S e t I n i t i a l C o n d i t i o n / G u e s s input line so the function can
be dependent on a solution read in from an ExodusII file. See Section 4.4 for details on how to
write this function. Default = no.

41

[Time Index t o R e s t a r t From = integer]
This line specifies the index of the time step from which to perform restarts or take the

initial guess. This parameter is only pertinent if the Set I n i t i a l Condi t ion /Guess value
is exoII_f i l e . Restarts can be performed from any data on the same geometry for steady or
time-varying problems. Default = 1 if I n i t i a l Guess = exoII_f i l e ; ignored otherwise.

3.9. Output Specifications

In the Output Specifications section, the user may specify how output is to be performed
to the ExodusII results file. Items such as which variables to output, how often to output these
variables, and whether or not a user-definable subroutine is called are specified in this section. An
example of this section is given in Figure 3.10. This section is optional; if it is absent, no output
will be performed. A detailed description of each of the lines in the Output Specifications section
follows.

Output Specifications

User Defined Output = no
Parallel Output = no
Scalar Output = yes
Time Index to Output To = 1
Nodal variable output times:

every 1 steps
Number of nodal output variables= 1
Nodal variable names:

Temperature
Number of global output variables= 1
Global variable names:

Delta_time

Test Exact Solution Flag
Name of Exact Solution Function

= 0
= f xx yy

Figure 3.10. Example of Output Specifications section in the input file.

[User Defined Output = {yes | no}]
This flag indicates whether the standard user-defined function, use r_ou t , should be

called to output information to stdout. This routine allows user-customized output to be added
easily. The routine currently distributed in MPSalsa prints out the maximum, minimum, and
average value of each unknown as well as the positions of the maximum and minimum. Default =
yes .

42

[Parallel Output = {yes | no}]
This option allows the user to specify whether or not parallel output should be performed.

It can be used simultaneously with scalar output. See Section 2.5 and Section 3.10 for more
information on parallel I/O. Default = no.

[Scalar Output = {yes | no}]
This option allows the user to specify whether or not output to a scalar ExodusII results

file should be performed. The name of the file is specified in the General Problem Specifications
section (see Section 3.1). Default = no.

[Time I n d e x t o O u t p u t To = integer]
This line is needed only when (1) the MPSalsa run is a restart, and (2) the user wishes to

control where in the ExodusII output file (which was used as the restart input file) the output is
written. If the line is absent and the run is a restart, new output is appended to the end of the
ExodusII output/restart file. When this line included under these conditions, it specifies at what
time index (in the restart file) the output should start. The restart file will be overwritten at the
time index specified. Note that the initial guess, as read during restarts, is output first. It is
therefore suggested that the value of Time Index t o O u t p u t To be set equal to the Time
I n d e x t o R e s t a r t From (see Section 3.8) so as to preclude having the same set of values
stored twice in the file. Default = output appended to the end of the ExodusII output file.

[Nodal v a r i a b l e o u t p u t t i m e s ;]
string
This line specifies how often during transient runs output of the variables is to be

performed. Valid values for string are

e v e r y n s t e p s -- where n is a positive integer

or

e v e r y x.xx { s econds | u n i t s j mins} — where x.xx is a real positive number.

Several things should be noted about this line. (1) The units are currently ignored since there is no
way to specify what these units are for time stepping; (2) the variables to be output are named in
the Nodal v a r i a b l e names line in the Output Specifications section; and (3) outputting
e v e r y x { s e c o n d s | u n i t s |mins} outputs when the time value is the first time value
greater than n*x, for any integer n. Similarly, the next time step output will be the first to have a
time value greater than (n+\)*x. Default = output every time step.

43

[Number of n o d a l o u t p u t v a r i a b l e s = integer]
The number of nodal variables to output is specified here. Default = the total number of

variables.

[Nodal v a r i a b l e names :]
stringl
string!

stringN
The names of the nodal variables to output are given here. The number of nodal variable

names N is given in the Number of n o d a l o u t p u t v a r i a b l e s line. Valid variable names
are

Temperature
Velocity
Pressure
Mass_Fraction
Displacement

where any combination of the above is valid. The keyword L i s t is supported for the variable
name M a s s _ F r a c t i o n . If the name is followed, on the same line, by the word L i s t , a list of
species names is expected to follow until the keyword e n d l i s t is found. For example:

M a s s _ F r a c t i o n L i s t
S IF4 , H2, H
N2, N
SIHF3

endlist
The case of the keywords is not significant. Default: all nodal variables are written in the default
order.

[Number of g l o b a l o u t p u t v a r i a b l e s = integer]
This line is used to specify the number of global variables that are to be output to the

ExodusII results file. Global variables are single-valued variables that only have the single
dimension of time. They are used to store parameters, timing information, global solution
information, etc. Default = 0.

44

[Global va r iab le names:]
stringl
string!

stringN
The names of the global variables to be output to the ExodusII results file is given here.

The number of global variables N to output is specified in the line Number of g l o b a l
output v a r i a b l e s . Examples of variable names are

Time_index
Delta_time
Matrix_Fi1l_Time
Matrix_Solve_Time

This line is required only if the number of global variables to output is greater than zero. The
variable names are case-insensitive. In the future, we hope to allow the user to define additional
global variables on this line. The pre-processor "guacamole" will install space for them in the
output file, and the routine use r_ou t will be used to output values for these variables during an
MPSalsa run. Default = none.

[Test Exact Solution Flag = {0 | 1} [SUMMARY]]
This line specifies whether or not the computed solution should be tested against a known

2
analytic solution; 0 = off, 1 = on. This comparison includes L -norm and max-norm error
computations. Additional information on the location of the maximum error and an estimate of
the largest characteristic length of an element in the FE mesh is provided. The optional keyword
SUMMARY will lead to a separate error analysis for each variable in addition to the entire
solution vector. Default = 0.

[Name of Exact So lu t i on Funct ion = string]
This line gives the name of the function that will be called to evaluate the accuracy of the

computed solution. The generic function user_bc_exac t may be used by programming the
desired exact solution function in the file "rf_user_bc_exact_fn.c." Default = none.

3.10. Parallel I/O Specifications

The Parallel I/O Section is used to specify characteristics about parallel disk subsystems
connected to specific machines. This section of the input file is optional; if it is absent, no parallel
I/O will be performed. An example is given in Figure 3.11. This section of the input file also

45

contains subsections for different parallel architectures. These subsections can remain in the file
with the user specifying which architecture to use at run time. In this manner the file can be set up
for a number of architectures (currently nCUBE and Intel Paragon) without rewriting the section
each time a run is performed on a different architecture.

Parallel I/O section

Machine = paragon
Staged writes = yes

ncube subsection

Number of controllers= 8
Disks per controllers 1
Root location = //df
Subdirectory = jns/fireset
Offset numbering from zero= 0

paragon subsection

Number of RAID controllers= 48
Root location = /raid/io_
Subdirectory = tmp/jns/fireset
Offset numbering from zero= 1

Figure 3.11. Example Parallel I/O section.

[Machine = string]
This line is used to specify the computer architecture. Currently supported architectures

are paragon, and ncube. Default = paragon.

[Staged writes =.{yes | no}]
This lines specifies whether or not writes to parallel disks should be staged. With staging,

only one processor writes to each disk at a time. Staging avoids problems with temporary file
name conflicts and limits on the number of concurrent open files on a single disk. It is
recommended that staging be set to yes . Default = yes .

[Number of c o n t r o l l e r s = integer]
This line is specific to the nCUBE subsection and indicates how many controllers should

be used in performing the I/O. It must be less than or equal to the number of disk controllers that
are actually attached to nCUBE. Default = none; error when not specified for parallel I/O on the
nCUBE.

46

[Disks p e r c o n t r o l l e r = integer]
This line is specific to the nCUBE subsection and indicates how many of the disks

attached to each of the controllers should be used to perform the I/O. It should be less than or
equal to the number of actual disks attached to each controller. Default = none; error when not
specified for parallel I/O on the nCUBE.

[Number of RAID c o n t r o l l e r s = integer]
This line is specific to the Intel Paragon and indicates how many RAID controllers should

be used to perform the I/O. It must be less than or equal to the actual number of controllers on the
machine. The number of RAID disks is equal to the number of RAID controllers on an Intel
Paragon system. Default = none; error when not specified for parallel 110 on the Paragon.

[Root l o c a t i o n = string]
The root location is the root directory where writes to the parallel disk subsystem are to be

performed. Generally, parallel disk subsystems are in directories that begin with a string.
Embedded in the last part of the string is an integer identifying a particular disk. On an nCUBE
system, for example, //dfOO would be used to write to the first controller and first disk attached to
that controller. Similarly, for an Intel Paragon, the user could access the first disk by writing to
/pfs/io_01 and the second disk by writing to /pfs/io_02. The value to be specified on the Root
Loca t ion line of the input file is the full pathname of the disk device excluding the identifying
integer ID. Figure 3.11 shows examples of the value of Root Locat ion for each of these cases.
Default = none; error when not specified for parallel I/O.

[Subd i rec to ry = string]
The S u b d i r e c t o r y line specifies the subdirectory on the parallel file system in which

MPSalsa should look for parallel output and input files. It should not begin with a "/" character.
Default = none; error when not specified for parallel I/O.

[Offset numbering from zero = integer]
The offset numbering specifies on which parallel disk I/O should begin. For example, if

MPSalsa is to be run on an Intel Paragon using 16 RAIDs beginning with /raid/io_08 then the
value of the offset should be set to 8. Default = 1.

47

3.11. Function Data Specifications

Users may pass problem-specific data to functions using the Function Data Specification
section of the input file. The Function Data section is optional; users need not include it in the
input file if they do not need problem-specific data. An example of the Function Data section is
included in Figure 3.12. The functions are used for boundary conditions, material properties,
specialized solution output, volumetric source terms, and testing of the code against exact
solutions. Four types of data may be passed to functions: integers, reals, strings, and tables.

Data Specification for User

Number of

Function =
FN_DATA =
FN_DATA =
FN_DATA =
FN_DATA =

Function =
FNJDATA =
FN_DATA =

0
20
40
60
80
100

's Functions

functions to pass data to = 2

= user_bc_exact 4
-100. -200. -300. -
FLOAT -500. -600.

-400.

STRING VELOCITY APPLICATIONS CZAR
INT -1 -2 -3 -4 -5

= lookup_table_l 2
STRING TEMPERATURE
TABLE 6 2

32
68
104
140
176
212

Figure 3.12. An example of the Function Data Specification section of the input file.

The number of functions that use function data is specified first, with default = 0. For each
function, the function name and the number of FN_DATA lines to be passed to it are listed.

[Number of f u n c t i o n s t o p a s s d a t a t o = number of functions]
F u n c t i o n = function jiame num_datajines

Each FN_DATA line consists of the type of data (INT, FLOAT, STRING, or TABLE). The default
is FLOAT. For INT, FLOAT, and STRING data, the data then follows the type keyword. A FLOAT
is stored as a double-precision number. Each STRING may be up to 32 characters long.

FN_DATA = [FLOAT | INT | STRING] list of data
TABLES allow the user to supply tabular data to a function. The dimensions of the table follow
the TABLE keyword:

48

FN_DATA = TABLE #rowsJnJable#columnsJnjable
The TABLE data are included on the lines following the FN_DATA = TABLE line. Only one table
may be specified in each entry for a function.

Several functions that require function data are included in MPSalsa. Examples are
t i m e _ h i s t o r y _ l i n e , which writes to a file the solution along a line in the domain,
t i m e _ h i s t o r y _ p o i n t s , which writes to a file the solution at a set of points in the domain,
and look-up table functions lookup_tab le_ l and lookup_table_2, which interpolate
data using a TABLE from the function data section of the input file. These and other functions that
require user-defined function data are described in Section 4 and Appendix A.

49

4. User Functions

Many features in MPSalsa can be adapted for specific applications through user functions.
These functions provide the greatest flexibility for users to control their own simulations. User
functions are already included in MPSalsa for quantities such as variable material properties,
boundary conditions, and solution measures; users must change only the computations in these
routines to calculate the properties for their problems. For some quantities, such as boundary
conditions and source terms, users can also write their own functions and compile them into
MPSalsa. This process, however, requires more effort and code modification than using the
included user functions. This chapter describes the various user functions available and their
usage in MPSalsa and the input file. For applicable properties, instructions for including new
functions in MPSalsa are also given. For all functions, the units are arbitrary except for CHEMKIN
materials for which cgs units are the default.

MPSalsa is written in the "C" programming language. The following discussion of
modifications to MPSalsa's user functions assumes the user has some knowledge of "C."

4.1. Material Properties

4.1.1. Heat Capacity

The function user_Cp in "rf_user_Cp.c" computes a user-defined specific heat Cp of a
non-CHEMKlN material. It is called when the following line is included in the Materials
Properties section of the input file:

CP = VARIABLE_PROP

The value of the specific heat is returned by user_Cp in the argument *cp. Other arguments
passed to user_Cp are listed in Table 4.1.

Argument

double temperature

double X_k[]

double Ptherm

double x, y, z

MATSTRUCT_PTR matID_ptr

Description

Temperature at position (x, y, z).

Vector of mole fractions at position (x, y, z) indexed by the species
number.

Thermodynamic pressure.

Coordinates of the current position.

Pointer to the material property structure for the material.

Table 4.1. Arguments passed to user-defined property functions user_Cp, user_cond, u s e r _ d e n s i t y and
user_visc.

50

4.1.2. Thermal Conductivity

The function u s e r _ c o n d in "rf_user_cond.c" computes a user-defined value of thermal
conductivity X for a non-CHEMKIN material. It is called when the following line is included in
the Materials Properties section of the input file:

THERMAL_CONDUCT = VARIABLE_PROP
The value of the thermal conductivity is returned by u s e r _ c o n d in the argument
* c o n d u c t i v i t y . Other arguments passed to u s e r _ c o n d are listed in Table 4.1.

4.1.3. Density

The function u s e r _ d e n s i t y in "rf_user_density.c" computes a user-defined value of
density p for a non-CHEMKIN material. It is called when the following line is included in the
Materials Properties section of the input file:

DENSITY = VARIABLE_PROP
The value of the density is returned by u s e r _ d e n s i t y in the argument * d e n s i t y . Other
arguments passed to u s e r _ d e n s i t y are listed in Table 4.1.

4.1.4. Viscosity

The function u s e r _ v i s c in "rf_user_visc.c" computes a user-defined value of the
viscosity (i for a non-CHEMKIN material. It is called when the following line is included in the
Materials Properties section of the input file:

VISCOSITY = VARIABLE_PROP
The value of the viscosity is returned by u s e r _ v i s c in the argument * v i s c o s i t y . Other
arguments passed to u s e r _ v i s c are listed in Table 4.1.

4.1.5. Volumetric Source Terms

Variable volumetric source terms for temperatures and mass fractions are specified in the
input file as

0 VOLUME VAR = functionjiame
and

Y_VOLUME_VAR = functionjiame {SINGLE j MULTIPLE}.
The related user functions included in MPSalsa are u s e r _ s o u r c e for temperatures and
SINGLE mass fraction source terms and u s e r _ s o u r c e _ m u l t i for MULTIPLE mass fraction
source terms.

51

The u s e r _ s o u r c e function returns the value of the source term for one equation. Its
prototype is

double u se r_sou rce (SNGLVAR_FUNCTION_ARGLIST)
where SNGLVAR_FUNCTlON_ARGLIST, as defined in "rf_salsa.h," is described in Table 4.2.
For SINGLE source term functions, the boundary condition pointer be is NULL.

Argument

double soln[]

double x, y, z

double t

MATSTRUCT_PTR matID_ptr

int var_num

int sub_var_num

int eqn_offset[]

int num_dim

BCSTRUCTPTRbc

Description

Solution vector at position (x, y, z).

Coordinates of position (x, y, z).

Time.

Pointer to the material property structure for the material being processed
(defined in "rf_matrl_const.h").

Equation for which to compute a value (e.g., TEMPERATURE,
VELOCITYl, MASS_FRACTION) as defined in "rf_fem_const.h."

Species for which to compute a value (applicable only when var_num =
MASS_FRACTION).

Offset into soln[] for each variable; e.g., the temperature at (x,y^z) is
soln[eqn_offset[TEMPERATURE]].

Number of dimensions in the element.

Pointer to the boundary condition structure (defined in "rf_bc_const.h")
for the current boundary condition being processed. This pointer is NULL
if the SNGLVAR_FUNCTION function is called for a calculation not
involving a boundary condition.

Table 4.2. Arguments included in SNGLVAR_FUNCTION_ARGLIST.

An example of u se r_sou rce is included in Figure 4.1. This function is stored in
"rf_user_source_fn.c." To add new user-defined source functions, users should write the functions
in either "rf_source_fn.c" or "rf_user_source_fn.c," include prototypes for the new functions in
"rf_source_fn_const.h," and add pointer assignments for the new functions to the routine
a l i g n s i n g l e a p t r in "rf_source_fn.c." Users can look at prototypes and pointer
assignments for u se r_sou rce as examples for their own functions.

To reduce the number of function calls needed to compute source terms for mass fraction
equations, u se r_sou rce_mul t i may be used. While u se r_source returns only a single
source term value, u se r_sou rce_mul t i returns a vector of source terms for mass fraction
equations. The prototype for u se r_sou rce_mul t i is

vo id use r_source_mul t i (MULTIVAR_FUNCTION_ARGLIST)
where MULTIVAR_FUNCTlON_ARGLIST is described in Table 4.3.

52

double user_source{SNGLVAR_FUNCTION_ARGLIST)
{
/* Returns the source terms for the coupled linear diffusion equations:

V2T-a = 0

* v2y0+y,-y2 = o

* v2y1-y0e"Jt = o

v2y2-y0-a = o

* where a = 2 in ID, a = 4 in 2D, and a = 6 in 3D.

* USAGE: In Material Properties section...
* Q_VOLUME_VAR = user_source
* Y_V0LUME_VAR = user_source SINGLE
*/

double return_value ,-
double spatial_coeff = 2 * num_dim;

if (var_num == TEMPERATURE)
retum_value = -spatial_coeff;

else if <var_num == MASS_FRACTI0N && sub_var_num <= 2)
switch (sub_var_num) {

case 0:
return_value = soln[eqn_offset[MASS_FRACTION + 1]]

- soln[eqn_offset[MASS_FRACTION + 2]];
break;

case 1:
return_value = -soln[eqn_offset[MASS_FRACTION] * exp(-x);
break;

case 2:
return_value = -spatial_coeff -soln[eqn_offset[MASS_FRACTION]];
break;

}
else {

(void) fprintf(stderr, "ERROR in use of user_source.\n");
exit(-l);

}
return (return_value);

}

Figure 4.1. Example of function use r_source computing volumetric source terms for temperature and
mass fraction equations.

An example of user_source__multi is included in Figure 4.2. This function
computes the same mass fraction source terms in one function call that function use r_source
in Figure 4.1 would compute in three separate calls.

The function use r_sou rce_mul t i is stored in "rf_user_source_fn.c." Users may add
their own MULTIPLE source functions to either "rf_source_fn.c" or "rf_user_source_fn.c."
Prototypes for the new functions should be included in "rf_source_fn_const.h," and pointer
assignments must be added to the routine a l i g n m u l t i g p t r in "rf_source_fn.c." Users
can look at prototypes and pointer assignments for use r_source_mul t i as examples for their
own functions.

53

void user_SOurce_multi(MULTIVAR_FUNCTION_ARGLIST)
{
/* Returns (in src_vec[]) the source terms for the coupled linear

* d i f f u s i o n equa t ions :

* v ^ + y . - y ^ o

* v \ - Y0e'x = 0

* v2y2-y0-a = o

* where a = 2 i n ID, a = 4 in 2D, and a = 6 in 3D

* USAGE: In Mater ia l P rope r t i e s s e c t i o n . . .
* Y_VOLUME_VAR = user_source_mult i MULTIPLE
*/

double spatial_coeff = 2 * num_dim;
int eqnY_offset = eqn_offset[MASS_FRACTION];

src_vec[0] = soln[eqnY_offset+l] - soln[eqnY_offset+2];
src_vec[l] = -soln[eqnY_offset] * exp(-x);
src_vec[2] = -spatial_coeff - soln[eqnY_offset];

Figure 4.2. Example of function user_source_mul t i computing volumetric source terms for mass
fraction equations.

Argument

double src__vec[]

double soln[]

double x, y, z

double t

MATSTRUCT_PTR matID_ptr

int eqn_offset[]

int num_dim

Description

Returned vector of source term values at (x, y, z), with one value for each
mass fraction equation.

Solution vector at position (x, y, z).

Coordinates of position (x, y, z).

Time.

Pointer to the material property structure (defined in "rf_matrl_const.h")
for the material being processed.

Offset into soln[] for each variable; e.g., the temperature at (x,y£) is
soln[eqn_offset[TEMPERATURE]].

Number of dimensions in the element.

Table 4.3. Arguments included in MULTIVAR_FUNCTION_ARGLIST.

Analytic Jacobian entries for variable volumetric temperature and mass fraction source
terms are specified in the Materials Specifications section of the input file as

JACOBIAN_SRC_TERMS_VAR = functionjiame
where functionjtame is a function computing a matrix of derivatives of the source terms with
respect to temperature and mass fractions. The user function u s e r _ j a c _ s r c is provided for
this purpose. The prototype for use r_ j ac_s rc is

v o i d u s e r _ j a c _ s r c (JAC_SRC_FUNCTION_ARGLIST)

54

where JAC_SRC_FUNCTION_ARGLIST is described in Table 4.4. The derivatives of the source
terms are returned in the matrix jac_vec, where jac_vec[i][/] is the derivative of the source
term for the ;' equation with respect to the i variable.

Argument

double *jac_vec[]

double soln[]

double x, y, z

double t

MATSTRUCT_PTR matID_ptr

int eqn_offset[]

int num_dim

Description

Returned matrix of analytic Jacobian terms of source term values with
respect to temperature and mass fractions; jac_vec[i][j] is the derivative
of the source term for the j * equation with respect to the i* variable.

Solution vector at position (x, y, z).

Coordinates of position (x, y, z).

Time.

Pointer to the material property structure (defined in "rf_matrl_const.h")
for the material being processed.

Offset into soln[] for each variable; e.g., the temperature at (x,y£) is
soln[eqn_offset[TEMPERATURE]].

Number of dimensions in the element.

Table 4.4. Arguments included in JAC_SRC_FUNCTION_ARGLIST.

Figure 4.3 includes an example of u s e r _ j a c _ s r c that computes the Jacobian entries
for the source terms in function use r_source in Figure 4.1. This function is stored in
"rf_user_jac_src_fn.c." To add new user-defined analytic Jacobian functions for source terms,
users should write the functions in either "rf_jac_src_fn.c" or "rf_userjac_src_fn.c," include
prototypes for the new functions in "rf_source_fn_const.h," and add pointer assignments for the
new functions to the routine a l i g n _ j a c _ s r c _ p t r in "rfjac_src_fn.c." Users can look at
prototypes and pointer assignments for user_ j ac_s rc as examples for their own functions.

The following run-time error messages alert users to incorrect implementation of user
source term and Jacobian entry functions.

> ERROR: Unknown name for volumetric source function: function jiame
> ERROR: Unknown name for analytic Jacobian of source vector function:

function jiame
The first message indicates an error with a function specified by Q_VOLUME_VAR or
Y_VOLUME_VAR in the input file; the second indicates an error with a function specified by
JACOBlAN_SRC_TERMS_VAR. In both cases, a function name is either misspelled in the input
file or not added correctly to the pointer assignment routines.

55

void user_jac_src (JAC_SRC_FUNCTION_ARGLIST)
{
/* Returns (in jac_vec[]) the analytic Jacobian entries of source terms
* with respect to (w.r.t.) temperature and mass fractions
* for the coupled linear diffusion equations:

V2T-a = 0

* V\+Y1-Y2 = O

v 2 y j - y o e
_ j : = o

* v2y2-y0-fl = o

* where a = 2 in ID, a = 4 in 2D, and a = 6 in 3D

* USAGE: In Material Properties section...
* JACOBIAN_SRC_TERMS_VAR = user_jac_src
*/
int indxT = eqn_offset[TEMPERATURE], indxY = eqn_offset[MASS_FRACTION];

/** Derivative of TEMPERATURE source term w.r.t. TEMPERATURE. **/
jac_vec[indxT][indxT] += 0.0;

/** Derivatives of MASS_FRACTION src terms w.r.t. TEMPERATURE.**/
j ac_vec[indxT][indxY] += 0.0;
jac_vec[indxT] tindxY+1] += 0.0;
j ac_vec[indxT][indxY+2] += 1.0;

/** Derivative of TEMPERATURE source term w.r.t. Y_0. **/
jac_vec[indxY][indxT] += 1.0;

/** Derivatives of MASS_FRACTION source terms w.r.t. Y_0. **/
jac_vec[indxY][indxY] += 0.0;
jac_vec[indxY][indxY+1] += -exp(-x);
jac_vec[indxY][indxY+2] += -1.0;

/** Derivative of TEMPERATURE source term w.r.t. Y_l. **/
jac_vec[indxY+1][indxT] += 1.0;

/** Derivatives of MASS_FRACTI0N source terms w.r.t. Y_l. **/
j ac_vec[indxY+1][indxY] +=1.0;
jac_vec[indxY+l][indxY+1] += 0.0;
jac_vec[indxY+1][indxY+2] += -1.0;

/** Derivative of TEMPERATURE source term w.r.t. Y_2. **/
jac_vec[indxY+2][indxT] += -1.0;

/** Derivatives of MASS_FRACTION source terms w.r.t. Y_2. **/
jac_vec[indxY+2][indxY] += -1.0;
jac_vec[indxY+2][indxY+1] += 0.0;
jac_vec[indxY+2][indxY+2] += 0.0;

Figure 4.3. Example of function use r_ j ac_s rc computing analytic Jacobian entries of source terms with
respect to temperature and mass fractions for the source function in Figure 4.1.

56

4.2. Boundary Conditions

User functions may be used for several parts of the Boundary Condition Specifications
described in Section 3.7.2. The user function designed to compute boundary condition values is
user_bc_exact . The prototype for user_bc_exac t is

double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST)
where SNGLVAR_FUNCTION_ARGLIST is described in Table 4.2. All arguments of
SNGLVAR_FUNCTlON_ARGLlST are used for boundary condition functions.

An example demonstrating the usage of user_bc_exac t is given in Figure 4.4. This
function is stored in "rf_user_bc_exact_fn.c." To add new user-defined boundary condition
functions, users should write the functions in either "rf_bc_exact_fh.c" or
"rf_user_bc_exact_fn.c," include prototypes for the new functions in "rf_bc_exact_fn_const.h,"
and add pointer assignments for the new functions to the routine a l i g n _ f _ p t r in
"rf_bc_exact_fn.c." Users can look at prototypes and pointer assignments for user_bc_exact
as examples for their own functions.

Jacobian entries associated with boundary conditions can be specified by the user function
user_ j ac_bc. The prototype for u se r_ j ac_bc is

double user_ jac_bc (JAC_BC_FUNCTION_ARGLIST)
where JAC_BC_FUNCTION_ARGLIST is described in Table 4.5.

Figure 4.5 contains an example of user_ jac_bc for the boundary conditions specified
by user_bc_exact in Figure 4.4. This function is stored in "rf_user_jac_bc_fn.c." To add new
user-defined functions for the derivatives of boundary condition functions, users should write the
functions in either "rf_jac_bc_fn.c" or "rf_userjac_bc_fn.c," include prototypes for the new
functions in "rf_bc_exact_fn_const.h," and add pointer assignments for the new functions to the
routine a l i g n _ j b c _ p t r in "rf_jac_bc_fn.c." The prototypes and pointer assignments for
user_ j ac_bc serve as examples for new user functions for boundary condition derivatives.

The following run-time error messages alert users to incorrect implementation of user-
defined boundary condition functions.

> ERROR: Unknown SNGLVAR_FUNCTION: function jiame
> ERROR: Unknown JAC_BC_FUNCTION: function jiame

The first message indicates an error in a boundary condition function name; the second indicates
an error in the function name for Jacobian entries of a boundary condition. In both cases, a
function name was either misspelled in the input file or not added correctly to the appropriate
pointer alignment routine.

57

double USer_bc_exact (SNGLVAR_FUNCTION_ARGLIST)
{
/* Returns the following Dirichlet boundary conditions for coupled
* linear diffusion equations:

* T = x2 + y2 + z2

* Y0 = ae where a = 2 in ID, a = 4 in 2D, and a = 6 in 3D

* y, = T

* USAGE: In Boundary Conditions section...
* BC = T_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0
* BC = Y_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0
* SPECIES_LIST = 1
* BC = Y_BC DIRICHLET SS 1 DEPENDENT user_bc_exact 0
* SPECIES_LIST = 2 3
*/

double return_value, spatial_coeff;
if (var_num == TEMPERATURE) {

return_value = x*x;
if (num_dim > 1) return_value += y*y;
if (num_dim > 2) retum_value += z*z;

}
else if (var_num == MASS_FRACTI0N && sub_var_num <= 2) {

switch (sub_var_num) {
case 0:

spatial_coeff = 2. * num_dim;
return_value = spatial_coeff * exp(x);
break;

case 1:
retura_value = soln[eqn_offset[TEMPERATURE]];
break;

case 2:
return_value = soln[egn_offset[MASS_FRACTION]]

+ soln[eqn_offset[MASS_FRACTION + 1]];
break;

}
}
else {

(void) fprintf(stderr, "ERROR in use of user_bc_exact.\n") ;
exit(-l) ;

}
return (return_value);

}

Figure 4.4. Example of function user_bc_exact used as a boundary condition function.

4.2.1. Accessing BC_DATA in User Functions

Each boundary condition in the input file has a Boundary_Condition structure
(defined in "rf_bc_const.h") associated with it. This structure contains the constant values,
pointers to boundary condition functions (such as user_bc_exact and those in Appendix
A. 1), and BC_DATA associated with the boundary condition. Each type of BC_DATA is stored in
a one-dimensional array of that type. Integer data, specified by BC_DATA=INT, are stored in the

58

double user_jac_bc(JAC_BC_FUNCTION_ARGLIST)
{
/* Returns the derivatives of the following Dirichlet boundary
* conditions for coupled linear diffusion equations:

* T = x +y +z

* Y0 = ae where a = 2 i n ID, a = 4 in 2D, and a = 6 i n 3D

y, = T

* Y2 = Y0 + Y1

* USAGE: In Boundary Conditions section...
* BC = T_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0
* BC = Y_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0
* SPECIES_LIST = 1
* BC = Y_BC DIRICHLET SS 1 DEPENDENT user_jac_bc user_bc_exact 0
* SPECIES_LIST = 2 3
*/

double return_value = 0.0;
/* TEMPERATURE BC does not depend on other variables.
* Y_0 BC does not depend on other variables.
* Y_l BC does not depend on other mass fractions.
* Y_2 BC does not depend on temperature.
* return_value is already set to zero for these entries.
*/

if (var_num == MASS_FRACTION && sub_var_num <= 2) {
switch (sub_var_num) {

case 1:
if (wrt_var_num == TEMPERATURE)

/* Derivative of Y_l BC w.r.t. TEMPERATURE is 1.0. */
return_value = 1.0;

break;
case 2:

if (wrt_var_num == MASS_FRACTION)
if (wrt_sub_var_num == 0 || wrt_sub_var_num == 1)

/* Derivative of Y_2 BC w.r.t. Y_0 or Y_l is 1.0. */
return_value = 1.0;

break;
}

}
else if (var_num != TEMPERATURE) {

(void) fprintf(stderr, "ERROR in use of user_jac_bc.\n");
exit(-l);

}
return (return_value);

}
Figure 4.5. Example of user function u s e r _ j a c _ b c that computes derivatives of the boundary conditions

in u s e r _ b c _ e x a c t in Figure 4.4.

integer array BC_Data_Int in the Boundary_Condition structure; floating point data,
specified by BC_DATA=FLOAT, are stored in the double array BC_Data_Float; and function
pointer data, specified by BC_DATA=FUNCTION, are stored in the BC_Data_User_Fn_Ptr
array. The data are stored in the order they appear in the input file, starting from array index 0 in
each array.

59

Argument

double solnfl

double x, y, z

double t

MATSTRUCT_PTR matID_ptr

int var_num

int sub_var_num

int wrt_var_num

int wrt_sub_var_num

int eqn_offset[]

int num_dim

BCSTRUCT_PTRbc

Description

Solution vector at position (x, y, z).

Coordinates of position (x, y, z).

Time.

Pointer to the material property structure (defined in "rf_matrl_const.h")
for the material being processed.

Dependent variable of the partial derivative (e.g., TEMPERATURE,
VELOCITYl, MASS_FRACTION) as defined in "rf_fem_const.h."

Species number for the dependent variable of the partial derivative
(applicable only when var_num = MASS_FRACTION).

Independent variable of the partial derivative to be taken (e.g.,
TEMPERATURE, VELOCITYl, MASS_FRACTION) as defined in
"rf_fem_const.h"

Species number for the independent variable of the partial derivative
(applicable only when wrt_var_num = MASS_FRACTION).

Offset into soln[] for each variable; e.g., the temperature at (*,y,z) is
soln[eqn_offset[TEMPERATURE]].

Number of dimensions in the element.

Pointer to the boundary condition structure (defined in "rf_bc_const.h")
corresponding to the current boundary condition being processed.

Table 4.5. Arguments included in JAC_BC_FUNCTION_ARGLIST.

The argument be in SNGLVAR_FUNCTION_ARGLIST and
JAC_BC_FUNCTION_ARGLIST is a pointer to the B o u n d a r y _ C o n d i t i o n structure
associated with the boundary condition. BC_DATA can be accessed by following this pointer. For
example, the first BC_DATA=INT value entered in the input file would be accessed in boundary
condition functions by bc->BC_Data_Int [0] . An example boundary condition function using
BCJDATA is included in Figure 4.6. In this example, the rotation rate and center of rotation of a
two-dimensional disk are given by BC_DATA=FLOAT values in the input file.

Functions listed in BC_DATA=FUNCTION lines must also be boundary condition
functions as described in Section 4.2. They must have the same prototypes as u s e r _ b c _ e x a c t
and be called with the SNGLVAR_FUNCTION_ARGLlST argument list in Table 4.2. As with all
user boundary condition functions, they must be included in the pointer assignment routine
a l i g n _ f _ p t r and compiled into MPSalsa. The syntax for calling, say, the second
BC_DATA=FUNCTION listed for a boundary condition is shown below:

v a l = b c - > B C _ D a t a _ U s e r _ F n _ P t r [1] (s o l n , x , y , z , t ,
m a t I D _ p t r , var_num, sub_var_num, e q n _ o f f s e t ,
num_dim, b e) ;

60

double f_xy_spin_disk (SNGLVAR_FUNCTION_ARGLIST)
{
/* Function to return value of the x,y velocity on a rotating disk.
* This function takes 3 arguments:
* BC_Data_Float[0] = rotation rate in rpm, counter clockwise
* BC_Data_Float[l] = x_0
* BC_Data_Float[2] = y_0

* Usage: e.g. Disk spinning at 50rpm around x=0, y=0
* U_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1
* BC_DATA = 50.0 0.0 0.0
* V_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1
* BC_DATA = 50.0 0.0 0.0
*/

double omega = 0.0, x_0 = 0.0, y_0 = 0.0; /* default values */
double x_offset, y_offset, result;

/* Use BC_DATA values if any are specified in the input file. */

if (bc->BC_Data_Float != NULL) {
/* Conversion from rpm to radians/sec done once in bc_input_pre_process */
/* omega = (bc->BC_Data_Float[0] * 2.0 * pi)/60.0; */
omega = bc->BC_Data_Float[0]j

}

X.
y.

x_0
Y-0

.offset

.offset

=
=

=

bc-
bc-

(x -
(y -

->BC_Data_Float[1)
->BC_Data_Float[2]

x_0) ;
Y_0);

if (var_num == VELOCITYl) result = (-omega * y_offset);
else if (var_num == VSLOCITY2) result = (omega * x_offset);
else if (var_num == TANGENT_VELOCITYl)

/* Assumes tl = [0.8, 0.6, 0.0] */
result = 0.8 * (-omega * y_offset) + 0.6 * (omega * x_offset);

else if (var_num == TANGENT_VEL0CITY2)
/* Assumes t2 = [-0.6, 0.8, 0.0] */
result = -0.6 * (-omega * y_offset) + 0.8 * (omega * x_offset)

return (result);
}

Figure 4.6. Example demonstrating the use o/BC_DATA in boundary condition functions.

4.3. Generalized Surfaces

User-defined outward normal and tangent vectors may be specified through the use of
generalized surfaces as described in Section 3.7.1. The functions user_normal,
u s e r _ t a n g e n t l , and use r_ tangen t2 are provided for this purpose. They return the
appropriate surface vector as a function of position on the surface. The prototypes for these
functions are

void user_normal (SURF_VECTOR_FUNCTION_ARGLIST)
void user_tangentl (SURF_VECTOR_FUNCTION_ARGLIST)
void user_tangent2 (SURF_VECTOR_FUNCTION_ARGLIST)

61

where SURF_VECTOR_FUNCTION_ARGLIST is defined in "rf_bc_const.h" and described in
Table 4.6.

Argument

double surf_vec[]

double x, y, z

Description

Returned vector containing the x-, y-, and z-components of a surface
vector.

Coordinates of position (x, y, z).

Table 4.6. Arguments included in SURF_VECTOR_FUNCTION_ARGLIST.

Examples of the generalized surface functions are given in Figure 4.7. The functions are
stored in "rf_user_tangent_fn.c." To add new user-defined functions for describing generalized
surfaces, users should write the functions in either "rf_tangent_fn.c" or "rf_user_tangent_fn.c,"
include prototypes for the new functions in "rf_tangent_fn.c," and add pointer assignments for the
new functions to the routine a l i g n _ s u r f _ v e c t o r _ p t r in "rf_tangent_fn.c." The prototypes
and pointer assignments for u s e r _ n o r m a l serve as examples for newly written user functions
for outward normal and tangent vectors.

The following run-time error message alerts users to incorrect implementation of user-
defined normal and tangent functions:

> ERROR - unknown surface vector function: functionjtame
A function name was either misspelled in the input file or not added correctly to the
a l i g n _ s u r f _ v e c t o r _ p t r routine.

4.4. Initial Condition/Guess

Initial guesses may be specified through the u s e r _ i n i t _ c o n d function. The prototype
for u s e r _ i n i t _ c o n d is

d o u b l e u s e r _ i n i t _ c o n d (SNGLVAR_FUNCTION_ARGLIST)
where SNGLVAR_FUNCTION_ARGLIST is described in Table 4.2. The arguments matID_jotr
and be in SNGLVAR_FUNCTION_ARGLIST are NULL when a function is used as an initial
condition function. The function u s e r _ i n i t _ c o n d is in file "rf_user_init_cond_fn.c." New
initial condition functions should be added to this file or to "rf_bc_exact_fn.c." Prototypes for
new functions should be added to "rf_bc_exact_fn_const.h," and function pointers must be added
to a l i g n _ f _ p t r in "rf_bc_exact_fn.c."

62

void user_normal(SURF_VECTOR_FUNCTI0N_ARGLIST)
{
/*
* Outward normal vector (along circle of radius one) of cylinder aligned
* in z-direction.

* USAGE: in Generalized Surfaces section ...
* NORMAL = user_normal
*/

surf_vec[0] = x;
surf_vec[l] = y;
surf_vec[2] = 0.0;

}

void user_tangentl(SURF_VECTOR_FUNCTION_ARGLIST)
{
/*
* Tangent vector (along circle of radius one) of cylinder aligned
* in z-direction.

* USAGE: in Generalized Surfaces section ...
* TANGENT = user_tangentl
*/

surf_vec[0] = -y;
surf_vec[l] = x;
surf_vec[2] = 0.0;

}
void user_tangent2 <SURF_VECT0R_FUNCTI0N_ARGLIST)
{
/*
* Tangent vector (along height of cylinder) of cylinder aligned in z-direction.

* USAGE: in Generalized Surfaces section ...
* TANGENT = user_tangent2
*/

surf_vec[0] = 0.0;
surf_vec[l] = 0.0;
surf_vec[2] = 1.0;

}
Figure 4.7. Example of functions user_normal, u s e r _ t a n g e n t l , and use r_ tangent2 for

generalized surfaces.

4.5. Exact Solutions

For problems having analytic solutions, MPSalsa can compare the computed solution with
the analytic solution. The user function user_bc_exac t in "rf_user_bc_exact_fn.c" may be
used to specify the exact solution function. The prototype for user_bc_exac t is

double user_bc_exact (SNGLVAR_FUNCTION_ARGLIST)
where SNGLVAR_FUNCTION_ARGLIST is described in Table 4.2. Since exact solutions depend
only on position and time, the arguments matID_ptr, be, and eqn_offset[] in
SNGLVAR_FUNCTION_ARGLIST are NULL when they are arguments to an exact solution
function. An example of user_bc_exact used as an exact solution function is given in Figure

63

4.8. The procedures for adding new exact solution functions to MPSalsa are the same as those
described in Section 4.2 for adding new boundary condition functions.

double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST)
{
/* Returns the exact solution values for the coupled linear diffusion equations:

* T = x2 + y2 + z2

* YQ = ae where a = 2 i n ID, a = 4 in 2D, and a = 6 in 3D

v 2 2 2
* Y^ = x +y +z

* 2 2 2
* Y2 = ae +x +y +z
* USAGE: in Output Specification section...
* Test Exact Solution Flag = 1
* Name of Exact Solution Function = user_bc_exact
*/

double return_value, spatial_coeff, sum;

spatial_coeff = 2 * num_dim;
sum = x*x;
if (num_dim > 1) sum += y*y;
if (num_dim > 2) sum += z*z;

if (var_num == TEMPERATURE) {
return_value = sum;

}
else if (var_num == MASS_FRACTI0N && sub_var_num <= 2) {

switch (sub_var_num) {
case 0:

return_value = spatial_coeff * exp(x);
break;

case 1:
return_value = sum;
break;

case 2:
return_value = spatial_coeff * exp(x) + sum;
break,-

}
}
else {

(void) fprintf(stderr, "ERROR in use of user_bc_exact.\n");
exit(-l);

}
return (return_value);

}

Figure 4.8. Example of function user_bc_exact used as an exact solution function.

4.6. Output

Functions can be written to compute specific output from the solution. At the initial
conditions, after every time step, and after calculating a steady-state solution, the function
use r_ou t in the file "rf_user_out.c" is called. The default function use r_ou t computes the
maximum, minimum, and average value of each variable as well as the position of the maximum

64

and minimum. (Little investment has been made in providing output options for MPSalsa since
commercial visualization packages that read in the FE mesh and solutions from the ExodusII
database have satisfied most of our post-processing needs.)

Writing additional output routines should be done using the use r_ou t function, either
by replacing it with an alternate function or by calling another function from within it. The second
option was chosen for implementing routines such as t i m e _ h i s t o r y _ p o i n t s (See Section
A.3.1).

The s t a t u s integer flag passed to user_out contains information on whether the
solution is an initial guess, an intermediate time step, a failed time step, or a final solution. The
values of the flag are shown in Figure 4.9.

* Values for status variable:

* <0 = Some sort of error condition has occurred.
* 0 = Initial conditions
* 1 = Final conditions, i.e., a successful run has completed
* 2 = A successful intermediate time step has occurred.

Figure 4.9. Values of the s t a t u s flag as passed to u s e r _ o u t .

To write new output functions, it is best to modify the default user__out or one of the
output functions listed in Appendix A. Many quantities that might be useful in output routines -
such as the values of physical properties at the nodes and useful bookkeeping arrays — are
unfortunately not readily available to the output routines. These quantities are stored in memory
only during the matrix-fill section of the calculation; after the matrix-fill, their memory is freed to
provide as much memory as possible for the matrix-solve.

4.7. Continuation

The function u s e r _ c o n t i n u a t i o n in the file "rf_user_continuation.c" is where the
continuation parameter is defined. The continuation parameter can be equated to any boundary
condition, physical property, or a combination of these quantities. The function takes as input the
pointer to the continuation parameter, and updates the appropriate physical quantity or boundary
condition. For instance, if the user would like to continue with respect to the viscosity of the first
material, stored globally as MatID_Prop->viscosi ty, u s e r _ c o n t i n u a t i o n would
simply contain the appropriate assignment statement as shown in Figure 4.10.

Similarly, if the user would like to continue with respect to the value of the sixth boundary
condition listed in the file, stored globally as BC_Types [5] .BC_Fn_Value,
u s e r _ c o n t i n u a t i o n would contain just the following assignment statement:

65

function void
/*
/*
{

}

con_par is
*con_par is

MatID_Prop

user_continuation(double
a pointer to
the value of

->viscosity =

*con_par);
the continuation parameter */
the continuation parameter

*con_par;
*/

Figure 4.10. Example of the function us e r _ c o n t i n u a t i on. for assigning the continuation parameter
to a physical quantity (in this case the fluid viscosity).

BC_Types[5].BC_Fn_Value = *con_par;
(Since "C" numbering begins with zero, the sixth boundary condition in the input file is stored in
array entry five.)

Another common continuation parameter with boundary conditions is an entry in the
BC_DATA statement. To continue with respect to the third constant ("C" array entry 2) of the
BC_DATA FLOAT array of the twenty-third boundary condition ("C" array entry 22), the
assignment would be

BC_Types[22].BC_Data_Float[2] = *con_par;
All parts of the boundary condition structure, not only the BC_Fn_Value and

BC_Data_Float [] examples shown here, can be referenced for use in continuation. The entire
structure is listed in the file "rf_bc_const.h." Similarly, the entire materials structure of physical
properties can be referenced in the same way the viscosity was above. The structure is defined in
the file "rf_matrl_const.h."

The continuation parameter can represent other quantities by more complicated
assignment statements. For instance, to continue with respect to the Reynolds number, where the
inlet velocity is entered as the fourth BC and the characteristic length is 2.0, the assignment
statement would be

BC_Types[33.BC_Fn_Value = *con_par * MatID_Prop->viscosity
/ (2.0 * MatID_Prop->density);

In this example, the inlet velocity is manipulated at constant viscosity and density so that the
continuation parameter equals the Reynolds number, and other dimensionless numbers stay
constant.

4.8. Function Data

User data specified in the Function Data section of the input file (see Section 3.11) may be
accessed by any of the above user functions. The user function must first locate its particular
function data. In the simplest case, the location is found by calling the function
fn_data l o c a t i o n :

66

FNDATA_PTR fn_da t a_ loca t i on (char y o [] , i n t d a t a _ r e q u i r e d)
where yo[] is a character string containing the function name associated with the data in the input
file, and d a t a _ r e q u i r e d indicates whether the function data is mandatory or optional. If
d a t a _ r e q u i r e d is TRUE and no function data was included in the input file, MPSalsa will quit
with an error condition. When d a t a _ r e q u i r e d is FALSE, either default values for the data
should be supplied or the user function should return immediately without an error.

The function f n _ d a t a _ l o c a t i o n returns a pointer to a Function_Data structure
(defined in "rf_fn_data_const.h"). Within the Function_Data structure, Fn_Data_Int,
Fn_Data_Float, and Fn_Data_Str ing are arrays of INT, STRING, and FLOAT function
data, respectively, from the input file. The numbers of entries in each array are given by
Num_Fn_Data_Int, Num_Fn_Data_String and Num_Fn_Data_Float. The arrays are
used in a manner analogous to the BC_DATA arrays for boundary conditions (see Section 4.2.1).
Data values are stored in the order they are read from the input file, starting from index 0 in the
arrays. For example, the fifth string entered as function data would be addressed by
cur ren t_fn->Fn_Data_St r ing[4] . An example of a boundary condition function that
uses optional function data is given in Figure 4.11.

double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST)
{
/* 2 2

* Function that returns (x-xQ) + (y-y0) where x0 and y0 may be
* specified by the user in the function data section of the input file.

* USAGE: in Function Data Specification section ...
* Function Name = user_bc_exact 1
* FN_DATA = FLOAT 3.0 2.0
*/
FNDATA_PTR current_fn;

/* Get the pointer to the function data for this function. */
/* This function is optional; if no function data is found, */
/* xQ and y0 are zero. */

current_fn = fn_data_location("user_bc_exact", FALSE);

if (current_fn != NULL)
if (current_fn->Num_Fn_Data_Float > 0)

x = (x - current_fn->Fn_Data_Float[0]) ;
if (current_fn->Num_Fn_Data_Float > 1)

y = (y - current_fn->Fn_Data_Float[1]) ;
}
return (x * x + y * y);

}

Figure 4.11. Example usage of function data within a user function.

A table supplied by the FN_DATA=TABLE mechanism is stored in the Function_Data
structure as Fn_Data_Table, a two-dimensional array of double precision numbers. Each row

67

of the table in the input file is stored as a row of the array; that is, the j entry on the / row of
the input table is stored in Fn_Data_Table[i][/]. The numbers of rows and columns in the table
are stored in Fn_Data_Table_Dim[0] and Fn_Data_Table_Dim[l], respectively. The
function lookup_ tab le_ l in "rf_fn_data.c" provides a good example of the usage of function
data tables (see Appendix A.2).

User functions that operate on several sets of function data are often useful. The function
t i m e _ h i s t o r y _ l i n e , for example, prints the solution along a line that is described by a
function data table. To print time histories along several lines, a function data entry is included in
the input file for each line. Such user functions must loop over all the function data and operate on
each instance of their function data. The function f n _ d a t a _ n e x t _ l o c a t i o n is provided to
allow processing of two or more sets of function data by a single function. The prototype for
f n_data_next_location is

FNDATA_PTR fn_data_next_location(char yo [] ,
int data_required, int start_ifd, int *found_ifd)

where yo[] is the function name specified in the input file, d a t a _ r e q u i r e d indicates whether
the function data are required or optional, s t a r t _ i f d is the first function data entry to be
checked for a match withyoO, and the index of the function data entry matching yo[] is returned
in found_ifd. The value of found_ifd+l should be used as s t a r t _ i f d in subsequent
searches for more function data for yo[]. A pointer to the function data indexed by f ound_if d
is returned by fn_da ta_nex t_ loca t ion . An example demonstrating the usage of
f n_da t a_nex t_ loca t i on in a loop over function data is given in Figure 4.12.

68

void function_name()
{
/*
* USAGE: in Function Data Specification section ...
* Function Name = function_name 1
* FN_DATA = STRING data set one
* Function Name = function_name 1
* FN_DATA = STRING data set two
*/
char yo[] = "function_name";
FNDATA_PTR current_fn = NULL;
int ifd = -1;
extern int Num_Fn_Data; /* Number of function data entries in the input file */

while (ifd < Num_Fn_Data) {

/* Get the pointer to the function data for this function */
current_fn = fn_data_next_location(yo, FALSE, ifd+1, &ifd);

if (current_fn == NULL) {
printfC'No additional Function Data found for %s\n", yo) ;
break;

}
else {

/*
* Process the data pointed to by current_fn.
*/

}
}

}

Figure 4.12. Example usage off n_da ta_nex t_ loca t ion to process more than one set of function data
within a function.

69

5. Solution Strategies

5.1. Getting to a Steady State

Sometimes a steady-state solution to a non-linear problem is desired but MPSalsa will not
converge to it for a given input file and a simple initial guess. The following is a list of some input
file options and techniques that can help. Some of the options are discussed in more detail later in
this chapter.

(1) Increase the maximum number of Newton iterations. (See Section 3.3.1.)

(2) Choose a more robust preconditioner. such as no_over lap_b i lu or
r e a l _ o v e r l a p _ i l u . If the program runs out of memory, use a larger number of processors.
(See Section 3.3.2.)

(3) Increase the number of Krylov subspace vectors for GMRES. If the program runs
out of memory, use a larger number of processors. For problems of a few hundred thousand
unknowns, a Krylov subspace size over 100 is desirable. (See Section 3.3.2.)

(4) Switch the Enable b a c k t r a c k i n g for r e s i d u a l r e d u c t i o n flag
from on to of f, or from of f to on. We have seen examples where the problem converges only
with backtracking on, and we have seen cases that converge only with backtracking off. (See
Section 3.3.1.)

If none of the easy solutions above works, the following options may.

(5) Use pseudo time-stepping as the S o l u t i o n Type to relax the system. If the
initial time step is small and Time Step Con t ro l is on, pseudo time stepping increases the
time step for any step that converges, regardless of integration error. After 5-20 successful time
steps have been taken, one can often restart from the last time step and converge to the steady-
state. (See Section 3.2.)

(6) Use the restart capability to step to the solution by first solving the problem at
simpler conditions, such as at a reduced density or thermodynamic pressure, an elevated viscosity,
or with reactions turned off using the Spec ies equa t ion source terms and Energy
equa t i on source terms flags. Then, use this intermediate solution as an initial guess for
the desired solution. (See Section 3.8.)

(7) Use continuation to automatically step through a series of steady states as a single
parameter is incremented until reaching the desired conditions. (See Section 5.4.)

70

(8) Do mesh sequencing to first solve the problem on a coarse mesh, and work toward
a fine mesh. Convergence is often better on coarse meshes because the preconditioners span more
of the domain. (See Section 5.3.)

(9) Write an initial guess function with an educated guess of what the solution will
look like as a function of x, y, and z. (See Section 3.8 and Section 4.4.)

5.2. Picking a Linear Solver and Preconditioner

The choices for the linear solver, the preconditioner, and the scaling method are listed in
Table 3.3, Table 3.5, and Table 3.6, respectively, and lead to hundreds of possible combinations.
In Table 5.1 below, we list the three combinations that we use most often. The most common
combination is #1, which does well for getting to a steady-state (i.e., for steady, pseudo, or
c o n t i n u a t i o n solution types as listed in Section 3.2). With the GMRES method, the Krylov
subspace dimension can be increased to be as big as will fit on the machine without running out of
memory (or causing excess swapping on some machines), up to a value of a few hundred. The
total number of linear solver iterations should usually be two or three times the Krylov subspace
size, since GMRES tends to make little progress after restarting three times.

If a steady state is desired but the job runs out of memory at low values of the Krylov
subspace, there are two options: (1) use a larger number of processors, and (2) switch to a
different solver such as the tfqmr solver (combination #2).

For t r a n s i e n t runs where speed is more important than robustness, the scheme #3 is
often used. This scheme uses only about half the memory of scheme #1 and the calculation of the
scaling matrix is much quicker than an ILU-type preconditioner.

Scheme, in decreasing order of
robustness and memory use

1. Robust; good for Steady-State

2. Robust; uses less Memory

3. Fast; Good for Transient

Linear
Solver

gmres

tfqmr

gmres

Preconditioner

no_overlap_ilu

no_overlap_ilu

none

Scaling

row_sum

row_sum

block_Jacobi

Krylov
subspace

large (>100)

moderate
Table 5.1. Three common linear solution schemes.

5.3. Mesh Sequencing

Mesh sequencing is a strategy for more easily obtaining steady-state solutions on fine
meshes. In mesh sequencing, a solution is first computed on a coarse mesh. This solution is
interpolated to a finer mesh and used as the initial guess for the solution on the fine mesh.

71

Sequences of successively finer meshes can be used until a solution with the desired resolution is
obtained.

Using Merlinll [15] to interpolate the solution from coarse meshes to fine ones, we have
run some experiments with mesh sequencing in MPSalsa. In Table 5.2, we show results for the
Lid-Driven Cavity problem (see Appendix C.2) with an upper-wall velocity of u = 1500.
Steady-state solutions were obtained with an initial guess of zero for all unknowns and with initial
guesses interpolated from coarser meshes. The linear solver was GMRES with an ILU
preconditioner. The number of Newton iterations and the solution times on the Intel Paragon are
compared.

Mesh Size

16x16

32x32

64x64

128x128

Number of
Processors

1

4

16

64

Initial Guess

0.0

0.0

Sol'n from 16x16

0.0

Sol'n from 16x16

Sol'n from 32x32

0.0

Sol'n from 16x16

Sol'n from 32x32

Sol'n from 64x64

Number of
Newton

Iterations

13

10

6

11

8

6

39

29

23

17

Execution
Time

(seconds)

59.2

73.1

46.3

220.0

165.5

122.5

1406.1

1025.3

820.3

610.8

MerlinH's
Execution Time

(seconds)

1.0

2.7

5.2

9.1

17.6

52.4

Table 5.2. Performance of the non-linear solver for the Lid-Driven Cavity example using initial guesses of zero and
initial guesses obtained from coarse-mesh solutions.

Merlinll is included in the SEACAS distribution of utilities for ExodusII. If the SEACAS
utilities are installed in directory $ACCESS, the path $ACCESS/etc must be included in the
user's path. The command line for Merlinll to interpolate the solution from a coarse mesh to a fine
mesh is shown below:

> merlin2 -input merlin.inp -output merlin.out -plot coarse_soln.exoll -mesh
fine_mesh.exoll -interpolate merlin.exoll

where "coarse_soln.exon" is the ExodusII file containing the coarse-mesh solution,
"fine_mesh.exoIT is the ExodusII file containing the fine mesh, "merlin.exon" is the resulting
ExodusII file containing the fine-mesh solution interpolated from the coarse-mesh solution,
"merlin.out" is a text file containing error messages, if any, and "merlin.inp" is an input file

72

containing processing instructions for Merlinll. The Merlinll input file for the Lid-Driven Cavity
example above is shown in Figure 5.1; see [15] for more details.

$ INPUT FILE FOR THE LID-DRIVEN CAVITY EXAMPLE
$ Declare that the files to interpolate both from and to are EXODUS files.
MESH-A, EXODUS
MESH-B, EXODUS
$ List the variables to be interpolated.
VARIABLES
VX
VY
Pres
END
$ List the time planes to be interpolated.
TIMEPLANE
ALL
END
$ Perform the interpolation and quit.
EXECUTE
STOP

Figure 5.1. Merlinll input file for mesh sequencing in the Lid-Driven Cavity example.

5.4. Continuation

Continuation methods are used to solve for a series of steady-state solutions as a function
of a parameter. These methods are commonly used for analysis to study trends in performance or
behavior, as we have studied the effect of the disk spin rate on the CVD reactor performance in
Section D.3. Continuation can also be an efficient way of reaching a steady-state solution at
conditions where a trivial initial guess is not close enough for Newton's method to converge. For
instance, a flow problem can be solved easily at low density, and then the density can be
incremented over several steps until reaching the desired conditions.

To implement continuation, the user must edit the function u s e r _ c o n t i n u a t i o n in
the file "rf_user_continuation.c" to associate the continuation parameter with a specific boundary
condition or a physical, transport, or kinetic property. This can usually be done by editing only
one line of code. For details, see Section 4.7.

Users control the continuation routine through the Solution Specifications section of the
input file. An example of this section configured for a continuation run is shown in Figure 5.2.
The seven lines in this section specify that (1) we are solving a continuation problem; (2) first-
order (a.k.a. Euler-Newton) continuation is to be used; (3) a constant step size is to be used as
long as a steady-state solution is reached within the maximum number of Newton iterations; (4)
the first solution is for a parameter value of 100.0; (5) the first parameter step is of size 100.0;

73

(6,7) the run will stop when either 20 continuation steps have been taken or when the parameter
value exceeds 1300.0.

Solution Specifications

Solution Type
Order of integration/continuation =
Step Control
Initial
Initial
Maximum
Maximum

Parameter
Step Size
Number of

Value

Steps
Time or Parameter Value

=
=
=
=

continuation
1
off
100.0
100.0
20
1300.0

Figure 5.2. Sample Solution Specifications section for a continuation run.

The Order of i n t e g r a t i o n / c o n t i n u a t i o n flag can have values of 0,1, or 2. A
value of zero indicates zeroth order continuation, where the solution at step n is used as an initial
guess for solution n+l at the next parameter value. This type of continuation is just an automation
of doing a series of steady-state calculations where, for each calculation, the parameter is changed
in the input file between each run and the initial solution value is taken from the previous solution.

First-order continuation (when this flag equals one) requires one additional matrix solve to
calculate the derivative of the solution with respect to the parameter at step n, and uses this
tangent to predict an initial guess at the parameter value for step n+l. The resulting improvement
in the initial guess using first-order continuation usually saves at least one Newton iteration in
converging to the solution at step n+l, which makes up for the additional cost of the tangent
calculation.

A value of two for this flag indicates pseudo arc-length continuation, a capability that is
not currently implemented. This method is a powerful tool in bifurcation analysis as it can track
solutions around turning points in the solution branch. In pseudo arc-length continuation, the
distance along the solution branch (not the change in the parameter) is chosen, so the parameter
value is free to increase or decrease. With our block matrix storage format, we have decided not to
implement pseudo arc-length continuation by augmenting the system of equations by one, as is
commonly done [38], but to use the method described in the Ph.D. dissertation of Shadid [41]. In
this method, the continuation step takes two matrix solves to form the initial guess for step n+l,
although the same preconditioner can be used for both solves.

The other input file choice that deserves additional mention is the Step Cont ro l flag.
When Time Step Cont ro l is off, the step size is held constant for successful steps (where
convergence of the nonlinear solver is reached within the maximum number of allowed Newton

74

iterations) and cut in half when a step is unsuccessful. When Time Step Cont ro l is on, the
step size is increased after each successful step. The increase in step size is larger when the ratio
of the number of Newton iterations needed for convergence to the total number of Newton
iterations allowed is small. Failed steps cut the step size in half.

75

6. Future Development

The following is a list of development work for the MPSalsa code that is already planned
or underway.

• Multicomponent Diffusion: A full multicomponent diffusion option will be added, which
will be more accurate than the current mixture-average model, yet much more costly to
compute.

• Cylindrical coordinates: For 2D meshes, the capability to solve for axisymmetric solutions
will be added, with the option of two or three components of the velocity for problems
with fluid flow.

• Multi-Physics: This work will add the ability to solve for different physics, and different
numbers of unknowns, in distinct "realms" of the computational domain. For instance,
heat transfer can be modeled in the solid walls of a reactor together with the reacting gas
flows on the inside.

• Turbulence: Implementation of a k-e model for time-averaged turbulence is underway,
and an LES (Large Eddy Simulation) model for transient turbulence will follow.

• Adaptive Mesh Refinement and Dynamic Load Balancing: The ability to automatically
refine a mesh to reduce a measure of the discretization error below a given tolerance will
be added. As elements are created and destroyed nonuniformly, the work load will be
redistributed over the processors.

• Stability Analysis: A pseudo arc-length continuation routine will be added to track steady-
state solution branches, even if they lose stability through a turning point. To check the
stability of steady solutions, the ability to calculate eigenvalues of the Jacobian matrix will
be added through ARPACK [47], which we will access through the Aztec library.

• Radiation: The ability to include the radiant energy exchange due to enclosure radiation
using the methods in COYOTE U [16] is mostly implemented in MPSalsa. Work is also
underway to implement a participating media radiation model.

• Porous Media: The ability to model multiphase flow in porous media has been
implemented in a previous version of MPSalsa [32], and will be integrated into the current
version in the future. The Brinkman equation, which just requires the addition of drag
terms to the Navier-Stokes equations, will also be included.

• Plasma Physics: The ability to model dense, partially ionized plasma/gas mixtures using
self-consistent charged species transport models will be added.

76

Appendix A. Included Functions

A.l. Boundary Conditions

A.1.1. Surface Chemistry Boundary Conditions

Effects due to surface reactions are included through the use of surface chemistry
boundary conditions. The function surface_chemkin_bc computes the temperature and
mass fraction NEUMANN boundary conditions, and Stefan flow DIRICHLET velocity boundary
conditions below:

N

* = l

n J* = - hwk - (n • pr^u), and (A.2)

n-u = -l-^skWk, (A3)
Ffc=i

where sk = sk(P, T, Y, Z) is the production rate of gas- or surface-phase species k due to surface
reaction, Z is the vector of surface site fractions, Wk is the molecular weight of species k, hk is
the enthalpy of species k, N is the number of gas-phase species, and N is the total number of
gas-, surface-, and bulk-phase species (see [5, 42] for more details of these surface reaction
boundary conditions). Examples using the surface_chemkin_bc function for (A.1) - (A.3)
are included in Figure A.l. The Stefan velocity boundary condition (A.3) may be implemented as
either a VEL_NORM_BC or as a U_BC, V_BC, or W_BC when the normal vector is parallel to the
x-, y-, or z-axis, respectively. In the latter case, the sign of the normal vector will be taken into
account automatically.

The initial surface site fractions and bulk species mass fractions may be specified in the
input file by including SURF_SPECIES_LIST and BC_DATA lines with the
sur f ace_chemkin_bc mass fraction boundary condition. The format for these lines follows:

SURF_SPECIES_LIST = {ALL | list of species numbers \ list of species names}
BC_DATA = FLOAT list of surface site fractions or mass fractions

The arguments of SURF_SPECIES_LIST are analogous to those of the SPECIES_LIST
described in Section 3.7.2.1, with the exception that the numbers or names must correspond to
surface or bulk species. These two lines together count as one data line in the numjiatajines

77

Temperature BC of equation (A.l).
BC = T_BC NEUMANN SS 4 DEPENDENT surface_chemkin_bc 0

Mass fraction BC of equation (A.2).
BC = Y_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 2

SPECIES_LIST = ALL
SURF_SPECIES_LIST = GaMe(S) Ga(S) GaH(S) AsH(S) AsMe(S) As(S)
BC_DATA = 1.0e-6 0.5 1.0e-6 1.0e-6 1.0e-6 0.5
SURF_SPECIES_LIST = Ga-GaAs(D) As-GaAs(D)
BC_DATA = 1.0 1.0

Tangential velocity BC with value 0.0. .
BC = U_BC DIRICHLET SS 4 INDEPENDENT 0. 0
BC = V_BC DIRICHLET SS 4 INDEPENDENT 0. 0

Normal velocity BC of equation (A.3) (Stefan flow).
BC = Z_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0

Figure A. 1. Example usage of surface_chemkinj>c for surface reaction boundary conditions on temperature,
mass fractions and velocity (where the normal to side set 4 is parallel to the z-axis).

argument of the BC line (see Section 3.7.2). The example in Figure A.1 uses
SURF_SPECIES_LIST to initialize both surface site fractions and bulk mass fractions.

A.1.2. Danckwerts' Boundary Conditions

Danckwerts' boundary condition can be applied using the included functions
f _Danckwerts and f_Danckwerts_X0. Danckwerts' boundary condition is used as an inlet
boundary condition when the user wants to specify the total flux of each species into the system,
rather than the mole or mass fraction of species at the edge of the domain. This is particularly
important in low pressure reacting systems, where the diffusive component of the inlet flux of a
species i is significant compared to the convective contribution:

i / A A\

*total ~ ^diffusive "convective \"-^)

This boundary condition is also important for matching experimental results, where it is generally
the total flux of a species i that is known, not the mole fractions at the edge of the computational
domain.

It is assumed that the user knows the total flux of each species into the system in terms of
the upstream velocity uQ, the normal flow velocity into the domain v0 = -n • u0 , the upstream
density p 0 , and the relative species mole fractions X0. The weak form of the FE discretization
yields a surface integral of the diffusive flux over the inlet boundary. Using (A.4) to solve for the
diffusive flux, we have

n * ^diffusive = n*{*total-honvective) = "PoVo + P ^ ' <A - 5)

78

where Y*0 is the mass fraction of species i computed from the given mole fractions XQ, Y1 is the
unknown mass fraction of species i at the inlet boundary, v = -n • u is the unknown normal
velocity into the domain at the inlet boundary, and p and p0 are the densities calculated for Y
and Y0. By conservation of mass, the total mass flux of species i at the inlet boundary must be
equal to the given mass flux into the system,

pv = p0v0, (A.6)

which leads to a Dirichlet condition on the inlet velocity:

v = p0v0 /p. (A.7)

Using (A.7) to simplify (A.5), we get a MIXED boundary condition for each species,

^ivfusive = P 0 v o (r - r 0) . (A.8)

With MPSalsa, (A.7) and (A.8) are applied with the following lines in the Boundary
Condition section of the input file (assuming that the boundary is side set 1 and has a normal in
the y-direction):

BC = V_BC DIRICHLET SS 1 DEPENDENT f_Danckwerts_XO 1
BC_DATA = FLOAT S_0 XI X2 X3 .. XN

BC = Y_BC MIXED SS 1 INDEPENDENT f_Danckwerts f_Danckwerts_XO 0.0 0.0 1
SPECIES_LIST = ALL
BC_DATA = FLOAT S_0 XI X2 X3 .. XN

The BC_DATA statements following the V_BC and Y_BC statements must be the same, and
consist of an upstream velocity S_0 followed by the list of molar flux fractions. The expression
for S_0 varies depending on the type of velocity boundary condition in which it is used. For
Dirichlet boundary conditions on one component uk of the velocity u (i.e., U_BC, V_BC, or
W_BC),

S_0 = v0(-n»ek), (A.9)

where ek is the unit vector in the k -coordinate direction. For Dirichlet boundary conditions on
the normal velocity n • u (i.e., VEL_NORM_BC),

S_0 = n»u 0 = -v0 . (A.10)

In both of these cases, S_0 is the velocity value that would be used if regular Dirichlet boundary
conditions on velocity were being imposed instead of Danckwerts' boundary condition.

79

The function f_Danckwerts_XO, when used as a velocity boundary condition,
calculates the ratio of the densities in (A.7) and multiplies it by S_0. When used as a Y_BC, this
function returns the appropriate mass fraction calculated from the mole fractions Xp X2, ...,XN.
The function f_Danckwerts returns the quantity p0v0 = p0 |S_0|, which is analogous to the
heat transfer coefficient in the typical MIXED boundary condition. It calculates p0 assuming that
the temperature and pressure upstream of the boundary are equal to those values used at the
boundary. Thus, only the mass fractions and the normal velocity are allowed to have a jump
discontinuity between the upstream and the domain. This limits effective usage of this boundary
condition to cases where there is a Dirichlet condition on the temperature on the same boundary.

If the inlet fluxes are known in terms of mass fractions instead of mole fractions, the
function f _Danckwerts_YO can be used in place of the f _Danckwerts_XO above, and the
list of mass fractions must follow S_0 in the BC_DATA statements.

A. 1.3. Spinning Disk Boundary Conditions

A.l.3.1. Spinning Disk in the xy-Plane

The boundary condition function f _xy_spin_disk is used to apply Dirichlet boundary
conditions on velocities on a spinning disk in the xy-plane. This function returns non-zero values
only for boundary condition types U_BC and V_BC. It should be called as an independent
Dirichlet condition on either side sets or node sets, and requires a BC_DATA statement. The
BC_DATA line must include three floating point numbers, the first being the disk rotation rate in
rpms (revolutions per minute) in the counterclockwise direction. The next two entries are the
coordinates of the rotation center.

For example, boundary conditions for a disk rotating at 80 rpm that is centered at the point
(x,y) = (2,-3) would be imposed using the following lines in the input file:

U_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1
BC_DATA = 80.0 2.0 -3.0

V_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1
BC_DATA = 80.0 2.0 -3.0

The rotation rate is translated from rpm to radians/sec in a pre-processing step in the file
"rf_input_bcc."

A.l.3.2. Spinning Tilted Disk

The boundary condition f _ x y _ s p i n _ t i l t 9 _ d i s k was written for the Tilted CVD
reactor (see the example in Appendix D.3). In this reactor, the rotating substrate is on a tilted
plane whose tangent vectors are (1,0,0) and (0, coscp, sincp) , with <p = 9 degrees. Since the

80

velocity normal to the disk can be non-zero due to the Stefan velocity, the rotation boundary
conditions are imposed in the two tangential directions using the Generalized Surface
functionality.

As with the spinning disk boundary condition in Appendix A. 1.3.1, this independent
Dirichlet condition requires a BC_DATA statement with the rotation rate, followed by the center
of rotation. An example using this boundary condition, including the specification of the
generahzed surface along side set 5, is shown in Figure A.2. This specification is for a disk
centered at (0,0,1.5046) that is rotating at 80 rpm.

Number of Generalized Surfaces = 1
GENERALIZED_SURFACE 5 2

TANGENT 1.0 0.0 0.0
TANGENT 0.0 0.9876 0.1564

Number of BC = 33
BC = VEL_TAN1_BC DIRICHLET GS 1 INDEPENDENT f_xy_spin_tilt9_disk 1

BC_DATA = FLOAT 80.0 0.0 0.0 1.5046
BC = VEL_TAN2_BC DIRICHLET GS 1 INDEPENDENT f_xy_spin_tilt9_disk 1

BC_DATA = FLOAT 80.0 0.0 0.0 1.5046

Figure A.2. Example usage of f _xy_sp in_ t i l t 9_d i sk to specify Dirichlet boundary conditions for
velocities on a spinning, tilted disk.

AAA. Mass Fraction Dirichlet Boundary Conditions expressed as Mole Fractions

In MPSalsa, the primitive variables for mass transfer are mass fractions, but for many
applications, it is the mole fractions that are known. MPSalsa includes the function
f _mole_f r a c t ion which allows the user to specify the mole fractions as a Dirichlet condition
along a side set or node set. An example of this boundary condition is in Figure A.3. The mole
fractions for all species are listed on the BC_DATA line in the order of the SPECIES_LIST
arguments above it. For SPECIES_LIST = ALL, the mole fractions should be listed in order
from the first species to the last species. The mole fractions can be spread across more than one
BC_DATA statement, each preceded by a SPECIES_LIST statement.

BC = Y_BC
SPECIES.
BC. .DATA

DIRICHLET SS
.LIST = 2 1 4 3
— 1.232900e--04

1

1

INDEPENDENT

095458e--02 9

f_mole_

.889221

fraction

e-01 0.0

1

Figure A.3. Example usage o/f_mole_f r a c t i o n to specify Dirichlet boundary conditions for mass
fractions in terms of mole fractions.

81

The conversion from mole fractions to mass fractions is done once in a preprocessing step,
with the resulting mass fractions being stored in the BC_Data_Float array where the mole
fractions originally were. Error checking makes sure that each species is assigned a mole fraction
and that the sum of mole fractions is near unity.

A.1.5. Outflow Boundary Condition

The included function f_pressure returns the hydrodynamic pressure unknown
weighted by a constant. This value can be used as an outflow boundary condition by imposing this
function as a Neumann condition on the normal component of the momentum equation. The
usage of the function in the case of outflow from the computational domain on side set 3, with a
normal in the y-direction, is

BC = V_BC NEUMANN SS 3 DEPENDENT f_pressure 1
BC_DATA = FLOAT 1.0

The single floating point data statement required with the f_pressure boundary condition is a
multiplicative factor, which will be discussed later.

A reasonable outflow boundary condition on the normal component of the momentum
balance is that the normal velocity is not changing as it leaves the domain, i.e. dun/dn = 0
where n represents the direction normal to the boundary and un is the normal velocity. The weak
form of the FE residual equation in the direction normal to the surface with respect to test function
*?. renders the following surface integral for the normal component of the stress tensor:

J 2 du„
VjdT. (A. 11)

From the continuity equation, the middle term is identically zero for incompressible flows
and is often negligible for variable-density flows. A natural condition that sets the entire integral
to zero works for many cases as an outflow boundary condition and has the added feature of
setting the pressure datum to near zero along the outflow surface. Thus, no boundary condition for
pressure is needed for open flows while the pressure must be set at one node for closed flows.

This natural condition does not work for cases where the pressure is not constant along the
outflow surface, such as a vertical outflow plane in systems with gravity and swirling flows such
as the Rotating Disk Reactor configuration in Appendix D.2. It is for these systems that we
impose the simple f . p r e s s u r e Neumann boundary condition

82

kji-P^jdT. (A. 12)
r

In (A. 12), k is the multiplicative floating point number input in the BC_DATA statement.
When k = 1.0 and the divergence of the velocity is negligible, this boundary condition weakly
imposes the desired outflow boundary condition. However, this results in an arbitrary pressure
datum again. We have found empirically that setting the multiplicative constant in the range of
k e [0.9,0.99] gives smooth outflow profiles while still setting the average pressure on the
outflow boundary to zero.

The FTDAP package [13] also integrates the pressure as an outflow boundary condition,
but does not include the derivatives of the boundary condition in the Jacobian matrix. The
pressure from the previous Newton iteration sets the pressure at the current step, removing the
need for a value of k other than unity to set the pressure datum. However, this omission can
greatly degrade convergence of Newton's method. The user can try this method by changing the
boundary condition to type INDEPENDENT so that no Jacobian entries are computed for this
boundary condition. Other outflow boundary conditions are under development.

A.2. Look-up Tables

Values of properties and boundary conditions may be interpolated from tables of data
specified in the Function Data section of the input file (see Section 3.11). Two of these look-up
tables, l o o k u p _ t a b l e _ l and l o o k u p _ t a b l e _ 2 , are included in MPSalsa. Other look-up
tables can be easily added by following the example of l o o k u p _ t a b l e _ l in "rf_fn_data.c"
(actual code for the function), "rf_fill_const.h" (prototype for the function), and
"rf_bc_exact_fn.c" and "rf_source_fn.c" (pointer assignment routines for the function).

Look-up tables can be used anywhere a SNGLVAR_FUNCTlON can be used (see Table
4.2). For example, to use a look-up table to compute the volumetric source term as a function of
temperature for the mass fraction equations, a variable mass fraction source term is specified in
the Material Properties section of the input file (see Section 3.6):

Y_VOLUME_VAR = l o o k u p _ t a b l e _ l s i n g l e
The data for l o o k u p _ t a b l e _ l is included as a TABLE in the Function Data section of the
input file:

83

Function = lookup_table_l 2
FN_DATA = STRING TEMPERATURE
FN_DATA = TABLE n 2

h ai

fn °n
where tp t2, • ••>*„ are the values of the temperatures (in increasing order) and qv q2,..., qn are
corresponding mass fraction source term values. The FN_DATA STRING indicates the
independent variable to use in the table. The look-up function uses linear interpolation to compute
the source term using the values of the independent variable passed to l o o k u p _ t a b l e _ l .

A.3. Output

The following functions have been written to provide some useful output from MPSalsa
for the analysis of solutions. Still, the majority of post-processing is left to graphics packages that
can read ExodusII files.

None of the following functions are called automatically from MPSalsa, but must be
explicitly called from the function u s e r _ o u t in the file "rf_user_out.c." The function calls and
argument lists are described in comments at the top of each function.

The s t a t u s variable, described in Figure 4.9, can be used to restrict the output. For
instance, the function call can be preceded by the following condition if output is not desired for
failed time steps:

i f (s t a t u s > = 0) .

A.3.1. Evolution of the Solution at a Point

The evolution of the solution at a point (or points) in the domain can be output from
MPSalsa using the t i m e _ h i s t o r y _ p o i n t s output function. Two things must be done to use
this function. First, the function call

t i m e _ h i s t o r y _ p o i n t s (t i m e , t ime_s t ep_num, s o l n) ;
must be added to the function u s e r _ o u t in the file "rf_user_out.c" and the code must be
recompiled. Second, data must be input for this function in the Function Data Specifications
section of the input file (see Section 3.11). This function needs only a list of points at which the
solution output is desired. For instance, the following section of input file

84

Function Name = time_history_points 1
FN_DATA = TABLE 2 3

0.0 0.01 0.5
0.0 0.99 0.5

would cause the entire solution at (0,0.01,0.5) to be printed at each time step to the file
"time_his.0," and the solution (0,0.99,0.5) to be printed to the file "timejiis.l." The two
integers following the TABLE keyword specify the dimensions of the table to be read, with the
first number (2) representing the number of points at which to print data and the second number
(3) specifying the dimension of the system.

Each line of the output file contains the following information: time step number, time, x,
y, z (for 3D problems), and the entire solution at the point (with mass fractions translated to mole
fractions), in the following order: u, P, T, XVX2, ...,XN. This output format allows for easy
plotting with a package such as "gnuplot," where plotting column 7 versus column 3 gives a plot
of y -velocity u2 versus time.

A.3.2. The Solution along a Line

The t i m e _ h i s t o r y _ l i n e output function gives the ability to analyze the solution
along a line through the computational domain. This function has been used to generate many of
the plots in the example problems shown in subsequent appendices.

The implementation of this function is almost identical to t i m e _ h i s t o r y _ p o i n t s . A
call to the function

t i m e _ h i s t o r y _ l i n e (t i m e , time_step_num, soln) ;
must be included in u se r_ou t and the code must be recompiled. The s t a t u s flag can be used
to restrict some output, as described in Figure 4.9.

In the Function Data Specifications section of the input file (see Section 3.11), data must
be entered, for this function. Two data lines are required: an integer that tells how many points on
the line are desired, and a table with two rows that gives the beginning and ending points of the
line. Solutions along more than one line can be output by supplying more than one set of data to
the function. The input lines in Figure A.4 show how this is done for a 2D problem. One line
gives a slice through the domain as a function of JC, and the other is a slice in the y-direction. Each
line is written to a separate file and, unlike the t i m e _ h i s t o r y _ p o i n t s function, the data at
each time step is written to a separate file. For instance, with the input data in Figure A.4, the
solution at the 80 points equally spaced on the line between (0,0) and (1,0) at the 14th time step
will be in the file "time_his_line.0.14," and the 50 points equally spaced between (0.5,-10.0) and
(0.5,10.0) at the 7th time step will be in the file "time_nis_line.l.7."

85

F u n c t i o n Name = t i m e _ h i s t o r y _ l i n e 2
FN_DATA = INT 80
FN_DATA = TABLE 2 2

0 .0 0 . 0
1.0 0 .0

Second l i n e f o r t i m e h i s t o r y o u t p u t :
F u n c t i o n Name = t i m e _ h i s t o r y _ l i n e 2
FN_DATA = INT 50
FN_DATA = TABLE 2 2

0 . 5 - 1 0 . 0
0 . 5 10 .0

Figure A.4. Example function data lines for t i m e _ h i s t o r y _ . l i n e .

As with the t i m e _ h i s t o r y _ p o i n t s function, each line of the output file contains the
following information: time step number, time, x, y, z (for 3D problems), and the entire solution at
the point (with mass fractions translated to mole fractions), in the following order: u , P, T,

1' 2' *'*' N'

A.3.3. Information on a Side Set

The function f_ s s_cen t ro id gives the user the ability to print many useful pieces of
information along a side set. Information from this function can be used to get such information
as the average temperature on a surface, the total heat flux into a wall, and the drag coefficient
over a body. The function calculates positions, solution values, normal gradients, and other
information at the centroid of the surface elements in one or more side sets.

The implementation of this routine requires that the following function call be added as
one of the first executable statements of function user_out :

f _ s s _ c e n t r o i d (t i m e , time_step_num, s o l n) ;
The code then must be recompiled. Also, data must be given to this function in the Function Data
Specifications section of the input file (see Section 3.11). An example is given here.

Function Name = f_ss_centroid 2
FN_DATA = INT 1 2 3
FN_DATA = STRING x T Area

The required integer data is a list of side set IDs for which information is to be printed. In this
case, information will be output for side sets 1,2, and 3 all to the same output file. If it is desired
that the data be separated into different files for each side set, multiple sets of data can be supplied
to this function (with repeated Funct ion Name lines), each with a single integer for the side set
list.

86

The STRING data specifies the quantities to be output. In this example, the x-coordinate,
the temperature, and the area (length) of the surface element are output. Table A.1 Usts the strings
currently recognized by this function and the quantity that each string refers to. In the future, we
hope to add physical quantities such as the local density or viscosity to the list of recognized
strings.

STRING

t , t i m e

X

y

z

U

V

w
p

T

Y

A, Area

n , no rma l

t l , t a n g e n t

t 2 , t a n g e n t 2

Vn, Un

n_grad_U

n_grad_V

n_grad_W

n_grad_P

n_grad_T

n_grad_Y

t a u _ n

OUTPUT

Time value

^-coordinate of position

v-coordinate of position

z-coordinate of position

Velocity in the x direction

Velocity in the y direction

Velocity in the z direction

Hydrodynamic pressure

Temperature

Array of mass fractions

Area (length) of the element

Outward pointing normal vector

Tangent vector

Second tangent vector (for 3D problems)

Velocity in the normal direction

Normal component of the gradient of the x-component of velocity

Normal component of the gradient of the v-component of velcocity

Normal component of the gradient of the z-component of velocity

Normal component of the gradient of P

Normal component of the gradient of T

Normal component of the gradient of Y;, for all i

Traction vector / viscosity, no pressure contribution

Table A.1. List of Strings currently recognized by the f_ss_cen t ro id output function. The bold strings lead to
more than one column of output.

The output from this function is written to files of the form "ss_data.n.m" where the
integer n identifies the set of function data (n = 0 for the first occurrence of f_ss_cent ro id ,

87

n = 1 for the second occurrence, etc.), and m is the time step number. Each file has one line for
each element in the side set(s), and each line has at least one column for each quantity specified in
the STRING data statement.

Integrated quantities over the side set can be calculated using the element area
information. For instance, the total conductive heat flux through the side set can be calculated by
summing over all surfaces in the side set the products of the area (A) of each surface with the
normal gradient of the temperature (n_grad_T) and the thermal conductivity. Averages can be
computed by summing over all surfaces the product of a quantity with the surface's area, and
dividing the sum by the total area.

The tau_n string leads to an array of output that includes the components of the viscous
traction vector along the surface:

9 du„
t au n = -fV»u + 2-j-B. (A. 13)

- 3 dn v

Note that tau_n does not include the pressure term, which can be output independently, and does
not include the multiplication by the viscosity. The total drag force over an object in the x-
direction is the sum of the first component of tau_n (tau_x) multiplied by the viscosity and the
element area (A).

A.4. Interprocessor Communication Utilities

This section details some machine-independent communication functions callable within
MPSalsa that are useful when programming new functions for parallel applications, especially
when I/O is involved. The code for these functions is in "rf_comm.c."

A.4.1. Synchronization

Certain operations require that all processors are at the same part of the code at the same
time. A call to the sync function causes each processor to wait until all processors have reached
the statement. The syntax is

sync (Proc , Num_Proc);
where Num_Proc is the total number of processors running the problem, and Proc is the unique
processor ID with a value between 0 and (Num_Proc - 1) of the current processor. Both
Num_Proc and Proc are defined as global integer variables in MPSalsa and are initialized at the
beginning of MPSalsa's execution. If any processor fails to reach the sync statement, the
computation will idle indefinitely.

88

When each processor must write to a common output file, the print statement should be
surrounded by the p r i n t _ s y n c _ s t a r t and pr in t_sync_end function calls. These
functions synchronize the processors so that only one processor at a time executes the statements
between the calls. There can be no communication calls between these statements; such calls
would cause the program to reach a deadlocked state.

The code fragment in Figure A.5 demonstrates the use of p r i n t _ s y n c _ s t a r t and
p r int_sync_end. The resulting output file would contain the processor ID numbers printed in
order from 0 to Num Proc - 1 .

print_sync_start(Proc,
if (Proc==0) ifp =
else ifp = fopen("f
fprintf(ifp,"%d \n"
fclose(ifp);

Num_Proc
fopen("fi
"ilename",
,Proc);

print_sync_end(Proc, Num_Proc);

f i ­
lename" ,"w");
"a") ;

Figure A.5. Code fragment demonstrating the use o / p r i n t _ s y n c _ s t a r t and p r i n t _ s y n c _ e n d .

A.4.2. Broadcast

A machine-independent broadcast routine called b r d c s t has been written for use in
MPSalsa. Information on one processor (usually processor zero) is sent to all other processors
using this routine. There are five arguments for this function; the first two are Proc and
Num_Proc; the third is the pointer to the memory location where the information is stored or to
be stored; the fourth is the message size; and the last is the number of the processor that is
initiating the broadcast (usually processor zero).

The code fragment in Figure A. 6 illustrates the use of this routine, by broadcasting an
array of length two from processor zero to all other processors. The message size is the array
length (two) times the size of a double variable (computed using the s i zeo f function).

double x[2];

if (Proc==0) {
x[0] = 10.5;
x[l] = 0.123;

}
brdcst(Proc, Num_Proc, (char *) x, 2*sizeof(double), 0);

Figure A.6. Code fragment demonstrating the use o / b r d c s t . Upon return from b r d c s t , x=[10.5, 0.123]
on all processors.

89

A.4.3. Global Sum, Maximum, and Minimum

Several functions that compute the sum, maximum or minimum of some value over all
processors are included in MPSalsa. Several of these functions are listed in Figure A.7. The
functions gsum_int, gmax_int, and gmin_int compute the sum, maximum and minimum,
respectively, of an integer value. The functions gsum_double, gmax_double, and
gmin_double, perform the same operations on double precision variables. In all cases, the first
argument is the quantity that is to be summed or compared.

int i,j;
double x,y;

j = gsum_int
j = gmax_int
j = gmin_int
y = gsum_do'uble
y = gmax_double
y = gmin_double

(i, Proc, Num_Proc)
(i, Proc, Num_Proc)
(i, Proc, Num_Proc)
(x, Proc, Num_Proc)
{x, Proc, Num_Proc)
(x, Proc, Num_Proc)

Figure A.7. Functions for computing the sum, maximum and minimum of a value over all processors. The
functions g sum_in t , gmax_ in t and g m i n _ i n t operate on integers; the functions gsum_double ,

gmax_double, and gmin_double operate on double precision variables.

90

Appendix B. Mass Transfer Examples

B.l. Diffusion in an Annulus

This simple example problem consists of a single species diffusing in an annular region,
and is designed to illustrate the use of the three different boundary condition types: Dirichlet,
Neumann, and Mixed. The domain has inner radius of Rt = 1 and an outer radius of R0 = 2.
The domain is discretized with the 2048 element mesh shown Figure B.l, with the inner circle
designated Side Set 1 and the outer circle designated Side Set 2.

Figure B.l. Finite element mesh for the Diffusion in an Annulus example problem. The mesh contains 2048
elements and 2112 nodes and is stored in the file washer.exoII.

A volumetric mass source of magnitude one generates mass uniformly over the domain,
and the diffusion coefficient is also set equal to unity, leading to the following governing
equation:

V 2 C + 1 = 0 , (B.l)

where C is a dimensionless concentration. At the inner circle of the annulus, we set a Dirichlet
condition of

91

C = 1 for r = Jx2 + y2 = R(. (B.2)

To illustrate the three different standard boundary condition types available in MPSalsa, we pose
three options for the boundary condition at the outer circle (Side Set 2):

either Dirichlet:

C = 1/4 forr = R0; (B.3)

or Neumann:

n-VC= 1 forr = R0; (B.4)

or Mixed (Robin):

n-VC = 4 (C - 0) forr = R0. (B.5)

Any of these three boundary conditions leads to the same analytic solution:

s_ 2 _ 2

C = x y . (B.6)

This function has been programmed into a function called f_annulus_exact to test the
computed solution.

The MPSalsa input file for solving this problem is given in Figure B.2. It shows that we
are solving a diffusion-only problem to a steady-state solution using the GMRES method with
preconditioning. The number of species and the volumetric source term are set in the Materials
Specifications section. At the end of the Output Specifications section, it is specified that the final
solution be tested against the analytic solution programmed in f_annulus_exact . As can be
seen in the Boundary Conditions section, this file applies the Dirichlet condition (B.3) on Side Set
2. The options of applying the Neumann condition (B.4) or Mixed condition (B.5) are commented
out by the pound sign (#).

Table B.l compares the solutions for the three boundary condition types, by showing the
2

L -error of the computed solution with respect to the analytic solution, the CPU time on an SGI
workstation needed to reach the solution, and the number of GMRES linear solve iterations
needed to reach the solution. Since the problem is linear, each solution required only one Newton
iteration. There is no significant difference between the three solutions, except the Neumann case
required a few more linear iterations.

92

General Problem Specifications Boundary Condition Specifications

Problem type
Input FEM file
LB file
Output FEM file
Number of processors
Cartesian or Cylindrical when 2D
Interpolation Order
Stabilization

= mass_diff
= Meshes/washer exoll

* run_out exoll
= 1
= Cartesian

= default
= 2

Solution Specifications

Solution Type = steady
Order of integration/continuation « 1
Step Control = off
Relative Time Integration Error = 1 Oe-3
Initial Parameter Value = 300 0
Initial Step Size = 2 Oe-1
Maximum Number of Steps = 1000
Maximum Time or Parameter Value = 250

Solver Specifications

Override Default Linearity Choice

— nonlinear solver subsection

Number of Newton Iterations
Use Modified Newton Iteration
Enable backtracking for residual reduction
Choice for Inexact Newton Forcing Term
Calculate the Jacobian Numerically
Solution Relative Error Tolerance
Solution Absolute Error Tolerance
— linear solver subsection

15

1 0e-3
1 0e-8

Number of Generalized Surfaces = 0
Number of BC = 2
BC on inner radius, r«l
BC = Y_BC DIRICHLET SS 1 INDEPENDENT 1 0 0

SPECIESJCIST = ALL

BC on outer radius, r=2
tDirichlet
BC = Y_BC DIRICHLET SS 2 INDEPENDENT 0 25 0
#Neumann
#BC ■ V_BC NEUMANN SS 2 INDEPENDENT 1 0 0
#Mixed
#BC = Y_BC MIXED SS 2 INDEPENDENT 4 0 0 0 0 0 0 . 0 0

SPECIES_LIST = ALL

Initial Guess/Condition Specifications

Set Initial Condition/Guess
Apply function
Time Index to Restart From

= constant 0 0

= 1

Output Specifications

User Defined Output
Parallel Output
Scalar Output
Time Index to Output To
Nodal variable output times

every 1 steps

Number of nodal output variables
Nodal variable names

Mas s_frac tion

Number of global output variables
Global variable names

■■ 1

Solution Algorithm
Convergence Norm
Preconditioner
Polynomial
Scaling
Orthogonalization
Size of Krylov subspace
Maximum Linear Solve Iterations
Linear Solver Normalized Residual Tolerance

= 1
= no__overlap_ilu
= LS,1
= row_sum
= classical
= 25
= 50
= 1 Oe-6

Test Exact Solution Flag
Name of Exact Solution Function

Chemistry Specifications

Energy equation source terms
Species equation source terms
Pressure (atmospheres)
Thermal Diffusion
Multicomponent Transport
Chemkin file
Surface chemkin file
Transport chemkin file

= off
= off
= 1 0
= off
= stefan_maxwell
= chem bin
= surf bin
= tran bin

Enclosure Radiation Specifications

Enclosure Radiation source terms - off

Material ID Specifications

Number of Materials
SOLID = 0

ELEM_BLOCK_IDS
NUM_SPECIES
SPECIES_NAME 1
DIPF_COEFP VK_1 1 0
WTSPECIES YK_1 1 0
XHF_0 YK_1 1 0

Source Term
Y_VOLUKE = 1 0

END Material ID Specifications

= 1
*Graphite
= 1
= 1
XKJ.

- f_annulus_exact

Parallel I/O section

Machine
Staged writes

ncube subsection

Number of controllers
Disks per controller
Root location
Subdirectory
Offset numbering from zero

paragon subsection

Number of RAID controllers
Root location
Subdirectory
Offset numbering from zero

= paragon

8
1
//df
jns/testa
0

26
/pfs/xo_
tmp/kdd/ti43
23

Data Specification for User's Functions

Number of functions to pass data to = 0

Figure B.2. Input file for the Diffusion in an Annulus example problem.

93

BC Type on Side Set 2

Dirichlet

Neumann

Mixed

L2 -Error

2.20e-4

1.75e-4

2.12e-4

CPU Time (seconds)

1.16

1.34

1.19

Number of GMRES Iterations

16

23

17

Table B.l. Comparison of the three boundary condition types for the Diffusion in an Annulus example problem.

B.2. The Soret Effect

This simple example of thermal diffusion (the Soret effect) illustrates the use of a
CHEMKIN material type. The problem is solved on a 2D mesh but is essentially ID. Hydrogen
(H2 — molecular weight 2.016) and Trimethylgallium (GaMe3 — molecular weight 114.83) are
allowed to interdiffuse along a steep thermal gradient. The 100-element mesh and boundary
conditions are shown in Figure B.3.

T=300

Y GaMe3 = - 0 1

YH 2=.99

T=1000

FtaxQaMe3=0

FluxH2=0

x-axis
Figure B.3. 100 element mesh and boundary conditions for the Soret Effect example problem.

The input file for this example problem is shown in Figure B.4, and shows that this is an
energy and mass transfer problem, being solved directly to the steady-state using GMRES and a
preconditioner. Because the material is a CHEMKIN material, the number of species, species
names, molecular weights, and transport properties are not specified in the Materials
Specifications section. This information is read into MPSalsa from the file "chem.bin," which is

94

General Problem Specifications Boundary Condition Specifications
Problem type
Input FEM file
LB file
Output FEM file
Number of processors
Cartesian or Cylindrical when 2D
Interpolation Order
Stabi1ization
Debug

- energyjmass_diff
= Meshes/boxlOO exoll
= run-out exoll
= 1
- Cartesian
= default
= 2

Solution Specifications
Solution Type = steady
Order of integration/continuation = 1
Step Control = on
Relative Time Integration Error = 4 Oe-3
Initial Parameter Value = 300 0
Initial Step Size = 1 Oe-3
Maximum Number of Steps = 10
Maximum Time or Parameter value = 1 Oe+9

Solver Specifications
Override Default Linearity Choice default

nonlinear solver subsection
Number of Newton Iterations
Use Modified Newton Iteration
Enable backtracking for residual reduction
Choice for Inexact Newton Forcing Term
Calculate the Jacobian Numerically
Solution Relative Error Tolerance
Solution Absolute Error Tolerance

25

1 0e-3
1 0e-8

linear solver subsection
Solution Algorithm
Convergence Norm
Preconditioner
Polynomial
Scaling
Orthogonalization
Size of Krylov subspace
Maximum Linear Solve Iterations
Linear Solver Normalized Residual Tolerance

1
no_overlap_ilu
LS,1
row_sum
classical
100
200
1 0e-6

Chemistry Specifications
Energy equation source terms
Species equation source terms
Pressure (atmospheres)
Thermal Diffusion
Multicomponent Transport
Chemkin file
Surface chemkin file
Transport chemkin file

: off
off
0 I

stefan_jnaxwell
chem bin
surf bin
tran bin

Enclosure Radiation Specifications
Enclosure Radiation source terms = off

Material ID Specifications
Number of Materials
CHEMKIN

ELEM_BLOCK_IDS * 1
T_INIT =500

= 1
- 0 *gaas_block*

Number of Generalized Surfaces - 0
Number of BC = 3
BC = T_BC DIRICHLET SS 4 INDEPENDENT 300 0 0
BC = TJ3C DIRICHLET SS 2 INDEPENDENT 1000 0 0
BC = Y_BC DIRICHLET SS 4 INDEPENDENT f_mole_fractlon 1

SPECIES_LIST = H2 GaMe3 AsH3 CH4
BC_DATA = FLOAT 0 99 0 01 0 0 0 0
Initial Guess/Condition Specifications

Set Initial Condition/Guess
Apply function
Time Index to Restart From

= constant 0 0

Output Specifications
User Defined Output
Parallel Output
Scalar Output
Time Index to Output To
Nodal variable output times

every 2 steps
Number of nodal output variables
Nodal variable names

Temperature
Mass_fraction

Number of global output variables
Global variable names
Test Exact Solution Flag
Name of Exact Solution Function

yes

: 1

= 0

Parallel I/O section
Machine
Staged writes

ncube subsection

Number of controllers
Disks per controller
Root location
Subdirectory
Offset numbering from zero

paragon subsection

Number of RAID controllers
Root location
Subdirectory
Offset numbering from zero

paragon

= 8
= 1
= //df
= 3ns/testa
m 0

= 19
= /pfs/io_
= tmp/ags/em
= 2

Data Specification for User's Functions
Number of functions to pass data to - 1
Function Name = txme_history_lme 2 #
FN_DATA = INT 25
FN_DATA = TABLE 2 2

0 0 0 5
1 0 0 5

XMF_0 GaMe3 0 01
XKF_0 H2 0 99

END Material ID Specifications

Figure B.4. Input file for the Soret Effect example problem.

95

generated using the "interp" utility acting on the Chemkin input file for gas-phase species and
reactions, "gaas_b.gas" (Figure B.5). This file contains four species used in the deposition of
Gallium Arsenide crystals: AsH3, GaMe3, CH4, and H2; the first and third have zero mole
fractions in this problem.

ELEMENTS
Ga AS H C
END

SPECIES
ASH3
GaMe3
CH4
H2

END

THERMO ALL
300. 1000. 3000.
! Default temperature ranges for thermo files:
300. 1000. 3000.

CH4 121286C 1H 4 G 0300.00 5000.00 1000.00
1.68347883E+00 1.02372356E-02-3.87512864E-06 6.78558487E-10-4.50342312E-14

-1.00807871E+04 9.62339497E+00 7.78741479E-01 1.74766835E-02-2.78340904E-05
3.04970804E-08-1.22393068E-11-9.82522852E+03 1.37221947E+01

H2 121286H 2 G 0300.00 5000.00 1000.00
2.99142337E+00 7.00064411E-04-S.633828S9E-08-9.23157818E-12 1.58275179E-15

-8.35033997E+02-1.35511017E+00 3.29812431E+00 8.24944174E-04-8.14301529E-07
-9.47543433E-11 4.13487224E-13-1.01252087E+03-3.29409409E+00
AsH3 92090AS 1H 3 0 OS 300.000 3000.000 1000.00
0.48852077E+01 0.38298892E-02-0.36824741E-06-0.38365741E-09 0.87018486E-13
0.81936514E+04-0.28651702E+01 0.27935255E+01 0.63927420E-02 0.77386630E-06

-0.19897164E-08 0.79792984E-13 0.90261641E+04 0.89869089E+01
GaMe3 92090Ga 1C 3H 9 0G 300.000 3000.000 1000.00
0.12968908E+02 0.15346088E-01-0.12010402E-05-0.15080676E-08 0.32630482E-12

-0.87401934E+04-0.36943115E+02 0.47962584E+01 0.30363396E-01-0.34483364E-06
-0.15581833E-07 0.66991998E-11-0.61177363E+04 0.71641846E+01
END

1
2
3
4
1
2
3
4

0 1
2
3
4

0 1
2
3
4

Figure B.5. Chemkin input file gaas_b. gas, which contains the four species and their thermodynamic
data. No reactions are included.

The solution of this problem requires only 2.16 seconds on an SGI workstation, 5 Newton
iterations, and a total of 68 linear solve iterations. The solution across the domain at y = 0.5 is
output using the t i m e _ h i s t o r y _ l i n e included function, as can be seen on the last lines of
the input file. By plotting the output with "gnuplot," the temperature and mole fraction of GaMe3
across the width of the domain can analyzed, as in Figure B.6.

B.3. Si3N4 Equilibrium

This example differs from the previous examples in that it is run on multiple processors,
there are chemical reactions, and the steady-state solution is reached through time integration.
The example uses a large gas-phase reaction mechanism for the formation of Silicon Nitride
involving 17 species and 33 reactions. The species list and reaction mechanism are contained in
the Chemkin input file "si3n4.gas," which is not shown here. An initial mixture of three reactants
is set in a 2D domain at a high temperature and allowed to react until equilibrium. No spatial

96

CO
(1) 2
m O
c o
ii
03
O
2

0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

0

<D
3
ce CD
Q. E
P

1200

1000

800

600

400

200
0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X-axis X-axis

Figure B.6. Profiles of temperature and GaMe3 mole fraction in the Soret Effect example problem. The
temperature is fixed at both ends, and the mole fraction is fixed at the left side. The drop in the mole fraction as

x increases is due solely to thermal diffusion.

gradients are given in the problem, either as initial conditions or boundary conditions, so the
solution is essentially 0D.

The input file for this problem can be seen in Figure B.7. An accurate transient solution of
the problem is not desired; rather, only the solution at the final equihbrium state is of interest.
Thus, the pseudo time integration option is used with a stopping point of 100 seconds. The use
of only block-Jacobi scaling for preconditioning the matrix is adequate for many time-dependent
problems, since the matrix is better conditioned than with the steady-state formulation.

The input file is set up for running on 8 processors, and requires that a load balance file
"Meshes/testa-8-bKL.exoH" has been created. To run this problem in parallel on the Intel
Paragon, the file "chem.bin" must first be created on this machine from the Chemkin input file by
the following command:

> interp si3n4
To then solve the problem with MPSalsa, with an executable "salsa-smos" and the input file
"input-si3n4," the user must type:

> yod -sz 8 saisa-smos input-si3n4
This run took 23 time steps to reach 100 seconds, and required 376 seconds.

Figure B.8 shows how the mole fractions of many species evolve with time. The data for
these plots was output using the t ime_h i s to ry_po in t s function, which is called within
function use r_ou t and has data supplied to it at the bottom of the input file. The plots were
made directly from this output using "gnuplot."

J I L

97

General Problem Specifications Boundary Condition Specifications

Problem type
Input FEM file
LB file
Output FEM file
Number of processors
Cartesian or Cylindrical when 2D
Interpolation Order
Stabilization

mass_diff
Meshes/testa exoll
Meshes/testa-S-bKL exoll
run-out exoll
8

: Cartesian

■■ default
2

Solution Specifications

Solution Type = pseudo
Order of integration/continuation s 1
Step Control = on
Relative Time Integration Error = 4 Oe-3
Initial Parameter Value =* 300 0
Initial Step Size = 1 Oe-5
Maximum Number of Steps = 75
Maximum Time or Parameter Value = 100 0

Solver Specifications

Override Default Linearity Choice = nonlinear

nonlinear solver subsection

Number of Newton Iterations
Use Modified Newton Iteration
Enable backtracking for residual reduction
Choice for Inexact Newton Forcing Term
Calculate the Jacobian Numerically
Solution Relative Error Tolerance
Solution Absolute Error Tolerance

linear solver subsection

=

10

defaul t
4

1 Oe-3
1 Oe-8

Number of Generalized Surfaces = 0
Number of BC = 0

Initial Guess/Condition Specifications

Set Initial Condition/Guess
Apply function
Time Index to Restart From

= constant 0.0

= 1

Output Specifications

User Defined Output
Parallel Output
Scalar Output
Time Index to Output To
Nodal variable output times

every 2 steps

Number of nodal output variables
Nodal variable names

Mass_fraction

Number of global output variables
Global variable names

Delta_time
Time_in<2ex

Test Exact Solution Flag
Name of Exact Solution Function

2

0
f_=oc_jvy

Parallel I/O section

Machine
Staged writes

paragon
yes

Solution Algorithm
Convergence Norm
Preconditloner
Polynomial
Scaling
Orthogonalization
Size of Krylov subspace
Maximum Linear Solve Iterations

= 1

= LS,1
= block_jjacobi
= classical
= 100
= 300

Linear Solver Normalized Residual Tolerance = 1 0e-4

Chemistry Specifications

ncube subsection

Number of controllers
Disks per controller
Root location
Subdirectory
Offset numbering from zero

« 1
= //df
= 3ns/testa
= o

paragon subsection

Energy equation source terms
Species equation source terms
Pressure (atmospheres)
Thermal Diffusion
Multicomponent Transport
Chemkin file
Surface chemkin file
Transport chemkin file

= 1 0
= off
= stefanjmaxwell
= chem bin
= surf bin
- tran bin

Enclosure Radiation Specifications

Enclosure Radiation source terms - off

Material ID Specifications

Number of Materials
CHEMKIN

ELEM_BLOCK_IDS

= 1
= 0
= 1

"Graphite
-

2

Number of RAID controllers
Root location
Subdirectory
Offset numbering from zero

= 8
= /pfs/io_
= tmp/ags
= 1

Data Specification for User's Functions

Number of functions to pass data to = 1

Function Name

FN_DATA = TABLE 1 2

11 11
@

time_history_jooints 1

XMF_0 H2
XMF_0 NH3
XMF_0 SIF4

0 5
0 3
0 2

T_INIT
END Material ID Specifications

Figure B. 7. Input file for the Si3N4 Equilibrium example problem.

98

c
B o
CO
CD

tr

o
2

LL

o
2

1

0.8

0.6

0.4

0.2

0
20

r
I

••..

— I — „.. , I I
H2

SiF4 — -
NH3 "

-

«
40 60

Time
80

o
3

s
0.
c

"CO

o
2
u.
o

100

N2
HF

SiF3NH2
SiHF3

40 60
Time

100

Figure B.8. Evolution in time of mole fractions of major species in the Si3N4 Equilibrium problem. The first
plot shows the three reactants, while the second shows the major products of the reactions. Since the pseudo

time integration scheme was used, these histories are not time accurate.

B.4. Surface Reaction

This simple reaction-diffusion problem illustrates the use of su r f ace_chemkin_bc,
the function used to impose surface reactions as boundary conditions by interfacing with the
Surface Chemkin library (see Appendix A.l.l). Just as Chemkin is used for information on gas-
phase species, reactions, and properties, Surface Chemkin is used to access this information about
the surface and underlying bulk solid.

The problem is defined in a 2D box and uses the mechanism for the deposition of Gallium
Arsenide semiconductor crystals. This mechanism contains 17 gas-phase species, 24 gas-phase
reactions, 6 surface species, 38 surface reactions, and 2 bulk species. The surface reactions occur
on the left side of the box, and Dirichlet conditions for the main reactants and carrier gas are set
on the right side, as shown in Figure B.9. The system is assumed isothermal (at 913K); no-slip
velocities are imposed on all walls and no penetration is assumed on the top and bottom. At the
reacting surface, the normal velocity is not zero, but is set equal to the total mass flux per unit area
into the surface, divided by the density. This term is often called the Stefan velocity (see equation
(A.3)). At the right side, the normal momentum balance has a natural condition applied that sets
the normal component of the normal stress to zero. This boundary condition allows for a non-zero
velocity at this surface.

The surface site fractions of surface species and the bulk fractions are also unknowns in
this problem. To specify their values, we use a quasi-steady state assumption that these species are
always in equilibrium with the gas phase. This approximation adds no error for a steady-state

99

Fluxk=0 U=0 V=0

YAsH3='0 1

YGaMe3=«WW1

YH2=.9899

Stress^ = 0

V=0

Fluxk=0 U=0 V=0

Figure B.9. 200-element mesh and boundary conditions for the Surface Reaction example problem, sjj is the
molar production rate of species k due to the surface reaction, Wjj is the molecular weight os species k, and p

is the density. The nonzero velocity due to surface reaction is called the Stefan velocity.

solution and is a good approximation in transient problems because of the relative speed of
surface reactions. Using the requirement that the generation rate of any surface species is equal to
its consumption rate, and given the gas-phase species mole fractions, these unknowns can be
solved for implicitly and removed from the problem.

The input file for this problem is shown in Figure B.10. There are 20 unknowns per node
in this problem: 2 velocities, 1 pressure, and 17 species. The steady solution is solved for directly
using a preconditioned GMRES method, starting from an initial guess where 3 species have
nonzero mole fractions (see the XMF_0 lines in the Materials Specifications section). The
sur f ace_chemkin_bc boundary condition function is used for reacting surfaces. The Stefan
velocity is set as a dependent Dirichlet condition where the value comes from the
surface_chemkin_bc function. (The DEPENDENT keyword in this boundary condition
specifies that Jacobian entries are included for this term.) The same function is used for the
species balance equations, though in this case it is a Neumann boundary condition since it is a
specification on the flux.

There is an option with the sur f ace_chemkin_bc to input initial guesses for the
surface site and bulk fractions. Since the equations for these species can be highly nonlinear, there

Fluxk=skWk

U=(2skWk)/p

v=o

100

General Problem Specifications Boundary Condition Specifications

Problem type
Input FEM file
LB file
Output FEM file
Number of processors
Cartesian or Cylindrical when 2D
Interpolation Order
Stabilization

= fluid_flow_mass
= Meshes/box200 exoll
= bKL exoll
5= run_out exoll
= 1
= Cartesian

= default
= 2

Number of Generalized Surfaces

Solution Specifications

Solution Type = steady
Order of integration/continuation = 1
Step Control = on
Relative Tune Integration Error = 5 Oe-3
Initial Parameter Value = 300 0
Initial Step Size = 1 Oe-7
Maximum Number of Steps = 4
Maximum Time or Parameter Value = 10

Solver Specifications

Override Default Linearity Choice

— nonlinear solver subsection

Number of Newton Iterations
Use Modified Newton Iteration
Enable backtracking for residual reduction
Choice for Inexact Newton Forcing Term
Calculate the Jacobian Numerically
Solution Relative Error Tolerance
Solution Absolute Error Tolerance
— linear solver subsection

Solution Algorithm
Convergence Norm
Preconditloner
Polynomial
Scaling
Orthogonalization
Size of Krylov subspace
Maximum Linear Solve Iterations
Linear Solver Normalized Residual Tolerance

no
4

1 Oe-3
1 Oe-8

0
no_overlap_ilu
LS,1
row_sum
classical
50
100
3 0e-3

Chemistry Specifications

Energy equation source terms
Species equation source terms
Pressure (atmospheres)
Thermal Diffusion
Multicomponent Transport
Chemkin file
Surface chemkin file
Transport chemkin file

= 0 1
= off
= stefan_maxwell
= chem bin
= surf bin
- tran bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Materials
CHEMKIN

ELEM_BLOCK__IDS

= 1
= 0
= 1

*gaas"

Number

BC
BC
BC

BC
BC
BC
BC

BC

of BC = 9

0 0
BC

A3 (SI

' U_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0
' U_BC DIRICHLET SS 1 INDEPENDENT 0 0
: U_BC DIRICHLET SS 3 INDEPENDENT 0 0

: V_BC DIRICHLET SS 1 INDEPENDENT 0 0
■ V_BC DIRICHLET SS 2 INDEPENDENT 0 0
■ V_BC DIRICHLET SS 3 INDEPENDENT 0 0
■ V_BC DIRICHLET SS 4 INDEPENDENT 0 0

■■ Y_BC DIRICHLET SS 2 INDEPENDENT f_mole_fraction 1
SPECIES_LIST = ALL

BC_DATA = 0 0 1 0 0 0 0 0 0 0 0 0001 0 0 0 0
9989

■■ Y_BC NEUMANN SS 4 DEPENDENT surface_ChemkinjDC 2
SPECIES_LIST * ALL
SURF_SPECIES_LIST = GaMe(S) Ga(S) GaH(S> AsH(S) AsMe{S)

BC_DATA = FLOAT 1 0e-5 0 5 1 Oe-5 1 0e-5 1 Oe-5 0 5
SURF_SPECIES_LIST = Ga-GaAs(D) As-GaAs(D)
BC_DATA • FLOAT 1 0 1 0

Initial Guess/Condition Specifications

Set Initial Condition /Guess
Apply function
Time Index to Restart From

constant 0 0

1

Output Specifications

User Defined Output
Parallel Output
Scalar Output
Time Index to Output To
Nodal variable output times

every 1 steps

Number of nodal output variables
Nodal variable names

Velocity
Pressure
Mass_Fraction

Number of global output variables
Global variable names

Test Exact Solution Flag
Name of Exact Solution Function

1

= f_xx_yy

Parallel I/O section

Machine
Staged writes

paragon subsection

Number of RAID controllers
Root location
Subdirectory
Offset numbering from zero

: paragon

= 8
= /pfs/io_
= tmp/kdd/ti3
= 23

T_INIT set the Temperature for this isothermal problem
T_INIT = 913 0

Data Specification for User's Functions

Number of functions to pass data to = 0

U_IHIT
V_INIT
P_INIT
XMF_0 ASH3
XMF_0 GaMe3
XMF_0 H2

= 0 0
= 00
= 0 0
0 001
0 0001
0 9989

ENE Materxal ID Specifxcatxons

Figure B.10. Input file for the Surface Reaction example problem

101

are initial guesses that do not lead to a converged solution, and sometimes there are multiple
solutions. The initial guesses are input using the SURF_SPECIES_LIST keyword, as can be
seen in the input file. The default initial guess is equal fractions of all species within a given
surface or bulk phase. For the mechanism in this example, the surface reaction calculations fail
with the default initial guess. The initial guess is used only the first time the surface reaction
calculations are computed; for subsequent Newton iterations and time steps, the previous
calculation of surface site and bulk fractions are used as the initial guess.

The steady-state solution for the 4620 unknowns in this problem required 4 Newton
iterations and 89 seconds on an SGI workstation. A visualization of the solution is presented in
Figure B.ll. The weak flow driven by the Stefan velocity is shown with velocity vectors, as are
contours of one of the species generated by the surface reactions and consumed in gas-phase
reactions. The vertical contours show that the flow is too weak for convection to distort the ID
diffusion-reaction problem.

IEST rest
I 1 , 1 l l f f f ',* p' ' ,» '

0.00 0 .15 0.30 0.45 0.60 0.75 0.90 0.00 0.15 0.30 0.4S 0.60 0.7S 0.90
X X

Figure B.ll. Visualization of the solution for the Surface Reaction example problem. The deposition on the
left wall drives a velocity to the left, as shown in the plot on the left. The velocity is nearly uniform near the
wall, but is more parabolic at the source on the right side. Shown on the right are mole fraction contours of

the H atom, which is produced at the surface.

102

Appendix C. Fluid Mechanics and Heat Transfer Examples

The example problems in Section C.3 through Section C.5 were developed, run, and
written up by Professor Michael Jensen of the Mechanical Engineering Department of Rensselaer
Polytechnic Institute during a sabbatical at Sandia National Laboratories in Spring 1996.
Exhaustive mesh independence studies were not done for any of the examples in Section C.3
through Section C.5, but the meshes were refined to adequately show agreement with data from
the literature. For these examples, the mks unit system was used; that is, the units used on all the
quantities are length (m); velocity (m/s); temperature (K); pressure (N/mA2); heat flux (W/mA2);
density (kg/mA3); specific heat (J/kgK); thermal conductivity (W/mK); and dynamic viscosity
(Ns/mA2).

C I . Navier-Stokes 3D Exact Solution

An analytic solution to the Navier-Stokes equations for a three-dimensional time-
dependent problem is known for a generalized Beltrami-type flow [11]. We use this problem to
demonstrate the solution of a transient fluid mechanics system and to document the convergence
properties of our implementation of the finite element method.

In MPSalsa, the function f_3d_navier_stokes provides the exact solution for this
flow in a cube of unit length when these same functions, evaluated at all boundaries, are imposed
as boundary conditions:

-a t\ ax . . , . az , , .
u = -ae \e sm (ay+ dz) +e cos (ax + dy)

-at\ ay . , , . ax , , .
v = -ae \e sm (az + dx) +e cos (ax + dz)

—at\ az . , , v ay , , .
w = -ae I e sm (ax + dy) + e cos (az + dx)

1 2 -2d2t(lax lay 2az
p = --a e \e +e +e + (CI)

2 sin (ax + dy) cos (az + dx) ea y z +

2sin (ay + dz) cos (ax + dy) ea +

2 sin (az + dx) cos (ay + dz) e° x +

a = 0.25 n
d = 0.5it

The MPSalsa input file for this test problem is shown in Figure CI . The first line specifies
that a fluid mechanics problem is to be solved. A linear spatial approximation is to be used. A

103

time-accurate transient solution method with a second-order time integration scheme and variable
time step is selected. The run is set to terminate at a time of 0.1 seconds. As can be seen in the
Boundary Condition Specifications section, Dirichlet boundary conditions computed by the
function f_3d_navier_s tokes are prescribed for all velocity and pressure unknowns on all
domain boundaries. This same function used to specify the initial conditions. In addition, the
exact solution is compared with the computed solution for convergence analyses by setting
f_3d_navier_stokes in the input file as the exact solution.

The input ExodusII mesh is an 8x8x8-element mesh with 729 nodes and 2916 total
unknowns. The same problem was solved using discretizations of 4x4x4, 16x16x16, and
32x32x32 elements. Details of the four runs are show in Table C1. All runs required 27 time steps
to reach 0.1 seconds.

Number of
elements in

ID

4

8

16

32

Total
Number of
Elements

64

512

4096

32,768

of Intel
Paragon

Processors

1

16

64

128

CPU seconds

305

308

452

1543

L2-error
of Velocity in the x-
direction at 0.1 sec.

1.008e-03

2.781e-04

6.512e-05

1.381e-05

L2 -error of
Pressure at 0.1 sec

1.904e-02

1.183e-02

1.643e-03

5.090e-04

Table C.l. Details of the mesh convergence calculations for the Navier-Stokes 3D Exact Solution problem.

The error in the computed solution as compared to the exact solution is presented in Table
C.l and shown graphically in Figure C.2. The L2-norms of the error in the x-component of the
velocity and in the pressure unknown are plotted versus the element size. The slopes of the lines
connecting the results for the coarsest mesh and the finest mesh on the log-log plot are near 2, the
expected value for the linear discretization scheme.

C2. Lid-Driven Cavity Problem

The lid-driven cavity problem is a two-dimensional fluid mechanics problem on a square
domain that has often been used as a benchmark problem [19]. The fluid is confined in the square,
but the top surface is pulled horizontally, driving clockwise flow. The geometry, boundary
conditions, and 64x64-element mesh are shown in Figure C3.

The input file for this example is shown in Figure C.4. The viscosity and density are set to
one, so that the velocity is equal to the Reynolds number. This problem is increasingly difficult to
solve as the Reynolds number is increased. SUPG stabilization is turned on (in the General

104

General Problem Specifications Boundary Condition Specifications

= fluid_flow
= /Meshes/box_3d__8 exoll
= /Meshes/box_3d_8-ml6-

Problem type
Input FEM file
LB file
bKL neml
Output FEM file = box_3d_out exoll
Number of processors = 16
Cartesian or Cylindrical when 2D - Cartesian
Interpolation Order = linear
Stabilization = default
Debug = 1

Solution Specifications

Solution Type = transient
Order of integration/continuation = 2
Step Control = on
Relative Time Integration Error = 1 Oe-5
Initial Parameter Value = 10 0
Initial Step Size = 1 Oe-5
Maximum Number of Steps = 2000
Maximum Time or Parameter Value = 0 1

Solver Specifications

Override Default Linearity Choice * defi

nonlinear solver subsection

Number of Newton Iterations
Use Modified Newton Iteration
Enable backtracking for residual reduction
Choice for Inexact Newton Forcing Term
Calculate the Jacobian Numerically
Solution Relative Error Tolerance
Solution Absolute Error Tolerance

default
0

1 0e-6
1 0e-8

linear solver subsection

Solution Algorithm
Convergence Norm
Preconditioner
Polynomial
Scaling
Orthogonalization
Size of Krylov subspace
Maximum Linear Solve Iterations
Linear Solver Normalized Residual Tolerance

0

LS,1
b l o c k j a c o b i
classical
64
200
1 Oe-8

Chemistry Specifications

Energy equation source terms
Species equation source terms
Pressure {atmospheres)
Thermal Diffusion
Multicomponent Transport
Chemkin file
Surface chemkin file
Transport chemkin file

= off
= off
= 0 09210526

= stefan_maxwell
= chest bin
= surf bin
- tran bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Materials
NEWTONIAN

ELEH_BLOCK_IDS
VISCOSITY = 1 0
DENSITY = 1 0

= 1
= 0
- 1

Number of Generalized Surfaces = 0
Number of BC = 24
Prescribed Dirichlet conditions on all boundaries
BC = U_BC DIRICHLET SS
BC « V_BC DIRICHLET SS
BC = W_BC DIRICHLET SS
BC = P_BC DIRICHLET SS #
BC - U_BC DIRICHLET SS
BC = V_BC DIRICHLET SS
BC = WJBC DIRICHLET SS

P_BC DIRICHLET SS

U_BC DIRICHLET SS
V_BC DIRICHLET SS
W_BC DIRICHLET SS
P_BC DIRICHLET SS

U_BC DIRICHLET SS
V_BC DIRICHLET SS
W_BC DIRICHLET SS
P_BC DIRICHLET SS

U_BC DIRICHLET SS
V_BC DIRICHLET SS
WJ3C DIRICHLET SS
P_BC DIRICHLET SS

U_BC DIRICHLET SS
V_BC DIRICHLET SS
W_BC DIRICHLET SS
P_BC DIRICHLET SS

f_3 d_navier_s tokes
INDEPENDENT f_3d_navier_s tokes
INDEPENDENT f_3d_navier_stokes
INDEPENDENT f_3d_navier_stokes

INDEPENDENT
INDEPENDENT
INDEPENDENT
INDEPENDENT

f _3 d_jnavier_s tokes
f_3d_navier_stokes
f_3 d_jnavier_s tokes
f_3djnavier_stokes

f_3 d_navier_s tokes
INDEPENDENT f_3d_jnavier_s tokes
INDEPENDENT f_3d_navier__s tokes
INDEPENDENT f_3d_navier_stokes

INDEPENDENT
INDEPENDENT
INDEPENDENT
INDEPENDENT

INDEPENDENT
INDEPENDENT
INDEPENDENT
INDEPENDENT

INDEPENDENT
INDEPENDENT
INDEPENDENT

f_3 d_navier_stokes
f_3 d_navier_s tokes
f_3 d_navier_s tokes
f_3 d_navier_s tokes

f_3 d_navier_stokes
f_3 d_navier_s tokes
f_3d_navier_stokes
f_3 djiavier_stokes

f_3 d_navier_stokes
f_3 d_navier_s tokes
f__3 d_navier_s tokes

INDEPENDENT f_3d_navier«.stokes

Initial Guess/Condition Specifications

Set Initial Condition/Guess
Apply function
Time Index to Restart From

a constant 0 0
= f_3d__navier_s tokes

Output Specifications

User Defined Output = yes
Parallel Output = no
Scalar Output = no
Time Index to Output To = 0
Nodal variable output times

every 2 steps

Number of nodal output variables = 2
Nodal variable names

Velocity
Pressure

Number of global output variables = 0
Global variable names

Test Exact Solution Flag = 1 SUMMARY
Name of Exact Solution Function = f_3d_navier_stokes

Parallel I/O section

END Material ID Specifications

Machine
Staged writes

ncube subsection

Number of controllers
Disks per controller
Root location
Subdirectory
Offset numbering from zero

= paragon

8
1
//df
jns/testa
0

paragon subsection

Number of RAID controllers
Root location
Subdirectory
Offset numbering from zero

26
/pfs/io_
tmp/ags/ti43
23

Data Specification for User's Functions

Number of functions to pass data to = 0

Figure C.I. Input file for the Navier-Stokes 3D Exact Solution example problem.

105

0.1

0.01

u o u
£ 0.001

-J

0.0001

0.00001
0.1

E l e m e n t w i d t h
Figure C.2. Log-log plot of the L2-error in the solution versus the element width for the Navier-Stokes 3D

Exact Solution problem. Second-order convergence with respect to the mesh spacing is observed.

Problem Specifications section of the input file), which reduces the oscillations in highly-
convective flows and greatly improves convergence.

The backtracking algorithm in the nonlinear solver is also turned on. For this calculation,
which starts from a trivial initial guess and attempts to reach a steady state at a Reynolds number
of 1500, Newton's method without backtracking diverges. With backtracking, this calculation
converged to a steady state in 11 Newton iterations, which took 229 seconds on 16 processors of
the Intel Paragon.

In. Section 5.3, this example problem was used to demonstrate the method of mesh
sequencing for obtaining a converged solution to a difficult problem. For large problems that are
spread across many processors, the ILU (domain decomposition) preconditioners are not as
robust. In many cases, the same problem on a coarser mesh and spread across fewer processors
will converge more readily. Mesh sequencing is a method to capitalize on this phenomena by first
solving the problem on a coarse mesh, interpolating the converged solution to a finer mesh, and
then using this solution as an initial guess on the fine, accurate mesh. See Table 5.2 in Section 5.3
for an example of the benefit of this approach.

-i 1 1 1 1—r-

'** ,*¥>
o

106

U=1500 V=0

U=0

V=0
u=o
v=o

P=0 u=o v=o
Figure C.3. 4096-element mesh and boundary conditions for the Lid-Driven Cavity example problem.

C.3. Hydrodynamically Developing Flow in an Infinite Parallel Plate Channel

Developing steady laminar flow in the entrance region of a straight parallel plate channel
is demonstrated in this example. To resolve the flow near the inlet, a mesh that was finer near the
inlet than at the outlet was used. The mesh was also refined near the lower wall boundary. The
entire mesh had 500x60 elements. A small section of the domain in the entrance region is shown
in Figure C.5 to show the expanding mesh. Advantage is taken of the line of symmetry through
the channel centerline. An expanding grid is used from the wall to the centerline and from the
entrance along the channel. The upper plate is located 0.5 units from the channel centerline, and
the channel has a length of 10. The upper plate is designated Side Set 1; the outflow boundary is
Side Set 2; the channel centerline is Side Set 3; and the inlet boundary is Side Set 4.

107

General Problem Spec i f i ca t ions Boundary Condition Specif icat ions

Problem type
Input FEM f i l e
LB f i l e
Output FEM file
Number of processors
Cartesian or Cylindrical when 2D
Interpolation Order
Stabilization

s fluid_flow
= Meshes/box_0064 exoll
- Meshes/box_0064-ml6-bKL neml
= run_out.exoll
= 16
= Cartesian
= linear

■ 2

Solution Specifications

Solution Type = steady
Order of integration/continuation = 1
Step Control = on
Relative Time Integration Error = 1.0e-3
Initial Parameter Value = 10.0
Initial Step Size = 1.0e-2
Maximum Number of Steps = 80
Maximum Time or Parameter Value = 1.0e+2

Solver Specifications

Override Default Linearity Choice - default

nonlinear solver subsection:

Number of Newton Iterations
Use Modified Newton Iteration
Enable backtracking for residual reduction
Choice for Inexact Newton Forcing Term
Calculate the Jacobian Numerically
Solution Relative Error Tolerance
Solution Absolute Error Tolerance

50

4

1.0e-2
1.0e-5

linear solver subsection*

Solution Algorithm
Convergence Norm
Preconditioner
Polynomial
Scaling
Orthogonalization
Size of Krylov subspace
Maximum Linear Solve Iterations
Linear Solver Normalized Residual Tolerance = 1.0e-4

Chemistry Specifications

= 0
= no_overlap_ilu
= LS,1
= row_sura
= classical
= 200
= 500

Energy equation source terms
Species equation source terms
Pressure < atmospheres)
Thermal Diffusion
Multicomponent Transport
Chemkin file
Surface chemkin file
Transport chemkin file

= off
= off
= 0 09210526

= stefan_maxwell
= chem.bin
= surf.bin
= tran.bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Materials
SOLID

ELEM_BLOCK_IDS
VISCOSITY = 1 0
DENSITY =1.0

END Material ID Specifications

Number of Generalized Surfaces = 0
Number of BC - 9
Upper moving wall
BC = U_BC DIRICHLET NS 3 INDEPENDENT 1500 0 0
BC = V_BC DIRICHLET NS 3 INDEPENDENT 0 0 0

No slip boundary conditions on all surfaces
BC = U_BC DIRICHLET NS 1 INDEPENDENT 0 0 0
BC = V_BC DIRICHLET NS 1 INDEPENDENT 0.0 0
BC = U_BC DIRICHLET NS 2 INDEPENDENT 0 0 0
BC = V_BC DIRICHLET NS 2 INDEPENDENT 0.0 0
BC s= U_BC DIRICHLET NS 4 INDEPENDENT 0.0 0
BC = VJBC DIRICHLET NS 4 INDEPENDENT 0 0 0

PRESSURE DATUM SET AT A SINGLE NODE FOR PROBLEM WITH
NO NATURAL OR SPECIFIED STRESS BOUDNARY
BC = P__BC DIRICHLET NS 5 INDEPENDENT 0 0 0

Initial Guess/Condition Specifications

Set Initial Condition/Guess
Apply function
Time Index to Restart From

constant

1

Output Specifications

User Defined Output
Parallel Output
Scalar Output
Time Index to Output To
Nodal variable output tunes

every 2 steps

Number of nodal output variables
Nodal variable names-

Velocity
Pressure

Number of global output variables
Global variable names

Test Exact Solution Flag
Name of Exact Solution Function

1

= f_xx_yy

Parallel I/O section

Machine
Staged writes

ncube subsection

Number of controllers
Disks per controller
Root location
Subdirectory
Offset numbering from zero

paragon subsection

Number of RAID controllers
Root location
Subdirectory
Offset numbering from zero

paragon

1
//df
3ns/testa
0

26
/pfs/io_
tmp/ags/ti43
23

Data Specification for User's Functions

Number of functions to pass data to = 0

Figure C.4. Input file for the Lid-Driven Cavity example problem.

108

J 1 I I
0 15 30 45 60 75 90

X- t * 1 0 A - 3 -)
Figure C.5. Expanding mesh of the entrance region for developing flow between parallel plates.

A uniform velocity profile is provided at the entrance to the channel. No slip is imposed at
the solid wall, and no shear is set at both the channel centerline and the outflow boundary;
transverse velocities are set to zero on all side sets. The MPSalsa input file is listed in Figure C.6.

Shown in Figure C.7 is the developing velocity profile along the channel; comparison is
made against results from a similar calculation using the finite difference algorithm SIMPLER
[36] on a coarser grid. (The characteristic overshoot in velocity at locations near the entrance is
physically possible and can be obtained numerically using the appropriate entrance and boundary
conditions, as discussed in Shah and London [45].) The analytic solution for fully-developed flow
in a channel predicts that the product of the friction factor and the Reynolds number is 24.0. The
value of 23.97 calculated by MPSalsa at the exit of the channel compares well with the analytic
result.

C.4. Thermally Developing Flow in an Infinite Parallel Plate Channel

A variation of the example in Appendix C.3 is to impose a hydrodynamically fully-
developed flow (paraboHc velocity profile) at the entrance of the channel and to heat the wall at a
constant heat flux. The mesh used in Appendix C.3 is also used for this example (Figure C.5). The

109

7 5

60

to
i
< 45 o
*

>-
30

15

0

General Problem Specifications Boundary Condition Specifications

Problem type
Input FEM file
LB file
Output FEM file
Number of processors

= fluid_flow
= rect exoll
= rect-32-bKL.exoIl
= rectFM-out exoll
= 32

Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = supg
Debug = 2

Solution Specifications

Solution Type = steady
Order of integration/continuation = 1
Step Control = on
Relative Time Integration Error = 1 0e-3
Initial Parameter Value = 10 0
Initial Step Size = 30 0
Maximum Number of Steps = 8
Maximum Time or Parameter Value = 1 0e+2

Solver Specifications

Override Default Linearity Choice

nonlinear solver subsection

Number of Newton Iterations = 80
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = default
Choice for Inexact Newton Forcing Term = 0
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-3
Solution Absolute Error Tolerance = 1.0e-8

Number of Generalized Surfaces
Number of BC

#Inlet boundary condition - uniform velocity
BC = U_BC DIRICHLET SS 4 INDEPENDENT 50 0
BC = V__BC DIRICHLET SS 4 INDEPENDENT 0 0 0

Upper solid plate - No slip
BC = U_BC DIRICHLET SS 1
BC = V_BC DIRICHLET SS 1

0.0 0
0 0 0

Outflow boundary condition (no normal stress on x
component of the momentum equation)
BC = V_BC DIRICHLET SS 2 INDEPENDENT 0.0 0

Lower boundary is on the channel centerline
Set zero V velocity, no shear stress for U velo
BC = V_BC DIRICHLET SS 3 INDEPENDENT 0.0 0

Initial Guess/Condition Specifications

Set Initial Condition/Guess
Apply function
Time Index to Restart From

= EXOII_FILE

= 1

Output Specifications

User Defined Output
Parallel Output
Scalar Output
Time Index to Output To
Nodal variable output times

every 2 steps

1

linear solver subsection

Solution Algorithm
Convergence Norm
Preconditloner
Polynomial
Scaling
Orthogonalization
Size of Krylov subspace
Maximum Linear Solve Iterations
Linear Solver Normalized Residual Tolerance

0
no_overlap_ilu
LS,1
row_sum
classical
92
500
1.0e-6

Chemistry Specifications

Energy equation source terms
Species equation source terms
Pressure (atmospheres)
Thermal Diffusion
Multicomponent Transport
Chemkin file
Surface chemkin file
Transport chemkin file

= off
= off
= 0 09210526

= stefan_maxwell
= chem bin
= surf bin
= tran.bin

Enclosure Radiation Specifications

Enclosure Radiation source terms - off

Material ID Specifications

Number of Materials
NEWTONIAN

ELEM_BLOCK_IDS
VISCOSITY - 1 0
DENSITY =1.0

U_INIT =50.0

END Material ID Specifications

= 1
= 0
= 1

Number of nodal output variables
Nodal variable names

Velocity
Pressure

Number of global output variables
Global variable names

Test Exact Solution Flag
Name of Exact Solution Function

0
f_xx_yy

Parallel I/O section

Data Specification for User's Functions

Number of functions to pass data to = 8

#Call to output data along the wall (note. tau_jn is printed out
as tau_x tau_yj
Function Name = f_ss_centroid 2
EN_DATA = INT 1
FN_DATA = STRING x Area P n_jgrad_U tau_n

#Call for time history output at channel inlet
#The data output are* time step, time, x, y, U, V, P
Function Name s time_history_line 2
FN_DATA = INT 10
FN_DATA = TABLE 2 2

0 0 0 0
0 0 0 5

#Call for time history output at various locations along the
channel
Function Name = time_history_line 2
FN_DATA = TNT 60
FN_DATA » TABLE 2 2

0 025 0.0
0 025 0.5

Function Name - time_history_line 2
FN_DATA = INT 60
FN_DATA = TABLE 2 2

0.1 0.0
0 1 0.5

« 4 more time_hzstory_lme data statements follow for
increasing- values of x »

Figure C.6. Input file for the Hydrodynamically Developing Flow in an Infinite Parallel Plate Channel
example problem.

110

s

e
o

1.6

1.4 •

1.2

1 ■

0.8 ■

0.6

0.4

0.2 -

■

.
»

X
/

■ /

/
/ -■ /

/ / ,
■ / / / /

/ ' / / /
/ ■ >'//

/ J'/ '\!W
f

/

1

' /
1

1 /

'—♦ 7 < i

/ y
*' , '

>' * /

'* / /
' ' ' /

' ' /
1 /

'f

^~-'-?-?y^ * :
<——*v̂ l / " ~ "" ~ ~a — > ^ ~ 5 ^

,'* v ^ + *
' yT

Finite Difference Results 0.000125 .
0.0005 ♦

0.00125 =
0.0025 «
0.005 *

Fully Developed ■
MPSalsa Results 0.000125

0.0005
0.00125
0.0025 - -
0.005
0.05

0.2 0.4 0.6
Non-dimensional distance from wall, ylL

0.8

Figure C. 7. Developing velocity profiles for flow entering parallel plates for a variety of non-dimensional
lengths down the channel, as the flow transitions from plug flow to a parabolic profile.

MPSalsa input file is given in Figure C.8. The hydrodynamic boundary conditions are the same as
in Appendix C.3 except for the inlet velocity boundary condition. For this condition, the function
user_bc_exac t is called. The user must program an expression for a parabolic velocity profile
and place it in "rf_user_bc_exact_fn.c." For this example, the profile for the ^-component of

2

velocity was 6v - 6v at the inlet. For the energy equation, the Neumann boundary condition is
used to set the heat flux on the solid plate; a Dirichlet boundary condition is used to set the inlet
temperature level.

Reducing the temperature field data to calculate the local Nusselt numbers, the data are
shown on Figure C.9 where Nu = hDh/k and x = x/DhRePr for heat transfer coefficient h,
thermal conductivity k, and half-distance between the plates Dh. Comparison with the three part
correlation of Shah and Bhatti [46] generally were within 2% over the entire range, except where
their correlation is discontinuous.

C.5. Vortex Shedding from a Circular Cylinder

Slow flow over a cylinder yields steady solutions; however, as the Reynolds number is
increased above 60, the character of laminar flow across a cylinder changes. A steady flow can no
longer be maintained; rather, the flow takes on a time varying behavior with a periodic shedding

i l l

General Problem Specifications Boundary Condition Specifications

Problem type
Input FEM file
LB file
Output FEM file
Number of processors

= fluid_flow_energy
= rect exoll
= rect-32-bKL exoll
= rectHT-out exoll
= 32

Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = supg
Debug = 2

Solution Specifications

Solution Type = steady
Order of integration/continuation = 1
Step Control = on
Relative Time Integration Error * 1 0e-3
Initial Parameter Value = 10 0
Initial Step Size = 30 0
Maximum Number of Steps = 8
Maximum Time or Parameter Value = 1 0e+2

Solver Specifications

Override Default Linearity Choice

nonlinear solver subsection

Number of Generalized Surfaces * 0
Number of BC = 8

Lower solid plate - No slip heat flux set at -10 0
BC = U_BC DIRICHLET SS 1 INDEPENDENT 0 0 0
BC = V_BC DIRICHLET SS 1 INDEPENDENT 0 0 0
BC = T_BC NEUMANN SS 1 INDEPENDENT -10 0 0

#Inlet boundary condition - uniform velocity
#Note average velocity set in rf_user_bc_exact_fn c i
with parabolic velocity profile
BC = U_BC DIRICHLET SS 4 INDEPENDENT user_bc_exact 0
BC » V_BC DIRICHLET SS 4 INDEPENDENT 0 0 0

Inlet boundary condition - temperature
BC * T_BC DIRICHLET SS 4 INDEPENDENT 0 0 0

Outflow boundary condition (no normal stress on x
component of the momentum equation)
BC = V_BC DIRICHLET SS 2 INDEPENDENT 0 0 0

Upper boundary is on the channel centerline
Set zero V velocity, no shear stress for U velo,
and no heat flux for temp
BC = V_BC DIRICHLET SS 3 INDEPENDENT 0 0 0

Number of Newton Iterations
Use Modified Newton Iteration
Enable backtracking for residual reduction
Choice for Inexact Newton Forcing Term
Calculate the Jacobian Numerically
Solution Relative Error Tolerance
Solution Absolute Error Tolerance

80

default
0

1 0e-3
1 0e-8

Initial Guess/Condition Specifications

linear solver subsection

Solution Algorithm
Convergence Norm
Preconditloner
Polynomial
Scaling
Orthogonalization
Size of Krylov subspace
Maximum Linear Solve Iterations
Linear Solver Normalized Residual Tolerance

= 0
= no_overlap_ilu
= LS,1
- row_sum
= classical
m 92
= 500
= 1 0e-6

Chemistry Specifications

Energy equation source terms
Species equation source terms
Pressure (atmospheres)
Thermal Diffusion
Multicomponent Transport
Chemkin file
Surface chemkin file
Transport chemkin file

off
off
0 09210526

stefan_maxwell
chem bin
surf bin
tran bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Mater ia ls
NEWTONIAN

ELEM_BLOCK_IDS
VISCOSITY = 0 02
DENSITY = 1 0
THERMAL_CONITC7CT ■ 0 02
CP = 10 0
T_INIT = 0 0

= 1
= 0
» 1

Set Initial Condition/Guess
Apply function
Time Index to Restart From

= constant

* 1

Output Specifications

User Defined Output
Parallel Output
Scalar Output
Time Index to Output To
Nodal variable output times

every 2 steps

Number of nodal output variables
Nodal variable names

Velocity
Pressure
Temperature

Number of global output variables
Global variable names

Test Exact Solution Flag
Name of Exact Solution Function

1

0
f_joe_jry

Parallel I/O section

Machine
Staged writes

paragon subsection

Number of RAID controllers
Root location
Subdirectory
Offset numbering from zero

= paragon

= 26
- /pfs/io_
= tmp/ags/ti43
= 23

Data Specification for User s Functions

Number of functions to pass data to = 2

END Material ID Specifications

#CaIl to output data along the wall
Function Name = f_ss_centroid 2
FN_DATA = INT 1
FN_DATA ss STRING x Area T n_jgrad_T n_grad_U

tCall for time history output at channel inlet
#The data output are time step time x y U, V
Function Name = time_history_line 2
FN_DATA = INT 10
FN_DATA * TABLE 2 2

0 0 0 0
0 0 0 5

Figure C.8. Input file for the Thermally Developing Flow in an Infinite Parallel Plate Channel example
problem.

112

Local Nusselt Number for Thermally Developing Flow in Infinite Parallel Plate Channel

MPSalsa

3
2

o

0.0001 0.001
Non-dimensional Length (x/DhRePr)

0.01

Figure C.9. Comparison of the MPSalsa calculation and an established correlation for the Nusselt number
for thermally-developing flow in a parallel plate channel

of vortices [19]. This transient behavior is illustrated in this example. The 2D mesh consists of
4300 elements — 80 elements around the circumference and 50 expanding away from the
cylinder. The domain is shown in Figure CIO, with a channel width of 30 diameters. The
circumference of the cylinder is designated Side Set 1; the two channel walls are Side Set 2; the
inlet is Side Set 3; and the outflow boundary is Side Set 4.

A uniform velocity profile is provided at the inlet to the channel. The channel walls'
boundary conditions are.no shear and impervious. The cylinder's boundary conditions are no slip
and impervious. No shear is set at the outflow boundary. Experiments with Reynolds numbers
Re = 60, 100, 200, and 600 were done. The input file for Re = 600 is given in Figure C.ll.

To indicate the transient nature of the flow, the time varying variables were recorded at a
location a distance 4.0 downstream from the cylinder and 0.5 from the line of symmetry using the
t i m e _ h i s t o r y _ p o i n t function. The calculation for Re = 60 was started from an initial
guess of zero. For higher Reynolds numbers, the calculations were started using the restart option;
the solution for the next lower Reynolds number was used as the starting point. At all times, the
automatic time step control was set to on. Care must be used in setting the initial time step size,
R e l a t i v e Time I n t e g r a t i o n Error , and So lu t i on R e l a t i v e E r ro r Tolerance;
values that are too large can result in the transient being missed.

113

http://are.no

15

10

5

>L o

- 5

- 1 0

- 1 5

\ x x

sr\ \ s \ . x
s SA ^ ^ ^ .

--oN^

- ' ' ' / / .
/ / /—.

/ r7
/ A A

/ / /
/ / /

1 1

1 s . (v V \ \ \ \ \

AVvAW \ 1 v x x x \ \ \ \ \ i

sTHKis^vA\\\\\ 1

\mmff *////>< / / /
/ / / / / / / / /

/ /1 i l l i
i i

i i
\ \ ! ! > / / ; ; ;

I f f / / / / / I f f / / / / ? /
\ I f f / / / - ? /

I / / / / / / / ? y j - -

1 / / / / / . '
/ / / / / / / / / / / '--

\\l i/////s/s y ...
H^^iiW
WjjW^'V'''''''''-*'*'"

S^s^Bffl
| \ " w ^
—\—\ \ \ \ \ \ \ \ ŝ N ^ x s
■ \ \ \ \ \ \ \ "̂ \ \ s

\ \ \ \ \ W \ N ^
1 \ \ \ \ \ \ \ \ N ̂

\ \ \ \ \ \ \ \ X
1 \ \ \ \ \ \ \ \ X

1 1

1

"

—

—

1
- 1 5 - 1 0 - 5 10 15 20 25

Figure CIO. The finite element mesh of 4300 elements for the Vortex Shedding from a Circular Cylinder
example problem.

Shown in Figure C. 12(b) is the y-component of velocity as a function of time for the flow
with Re = 600. (Density was set to 1.0 and viscosity was set to 0.1 in this example, so for
Re = 600, the average ^-component of velocity was 60.) Figure C.l2(a) shows a similar trace
for Re = 60. The von Karman vortex street behind the cylinder with Re = 600 is shown in
Figure C.13. In Figure C.12(a) and (b), the transient behavior before the steady periodic nature of
the flow is fully established depends upon the grid geometry, convergence criteria, and initial
condition. For the fully-developed, steady, periodic flow, the frequency of vortex shedding can be
characterized by the non-dimensional Strouhal number, St = fD/V, where / is the frequency of
shedding, D is the cylinder diameter, and V is the fluid approach velocity. St is a function of
Reynolds number. For the flows calculated with MPSalsa, the results are shown in Table C.2.
Comparison is made against experimental data presented in Schlichting [39].

114

file:///mmff

General Problem Specifications Boundary Condition Specifications
Problem type = fluid_flow
Input FEM file = cyl exoll
LB file = cyl-8-bKL exoll
Output FEM file = cyl-Re600-out exoll
Number of processors - 8
Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = supg
Debug = 2

Solution Specifications
Solution Type = transient
Order of integration/continuation = 2
Step Control = on
Relative Time Integration Error = 1 Oe-4
Initial Parameter Value = 10 0
Initial Step Size = 0 05
Maximum Number of Steps = 1000
Maximum Time or Parameter Value = 500 0

Solver Specifications
Override Default Linearity Choice = default

_ — nonlinear solver subsection

Number of Newton Iterations
Use Modified Newton Iteration
Enable backtracking for residual reduction
Choice for Inexact Newton Forcing Term
Calculate the Jacobian Numerically
Solution Relative Error Tolerance
Solution Absolute Error Tolerance

= 15
= no
= 4
= no
- 1 Oe-4
= 1 Oe-8

linear solver subsection
Solution Algorithm
Convergence Norm
Preconditioner
Polynomial
Scaling
Orthogonalization
Size of Krylov subspace
Maximum Linear Solve Iterations
Linear Solver Normalized Residual Tolerance - 5 Oe-4

Chemistry Specifications

= 0
= no_overlap_ilu
= LS,7
= row_sum
- classical
* 80
= 200

Energy equation source terms
Species equation source terms
Pressure (atmospheres}
Thermal Diffusion
Multicomponent Transport
Chemkin file
Surface chemkin file
Transport chemkin file

= off
= off
= 0 09210526

= stefan_maxwell
= chem bin
= surf bin
= tran bin

Enclosure Radiation specifications
Enclosure Radiation source terms = off

Material ID Specifications
Number of Materials = 1
NEWTONIAN = 0

ELEM_BLOCK_IDS * 1
VISCOSITY = 0 1
DENSITY = 1 0

Number of Generalized Surfaces = 0
Number of BC = 5
Inlet boundary condition - uniform velocity
BC = U_BC DIRICHLET NS 3 INDEPENDENT 60 0 0
BC = V_BC DIRICHLET NS 3 INDEPENDENT 0 0 0
Cylinder - No slip
BC = U_BC DIRICHLET NS 1 INDEPENDENT 0 0 0
BC - V_BC DIRICHLET NS 1 INDEPENDENT 0 0 0
Outflow boundary condition (no normal stress on x
component of the momentum equation)
Solid plates - No shear
BC = V_BC DIRICHLET NS 2 INDEPENDENT 0 0 0

Initial Guess/Condition Specifications
Set Initial Condition/Guess
Apply function
Time Index to Restart From

= EXOII_FILE
= 805

Output Specifications
User Defined Output
Parallel Output
Scalar Output
Time Index to Output To
Nodal variable output times

every 1 steps
Number of nodal output variables
Nodal variable names

Velocity
Pressure

Number of global output variables
Global variable names
Test Exact Solution Flag
Name of Exact Solution Function

1

Parallel I/O section
Machine
Staged writes
ncube subsection
Number of controllers
Disks per controller
Root location
Subdirectory
Offset numbering from zero
paragon subsection

3
Number of RAID controllers
Root location
Subdirectory
Offset numbering from zero

paragon

8
1
//df
3ns/testa
0

26
tmp/ags/ti43
23

Data Specification for User's Functions
Number of functions to pass data to = 1

U_INIT
P_INTT

= 60 0
= 0 0

Function Name = time_history.jpoints 1 #
FNJDATA = TABLE 1 2
4 0 0 5

END Material ID Specifications

Figure C.ll. Input file for the Vortex Shedding from a Circular Cylinder example problem, Re=600.

115

Steady Periodic Velocity in the y-Direction Due to Vortex Shedding Downstream of Cylinder with Re=60

i
c
o

Q

o

>

100
Time (sec)

200

Steady Periodic Velocity in the y-Direction Due to Vortex Shedding Downstream of Cylinder with Re=600

Q

33.2 33.4
Time (sec)

34.2

Figure C.l 2. Time history plots for vortex shedding behind a cylinder: (a) Re=60, (b) Re=600.

116

• *

1?
-30.94 1.90 34.74 67.59 100.

Figure C. 13. Contour plot showing the shedding vortices behind a cylinder at Re=600.

Re

60

100

200

600

St
(MPSalsa)

0.132

0.163

0.189

0.218

St
(Schlichting)

0.133

0.166

0.190

0.210

Table C.2. Comparison of Strouhal numbers as a function of Reynolds number for MPSalsa and the experimental
data ofSchlichting [39].

117

Appendix D. CVD Reactor Examples

D.l. SPIN Comparison

This example problem was used to benchmark many of the capabilities of MPSalsa by
comparing results with another code, SPIN [6]. SPIN solves for reacting flows in the idealized
geometry of uniform flow impinging on a rotating disk of infinite radius, by using the von
Karman similarity solution that reduces the 3D problem to ID. We solve a full 3D problem using
MPSalsa of flow impinging on a rotating disk with large radius, and compare the solutions near
the center of the disk with SPIN. The excellent agreement between the two solutions verifies our
implementation of the fluid mechanics, heat and mass transfer, gas-phase reactions, surface
reactions, and the Danckwerts' boundary conditions.

Our computational domain for the MPSalsa calculation is cylindrical, with an inlet at
10cm above a reactive rotating disk with a radius of 7cm. The surface of the 12,660-element mesh
used in this calculation, generated using CUBIT [24], is shown in Figure D.l.

Figure D.l. Surface of 12,660-element mesh for SPIN Comparison example problem.

The reaction mechanism used in this calculation is for the deposition of Silicon, and has 8
gas-phase species, 10 gas-phase reactions, 2 surface species, 8 surface reactions, and 1 bulk
component (solid silicon). A schematic diagram of the system is shown in Figure D.2.

118

10cm

Figure D.2. Schematic diagram o/SPIN Comparison example problem. Plug flow enters the low
pressure reactor 10 cm above a heated disk with radius 7cm that is rotating at 10 rpm. Gas-

phase reactions and surface reactions proceed as a function of concentrations and temperature.

Since the system is operating at a low pressure of 0.002 atmospheres, the diffusive flux of
species at the inlet boundary of the computational domain is non-negligible. In experiments, it is
the total flux of each species into the domain that is known, but setting Dirichlet conditions for the
species mole fractions and inlet velocity sets only the convective flux while ignoring the diffusive
contribution. Danckwerts' boundary condition allows for the specification of the total flux at the
inlet boundary of the computational domain, and functions are included in MPSalsa to implement
this condition (see Section A. 1.2).

The input file for this example problem is shown in Figure D.3. The problem is run on 256
processors, and can reach the steady-state directly using the tfgmr linear solver with
no_over l ap_b i lu preconditioning. Danckwerts' boundary condition on the velocity and
species mole fractions is specified at the inlet (side set 1), and surface reactions and spinning
conditions are specified on the disk surface (side set 2). The output function
t ime_r i i s t o ry_ l ine is used to print information along a vertical line at radius 1cm, as
specified at the bottom of the input file.

The 3D steady state was reached in 10 minutes on 256 Processors of the Intel Paragon,
and required 7 Newton iterations and 1149 total iterations of the linear solver. Solving the
analogous infinite disk problem with SPIN required only 20 seconds on a workstation. The

119

Inlet:
98.455% H2,1.545% SiH4

T=600K, V0=3cm/sec

1 1 1 1 1
gas-phase
reactions

P = 0.002 atm

General Problem Specifications Boundary Condition Specifications

Problem type
Input FEM file
LB file
Output FEM file
Number of processors

whol e_enchilada
Mesb.es/si_13k exoll
Meshes /si_13k-256-bKL exoll
run_out exoll
256

Number of Generalized Surfaces

Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order * linear
Stabilization = default
Debug - 2

Solution Specifications

Solution Type = steady
Order of integration/continuation = 1
Step Control = off
Relative Time Integration Error = 4 Oe-3
Initial Parameter Value = 10 0
Initial Step Size = 30 0
Maximum Number of Steps = 8
Maximum Time or Parameter Value = 1 Oe+2

Solver Specifications

Override Default Linearity Choice = default

nonlinear solver subsection

Number of Newton Iterations
Use Modified Newton Iteration
Enable backtracking for residual reduction
Choice for Inexact Newton Forcing Term
Calculate the Jacobian Numerically
Solution Relative Error Tolerance
Solution Absolute Error Tolerance

= 15

= 4

= 1 Oe-3
= 1 Oe-8

linear solver subsection

Solution Algorithm
Convergence Norm
Preconditioner
Polynomial
Scaling
Orthogonalization
Size of Krylov subspace
Maximum Linear Solve Iterations
Linear Solver Normalized Residual Tolerance = 1 Oe-4

Chemistry Specifications

* 1
= no_overlap_bilu
= LS 1
= row_sum
= classical
■ 200
= 600

Energy equation source terms
Species equation source terms
Pressure (atmospheres)
Thermal Diffusion
Multicomponent Transport
Chemkin file
Surface chemkin file
Transport chemkin file

= 0 002

= stefar_maxwell
= chera bin
= surf bin
= tran bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

tmber of M a t e r i a l s

ELEM_BLOCK_IDS
T_INIT

Change from Ul U2 TO
U_INIT
V_HtIT
W_INIT

» 1
= 0
= 7 9
= 600

= 0 0
= 0 0
= -2 1

XMF_0 H2 0 9995
XHF_0 SIH4 0 0005

END Material ID Specifications

Number of BC
T_BC DIRICHLET SS 1
T_BC DIRICHLET SS 2

= 10
INDEPENDENT 600
INDEPENDENT 1700

U_BC DIRICHLET SS 1
U_BC DIRICHLET SS 2
BC_DATA = 10 0 0 0 0 0

INDEPENDENT 0 0
INDEPENDENT f_xy_spm_disk 1

V_BC DIRICHLET SS 1 INDEPENDENT 0 0 0
V_BC DIRICHLET SS 2 INDEPENDENT f_xy_spin_disk 1
BC_DATA = 10 0 0 0 0 0

W_BC DIRICHLET SS 1 DEPENDENT f_DanckwertS_X0 1

BC
BC
*
BC
BC

*
BC
BC

BC

BC

BC = Y_BC MIXED SS
f_Danckwerts_X0 0 0 1

SPECIES_LIST = ALL
BC_DATA - - 3 0 0 01545 0 0 0 0 0 0 0 0 0 0 0 0 0 98455
Y_BC NEUMANN SS 2 DEPENDENT surface_chemkin_bc 0
SPECIES_LIST = ALL

Initial Guess/Condition Specifications

BC_DATA = -3 0 0
W_BC DIRICHLET SS

01545 0 0 0 0 0 0 0 0 0 0 0 0 0 98455
2 DEPENDENT s u r f a c e _ c h e m k i n _ b c 0

INDEPENDENT f_Danckwerts

BC

Set Initial Condition/Guess
Apply function
Time Index to Restart From

constant

1

Output Specifications

User Defined Output
Parallel Output
Scalar Output
Time Index to Output To
Nodal variable output times

every 2 steps

Number of nodal output variables
Nodal variable names

Temperature
Velocity
Pressure
Mass_fraction

Number of global output variables
Global variable names

Test Exact Solution Flag
Name of Exact Solution Function

yes
1

= 0
" f_xx_yy

Parallel I/O section

Machine
Staged writes

paragon subsection

Number of RAID controllers
Root location
Subdirectory
Offset numbering from zero

paragon

26

tmp/ags/ti43
23

Data Specification for User's Functions

Number of functions to pass data to = 1

= time.^history^line 2 Function Name =

FN_DATA = INT 100
FN_DATA = TABLE 2 3

0 6 0 8 10 0
0 6 0 8 0 0

Figure D.3. Input file for the SPIN Comparison example problem.

120

http://Mesb.es/si_13k

adaptive gridding strategy placed 171 nodes in the ID mesh, as compared to the 30 elements in
the axial direction of the 3D MPSalsa mesh.

Comparisons between MPSalsa and SPIN can be seen in Figure D.4. Excellent agreement
can be seen for all quantities except the axial velocity, for which the differences reflect the fact
that SPIN is solving the problem on an infinite domain while MPSalsa uses a finite domain. The
axial velocity in the MPSalsa calculation is strongly effected by the boundaries of the
computational domain at finite radius. The discrepancy diminishes at higher flow rates. The
Stefan velocity into the disk does agree between the calculations, and is uncommonly large
because of the huge difference in molecular weights between Si and H2 and the low operating
pressure.

D.2. Rotating Disk Reactor

A real reactor used for the growth of Gallium Arsenide single crystals is the rotating disk
reactor [2,12]. The reactor is designed to capitalize on the perfect uniformity of deposition of the
infinite disk configuration, with the plug flow of reactants impinging on a rotating disk. The
reactor geometry, shown in Figure D.5, consists of a vertical cylinder sitting concentrically inside
a larger cylindrical reaction vessel. Flow enters uniformly through the circular cross-section of the
reactor and the inner cylinder is rotated, with the reaction occurring on the top heated surface.
Flow exits through the annular region between the cylinders. Very uniform growth has been
observed in this reactor over a large central section of the disk where the effects of a finite radius
system are small.

The reaction mechanism used in this system for chemical vapor deposition of Gallium
Arsenide (from Moffat et al. [35]) consists of 4 gas-phase species, 3 surface species, and 2 bulk
species, and can be found in the Chemkin input files "gaas_block.gas" and "gaas_block.sur."
There are no gas-phase reactions, and 3 surface reactions.

In this example problem, we demonstrate the restarting capability in MPSalsa by solving
for three different steady states of the reactor at three different sets of operating parameters, as
presented in Table D.l. The solution at the first set of conditions is used as the initial guess for
finding the steady state at the second set, since it is closer to the solution than a trivial initial
guess. Similarly, the third solution uses the second solution as an initial guess. Being able to
restart from a previous solution is necessary for reactor analysis, where many sets of operating
conditions need to be explored. Also, using a series of steady-state jumps can be an efficient way
of reaching a solution at conditions that are too complicated to allow convergence from a trivial
initial guess.

121

0.00045
0.0004 -

c 0.00035 -
g
'■§ 0.0003 h
£ 0.00025
I 0.0002 h

9e-07

«
o
evi
I
<2
CO
<M

x

MPSalsa —
SPIN B

2 4 6 8
Distance from Disk

10

2 4 6 8
Distance from Disk

10

<D
>

4

-1.5

-2

-2.5

-3

-3.5

-4

-4.5 |-

-5

1.2e-05

1e-05 -

reiBQ

-

-

-

—I " 1

Q \

ID

• i

D

1 1
MPSalsa

SPIN e "

s.

o \ yr
D

^y"

8e-06 -

® 6e-06

4e-06 -

2e-06

o
2
u.
a>
o
5
CM
I
CO

2 4 6 8 10
Distance from Disk

2 4 6 8
Distance from Disk

3e-09

4 6 8
Distance from Disk

2 4 6 8
Distance from Disk

10

Figure D.4. Comparisons between MPSalsa and SPIN for reacting flow impinging on an infinite rotating
disk. Axial profiles of several quantities are plotted: Temperature, Axial Velocity, and Mole Fractions of

SiH* SiH2, H2SiSiH2, and H^iSiH.

The input file used to solve for the steady-state at the second set of conditions in Table D. 1
(using the solution at the first set of conditions in as the initial guess) can be seen in Figure D.6. In
the Initial Guess/Condition Specifications section, the lines

122

Olll

Inlet

A

/ :
Reacting |
Snrfapp i

twin Ul
Rotation

iet Ou tlet

Cross Section

/

Top View

Reacting Surface
Reactor Inlet

Figure D.5. A cross section and top view of the geometry for the Rotating Disk Reactor example problem,
showing a refined mesh. The design consists of one cylinder inside a larger one, with the reacting surface
on the top of the inner cylinder, which is usually rotating. The flow enters uniformly within the entire top

circle, flows over the disk, and flows out through an annular region.

Solution
Number

1

2

3

Disk Spin Rate
(rpm)

50

100

100

Inlet Flow
Velocity (cm/sec)

5

15

15

Inlet Mole Fraction
ofGaMe3

0.00013

0.00013

0.00065

Table D.l. Three sets of conditions for three runs of the Rotating Disk Reactor example problem.

Set Initial Condition/Guess
Time Index to Restart From

= EXOII_FILE
= 1

control the restarting. The keyword EX0II_FILE tells MPSalsa to get the initial guess from the

output file, which in this case is named "run-out.exoII." Since this file can store many solutions

123

for this mesh, the second line tells MPSalsa to use the first solution. The input lines Time I n d e x
t o Ou tpu t To and Nodal v a r i a b l e o u t p u t t i m e s control the solution output to the
ExodusII file. When a solution is being written, the time index is echoed to the standard output so
the user can keep track of which solution is stored in which location of the output file.

The boundary conditions in the input file are imposed over 6 different side sets, with SS#1
being the top circular inlet, SS#2 the annular outlet region, SS#3 being the cooled outer walls,
SS#4 the heated, reactive, rotating disk, and SS#5 and SS#6 being the outside of the inner,
rotating cylinder. The f _ x y _ s p i n _ d i s k function is used to specify velocity boundary
conditions for the rotation of the inner cylinder, with the BC_DATA statement following it
supplying the rotation rate (in rpm) and the (x, y) center of rotation. The
s u r f a c e _ c h e m k i n _ b c boundary condition uses the surface reaction information to specify
the mass flux of each species to the surface as well as the velocity into it (see Appendix A. 1.1).
The f_mole_f r a c t i o n boundary condition is used to specify the mole fractions of species at
the inlet, as opposed to the mass fractions that are the primitive variables (see Appendix A. 1.4).
The SPECIES_LIST information is used to match up the input with the order that the species
are in the Chemkin input file. (Since the SPECIES_LIST has " 1 " as the first entry, 0.0044 is the
specified mole fraction for the first species in the Chemkin input file, which is AsH3 in this case.
The SPECIES_LIST can be listed as species names instead of integers to reduce possible
confusion.) The f _ p r e s s u r e boundary condition is an outflow boundary condition that
matches the normal component of the normal stress with the local pressure (see Appendix A. 1.5).

With fluid mechanics and heat transfer, there are a total of 9 unknowns per node. For the
coarse mesh of 7472 elements and 8499 nodes used in this example problem, this corresponds to
76,491 total unknowns. (Published results for this reactor use a much finer mesh of around 40,000
elements [2,12].) The problem is solved on 64 processors of the Intel Paragon.

Table D.2 shows some solution statistics for the three solutions. The number of Newton
iterations and the solution time for the second and third solutions were less than those of the first
solution — even though they were at more difficult parameter values — because the initial guess
from a previous solution was used.

Solution
Number

1

2

3

Initial Guess

Trivial

Solution 1

Solution 2

of Newton
Iterations

10

8

6

of GMRES
Iterations

863

904

637

Execution Time on
64 Processors

510 sec

459 sec

336 sec

Table D.2. Solution statistics for the three solutions for the Rotating Disk Reactor example problem. The parameter
values are shown in Table D.l. Restarting from the previous solution decreased the execution time.

124

General Problem Specifications Boundary Condition Specifications

Problem type
Input FEM file
LB file
Output FEM file
Number of processors
Cartesian or Cylindrical when 2D
Interpolation Order
Stabilization
Debug

= whole_enchilada
c run-out.exoll
= Mesh.es/em_7k-64-bKL. exoll
- run-out.exoll
= 64
= Cartesian
= linear
= default
= 2

Solution Specifications

Solution Type = steady
Order of integration/continuation = 1
Step Control
Relative Time Integration Error
Initial Parameter Value
Initial Step Size
Maximum Number of Steps
Maximum Time or Parameter Value

= off
= 4.Oe-3
= 10.0
= 30 0
= 4
= 1 0e+2

Solver Specifications

Override Default Linearity Choice - default

___ —. „ — nonlinear solver subsection

Number of Newton Iterations
Use Modified Newton Iteration
Enable backtracking for residual reduction
Choice for Inexact Newton Forcing Term
Calculate the Jacobian Numerically
Solution Relative Error Tolerance
Solution Absolute Error Tolerance

* 15

= 4

= 1.0e-3
= 1.0e-8

linear solver subsection.

Solution Algorithm
Convergence Norm
Preconditioner
Polynomial
Scaling
Orthogonalization
Size of Krylov subspace
Maximum Linear Solve Iterations
Linear Solver Normalized Residual Tolerance

1
no_overlap_ilu
LS,1
row_sum
classical
150
300
1.0e-5

Chemistry Specifications

Energy epilation source terms
Species equation source terms
Pressure (atmospheres)
Thermal Diffusion
Multicomponent Transport
Chemkin file
Surface chemkin file
Transport chemkin file

= 0.09210526

= stefan_maxwell
= chem.bin
= surf.bin
= tran.bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Materials
CHEMKIN

ELKM_BLOCK_IDS
T_INIT

Change from Ul, U2, U3
W_INXT

XMF_0 AsH3
XMF_0 GaMe3
XMF_0 H2

0
0
0

= 1
= 0 *gaas_new
» 1
= 500

=-5 0
0044
00013
99547

G_VECTOR 0 0 0.0 -980 0
END Material ID Specifications

Number
Number
BC
BC «
BC »
BC »

BC
BC
BC

of Generalized Surfaces = 0
of BC - 23
T_BC DIRICHLET SS 1 INDEPENDENT 303.15 0
T_BC DIRICHLET SS 3 INDEPENDENT 293 15 0
T_BC DIRICHLET SS 4 INDEPENDENT 913.15 0
T_BC DIRICHLET SS 5 INDEPENDENT 913.15 0

■ U_BC DIRICHLET SS
' U_BC DIRICHLET SS
U_BC DIRICHLET SS
BC_DATA » 100 0 0
U_BC DIRICHLET SS
BC_DATA = 100.0 0.
U_BC DIRICHLET SS
BC_DATA = 100.0 0. 0.

1 INDEPENDENT 0 0
3 INDEPENDENT 0 0
4 INDEPENDENT f_xy_spin_disk 1
0.

5 INDEPENDENT f_xy_spin_disk 1
0.

6 INDEPENDENT f_xy_spin_disk 1

*
BC
BC
BC

BC
BC
BC
BC
BC
BC

BC

BC

BC

1 INDEPENDENT 0 0
3 INDEPENDENT 0. 0
4 INDEPENDENT f_xy_spin_disk

V_BC DIRICHLET SS
V_BC DIRICHLET SS
V_BC DIRICHLET SS
BC_DATA = 100.0 0. 0
V_BC DIRICHLET SS 5 INDEPENDENT f_xy_spin_disk
BC_DATA ■ 100 0 0 0.

6 INDEPENDENT f_xy_spin_disk V_BC DIRICHLET SS
BC_DATA = 100.0 0. 1

W_BC DIRICHLET SS 1
W_BC DIRICHLET SS 3
W_BC DIRICHLET SS 4
W_BC DIRICHLET SS 5
W_BC DIRICHLET SS 6
W_BC NEUMANN SS 2
BC_DATA = FLOAT -.95

INDEPENDENT -15.0 0
INDEPENDENT 0. 0
DEPENDENT surface_chemkin_bc 0
INDEPENDENT 0 0
INDEPENDENT 0. 0
DEPENDENT f_pressure 1

Y_BC DIRICHLET SS 1 INDEPENDENT f_mOle_fraCtlon 1
SPECIES_LIST = 1 2 3 4
BC_DATA - 0.0044 0 00013 0.0 0 99547
Y_BC NEUMANN SS 4 DEPENDENT surface_chemkin_bc 0
SPECIES_LIST = ALL
V_BC NEOMANN SS 5 DEPENDENT surface_chemkin_bc 0
SPECIES_LIST ■ ALL

Initial Guess/Condition Specifications

Set Initial Condition/Guess
Apply function
Time Index to Restart Prom

= EXOII_FILE

» 1

Output Specifications

User Defined Output
Parallel Output
Scalar Output
Time Index to Output To
Nodal variable output times:

every 2 steps

Number of nodal output variables
Nodal variable names *

Temperature
Velocity
Pressure
Mass_f raction

Number of global output variables
Global variable names.

Test Exact Solution Flag
Name of Exact Solution Function

2

0
f_xx_yy

Parallel I/O section

Machine
Staged writes

paragon subsection

Number of RAID controllers
Root location
Subdirectory
Offset numbering from zero

= paragon

= 26
= /pfs/io_
= tmp/ags/ti43
« 23

Data Specification for User's Functions

Number of functions to pass data to = 0

Figure D.6. MPSalsa input file for the Rotating Disk Reactor example problem.

125

http://Mesh.es/em_7k-64-bKL

The three steady-state solutions computed here are axisymmetric. The deposition rate of
Gallium Arsenide on the reacting surface as a function of the radial position is shown in Figure
D.7. An increase in velocity increases the deposition rate between solutions 1 and 2, and the
increase in the reactant concentration increases the deposition rate between solutions 2 and 3. The
large deposition rate at large radii is due to the rapid flow rate passing by the corner of the disk on
its way out the annular exit region. Crystal is harvested only in the center 2.5 cm region where the
deposition rate is more uniform.

50

CD
w 40

ti
£ 30
(0

g 20
•■—i

' f t
W

CD
Q

0
0 1 2 3 4

Radius [cm]
Figure D.7. Deposition profiles ofGaAs crystal in the Rotating Disk Reactor for three

different sets of conditions (see Table D.l) as a function of the radial position on the disk.

D.3. Tilted Reactor

The horizontal CVD reactor with tilted susceptor and rotating substrate admits only three-

dimensional solutions. This configuration is an alternative to the rotating disk reactor for growing
Gallium Arsenide semiconductor crystals. We have used the same mechanism as in Appendix
D.2, which includes four gas-phase species.

The reactor configuration is shown in Figure D.8. Surface reaction (deposition) occurs
over the entire rectangular susceptor region, though the crystal is harvested only from the inset
rotating disk. The tilted bottom of the reactor causes the flow to accelerate down the reactor

Sol. #3

Sol. »2

126

length which decreases the boundary layer thickness. The increase in mass transfer to the surface
due to the thinning boundary layer is in part counterbalanced by the decrease in available reactant.

Figure D.8. Surface mesh for the Tilted Reactor example problem. The hexahedral mesh consists of 43,568
elements, 48,025 nodes, and 432,225 total unknowns. A steady-state solution requires 20 minutes on 256

processors of the Intel Paragon.

In this example problem, the continuation solution type is demonstrated. The details can
be seen in the Solution Specifications section of the input file (Figure D.9), which is reproduced
here.

Solution Type
Order of integration/continuation
Step Control
Initial Parameter Value
Initial Step Size
Maximum Number of Steps

= continuation
= 1
= off
= 0.0
= 100.0
= 3

The above six lines tell the program, respectively, that a continuation run is to take place, that
first-order continuation is to be used, that the parameter step size between solutions is to remain

127

constant, that the initial parameter value is 0.0, that the step size is 100, and that the run will stop
after three steps.

The continuation parameter itself is assigned in the file "rf_user_continuation.c," and in
this case is assigned to the disk spin rate. Since the disk spin rate is supplied in the first two
boundary conditions (numbered 0 and 1), and is entered as the first component (indexed 0) of the
BC_DATA = FLOAT data array, the assignment of the continuation parameter to the disk spin rate
requires only this line:

BC_Types[o].BC_Data_Float[0] = BC_Types[i].BC_Data_Float[0] = *con_par;
Also of note in the input file are the use of generalized surfaces and boundary condition

functions. Since the disk has both velocity boundary conditions due to disk rotation in each of the
tangential directions and reaction-induced flow (the Stefan velocity) in the normal direction, and
since these directions do not line up with the Cartesian coordinates, generalized surfaces are
needed. The function f _ x y _ s p i n _ t i l t 9 _ d i s k (see Appendix A.l.3.2) is a special function
to calculate the tangential velocities of the rotating disk as a function of the position. This
function requires four arguments: the disk rotation rate (in rpm) and the coordinates of the center
of the disk. The Stefan velocity is imposed using the su r f ace_chemkin_bc as a Dirichlet
condition on the normal velocity (see Appendix A. 1.1).

At the end of the boundary condition section, the surface_chemkin_bc is also used
to capture the effects of the surface reactions on the mass balances. In this case, we have exercised
the option of providing initial guesses for the surface site and bulk fractions by use of the
SURFACE_SPECIES_LIST and associated BC_DATA statements.

The GMRES linear solver was used with a Krylov subspace size of 140, which, for this
problem, is the largest subspace that fits on 256 processors of the Intel Paragon at Sandia National
Laboratories. The no_over lap_b i lu preconditioner (incomplete block-LU decomposition
without overlap between processors) was used along with row_sum scaling. A standard
Newton's method was used, with backtracking turned off and a forcing term flag value of 4 to turn
off the inexact Newton algorithms.

The problem was run on 256 processors of the Intel paragon. MPSalsa required 62
minutes to complete the continuation run on a mesh with 43,568 elements, 48,025 nodes, and
432,225 total unknowns. The four solutions at disk spin rates of 0, 100, 200, and 300 rpms
required 12,9, 8, and 9 Newton iterations, respectively. The first solution required more iterations
because it used a trivial initial guess. The first-order continuation algorithm requires one
additional matrix fill and solve after each step to calculate the tangent to the solution branch,
which is used to predict an initial guess for the next step.

128

General Problem Specifications

Problem type
Input FEM file
LB file
Output FEM file
Number of processors
Cartesian or Cylindrical when 2D
Interpolation Order
Stabilization

= whole_enchilada
= Mesb.es/ti_43k. exoll
= Mesbes/ti_43k-256-bKL.exoll
= run-out.exoll
= 256
= Cartesian

- default
= 2

Solution Specifications

Solution Type = continuation
Order of integration/continuation. = 1
Step Control = off
Relative Time Integration Error * 0 0
Initial Parameter Value =0.0
Initial Step Size = 100 0
Maximum Number of Steps = 3
Maximum Time or Parameter Value = 1 Oe+5

Solver Specifications

Override Default Linearity Choice ~ def

--—,-.™—_— nonlinear solver subsection:

Number of Newton iterations
Use Modified Newton Iteration
Enable backtracking for residual reduction
Choice for Inexact Newton Forcing Term
Calculate the Jacobian Numerically
Solution Relative Error Tolerance
Solution Absolute Error Tolerance

= 15

= 4

« 1.0e-3
= 1.0e-8

linear solver subsection

Solution Algorithm
Convergence Norm
Preconditioner
Polynomial
Scaling
Orthogonalization
Size of Krylov subspace
Maximum Linear Solve Iterations
Linear Solver Normalized Residual Tolerance

= 1
= no_overlap_bilu
= LS,1
= row_sum
= classical
= 140
= 280
= 1.0e-3

Chemistry Specifications

Energy equation source terms
Species equation source terms
Pressure (atmospheres)
Thermal Diffusion
Multicomponent Transport
Chemkin file
Surface chemkin file
Transport chemkin file

= 0.09210526

= stefan_maxwell
= chem.bin
= surf.bin
= tran.bin

Material ID Specifications

Number of Materials
CHEMKIN

ELEM_BLOCK_IDS
T_INIT
U_INIT
V_INIT
W_INIT

XMP_0 AsH3 0
XMF_0 GaMe3 0
XMF_0 H2 0

=

=
0044
00013
99547

G_VECT0R 0.0 0.0 -980.0
END Material ID Specifications

1
0 "gaas_new*
1
500.
0.0
30 0
0.0

Boundary Condition Specifications

Number of Generalized Surfaces = 2
GENERALIZED_SURFACE 5 3
NORMAL 0.0 0 15643447 -0 98768834
TANGENT 1.0 0.0 0 0
TANGENT 0.0 0.98768834 0 15643447
GENERALIZED_SORFACE 4 3
NORMAL 0 0 0.15643447 -0 98768834
TANGENT 1.0 0.0 0.0
TANGENT 0 0 0 98768834 0.15643447 #
Number of BC =

Continuation routine will overwrite the disk spin rate on the
next 2 lines, which is currently set at 00 rpm
BC » VEL_TAN1_BC DIRICHLET GS 1 INDEPENDENT
f_xy_spin_tllt9_disk 1

BC_DATA = 00 0 0. 0 1.504652
BC = VEL_TAN2JBC DIRICHLET GS 1 INDEPENDENT
f_xy_spin_tilt9_disk 1

BC_DATA = 00.0 0. 0. 1.504652
VEL_NORM_BC DIRICHLET GS 1 DEPENDENT surface_chemkin_bc 0
VEL_TAN1_BC DIRICHLET GS 2 INDEPENDENT 0.0 0
VEL_TAN2_BC DIRICHLET GS 2
VEL_NORM_BC DIRICHLET GS 2

INDEPENDENT 0.0 0
DEPENDENT surface_chemkin_bc

= T_BC DIRICHLET SS 1
= T_BC DIRICHLET SS 4
= T_BC DIRICHLET SS 5
= T_BC DIRICHLET SS 7

= U_BC DIRICHLET SS 1
= U_BC DIRICHLET SS 2
= U_BC DIRICHLET SS 3
= U_BC DIRICHLET SS 6
- U_BC DIRICHLET SS 7
« U_BC DIRICHLET SS 8

INDEPENDENT 298.
INDEPENDENT 913
INDEPENDENT 913.
INDEPENDENT 675.

INDEPENDENT 0.
INDEPENDENT 0.
INDEPENDENT 0
INDEPENDENT 0.
INDEPENDENT 0.
INDEPENDENT 0.

= U_BC DIRICHLET SS 9 INDEPENDENT 0.

= V_BC DIRICHLET SS 3 INDEPENDENT 0
= V_BC DIRICHLET SS 6 INDEPENDENT 0.
« V_BC DIRICHLET SS 7 INDEPENDENT 0
= V_BC DIRICHLET SS 8 INDEPENDENT 0
= V_BC DIRICHLET SS 9 INDEPENDENT 0

#Set inlet flow rate here
BC *
BC
BC
BC
BC
BC
BC
BC #
BC

V_BC DIRICHLET SS 1 INDEPENDENT 30 0 0

W_BC DIRICHLET SS 1 INDEPENDENT 0 0
W_BC DIRICHLET SS 2 INDEPENDENT 0. 0
W_BC DIRICHLET SS 3 INDEPENDENT 0 0
W_BC DIRICHLET SS 6 INDEPENDENT 0 0
W_BC DIRICHLET SS 7 INDEPENDENT 0. 0
W_BC DIRICHLET SS 8 INDEPENDENT 0 0
W_BC DIRICHLET SS 9 INDEPENDENT 0 0

Y_BC DIRICHLET SS 1 INDEPENDENT f_mole_fraetlon 1
SPECIES_LIST = 1 2 3 4
BC_DATA = 0 0044 0
Y_BC NEOMANN SS 5
SPECIES_LIST » ALL
SURF_SPECIES_LIST «

00013 0.0 0.99547
DEPENDENT surface_chemkin_bc

GaMe(S) AsH2(S) BLOCK Ga-GaAs(D) As-

BC_DATA = FLOAT 0.2 0.4 0.4 1.0 1.0
Y_BC NEOMANN SS 4 DEPENDENT surface_chemkin_bc 3
SPECIES_LIST » ALL
SORF_SPECIES_LIST = GaMe(S) AsH2(S) BLOCK
BC_DATA » FLOAT 0.2 0.4 0.4

Ga-GaAs <DJ SORF_SPECTES_LIST =
BC_DATA = FLOAT 1.0
SDRF_SPECIES_LIST =
BC_DATA = FLOAT 1.0

As-GaAs (D)

Initial Guess/Condition Specifications

Set Initial Condition/Guess
Apply function
Time Index to Restart Prom

= constant 0.0

Output Specifications

User Defined Output
Parallel Output
Scalar Output
Time Index to Output To
Nodal variable output times

= 1

Number of nodal output variables
Nodal variable names *

Temperature
Velocity
Pressure
Mass_fraction

Data Specification for User's Functions

Number of functions to pass data to = 1
Function Name = fwxy_spin_average 2 #
PN_DATA = INT 5 5
FN_DATA = FLOAT 0 0 1.504652

Figure D.9. MPSalsa input file for the Tilted Reactor example problem.

129

http://Mesb.es/ti_43k

A typical solution is shown in Figure D.10, which includes the streamlines through the
domain and the contours of the reactant (GaMe3) on the surface. The effect of the counter­
clockwise rotating disk on the flow and surface concentrations can be seen.

Figure D.10. Streamlines and surface concentrations for a solution to the Tilted Reactor example problem.

Figure D.ll shows the time-averaged (spin-averaged) deposition profiles over the disk for
the four different spin rates calculated in the one continuation run. (The profiles are calculated
using a non-standard post-processing routine, f _xy_spin_average, which expands the radial
variation in the deposition as a series of orthonormal polynomials.) The disk rotation rate is seen
to be a minor factor in the non-uniformity of the deposition, but it can be seen that rotation
degrades uniformity.

130

o
CO

°<
03

CO
OS

o

w
O a

OT

CO
O

6.6 -

6.4

6.2 -

Disk Spin Rate
300 rpm
200 rpm
100 rpm

0 rpm

0 1 2

Radius [cm]
Figure D.ll. Plot of the spin-averaged deposition rate on the rotating disk in the Tilted Reactor example

problem for the 4 different spin rates.

131

References

1. T.D. Blacker. "FASTQ Users Manual, Version 2.1," Sandia National Laboratories Tech. Rep.
SAND88-1326, Albuquerque, NM (1988).

2. W.G. Breiland and G.H. Evans. "Design and Verification of Nearly Ideal Row and Heat
Transfer in a Rotating Disk CVD Reactor," /. Electrochem Soc, 138(6) (1991).

3. A.N. Brooks and TJ.R. Hughes. "Strealmine Upwind/Petrov-Galerkin Formulations for
Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes
Equations," Computer Methods in Applied Mechanics andEng., 32 (1982) 199-259.

4. S. Carney, M. Heroux and G. Li. "A proposal for a sparse BLAS toolkit," SPARKER
Working Note #2, Cray Research, Inc., Eagen, MN (1993).

5. M.E. Coltrin, R.J. Kee, F.M. Rupley, and E. Meeks. "Surface Chemkin-III: A FORTRAN
package for analyzing heterogeneous chemical kinetics at a solid-surface-gas-phase
interface," Sandia National Laboratories Tech. Rep. SAND96-8217, Albuquerque, NM
(1996).

6. M.E. Coltrin, R.J. Kee, G.H. Evans, E. Meeks, EM. Rupley, and J.F. Grcar. "SPIN: A Fortran
Program for Modeling One-Dimensional Rotating-Disk/Stagnation-Flow Chemical Vapor
Deposition Reactors," Sandia National Laboratories Tech. Rep. SAND87-8248,
Albuquerque, NM (1987).

7. M.E. Coltrin and H.K. Moffat. "Surftherm: A Program to Analyze Thermochemical and
Kinetic Data in Gas-Phase and Surface Chemical Reaction Mechanisms," Sandia National
Laboratories Tech. Rep. SAND94-0219, Albuquerque, NM (1996).

8. M.S. Eldred, W.E. Hart, W.J. Bohnhoff, VJ. Romero, S.A. Hutchinson, and A.G. Salinger.
"Utilizing Object-Oriented Design to Build Advanced Optimization Strategies with Generic
Implementation," Proceedings of the 6th AIAAfNASAflSSMO Symposium on
Multidisciplinary Analysis and Optimization, AIAA-96-4164-CP, Bellevue, WA, (1996)
1568-1582.

9. S.C. Eisenstat and H.F. Walker. "Choosing the forcing terms in an inexact Newton method,"
SIAMJ. Sci. Comput, 17 (1996) 16-32.

10. S.C. Eisenstat and H.F. Walker. "Globally convergent inexact Newton methods," SIAMj.
Optimization, 4 (1994) 393-422.

11. C.R. Ethier and D.A. Steinman. "Exact fully 3D Navier-Stokes solutions for benchmarking,"
Int J. Num. Meth. Fluids, 19 (1994) 369-375.

12. G. Evans and R. Greif. "A Numerical Model of the Flow and Heat Transfer in a Rotating
Disk CVD Reactor," J. Heat Transfer, 109 (197).

13. FIDAP 7.0 Theory Manual. Fluid Dynamic International, Inc. (1984) Chapter 6, 14-15.
14. W.C. Gardiner and and J. Troe. "Rate coefficients of thermal dissociation, isomerization and

recombination reactions," in Combustion Chemistry, Ed. W.C. Gardiner, Springer-Verlag,
New York (1984).

132

15. D.K. Gartling. "Merlin II - A computer program to transfer solution data between finite
element meshes," Sandia National Laboratories Tech. Rep. SAND89-2989, Albuquerque,
NM, (1991).

16. D.K. Gartling and R.E. Hogan. "Coyote U — A finite element computer program for
nonlinear heat conduction problems, Part 1 ~ Theoretical development," Sandia National
Laboratories Tech. Rep. SAND94-1173, Albuquerque, NM (1994).

17. A.P. Gilkey and G.D. Sjaardema. "GEN3D: A GENESIS Database 2D to 3D Transformation
Program," Sandia National Laboratories Tech. Rep. SAND89-0485, Albuquerque, NM
(1989).

18. G.H. Golub and C.F. Van Loan. Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD (1983) 150-153.

19. P.M. Gresho, S.T. Chan, R.L. Lee, and CD. Upson. "A modified finite element method for
solving the time-dependent, incompressible Navier-Stokes equations: part 2: applications,"
IntJNumerMeth Fluids, 4 (1984) 619-640.

20. P.M. Gresho, R.L. Lee, and R.L. Sani. "On the time-dependent solution of the incompressible
Navier-Stokes equations in two and three dimensions," in Recent Advances in Numerical
Methods in Fluids, C. Taylor and K. Morgan, eds., Pineridge Press Ltd., Swansea, UK (1980)
27-81.

21. B. Hendrickson and R. Leland. "An improved spectral graph partitioning algorithm for
mapping parallel computations," Sandia National Laboratories Tech. Rep. SAND92-1460,
Sandia National Laboratories, Albuquerque, NM (1992).

22. B. Hendrickson and R. Leland. 'The Chaco User's Guide, Version 2.0," Sandia National
Laboratories Tech. Rep. SAND94-2692, Albuquerque, NM (1995).

23. G.L. Hennigan and J.N. Shadid. "NemesisI: A set of functions for describing unstructured
finite-element data on parallel computers," Sandia National Laboratories Tech. Rep. in
preparation, Albuquerque, NM.

24. J.R. Hipp, R.R. Lober, S.A. Mitchell, G.D, Sjaardema, M.K. Smith, T.J. Tautges, T.J. Wilson,
W.R. Oakes, et al. "CUBIT Mesh Generation Environment Volume 1: User's Manual,"
Sandia National Laboratories Tech. Rep. SAND94-1100, Albuquerque, NM (1996).

25. TJ.R. Hughes, L.P. Franca, and M. Balestra. "A New Finite Element Formulation for
Computational Fluid Dynamics: V. Circumventing the Babuska-Brezzi Condition: A Stable
Petrov-Galerkin Formulation of the Stokes Problem Accommodating Equal-order
Interpolations," Computer Methods in Applied Mechanics andEng., 59 (1986) 85-99.

26. S.A. Hutchinson, J.N. Shadid, and R.S. Tuminaro. "Aztec User's Guide: Version 1.0," Sandia
National Laboratories Tech. Rep. SAND95-1559, Albuquerque, NM (1995).

27. R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, and J.A. Miller. "A FORTRAN
Computer Code Package for the Evaluation of Gas-Phase, Multicomponent Transport
Properties," Sandia National Laboratories Tech. Rep. SAND86-8246, Albuquerque, NM
(1986).

133

28. R.J. Kee, F.M. Rupley, E. Meeks, and J.A. Miller. "Chemkin-UI: A Fortran .Chemical
Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics," Sandia National
Laboratories Tech. Rep. SAND96-8215, Albuquerque, NM (1996).

29. B. Kernighan and S. Lin. "An efficient heuristic procedure for partitioning graphs," Bell
System Technical Journal, 29 (1970) 291-307.

30. K.J. Laidler. Chemical Kinetics, Harper & Row, New York (1987).
31. lAPACK User's Guide, http://www.netlib.org/lapack/lug/lapack_lug.html
32. M.J. Martinez and PL. Hopkins, private communication.
33. E. Meeks, H.K. Moffat, J.F. Grcar, and RJ. Kee. "AURORA: A FORTRAN Program for

Modeling Well Stirred Plasma and Thermal Reactors with Gas and Surface Reactions,"
Sandia National Laboratories Tech. Rep. SAND96-8218, Albuquerque, NM (1996).

34. Message Passing Interface Forum. "MPI: A Message-Passing Interface Standard,"
University of Tennessee, Knoxville, TN (1995).

35. H.K. Moffat, K.P. Killeen, and K.C. Baucom. "Group V Inhibition of GaAs and AlAs
MOCVD Growth Rates," submitted (1995).

36. S.V. Patanker. Numerical heat tranfer and fluid flow, Hemisphere Publishing Corp., London
(1980).

37. R. Rew, G. Davis, and S. Emerson, "NetCDF User's Guide: an interface for data access,
version 2.3," UCAR (1993).

38. A.G. Salinger, S. Brandon, R. Axis, and J.J. Derby. "Buoyancy-Driven Flows of a Radiatively
Particilating Fluid in a Vertical Cylinder Heated from Below," Proc Royal Soc London A 442
(1993).

39. H. Schlichting. Boundary Layer Theory, 7th Ed., McGraw-Hill, New York (1979).
40. L. A. Schoof and V.R. Yarberry. "ExodusII: A Finite Eelement Data Model," Sandia National

Laboratories Tech. Rep. SAND94-2137, Albuquerque, NM, (1994).
41. J.N. Shadid. "Experimental and Computational Study of the Stability of Natural Convection

Flow in an Inclined Enclosure," Ph.D. Dissertation, University of Minnesota (1989).
42. J.N. Shadid, H.K. Moffat, S.A. Hutchinson, G.L. Hennigan, K.D. Devine, and A.G. Salinger.

"MPSalsa: A Finite Element Computer Program for Reacting Flow Problems, Part 1 -
Theoretical Development," Sandia National Laboratories Tech. Rep. SAND95-2752,
Albuquerque, NM (1996).

43. J.N. Shadid and R.S. Tuminaro. "Sparse iterative algorithm software for large-scale MTMD
machines: an initial discussion and implementation," Concurrency: Practice and Experience,
4(1992)481-497.

44. J.N. Shadid and R.S. Tuminaro. "A comparison of preconditioned nonsymmetric Krylov
methods on a large-scale MIMD machine," SIAMJ. Sci. Stat. Comput, 15 (1994) 440-459.

45. R.K. Shah and A.L. London. Laminar Flow Forced Convection in Ducts, Academic Press,
New York (1978).

134

http://www.netlib.org/lapack/lug/lapack_lug.html

46. R.K. Shah and M.S. Bhatti. "Laminar Convective Heat Transfer in Ducts," in Handbook of
Single-Phase Convective Heat Transfer, S. Kakac, R.K. Shah, and W. Aung (eds.), Wiley &
Sons (1987).

47. D.C. Sorensen and R.B. Lehoucq, Department of Computational and Applied Mathematics,
Rice University, Houston, Texas.

48. T.E. Tezduyar, S. Mittal, S.E. Ray, and R. Shih. "Incompressible Flow Computations with
Stabilized Bilinear and Linear Equal-order-interpolation Velocity-Pressure Elements,"
Computer Methods inAppl. Mechanics and Eng., 95 (1992) 221-242.

49. Z. Zlatev, V.A. Barker, and P.G. Thomsen. "SSLEST~a FORTRAN IV subroutine for solving
sparse systems of linear equations: User's guide," Technical Report, Institute for Numerical
Analysis, Technical University of Denmark, Lyngby, Denmark (1978).

135

Index CUBIT mesh generator
cylindrical coordinates

5, 118
16,76

adaptive mesh refinement 76
axisymmetry 16, 76
Aztec 2, 12

backtracking 22, 70, 106
bifurcation analysis 74
BIAS 13
block Jacobi 71
boundary conditions

BC_DATA 38, 58
Danckwerts' 78, 119
default 39
dependence 37, 39
Dirichlet 5, 36, 37, 38, 91, 93
input file 33, 35, 38
Jacobian entries 37
mass fractions 39
Mixed 5, 37, 39, 91, 93
mole fractions 81
names 36
Neumann 5, 36, 37, 39, 91, 93
normal and tangential velocity 35, 37
on generalized surfaces 37
on node sets 37
on side sets 37
outflow 82
precedence 40
Robin. See mixed.
spinning disk 80
spinning tilted disk 80
surface reactions 77, 99
user-defined functions 57

broadcast 89

Chaco 6, 7, 12
chem.bin 8
Chemistry Specifications. See input file, chemistry spec­

ifications.
Chemkin 7, 12, 32

Chemkin UJ 8
Chemkin interpreter. Also see interp. 7
input file . 9 6

coarse mesh 71
communication utilities 88
compiling 11
continuation 18, 19, 20, 65, 70, 73, 127

arc-length 74, 76
first order 74, 128
zero order 74

convergence criteria 23, 24

Danckwerts' BC 78, 119
deposition rate 126, 130
drag force 88
dynamic load balancing 76

element blocks 5, 29, 31, 32
ex2pex 10
exact solutions 45, 63
example problems

Diffusion in an Annulus 91
Flow in a Channel 107
Lid-Driven Cavity Problem 104
Navier-Stokes 3D Exact Solution 103
Rotating Disk Reactor 121
Si3N4 Equilibrium 96
SPIN Comparison 118
Surface Reaction 99
The Soret Effect 94
Thermally Developing Flow in a Channel 109
Tilted Reactor 126
Vortex Shedding from a Cylinder I l l

ExodusII 5, 8, 10, 12, 15, 16,42, 72
exoHib load balancing utility 6

f_3d_navier_stokes 103, 104
f_annulus_exact 92
f_Danckwerts 78, 79, 80
f_Danckwerts_X0 78, 79, 80
f_Danckwerts_Y0 80
f_mole_fraction 81, 95, 124
f_pressure 82, 124
f_ss_centroid 86, 110
f_xy_spin_disk 80, 124
f_xy_spin_tilt9_disk 80, 128
FASTQ mesh generator 5
fn_data_location 66, 67
fn_data_next_location 68
function data 48, 66

accessing function data 66, 67, 68
FLOAT 48
FNJDATA 48
input file 48
INT 48
look-up tables. Also see look-up tables 49
STRING 48
TABLE 48, 49
time_history_line. See time_history_line.
time_history_points. See time_history_points.

GEN3D 5

136

General Specifications. See input file, general specifica­
tions.

generalized surfaces 33, 35, 61
NORMAL 33
TANGENT 33

global sum, max, and min 90
gmake 11, 12
GMRES 24, 26, 27, 70, 71
governing equations 15
gravity 31
guacamole pre-processor 5, 8, 9, 10, 16

horizontal CVD reactor 126

inexact Newton's method 22, 23
initial conditions. Also see initial guess 40
initial guess 40, 62

function 41, 62, 71
restarting 122
variable specific 33

input file
boundary condition specifications. See boundary

conditions.
chemistry specifications 27

Chemkin file 28
Energy equation source terms 27
Multicomponent Transport 28
Pressure (atmospheres) 28
Species equation source terms 28
Surface chemkin file 28
Thermal Diffusion 28
Transport chemkin file 28

function data specification. See function data.
general specifications 14

Cartesian or Cylindrical when 2D 16
Debug 17
InputFEMfile 15
Interpolation order 16
LB file 16
Number of processors 16
Output FEM file 16
Problem type 15
Stabilization 16

initial condition/guess specifications 40
Apply function 41
Set Initial Condition/Guess 41
Time Index to Restart From 42

material ID specifications. See material properties
output specifications 42

Global variable names 45
Name of Exact Solution Function 45
Nodal variable names 44
Nodal variable output times 43

Number of global output variables 44, 45
Number of nodal output variables 44
Parallel Output 43
Scalar Output 43
Test Exact Solution Flag 45
Time Index to Output To 43
User Defined Output 42

parallel I/O specification 45
Disks per controller 47
Machine 46
Number of controllers 46
Number of RAID controllers 47
Offset numbering from zero 47
Root location 47
Staged writes 46
Subdirectory 47

solution specifications 17, 18
Initial Parameter Value 20
Initial Step Size 20
Maximum Number of Steps 20
Maximum Time or Parameter Value 20
Order of integration/continuation 19
Relative Time Integration Error 20
Solution Type 18
Step Control 19

solver specifications 21
Calculate the Jacobian Numerically 23
Choice for Inexact Newton Forcing Term . 22
Convergence Norm 24
Enable backtracking for residual reduction . 22
Linear Solver Normalized Residual Tol . . . 27
Maximum Linear Solve Iterations 27
Number of Newton Iterations 22
Orthogonalization 26
Override Default Linearity Choice 21
Preconditioner 24
Scaling 26
Size of Krylov subspace 26
Solution Absolute Error Tolerance 23
Solution Algorithm 24
Solution Relative Error Tolerance 23
Use Modified Newton Iteration 22

input-ldbl 6
input-salsa 8, 13, 14
interp 7, 8, 97

JAC_BC_FUNCTION_ARGLIST 57
JAC_SRC_FUNCnON_ARGLIST 55
Jacobian

analytic 2, 23
analytic entries for source terms 55
entries for boundary conditions 37
numerical 2, 23

137

Krylov subspace 26, 27, 70, 71

LAPACK 13
linear solver 24, 71

convergence norms 25
table of choices 24

load balancing 6
look-up tables 49, 83

makefile 11, 12
material properties 29

density 31,51
diffusion coefficients 32
gravity 31
heat capacity 31, 50
heat source term 31,51
mass source term 32, 51
material types 31
molecular weight 32
multiple materials 29
number of species 32
reference temperature 31
source term Jacobian entries 32, 54
special species equation 32
species names 30, 32
table of keywords 31, 32, 33
table of material types 31
thermal conductivity 31,51
viscosity 31, 51
volume expansion coefficient 31
volumetric source 51

Material Specifications. See material properties.
memory 70, 71
Merlin 72

input file 72
mesh generation 5
mesh partitioning 6
mesh sequencing 71, 106
MPSALSA_HOME 7, 12
multicomponent diffusion 28, 76
multi-physics 76
MULTTVAR_FUNCTION_ARGLIST 54

Navier-Stokes exact solution 103
NemesisI 6, 7, 9, 10, 12, 16
NetCDF 12
Newton iterations 22, 70
node set 5, 37, 40
normal vector 33, 61
Num_Proc 88
Nusselt number I l l

optimization 18, 19
output file 8
output functions 64, 84

info on a side set 86
solution along a line 85
time history 84

Output Specification. See input file, output specifica­
tions.

Paragon 12, 13, 46, 97, 119
parallell/O 9, 10, 11, 12, 43, 45

Also see input file, parallel I/O specifications.
partitioning 6
physical properties. See material properties.
plasma 76
porous media 76
preconditioner 70, 71

table of choices 25
print_sync_end 89
print_sync_start 89
Proc 88
pseudo 18, 19, 20, 70, 97

radiation 29, 76
restarting 11, 16, 41, 43, 70, 121, 123, 124

time index 42
rf_user_continuation.c 18, 73, 128
robustness 71
rotating disk reactor 121
running MPSalsa 13

salsa executable 12, 13
scalar I/O 9, 10, 16, 43
Scaling 71

table of choices 26
side set 5, 33, 35, 37, 40
SIMPLER 109
smos 7, 8, 12
SNGLVAR_FUNCTION_ARGLIST 52, 57, 63
Solution Specifications. See input file, solution specifi­

cations.
Solver Specifications. See input file, solver specifica­

tions.
Soret effect 28, 94
source code 12
SPECIES_LIST 39, 77, 124
SPIN 118, 119, 121
stability analysis 76
stabilization 16
status flag 84
steady-state 18, 70
Stefan velocity 77, 99, 100, 101, 102, 121, 128

138

Step Control 74
step size 74
Strouhal number 114, 117
SUNMOS 7, 12, 13
surf.bin 8
SURF_SPECIES_LIST 77, 78, 101, 102
SURF_VECTOR_FUNCTION_ARGLIST 62
surface chemistry 77
Surface Chemkin 7, 99
surface_chemkin_bc 77, 99, 100, 101, 124, 128
SURFACE_SPECIES_LIST 128
synchronization 88

tangent vector 33, 61
tfqmr 24, 71
time dependent 17, 18, 19, 20, 96
nme_history_line 49, 68, 85, 86, 110, 119
time_history_points 49, 65, 84, 85, 97, 115
tran.bin 8
turbulence 76

units 31, 50, 103
user functions 50

boundary conditions 57
continuation 65
density . 5 1
exact solutions 63
function data 66
heat capacity 50
initial condition/guess 62
normat and tangent vectors 61
output 64
source terms 51
thermal conductivity 51
viscosity 51

user_bc_exact 45, 57, 58, 63, 64, 111
user_continuation 65, 73
user_out 42, 45, 64, 84

variable properties 50
Also see material properties.

visualization 10
von Karman vortex street 114

Y12 13
yod 13,97

Distribution

EXTERNAL DISTRIBUTION:

Steve Ashby
Lawrence Livermore Nat. Lab.
M/S L-316
PO Box 808
Livermore, CA 94551-0808

Rob Bisseling
Department of Mathematics
Budapestlaan 6, De Uithof, Utrecht
PO Box 80.010,3508 TA Utrecht
The Netherlands

Petter Bjorstad
University of Bergen
Institutt for Informatikk
Thomohlengst 55
N-5008 Bergen, Norway

Randall Bramley
Dept. ofCSci.
Indiana University
Bloomington IN 47405

Rich A. Cairncross
Mechanical Engineering Department
University of Delaware
313 Spencer Laboratory
Newark, DE 19716-3140

G. F. Carey
ASE/EM Dept., WRW 305
University of Texas
Austin, TX, 78712

Steven P. Castillo
Klipsch School of Electrical & Computer Eng.
New Mexico State University
Box 30001
LasCruces.NM 88003-0001

J. M. Cavallini
US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

T. Chan
UCLA
405 Hilgard Ave.
Los Angeles, CA 90024-7009

Warren Chernock
Scientific Advisor DP-1
US Department of Energy
Forestal Bldg. 4A-045
Washington, DC 20585

Doug Cline
The University of Texas System
Center for High Performance Computing
%Balcones Research Center
10100 Burnett Road, CMS 1.154
Austin, Texas 78758

Vernon Cole
Equipment Simulation Group, APRDL
3501 Ed Bluestein Boulevard, MD: K-10
Austin, TX 78721

Tom Coleman
Dept. of Computer Science
Upson Hall
Cornell University
Ithaca, NY 14853

Prof. D. S. Dandy
Colorado State Univ.
Dept. Agriculture and Chem. Eng.
Fort Collins, CO 80523

Prof. J. J. Derby
Dept. of Chemical Eng. and Materials Science
University of Minnesota
421 Washington Ave. S.E.
Minneapolis, MN 55455

140

J. J. Dongarra
Computer Science Dept.
104 Ayres Hall
University of Tennessee
Knoxville.TN 37996-1301

I. S. Duff
CSS Division
Harwell Laboratory
Oxfordshire, 0X11 ORA
United Kingdom

Erik Egan
Equipment Simulation Group, APRDL
3501 Ed Bluestein Boulevard, MD: K-10
Austin, TX 78721

Alan Edelman
Dept. of Mathematics
MIT
Cambridge, MA 02139
%edelman@math.mit.edu

Steve Elbert
US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

H. Elman
Computer Science Dept.
University of Maryland
College Park, MD 20842

R. E. Ewing
Mathematics Dept.
University of Wyoming
PO Box 3036 University Station
Laramie, WY 82071

Charbel Farhat
Dept. Aerospace Engineering
UC Boulder
Boulder, CO 80309-0429

J. E. Flaherty
Computer Science Dept.
Rensselaer Polytechnic Inst.
Troy, NY 12180

G. C. Fox
Northeast Parallel Archit. Cntr.
I l l College Place
Syracuse, NY 13244

R. F. Freund
NRaD- Code 423
San Diego, CA 99152-5000

D. B. Gannon
Computer Science Dept.
Indiana University
Bloomington, IN 47401

Horst Gietl
nCUBE Deutschland
Hanauer Str. 85
8000 Munchen 50
Germany

Paul Giguere
Group TSA-8
MS K575
Los Alamos National Laboratory
Los Alamos, NM 87545

John Gilbert
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

R. J. Goldstein
Mechanical Engineering Department
University of Minnesota
111 Church St.
Minneapolis, MN 55455

G. H. Golub
Computer Science Dept.
Stanford University
Stanford, CA 94305

Anne Greenbaum
New York University
Courant Institute
251 Mercer Street
New York, NY 10012-1185

141

mailto:%edelman@math.mit.edu

Satya Gupta
Intel SSD
Bldg. CO6-09, Zone 8
14924 NW Greenbrier Parkway
Beaverton, OR, 97006

J. Gustafson
Computer Science Dept.
236 Wilhelm Hall
Iowa State University
Ames, IA 50011

Doug Harless
NCUBE
2221 East Lamar Blvd., Suite 360
Arlington, TX 76006

Michael Heath
Univ.ofIll.,Nat.CSA
4157 Bechman Institute
405 North Matthews Ave.
Urbana,IL 61801-2300

Mike Heroux
Cray Research Park
655F Lone Oak Drive
Eagan, MN 55121

Dan Hitchcock
US Department of Energy
SCS, ER-30 GTN
Washington, DC 20585

Fred Howes
US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

Prof. Marylin C. Huff
Department of Chemical Engineering
University of Delaware
Newark, DE 19716

Prof. Michael K. Jensen
Rensselaer Polytechnic Institute
Troy, NY 12180-3590

Prof. K. J. Jensen
Massachusetts Institute of Technology
Dept. Chem. Eng. MIT 66-566
Cambridge, Mass. 02139-4307

Christopher R. Johnson
Department of Computer Science
3484 MEB
University of Utah
Salt Lake City, UT 84112

David Keyes
NASA Langley Research Center
ICASE
M/S 132C
Hampton, VA 23681-0001

David Kincaid
Center for Numerical Analysis
RLM 13.150
University of Texas
Austin, TX 78713-8510

T. A. Kitchens
US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

Vipin Kumar
Computer Science Department
Institute of Technology
200 Union Street S.E.
Minneapolis, MN 55455

Joanna Lees
Intel Corp.
Scalable Systems Division
COl-15
15201 NW Greenbrier Parkway
Beaverton, OR 97006

John Lewis
Boeing Corp.
M/S 7L-21
P.O. box 24346
Seattle, WA 98124-0346

142

T. A. Manteuffel
Department of Mathematics
University of Co. at Denver
Denver, CO 80202

S. F. McCormick
Univ. of Colorado
Program in Applied Mathematics
Campus Box 526
Boulder, CO 80309-0526

Computer Mathematics Group
University of CO at Denver
1200 Larimer St.
Denver, CO 80204

Robert McLay
University of Texas at Austin
Dept. ASE-EM
Austin, TX 78712
%mclay@cfdlab.ae.utexas.edu

P. C. Messina
158-79
Mathematics & Comp. Sci. Dept.
Caltech
Pasadena, CA 91125

C. Moler
The Mathworks
24 Prime Park Way
Natick, MA 01760

Gary Montry
Southwest Software
11812 Persimmon, NE
Albuquerque, NM 87111

D. B. Nelson
US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

Kwong T. Ng
Klipsch School of Electrical & Computer Eng.
New Mexico State University
Box 30001
Las Cruces, NM 88003-0001

S. V. Patankar
Mechanical Engineering Department
University of Minnesota
111 Church St.
Minneapolis, MN 55455

Linda Petzold
L-316
Lawrence Livermore Natl. Lab.
Livermore, CA 94550

Barry Peyton
Mathematical Sciences Section
Oak Ridge National Laboratory
PO. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

Paul Plassman
Math and Computer Science Division
Argonne National Lab
Argonne, IL 60439

Claude Pommerell
AT&T Bell Labs
600 Mountain Ave., Room 2C-548A
Murray Hill, NJ 07974-0636

Alex Pothen
Department of Computer Science
Old Dominion University
Norfolk, VA 23529-0162

J. Rattner
Intel Scientific Computers
15201 NW Greenbriar Pkwy.
Beaverton, OR 97006

Patrick Riley
Intel-SSD
600 S. Cherry St., Suite 700
Denver, CO 80222

Ed Rothberg
Silicon Graphics, Inc.
MS 7L-580
2011 N. Shoreline Blvd.
Mountain View, CA 94043

143

mailto:mclay@cfdlab.ae.utexas.edu

Y. Saad
University of Minnesota
4-192 EE/CSci Bldg.
200 Union St.
Minneapolis, MN 55455-0159

Joel Saltz
Computer Science Department
A.V. Williams Building
University of Maryland
College Park, MD 20742

A. H. Sameh
CSRD, University of Illinois
305 Talbot Laboratory
104 S. Wright St.
Urbana,IL 61801

P. E. Saylor
Dept. of Comp. Science
222 Digital Computation Lab
University of Illinois
Urbana, IL 61801

Carl Scarbnick
San Diego Supercomputer Center
P.O. Box 85608
San Diego, CA 92186-9784

Rob Schreiber
RIACS
NASA Ames Research Center
Mail Stop T045-1
Moffett Field, CA 94035-1000

M. H. Schultz
Department of Computer Science
Yale University
PO Box 2158
New Haven, CT 06520

Mark Seager
LLNL, L-80
PO box 803
Livermore, CA 94550

144

T. W. Simon
Mechanical Engineering Department
University of Minnesota
111 Church St.
Minneapolis, MN 55455

Richard Sincovec
Mathematical Sciences Section
Oak Ridge Nat. Lab.
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

Vineet Singh
HP Labs, Bldg. 1U, MS 14
1501 Page Mill Road
Palo Alto, CA 94304

Anthony Skjellum
Mississippi State University
Computer Science
PO Drawer CS
Mississippi State, MS 39762

L. Smarr
Director, Supercomputer Apps.
152 Supercomputer Applications
Bldg. 605 E. Springfield
Champaign, IL 61801

Burton Smith
Tera Computer Co
400 N. 34th St., Suite 300
Seattle, WA 98103

Harold Trease
Los Alamos National Lab
PO Box 1666, MS F663
Los Alamos, NM 87545

C. VanLoan
Department of Computer Science
Cornell University, Rm. 5146
Ithaca, NY 14853

John VanRosendale
ICASE, NASA Langley Research Center
MS 132C
Hampton, VA 23665

Steve Vavasis
Department of Computer Science / ACRI
722 Engineering and Theory Center
Cornell University
Ithaca, NY 14853

R. G. Voigt
MS 132-C
NASA Langley Resch Cntr, ICASE
Hampton, VA 36665

Phuong Vu
Cray Research, Inc.
19607 Franz Road
Houston, TX 77084

Steven J. Wallach
Convex Computer Corp.
3000 Waterview Parkway
PO Box 833851
Richardson, TX 75083-3851

G. W. Weigand
U.S. DOE
1000 Independence Ave., SW
Room 4A-043 (DPI. 1)
Washington, DC 20585

OlofB.Widlund
Dept. Computer Science
Courant Inst., NYU
251 Mercer St.
New York, NY 10012

INTERNAL DISTRIBUTION:

1
1
1
1
10
1
1
1
10
30
30
10
10
1
1
1
1
1
1
1
1
1
1
1
1
1
10
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

MS 0151
MS 0321
MS 1427
MS0601
MS 0601
MS0601
MS 0827
MS 1111
MS 1111
MS 1111
MS 1111
MS 1111
MS 1111
MS 1111
MS 1111
MS 1111
MS 1111
MS 1110
MS 1110
MS 1110
MS 1110
MS 1109
MS 1109
MS 1109
MS 1109
MS 1111
MS 1111
MS 1111
MS 1111
MS 1111
MS 0441
MS 0441
MS 0441
MS 0819
MS 0819
MS 0819
MS 0439
MS 0841
MS 0833
MS 0841
MS 0843
MS 0834
MS 0834
MS 0834

Gerold Yonas, 9000
William Camp, 9200
P. Mattern, 1100
P. Esherick, 1126
Harry K.Moffat, 1126
M.E. Coltrin, 1126
J. S. Rottler, 5600
Sudip Dosanjh, 9221
Scott Hutchinson, 9221
John N. Shadid, 9221
Andrew G. Salinger, 9221
Gary L. Hennigan, 9221
Rod C.Schmidt 9221
Daniel Barnette, 9221
Steven J. Plimpton, 9221
David R. Gardner, 9221
Matt St. John, 9921
Richard C. Allen, 9222
David E. Womble, 9222
Ray S. Tuminaro, 9222
Lydie Prevost, 9222
Art Hale, 9224
Ted Barragy, 9224
Bob Benner, 9224
James Tomkins, 9224
Mark P. Sears, 9225
Karen Devine, 9226
Robert W. Leland, 9226
Bruce A. Hendrickson, 9226
Courtenay Vaughn, 9226
S. W. Attawy, 9226
L. A. Schoof, 9215
T. J. Tauges, 9226
J. Michael McGlaun, 9231
James S. Perry, 9231
Allem C. Robinson, 9231
David R. Martinez, 9234
P. L. Hommert, 9100
Johnny H. Biffle, 9103
E. D. Gorham, 9104
A.C. Ratzel,9112
M. R.Baer,9112
A. S.Geller,9112
R. R. Torczynski, 9112

145

MS 0826
MS 0826
MS 0825
MS 0825
MS 0437
MS 0827
MS 0827
MS 0827
MS 0827
MS 0827
MS 0827
MS 0827
MS 0827
MS 0827
MS 0827
MS 0834
MS 0835
MS 0835
MS 0826
MS 0750
MS 0750
MS 9214
MS 9042
MS 9042
MS 9042
MS 9042
MS 9042
MS 9051
MS 9051
MS 9051
MS 9051

W. L. Hermina, 1553
T. J. Bartel, 9153
C. C. Wong, 9154
Basil Hassan, 9155
G. D. Sjaardema
DaveK. Gartling, 9111
Randy Schunk, 9111
Phil Sackinger, 9111
Mario Martinez, 9111
Mike Glass, 9111
BobMcGrath,9111
Polly Hopkins, 9111
Jim Schutt, 9111
Melinda Sirmar, 9111
Steve Kempka, 9111
Robert B. Campbell, 9112
RoyE.HoganJr.,9111
Mark A. Christon, 9111
Robert J. Cochran, 9114
Greg A. Newman, 6116
David L. Alumbaugh, 6116
JuanMeza, 8117
Joseph F. Grcar, 8745
Chris Moen, 8745
Fran Rupley, 8745
S. K. Griffiths, 8745
Greg Evans, 8745
W.T.Ashurst,8351
Alan Kerstein, 8351
Jackie Chen, 8351
H. Najm, 8351

1 MS 9018 Central Technical Files, 8523-2
5 MS 0899 Technical Library, 4414
2 MS 0619 Review & Approval Desk, 12630

For DOE/OSTI

146

