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Absiract

This manual describes the use of MPSalsa, an unstructured finite element (FE) code for
solving chemically reacting fiow problems on massively parallel computers. MPSalsa has been
written to enable the rigorous modeling of the complex geometry and physics found in
engineering systems that exhibit coupled fluid flow, heat transfer, mass transfer, and detailed
reactions. In addition, considerable effort bas been made to ensure that the code makes efficient
use of the computational resources of massively parallel! (MP), distributed memory architectures
in a way that iz nearly transparent to the user. The result is the ability to simaltaneously model
both three-dimensional geometres and fow as well as detaited reaction chemistty in a timely
manner on MP computers, an gbility we believe to be unigue,

MPSzlsa has been designed to allow the experienced rescarcher considerable flexibility in
modeling a system. Any combination of the momentum equations, energy balance, and an
arbitrary narmber of species mass balances can be solved. The physical and transport properties
can be specified as constants, as functions, or taken from the Chemkin library and associated
database. Any of the standard set of boundary conditions and source terms can be adapted by
writing user functions, for which templates and examples exist.

The user can choose between a stealy-state solotion, an accurate transient run, & pseudo-
transient method for relaxing stiff steady-state problems, and a continaation mun for analysis of the
system’s steady-state behavior with respect to a parameter.

Through the input file, the user has considerable control over the noalinear and linear
solution strategies in order to find the fastest and most robust method for solving & given problem.
The nonlinear solver inchrdes an inexact Newton method and a backtracking strategry. For solving
lingar systems, a number of Krylov-based iterative methods giong with several choices for
preconditioners are available through the Aztec library.

A large set of example problems is mcluded in Appendices to familiarize the user with the
capabilities and choices within MPSalsa. These examples serve to illustrate MPSalsa capabilities
and to provide a vanety of input files t0 use as templates for closely related application problems.
Many of these examples can be ni on a single processor or on multiple paralle] processors.
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1. Introduction

In this report, the practical details and interface for numning the snite of computer codes
cidled MPSalsa are presented, along with a numnber of exampls problems. A companion theory
marzal provides the equations and solution methodology [42]. Emploving unstmctored meshes
on massively parallel (MP) computers, MPSalsa is designed to sclve two- or three-dimensional
problems that exhibit coupled fluid flow, heat ransport, species tramsport, and chemical reactions.
The equations defined in MPSalsa for fluid flow and mass conservation are the momentum
ransport and the tofzl mass continuity equations for incompressible or vamable demsity
Newionian finids (Navier-Stokes equations). The heat transport equation and an arbitrary number
of species iranspori-reaction equations are conpled with each other through chemical reaction
source terms and with the fluid How equations through property variation and body force terms.

MPSalsa employs unstiuctured grids, using the Exodusll finite element database for its
imput and output files [40]. Therefore, it can be used in conjunction with the CUBIT mesh
generation package 124], as well as other mesh generation packages that support the Exodusi
standard. A number of pre- and post-processing routines for the ExodusIl database can be used.
Currently, two- and three-dimensjonal grids with Cartesian coordinates are supported.

From its inception, MPSalsa has been designed for distributed memory MIMD computers
with thousands of processors. It also runs on traditional serial workstations and networks of serial
workstations. Interprocessor data communication and global synchronization are accomplished
by a small number of message passing routines. These routines have been ported to many
different message passing protocols, including the MPI standard [34) and the native nCUBE and
Intel Paragon protocols. To achjeve efficient parallel execution, the unstructured finite ciement
mesh is partitioned or load-balanced in & pre-processing step. Each processor is assigned nodes
from the mesh such that the computationsl load is balanced and the total amount of information
communicated between neighboring processots is minimized, A general, automated method for
subdividing an unstructured computational mesh is necessary. An ad-hoe or by-hand method
would prove to be unusable for large meshes, and the resuiting paralie]l commuonication efficiency
would be difficult to predict, assess and control, In our implementation, we have used & general
graph and mesh partitioning utility, Chaco [22], developed at Sandia National Laboratories.

MPSalsa uses a finite element (FE) method to approximate the solution to the transpost
equations for momentum, total mass, thertnal energy, and individual gas-phase chemical species.
‘The approach is designed for low Mach ninmber flows where an algorithm employing an implicit
coupling between the pressure and velocity field is required. The discretization method is a
Petrov-Galerkin finite element method (PGFEM) with pressure stabilization [25]. For more




highly-convective flows that are sill lamanar, & streamwise-gpwinding (SUPG) stabilization is
gvailable [3, 48]. Each processor is responsible for calenlating updates for all the unknowns at
zach of its assigned FE nodes. Each processor also stores and performs operations on the rows in
the fally-summed, disiributed matrix associated with these unknowns. Along processor
subdomain boundaries, replicated FE unknowns, called “ghost unknowes,” zte stored and
updated through interprocessor cornmunication. These ghost unknowns are quantities needed for
the local residusl caleulation and matrx-vector multiplication on a processor. Interprocessor
comimunication occurs for each step of the iterative solution of the linear system as well as for
each onter step in the non-linear and time-transient algorithms. This communication censtitutes
the major unstructured interprocessor commuanication cost in the program, and its algorithm bas
been extensively optimized within MPSalsa [43].

MPSalsa includes the option of using the Chemkin library to provide rigorous trestment of
ideal-ges multicomporent transport, including the effects of thermal diffuston [28]. Chemical
reactions occurring in the gas phase and on surfaces are also treated by calls to Chemkin [28] and
Surface Chemkin [5], respectively. Thus, MPSalsa can handle varying mzmbers and types of
chemical reactions and species in a robust manner. For example, the code can handle the complex
temperature and pressure dependence predicted for unimolecular reactions (using the Troe
parameterization [14]), important for chemical vapor deposition (CVD) systems which typically
run 3t sub-atmospheric pressures. Surface site fractions and bhulk-phase mole fractions are defined
on all reacting surfaces using the Surface Chemkin package. Through this method, complex
Langmuir-Hinshelwood-type [30] and precursor adsorption surface mechanisms, characteristic of
many real CVID and catalysis surface sysiems, can be incorporated into the reacting flow analysis
code. The capability of modeling simple dilute species transport and reaction, without the need of
linking to Chemkin, is also included in MPSalsz.

Both steady and transient flows may be analyzed. The time integration methods include
troe transient, psevdo-transient, and steady implicit solvers. The steady solver can be driven by a
contimiztion routine for efficient parameter stady of a system. A folly-irnplicit, fully~conpled
Newton routine is implemented for robustness. The Jacobian matrix includes alt conpling
between the equations and unkmowns, and neglects only terms doe to the varjation of physical
properties calculated by Chemkin. A full numerical Jacobian that includes all terms is also
available. The nonlinear solver has additional features for speed and robusiness, including an
inexact Newton approach and a backtracking algorithm.

After construction of the distributed sparse matriz, the FE application calls the Aztec
Library of parallel, preconditioned Krvlov solvers [26, 43, 44). On each processor, the solvers
operate on the local distributed sparse matrix and local solution vector using a combination of




global structnred communication and unstructared communication to implement the parallel
solver kemels. A substantial set of preconditioners is available, including several versions of ILU
factorization, a domain-decomposition method. Althongh these advanced preconditioners require
considerable memory, they provide a huge gain in robustness.

Solution output from the program is achieved through several means. Output can be
written 1o either a standard seriat Exodusll file format [40] or a parallel extension of the Exodusll
file format (23] This extension consists of an individual standard serial Exodusl! file for each
processor with extra arrays that map the local numbering scheme on an individual processor to the
global nurnbering scheme and encode the necessary commmtnication information. The fortnat can
be psed on both MP computers, such as the Intel Paragon, and dastributed computing systems,
such as groops of worksiations. This patalle]l LD capability can be used with today’s primitive
parallel I'O facilitics with nearly lincar speedup. A small but growing number of spectalized
cutpit functions that analyze the solution and write solution information in non-ExodusIl formats
have been written for specific applications.

Thas report serves to decument the vser intecfaces withun MPSalsa and to provide several
exarple problems. Chapter 2 describes several important pre-processing steps needed to carry out
numerical simulations in an MP environment and the user interfaces to them. Section 2.1 gives a
general descnption of mesh generation capabilities for Exodusl] meshes. Section 2.2 descnbes
bhow to run “exolllb,” an Excdusll interface to the Chaco package described above. Section 2.3
deseribes bow to set up and i Chemkin. S=ction 2.4 describes the pre-processor, “guacamele,”
which is nsed to s=t up and manipulate the Exodusll serial output file. Section 2.5 describes the
serial and parallel /O capabilities of the code. Section 2.6 gives some information on how to
compile the code, and Section 2.7 shows how to mn it.

MP3alsa is controlled by a large inpat file, in which the user can change everything from
the number of processors to the convergence criteria for the linear solver routing, Chapter 3
describes the MPSalsa input file line by line. For instance, the problem type, which indicates
which equations are to be solved, is specified in the General Specifications section, described in
Section 3.1. Material properties and equations of state are described in Section 3.6. MPSalsa hag
extensive facilities for incorporating boutdary conditions, which are documentad in Section 3.7,

The user can extend the models past what has been pre-defined within MPSalsa [42].
Fumctions can be written to represent variations in physical properties, additional source tetms,
and special boundary conditions, any of which can be dependent on the current soluiion, position,
or time. In addition, functions can be wriiten for specifying an initial guess, for testing the
MP3Salsa solution with an analytic solation, and for specifying a continuation parameter. The
interfaces ta these routines are desciibed in Chapler 4.




Chapter 5 involves a general discnssion of some solution strategies that can help the user
tane MP3alsa for a specific application. MPSalsa implements a number of advanced numerical
solution procedures for solving systems of nonlinear PDEs. The optimal choice of these methods
can be difficalt and, thus, we include a section to 2id in this selection. Section 5.1 describes
strategies for reaching steady-state solutions. There are many choices and parameters in the
MPSalsz input file that control the soiution algorithm and can greatly effect speed, convergence
behavior, and robustness. This chapter is intended to introdoce the user to some of these options.

Appendix A lists and describes some user functions for application-specific boutdary
comditions and output routines (e.g., Danckwerts” boundary condition and time history cutput).

The next three appendices contain example problems. Appendix B covexs four simpie
examples with mass transfer, most of which can be 1in on a single processor. Appendix C covers
a set of fiuid mechanics and heat transfer problems on refined cwo-dimensional meshes. Appendix
D contains three models for Chemical Vapor Deposition (CVD) reactors which involve flow, heat
mransfer, and mass ransfer on three-dimensional meshes.




2. Pre-Processing and Runping MPSalsa

This chapter details the steps needed to run a successful MPSalse sirulation. Ii is
recommended that the nser first iy this process with some example probiems before staring on a
new problem. There are several preprocessing steps that need to be done for every new mesh
before running the MPSalsa program itself. They reflect the added complexities of conducting
numerical simulations in a massively parallel computing environment. These steps include mesh
generation, load balancing (only for mmlti-processor problems), and rusning the “gbacarmole”
pre-processar for setting up the serial ExodusIl output file and checking the inpur file for errors.
For problems that get information froan the Chemkin library, the Chemkin interpreter must also be
numn (o ¢create input files for the Chemkin suite of suebrositines.

2.1. Mesh Generation

MPSalsa vses the ExodusIl [40] finite element database format for storing the mesh and
solution information. The FAST(Q [1] package can be nsed to generate two-dimensional meshes,
and either CUBIT [24] or FASTQ with GEMN2D [17] can be used to create three-dimensiconal
meshes. All of the mesh geperation is done on workstations.

During mesh generation, parts of the mesh are grouped as separate element blocks and
identified with an integer element block ID. In the Materials Specifications section of the
MPSalsa input file, the element block IDs of the computational domain are associated with a
material, which may have different transport properties and constinive models than other
materials. Not all element blocks created in the mesh generation and stored in the ExodusTl mesh
file need be associated with a8 material, in which case such element blocks are not included in
MPSalsa’s computational domain. Note, however, that severe load imbalances may result, since
load balancing is currently conducted only over all element blocks defined in an Exodusil file.

All surfaces where boundary conditions will be applied must be identified as node sets or
side sats during mesh generation. The application of boundary conditions is simpler if all surfaces
that share the same boundary conditions for all equations are grouped inte the same node set or
side set. A node set is a list of nodes, while a side set contains sides of elements. Node sets can
have Dinchlet conditions applied to them, but cannot support Neumann or Mixed conditions
which require integration over the surface, Side sets may have 2l types of boundary conditions
applied (Dirichlet, Neumann, or Mixed), since the elemental information is available to compute
surface integrals,




2.2. Mesh Partitioning / Load Balancing

When running MPSalsa on more than one processor, the mesh is partitioned into
subdomains so that each processor “owns” 2 set of nodes. To assure that the work load is balancad
among the processors, an ¢qual mmber of nodes is assigned to cach processor. At the 2ame time,
an optimal partition will minimize the amount of interprocessor communication neaeded to bukd
the finite element residuals and Jacobian matrix by grouping neighboring nodes together on one
PIOCesSOL.

The Chaco [22] package, developed at Sandia, is a general graph partitioning program. We
use the application “exolllb™ to run Chaco to partition the nodes of 2 finite element mesh stored in
the ExodusII database. The “exolllb” program creates partitioning information and writes it in a
load-balance file (with a “.neml” extension) in the NemesisI format [23]. (Note that this interface
to the load balancer is new as of May, 1996, s0 many of the example prablems have load balance
files with the old naming cenvention, inclading the ".exoll” extension.) The load balance file
contains information about the nodes owned by each processor and about “ghost nodes,” which
are owned by another processor but needed for residual calculations. With this information, the
communication pattern for updates of ghost nodes for the mesh may be generated without any
interprocessor communication.

The utility “exolllb” is ran on a serial workstation amd reguires either command line
pararneters of a small input file to specify the pame of the Exodusll mesh, the number of
Processors to partition it into, and the partitioning method. There are a variety of options for the
partitioning algorithm, but we generally use the multilevel method [21). An example of the input
file, often called “input-idbl,” is shown in Figure 2.1. The only lines that are commonly changed
are the input Exoduslil file name and the nuanber of partitions (processors), which is expressed as
a produce of two integers on the last line. Although any pair of integers whose product is 32 would
also partition the mesh for 32 processors, the 4x8 designation would minjimize communication for
nning on & rectangular set of processors that has dirmensions 4x8. For hypercube-based
machines, the argument for the Machine Description line may be designated as
HYFERCUEE = n, where n is the dimension of the Wiypercube.

Additional options for “exolllb” parameters, including how to visualize the resulting mesh
decompaosition, may found in the “exolllb” manval page, the Chaco User's Guide [22], and the
Nemesis User’s Guide [23].

To partition the mesh, type the following command:
> exolllb -a input-ldbl




INEUT EXODUSII FILE bax2 0. exsll
GRAPH TYPE = HODAL

DECOMPOSITION METHOD MULTIKEL, MNUM_SECTES=1
SQLVER SPECIFICATIONE = TOLERAMCE=2 (o-3,USE_ROI, ROT_VMAX=200

MACHINE DESCRIPTION MESH= 4xf

1

Figure 2.1, Sample inpus fie, wenally nomed “inpur-ldhi,” for the 230111k load baloncing command

The load-balarce file created from the file in Figure 2.1 will be named “box200-m32-bKL. neml.”
The oot name is the same as the Exodusil mesh file, the “m"” signifies a mesh architecture,
followed by the namber of processors, while the “bEL” term refers to the multilevel method [21]
with Kerpighan-Lin improvement [29]). For information on the pantitioning algonthm, see the
Chaco [22] and NemesisI (23] manuals,

2.3, Chemkin Interpreter

Kinetic and transport data, such as the mixture viscosity, mixture therrnal condectivity,
multicomponent diffusion coefficients, and reaction rates, can be computed using the Chemkin
library [28]. K Chernkin is to be wsed, information on the species and reactions for both the gas
and surface phases must be snpplied in the Chemkin and Surface Chemkin [5] input files, We use
the convention that these fifes have “.gas™ and “.sur” extensions. For example, the mechanism for
the deposition of silicon nitride from SiF4 and NH4 in My camrier gas is contained in the files
“Si3N4.gas” and “Si3N4.sar.” These input files must be intarpreted once to form linking files that
can be efficiently read into MPSalsa. The current version that is installed in MPSalsa, Cherkinll,
creates binary linking files, so the interpretor st be remun on every new machine.

A utidity shell script called “interp” for executing the interprefers on a front-end
workstation or the MP machine itself has been cieated and resides in the “bin™ directory for cach
machine and operating system (e.g., “S$MPSALSA_HOME/arch/sgibinfinterp” for an SGI
workstation, amd “S$MPSALSA_HOME/farch/smosbinfinterp” for SUNMOS, wheve
$MPSALSA_HOME is the directory in which all MPSalsa libraries and utilities have been
instelled). For all machines, interp can be rue on the commeand line followed by the roct name of
the Chemkin data files, for instance:

> interp SiBN4




for the silicon nitride meachanism. On the Intel Paragon, it can be mun this same way using the
“paragon” executable (for the OSF operating system) of using the “smos™ executable (for
SUNMOS).

The “interp” command is a script that runs three separate interpreters: “ckinterp” for the
gas-phase chemistry mechanism, “skinterp” for the surface-phage chemistry mechanism, and
“tranfit” for the dilute multicomponent gas-phase transport properties (5, 27, 28). Several recent
publications inclode further details and examples of application programs using the Chemkin
tibraries [6, 7, 33].

The “interp™ utility createg three linking files needed for MPSalsa execution: “chem.bin,”
“surfbin,” and “ranbin” In addition, two links o databases are created (“tran.dat” and
“therm.dat’™). The other files that are created are not needed. The narnes of the three “*.bin” files
can be changed, but they must be specified in the Chemistry Specifications section of the input file
{zee Saction 3.4).

When "interp™ is run on 2 workstation, copiss of the “*.bin” linking files are also created:
“chem.bin.ws,” “suf.binws,” and “tran.bin.ws,” The “guacamole” pre-processor, described in
Section 2.4, automatically adds the “.ws” extension to the file names given in the inpuz file before
looking for the files. The Chemkin binary files created on a parallel machine will not overwrite
the “.ws” files, 50 guacanwla can be run on ons processor using the same input file as the

paralle] ran.

MPSalza will soon be upgrading o the newest Chemkin version, Chemkinilf, which
allows for the creation of ASCII {and, therefore, machine-independent) linking files, which will
greatly simplify the vse of the interpreter.

2.4. Guacamole

A pre-processing routine called “gnacamale” ning on a single processor and bas two main
purposes: to error-check the input file and to produce a serial ExodusH output file, creating fields
and header information for user-defined output variables. This utility uses the same /O routines
as MPSalsa The command for executing the pre-processor is

> guacamole <input-file>
where <input-file: is the name of the MPSalsa input file, and is, by default, “input-salsa™ The
executable is normally in the “bin™ directory for the current workstation, so for an SGI
workstation, the executable is “SMPSALSA_HOME/arch/sgi/bin/guacamole.” The preprocessor
sets up header information in the ExoduslT output file, which requires that all variable information




be predefined. However, once the variabies are defined, time series data of arbitrary size may be
efficiently output 1o the Exodusll file.

When “gracamole” creates the ExodusIl output fife, it writes all the mesh information to

the file and creates space for the: autput of the solution variables. Therefore. whenever the mesh

ARge: e DL : ARZE: scamole” m: repun. For example, if a user

has be:en rnning & ﬂmd—nmehamcs pmb-lem (Pmblem Type £ lu:l.d_flcw} and decides to add

the energy equation (Problem Type fluid_ flow_energy) and request output of the

ternperature unknowns, “‘guacamole™ must be rerun. It must aiso be requn if the user redefines the
selection of solution components to be included in the output file.

If “guacamole” is not run to generate the cutput file and scalar output of the resnlis is
requested, then MPSalsa will quickly terminate with the message:

check_output_specs: WARNING, output file “cutput_fite.excll” does ot exist]
[ex_open) Emor: falled to open output_fle.exoll read only

exerrval = -1
ERROR retumed fram ex_open on Procassor O

2.5, Serial and Parallel 1/(} Utilities

MPSalsa may be mun using either senal {i.e., scalar) or parallel /O facilitics. The least
complicated way to rum MPSalza is by using the scalar input — scalar output mode. A diagram of
what is involved is inchuded in Figure 2.2. As an initial step, “guacamele™ is mn to creats the
serigl Exodusil output file. The pre-processor “guacamole” parses the MPSalsa input file to
determine the uset’s choice of variables to cutput. When Chemkin is being used, “guacamole”
also parses the Cheankin linking files to obtain the number of gas-phase specics and their
character string namas.

The user is now ready 10 mun MPSalsa in scatar I/O mode, gither on ene or on many
processors. In MPSalsa, processor 0 first reads the MPSalsa input file and, when Cherkin is te be
used, the Chemkin linking files. This information is broadcast to all processers. Then, processor 0
reads the serial load balance file, and its information is broadcast to all nodes and processed in
parallel. Once this step is done, each processor knows which nodes it “owns.” and additionally,
which niodal information it needs feom other processors. Processor 0 then reads the ExodusH
mesh file and broadcasts its nformation 0 all processors. Each precessor searches the messages
for mesh nformation that it needs. Finally, each processor renumbers elements and nodes
contiguously in its local memory. Local-to-global mapping vectors are retained for output
processing.

Alternatively, MPSalsz can do 1/O on the paralle! file system using the Nemesis] package
[23], as depicted in Figure 2.3 The parailel format is a multiple fil= format, with the number of




SERIAL FRONT END PARALLEL COMPUTE NODES

Figure 2.2, Scalsr Mput - Scalar Owput mode for Y0, The Broadeast and Fan-in routines kave the
potertial vy create 10 bortlenecks.

files equaling the number of processors. A file name's suffix depotes which processor owns the

file. The file structure within each parallel file is sirnilar to the serial format, with the addition of
local-to-global mapping information. It includes all load-balancing information contained in the
sertal load balance file as well as all information needed to set up the local computing
environment on a processor, including ghost-node and communication information.

The paralle] IO capability is enabled in MPSalsa via conpilation flag options. The pre-
processor “guacamole” must be ma to include nser-defined header information in the output file.
The “ex2pex” utility, part of the Nemesis] package [23], is run next on the parallel computer. It
translates the serial Exodus]l file into the paralict file format and stores the parallel files on the file
system to be used for MPSalsa’s paralk]l VO, It mequires exactly the aumber of processors that
will be nsed in the subsequent MPSalsa calculation, When MPSalsa is executed, processor 0 reads
the input fils and broadcasts its information to all processors as in the serial O case. However, in
the parallel IO case, each processor then reads its own parallel Excdusl] fils o mitialize the
mesh. Paralle]l solution cutput occurs in a reverse fashion, with each processor writing its own
portion of the solution vector to its own output file.

For visualization of results, results in a set of parallel Exodus]l files must be collected to &
seriel Exodusll file. A utility “pex2ex™ is cumrently being developed that will automatically
combine parallel Exodusll files inkc one ExodusIl file, Until it is completed, however, two




SERIAL FRONT END

MPSalsa
Proc 0

Figure 2.3. Parailel 10 capabilities of MPSalsa

methods of obtaining serial ExodusIl files exist, Both serial and parallel output may be specified
for the run (see Section 3.9). This optior will praduce complete ExodusH files containing results
from all time steps on both the serial and paraliel file systems. If only the final result in a set of
parallel ExodusH files is desired, the user can restart MPSalsa using the final result as the initial
condition read from the parallel file system (see Saction 3.8), maintaining the same stopping
criteria as were used in the original computation, and spectfying serial output. MPSalsa takes one
Newtan st2p to recognize that the stopping criteria are satisfied and writes the result to the sarial
file system.

2.6. Compiling M¥Salsa

MP3alsa can be compiled on a number of different architectures. The GNU “make”
program shounld be used o process the two-level Makefile structure, Machine-specific makefiles
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have been created since the message-passing routines, compiler names, and compiler options vary
between machines. The source cods usyally is installed in a directory named “*/Salsa” This
directory usually has the following files and subdirectories {identified by appending “/"):
= I3

CVS/ Obj_ncube/ Obj_sgi/ Obj_sun/

CVS-CFile-Header Obj_ncube_ps/ Obj_sgimd/ elf

CV5-MFile-Header  Obj_paragon/ Obj_smaos/ md/

Makefile Obj_paragon_ps/ Obj_smoa_ps/ pe/f

Obj_alpha/ Obj_puma/ Obj_sol/ psf

Obj_inp/ Obj_puma_ps/ Obj_sp2/ rf
The somrce code for MPSalsa is stored in the last five subdirectories, which have two-character
names. The directories starting with “Obj_*" hold the compiled object files, dependency files, and
the executable (“salsa™) for a specific machine/operating system. All of the paralle) machmes
have the additiomal option of compiling for parallel IO, for which there are the separate
directories with the *_ps" suffix.

To compile for a specific machine/operating system, the GNU make utility “gmake” 15
vsed, The target 15 the same as the extension on the “Obj_%*" dmectory. For example, to cotapile
for a Silicon Graphics workstation, & user would type

> pgmake sgi

in the “*/Salsa” directory. To compile for the Intel Paragon with the SUNMOS operating system,
a user would type
> {make smos

on a4 workstation that has cross-comipilers installed.

MPSalsa nins on top of several software packages, Before MPSalsa may be linked, these
packages must be compiled and stored in architecture-dependent directories. For example, the
following directorizs are used to store libraries, inclade files, and binaries for SGI computers:
$MPSALSA_HOME/arch/sgiflib, $MPSALSA _HOMEfarchfsgifinclude, SMPSALSA_HOME/
arch/sgi/bin, where SMPSALSA _HOME is the directory in which all MPSalsa libraries and
utilities have been installed. Pointers (o thess directories are inclided in the top level MPSalsa
Makefile. The first O package needed iz NetCDF [37], the undertying format of the ExodusH
unstructured finite element package [40]. Exodusll is the next package that needs to be instailed.
The other 170 package needed is NemesisI [23], the paraltel extension to Exodus]l. In addition,
the Chemkin libraries [5, 27, 28] are peeded if the wser wants to ose this database for ideal gas
transport and gas- and surface-phase reactions. The Chaco package is need for load halancing
[22]. MP linear solvers within MPSalsa are implemented in the Aztec package [26], which in turm




needs to have the Y12 package of sparse matrix linear solver routines [49]. Aziec, as well as a few
of the other packages, require LAPACK [31} and BLAS {4] as well.

2.7. Running MPSalsa

The successful compilation of MPSalsa results in the creation of an executable in the
machine-dependent subdirectory, “*/Salsa/Obj_xxx/salsa.” MPSalsa can be rua on workstations
by executing the program with the input file name ag the argument, i.e.,

» salsa <input-file>
The defaunlt input file name s “input-salsa.”

On the Ints] Paragon with the SUNMOS version of MPSalsa (whose executable is in the

“0Obj_smos" subdirectory), MPSals2 can be executed with the following command,
» yod -82 <npe galsa <input-filex

where np is the number of processors. The value of np must agree with the number of processors
specified in the input file and the number of processors that the mesh was partiboned for.
Execution of the “yod” command will spawn an MPsalsa job in the compute partition of the
Paragon. As described in Scction 2.5, either a serial file or a set of parallel files on the parallel file
systern must bave been initialized previously for solution output to occur. Best results are
obtained when both the executable and the IO files are stored on local Paragon disks, rather than
on nfs-mounted disks.
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3. The Input File

In MPSalsa, problem-speciiic parameters are specified through an input file, which has the
default name of “input-salsa,” The input file is organized into 11 sections. The inclusion of certain
sections i3 mandatory {Geperal, Solution, Solver, Matersal, Boundary Condition and Initial
Condition/Guess  Specifications); other sections are oplional (Enclosuwre Radiation, Output,
Parallel VO and Function Data Specifications), The Chemistry Specifications section is reguired
only for problem types for which mass balance equations are solved (see Table 3.1). Each section
is identified by MPSalsa by a unique section header, shown between two dashed lines in all of the
examples below. MPSalsa does not parse a section unless #t can find the section’s header. If a
required section’s header is not found, MPSalsa generates an error message and exits. If an
opttonal section’s header is not found, no error message 15 geperated.

Each section iz made up of several lines. Each line consists of a keyword followed by an
equals sign and arguments that can be strings, integers, fiags, or real numbers. In this chapter,
each line of inpat is described and the type of acceptable argument is given in italics. When there
are a small number of choices for an argument, such as yes or no, they are represented using the
format {yes | nol}. Optional text is listed between square brackets, such as [int], and input
lices that are optional are completely enclosed in square brackets. For these input parameters,
MPSalsa assigns the defankt value that is specified in the text.

3.1. General Specificstions

Generpl aspects of an MPSalsa execution are specified in the General Specifications
section of the input file. Items such ag the type of equations to be solved and the nnmber of
processors 1o be used in obtaining a solution are given in this section. This section is required and
must begin with the General Specifications header, as illustrated in Figure 3.1.

cenaral Speacificacions

Frobilem typm whola_sanchilada

Input FEM file cvd-reacl.excll

LE fila cvd-reaacl-mZ255-BEL . nein T
Cutput FEM £ile cvd-reacl—out.exeIl
Munber of proowssars 2E8

tartacian or Cylindrical when 2D Cartexisn
Stabilization default

Debuyg 3

Figwre 3.1, Generat Specifications example section.




Problem type = string

The problem type input file line tells MPSalsa which equations are te be solved. MPSalsa
can solve the Navier-Stokes equations in conjunction with the continwity equation, an eneegy
equation, and an arbitrary number of species mass balance equations. Currently being tested are
equations for flow in porons media and the & and ¢ equations for modeling turbulent Sow, which
will be detailed in future releases of this docoment. Equations for modeling plasma and
electromagnetism may be imcorporated in the future, as may the capability of using a pre-
computed velocity field in the convective terms of the energy and species trangport equations (for
decoupled physics).

The current strings recognized by MP5alsa and the equations that they enable are histed in
Table 3.1.

Fquation Type — || Momentum Total Mass Enctgy | Spocics Mass
Nutnber of Equations in Type — Npim 1 1 Ny
Problem Type |

— e =

fluid_flow X X

energy_diff X

magz_&iff X

fluid flow energy X X X

Fluid_£low_masa X X X
anergy_mass_Jiff X X
whole enchilada X X X X

Table 3.1. The seven currently recognizad strings for the Problem Type input file line are listed, and the
governing equation types that each fiag enables are indicated. The munkber of equations associated with each type is
shawn in the second row, wherg Ny, is the mumber of spatil dimensions in the problem ond N is the number of

speocies, specified in Section 3.6,

Input FEM file = filename

This line specifies the name of the input ExodusIl file containing the FEM geometry
information. This file usually has a “.exoll” extension. It can include & path specification. This file
must exist prior o the ron.
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[LE file = filznone]

This line specifies the name of the load-balance file for runs to be performed on more than
one processol. It can include a path specification. The file must be in the Nemesisl format, and
usually has a “.neml” extension. (QOlder fikes have the *.exoll” extension.) This input line is read
only for runs performed on multiple processors. Default = none; error if not specified for mult-
PIOCESS0T TUTLLS.

[Output FEM file = filename)

This Ene specifies the name of the ExodusIl output file. This file is alse used to provide
mitial solution data for restarts, which are specified on the Set Initial Condition/Guess
input file line in Sectiop 3.8, The file name can include a path specification. This ExoduslI file
must ¢xist prior to the run, having been gensrated by the “goacamole™ praprocessor (see Section
2.4). Visualization of the FE solution uses this file. This input line is used only for scalar YO; for
rens utilizing parallel /O, special file names are geperated (see Section 3.10). Default = none;
error if not specified for restarts or mns with scalar ougput,

[Number of processors = integer]

This Ene is used to specily the number of processors that will be wtilized in solving the
problem. For multiprocessor mns, this number must match the number of processors that the
mesh was partitioned for. Defanlt = 1,

[Cartezian or Cylindrical when 2D = swringl

This hne specifies what coordinate system to use for 2D problems. Currently the only
valid wvaloe i3 Cartesian. Futme choices will include Cylindrical_2  and
¢ylindrical_3 for axisymmetric problems with two or three momentum balances to be
solved, Default = Cartesian.

[Interpolation order = string]

This line specifies the interpolation ovder for all quantitizs in the finite-clement model.
Valid opticns ate linear and gquadratic. Default = Lineax.

[Stabilization = {default | supgl]

There are currently two choices for stabilization of the FE eguations: defanult and
supy. The default option is a pressure-stabilized Petrov Galetkin methed [25, 48], which

1]




allows the use of equal-order interpolation of the pressure and velocity primitive variables. The
supg option activates the streamwise-upwinding Petrov-Gialerkin stabilization scherne [3] in
addition to the piessure stabilization. Streamwise upwinding improves convergence to highiy-
convected solutions (high Reynolds number flows) and reduces the amplitnde of oscillations in
the solution. Default = default.

[Debug = integer]

This line specifies how much information should be output to stdowr during the ran of
MPSalsa, as well as how much summary information the lipear solver library should output. The
value of integer must lie in the range [0, 10], with 2 being a common value. Examples are;

Debug =0 Minimmat info is printed to sidowt; only a sumenary of
important flags and entries into important ¢ode segments are
printed.

Debug>0 Along with the above information, timing information and

summary information on the global FE model (not the local
processor FE model), node sets, side sets, and boundary
conditions are printed. The solver library prints out residual
summaries ag well.

Debug>6 Along with the above information, sunimary information on
the local processor FE mexdel is printed. Processor-based
vector quantities such as residual, initial guesses, and
solutons are included. Processor-based compnunication
simunaries and local-io-global mapping information are
also printed.

Debug>9%2 Along with the above information, ixformation on the local
matrix is printed. This can be a sigmificant amoumt of
information and is realty meant to debug smaller problems
in detail,

Defanlt = 2.
3.2. Salution Specifications

The Solution Specifications section of the input file atlows the user to choose the desired
solution type, sach as steady-state or time-dependent, and 10 cortrol aspects of the solation

17




procedure, such as the time step size. This section of the input file 15 mandatory and must begin
with the Solution Specifications header, as shown in Figure 3.2.

Solution Specifications

=l o - - - - -

Splucion Typa = transient
Crder of intsgrationfoomiinuaticne 1

51:.!9 Canktxroal = on
Relacive Time Integration Brror = 4.0a-3
Inirial Parvapstsr Valus = 100.0
Initial Step Size = 1 Qo5
Meximum Hupber of Steps = 75
Maximam Time or Faraneter Valus = 100.0

Figure 3.2, Solution Specifications secion example,

In the rest of this section, each line of the Solation Specifications section is described
separately. Since time-dependent apd continuation runs both take steps from one solution to the
next, many of the lines have dual meanings depending on the solation type.

Solution Type = siring

This line specifies the type of solution desired, which can be cne of the following five
strings: steady, transient, pseudo, continuation, and optimizaticn. If the
steady string is specified, the code will attempt to solve the steady-state version of the
governing equations {with no time derivative terms). The rest of this section of the input file is
then ignored.

When the solution type is transient or pseude, the time-dependent equations will be
solved. A transient mun attempts to follow the solation in a time-accurate manner by keeping
the integration error vnder a specified toleramce, while the paeudo option is used to time step to
a steady state (or past uninteresting transient behavior) by agaressively increasing the time step
size regardless of the emror in the time integrator. The specifics of the integration and stepping
scheme ¢an be mapipulated with the subsequent input file lines.

The continuation solution type is used to solve for a series of steady-state solutions
as a function of a parameter. The steady-state versions of the govemning equations are solved, the
continuation parameter is incrementad and & new steady-state solution is sought, The subsequent
lines in this section are vsed to comtrol the run. The vser has the fexibility of choosing any
combination of physical properties and boundary condition values as the continuation parameter,
bt must do so by programming the routine user_continmation in  file
“rf_nsar_continuation.c” and recompiling (s=e Section 4.7 and Secticn 5.4).




The optimization sokution type is not currently a supporied feature, but has been used
successiully for one application [8]. This sclution type is similar to continuation, but instead of a
single parameter being incremented within MPSalsa, a set of parameters is changed by an
external optimization program. MPSalsa must be modified to calcnlate and write out an objective
function after every solution for the optimization package to use.

[Order of integration/comtinuation = integer]

This flag has separate meanings depending on whether the solution type is time-dependent
(transient or pseudo} or continuation. For transient or pseudo solutions, this
flag has 2 valve of 1 for first-order Forward-Euler/Backward-Euler predictor/comector
imtegration, and a value of 2 for a second-order Adams-Bashforth/Trapezoid-Rule scheme. {The
second-order scheme starts with pair of first-order steps to get started.} Defanlt= 1.

For cantinuation ruas, this flag can have a value of §, 1, or 2, A value of { tumns oo
zero-order continuation, where the sclution at the previous step is used as an initial guess for the
current step. (This is equivalent to changing the value of the continuation parameter in the mput
file and restarting from the previous solution.) A value of 1 selects first-order {or Euler-Newton)
continuwation. In this case, the tangent 1o the previous solution with respect to the continuation
parameter is calculated namerically, and is used to calculate an initial guess for the curent
solution. For problems whose sohations vary linearly with respect to the continuation parameter,
this guess shonld be the correct solution. A flag value of 2 selects arc-length continuation, which
is not comrently implemented. This option will allow the user to follow steady-state solution
branches that pass through turming paints with respect to the continuation patameter. Defauit=1.

[Step Control = {on | off}]

The Step Contrel input ling is read for transient, pseudo, and
continuation solution types, and can have values of on or o££. When step control is on, the
step size will be adjusted after successful steps. For transient runs, the step size is chosenas a
function of the value of the Relative Time Integration BError (described below), For
pseude and continuation runs, the step size will always be increased following a
successful step, with the increase depending on the ratio of the number of Newton itetations
needed for convergence divided by the maximum number of Newton iterations allowed. If the
value of the Step Control is of £, the step size is never increased. For any of the solution
types and either of the flag values, the step size is cut in half after a failed step (i.e., when a
converged solution is not fourd in the maximum manmber of Newton iterations), Defanlt = on.
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[Relative Time Integration Exror = fioad]

The Relative Time Integration Error input line is used only for transient
solutions, This line sets the target for the error incurmed on each time step. A value of the time
infegration error is calculated using the difference berween the predicted and corrected value of
the sofution by the method of [20]. If this estimated error is twice the value set in the inpur file, the
time step is rsjected and the time step size is cut in half. Otherwise, if Step Control is on, the
ratio of the input error valve and the estimated error are used to pick the pext step size. The value
of the Relative Time Integration Error must be greater than the Solution
Relative Erxror Tolerance, which is input in the Solver Specifications section to set the
convergence criterion for the linear solver, Defaut= 107

[Initial Patrameter Value = flogf]

The Initizl Parameter Value input ling is used only for coniinuation nans. The
number is the initial value of the continuation parameter. See Section 4.7 for details on the
implementation of continuation. Default = none, which is an error for continuation runs.

[Initial Step Size = floal]

The Initial Step 2ize input line is used for transient., pseudeo, and
continuation runs, The value is the size of the first time step for time integration nins and the
first continnation paameter step size for continuation runs. When Step Control is ofE, this
step size siays constant thronghout the ran as long as each step converges. Defanlt = none, which
i5 an emror for transient, pseudo, and continuation mns.

[Maximum Numbel of Steps = integer]

This imput line is used for transient, pseudo, and continuatcion reas. When this
maxiomwm number of steps is reached, the program will terminate. Default = 1000.

[Maximum Time or Parameter Value = floai]

This input fil= line i3 wsed for transient, pseudo, amd continuat ion mns. When
this value i5 exceeded by the time value in tine-dependent mns or the continvation parameter in
continbation runs, the program will terminate. Default = none.




3.3 Solver Specifications

The Solver Specifications section of the input file conirols the nonlinear and linear solver
routines used in MPSalsa. It is & required section of the input file. An example of this section,
including the Solver Specifications header, is found in Figure 3.3. Each line is discussed below.

Solver Speciflcacicns

Override Default Linsacity Cholcs = gefaulc
-- nonlinear solver subssction:

Humber of Mawton Iterations = 15

Use Modified Mewbon Iteration = pa
Enable backtracking for residual reduction = no
Choice for Inexact Hewton Forcing Term =4
Calelate the Jarobian Numerizally = B
Salutioy Relative Eryor Tolarancs n 1. .(m=3
Solution Absaolute Exrcr Tolerance = 1.0e-8

-— linear solver subasction:

Solutisn Algoarikthm £ gmras
Convargence Noth = [
Fracondltioner = no_ovaclap_1lu
Falynomial = L&, 1
Scaling = row_Eum
Orthogonalization = glasgical
Size of Erylov cubspace = 28
Maximum Linsar Solve Iteraticons = 50
Linear Sclver Hermalized Residoal Tolezance = 1. De-§

Figure 3.3. Solver Specifications section sxample,

[Override Default Linearity Cheoice = string)

This input line can be set to three possible strings: default, linear, or nonlinear.
The code decides whether the set of goveming equations are linear or nonlinear depending on the
problem type specified at the top of the mput file. For instance, an energy_dJiff problem is
assurned to be lLinear, while a £luid_flow_energy problem is assumed to be nonlinear. If
users decide to override this defantt, ag would be needed, for example, when using a temperature-
dependent thermal conductivity with an otherwise linear heat equation, they can set the flag o
linear ornonlinear. Pefanlt=default.
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3.3.1. Nonlinear Solver Subsection

[Number of Newton Iterations = fnteger]

This line specifies the maximum number of Newton iterations that MPSalsa will allow in a
single nonlinear solve. If this maximum is reached and the convergence criterion has not been
met, the nonlinear solve ends unsuccessfully, For steady-state problems, MPSalsa terminates with
a fatal error. For time-dependent problems, a convergence error is triggered for the current time
step, and control is returned to the time stepping routine. Currently, the time stepping routine
reverts to a Backwerd Euvler method, halves the time step, and tries again. Simdlarly for
continuation problems, the continuation algorithm cuts the paremeter step-size in half and
attempts to resolve the problem. Default = 28,

[Use Modified Newton Iteration = {yes | no}]

A modified Newton iteration uses a previously-computed preconditioning matrix for the
Newton step, instead of recomputing the preconditioner from the Jacobian at the current solution.
This option is pot yet supported. Defanlt = ne.,

[Enable backtracking for residual reduction = {yes | no | defaultc}}

When a Newtcn iteration causes the norm of the residual to increass rather than decreaga,
backiracking will not accept the update. Instead, the algorithm looks in the same direction as the
solution wpdate from the Newton iteration. Performing residual calcutations along the solarion
path given by this direction, it finds the solution that minimizes the residna] [, 10). Backwracking
has been shown in some cases (o belp converge to a steady-state when Newton’s method without
backtracking failed. The default flag disables backiracking for t ransient mmns bat enables
bhacktracking for all other solution types {pseuds, steady, and continuation). Defanlt =
defaulc.

[Choice for Inexacti Newton Forcing Term = integer)

An inexact Newton's method uses Newton’s method with an itesative linear solver, swwhere
the linear sclver methed {e.g.. GMRES) is not forced o fully converge at each step, The
reasoning behind this method is that it is a waste of computational tinoe to fully solve the linear
system when the nonlinear system itself is far from a converged solution. Inexact Newton steps
are controlled by a single parameter, efa_%, which is the required drop in the ratio of the norm of
the residual to the initial norm of the residual for a given linear solve. A normal Newton's method
uses 4 small, constant value for ara_k 20 that each linear selve i8 accurate, as it would be when




using a direct sofver. This is the case when the inexact Newton forcing term is set to 4, with the
eta_k tolerapee value given by the Linear Solver Normalized Residual Tolerance
input line below, Other vaiues for the inexact Newton forcing term, 0-3, allow for larger values of
eta_k, so that each Newton iteration takes less time: however, more Newton iterations are often
required for convergence. The possible values for the flag are supnmarized in Table 3.2, Default =
.

Flag Value Choice for eta_k in Inexact Newton's Meshod
2 Eisenstat and Walker, Method 2a
3 Eisenstat and Walker, Method 2b
4 Linear Solver Normalized Residual Tolerance {FExact Nevweon™)

Table 3.2. This table summarizes the choices for the Inexpet Newton forcing wartn. The variable sia_ is the required
drof in the linear residual for a successful linsar solve.

[Calculate the Jaccbian Numerically = {yes | no}l

A fully numerical Jacobian may be used in MPSalsa for debugging purposes. Instead of
the Jacobian matrix being computed analytically, the residual equations for each glement are
recomputed one extra time for each unknown in the element while that unknown is numerically
perturbed, A forward difference formula is used to caiculate the Jacobian contributions. For
problems with large numbers of unknowns per node, the numerical Jacobian can be more than an
order of magnitude slower than the analytic Jacobian, in part because rigorous property
evalnations for multicomponent gas equations are very expensive. The numerical Jacobian is a
powerfil tool for debugging changes to the governing equations as well as for checking the effect
of phiysical property variations - some of which are ignored in the analytic Jacobian but included
in the numerical one -- on the convergence behavior. Defauit = no.

[8olution Relative Error Tclerance = foat]
[Solution Absolute Error Tolerance = floar]

These two flags set the tolerances that are used in calculating the convergence criterion for
the update vector in the nonlinear solver. This criterion is
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where £, and g, are the relative and absolute tolerances entered in the above input lines, 9, is the
update for the unknown x,, and N is the total aumber of unknowns. The quantity on the lefi side
of this inequality is what is output from the solver as the update notm.

The convergence of the nonlinear solver requires that the above inequality be met and that
the nonlinear residual drop by two orders of magnitude from its original value. (This ratzo is
output b}_ra the code as the “Ratio of scaled residual_kfresideal 0.”) Default: €, = 10~ and
g, = 10 .

3.3.2. Linear Solver Subsection

[Solution Algorithm = shingl

This flag chooses the linear sohition algorithm from: the Aztec package. The choices are
listed in Table 3.3, For a description of the different methods, see the Aztec manual [26]. Defanlt
=gmres.

Keyword Linear Solution Algorithm
g es Restarted Geoeral Minimized Resicual Method
tfgmr Transpoze-Free Quasi Minimum Residoal Method
o Conjugate Gradient Method
ogs Conjugats Gradient Squared Mathod
cgstab Stabilized Biconjugste Gredient Method
iu Ful gparse LU factocization (available only on 1 processor)
Table 3.3. This table enumerates the cholees of linear Solution Algorithm flag. The strings in the lgft volurms are the
keywords recognized by MPSalga,

[Convergencea Norm = integer]

There are five choices for the norm that measures the progress of the lincar solver. These
zre described in Table 2.4, Fhe moest common choice is 0, since this comesponds to the norm in
the GMRES method. Defanlt = Q.

[Preconditioner = siringl

This flag chooses the preconditioning method. For many problems, a good preconditioner
is essentiad if the linear solver is tc converge. The more robust preconditioning methods require
more memory. Table 3.5 lists the available options for the preconditioner flag. Defanit =
no_overlap ilu.
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Table 3.4, Thke fve choices for the Coavergence Momn are showre The linear svstem (5 Ax=b, for which ai €ach
Reraie k (in the linear solution algorithm), ¥* = b - . The wlerances Eg and Ey are those ured by the nonfinenr
sotver (Eq. (3.1)). For nonlinear problems, an initial guess af 2°=0 is used, so choices 0 and | are eguivalent.

Keyword Preconditioner

full_eowverlap_ilu
full_ecwverlap bilu

ding overlap ilu ILU{() and Block-ILU{0) with overlapping of diagonal blocks betwasn
Alag_overlap_bilu PrOCEsSsors.

ILU(D) and Block-ILUD) with one level of overlap between processes.

oo_overlap ilu ILLI{D) and Block-TLU(0) with no overlapping hetwreen procsssors.
no_overlay bilu

poly Polynomial preconditioner, with the crder specified by the next input line.
8OE Domain decomposition, oo overlap, symmetric Gauss-Seide].

jassbi Tacobi preconditicier.

nons No preconditioner applied.

Table 3.5. This table enumerates the chofces for ihe Praconditiconer flng. The srings in the gt columns are the
keywondy recopnized by MPSglon The Scaling file line has more options they com be nsed in combingtion with
these,

[Polynomial = {L§ | NS}, integer

When a polynommial preconditioner is selected in the previous input line, this line specifies
the type of polynomial and the ordet. The o choices for the polynomiat type are “LS™ for least-
squares, and *NS" for Nenmann series. The polynomial order is an integer that must be preceded
by a comma. For a least-squares polynomisl, the choices for the order are 0-9, while for the
Neumann series the choice is O-infinity. Defaul: = LS, 3.
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[Bcaling = string]

The Scaling option specifies what type of scaling is done by the linear solver at the start
of the licear solve. Scaling is similar to preconditioning but is camied out only once at the
beginning of the lincar solve. Each scaling opion may be used in confunction with any choice of
4 Preconditioner, although only the syounetic scaling opdons should be used with the
conjugate pradient preconditioner. The available scaling options are listed in Table 3.6. Block
Jacobi scaling uses Gaussian ¢limination to invert the diagonal (N, x N, ) blocks of the matrix,
where &, is the number of unknowns per node. The inverted block is then multiplied into the
matrix and right-hand side. Row-sum scaling uses a diagonal matrix as the preconditioner, with
the row sums as the diagonal entries. Defauit = row_sum.

Eeyword Sealing Methed

[ s

block_jacobi { Right hand scaling using the inverted diagonal block.

sym_diag Symmetric {right and lefc) scaling using the matrix diagonal

row_sum Right hand scaling with the sum of the absolute values of the columa entrics.
 Faial:) No scaling.

Tabie 3.6. This table empneraies the choices for Scmling. The sirings in the left colwomns are the keywords
recoghized by MFPSalsa,

[0rthogonalization = {classical | modified}]

For the GMRES method, the vectors of the Krylov suhspace must be made orthonormal,
The two options for the Gram-Schmidt orthogonalization method are classical and
nmodified [18]. While the modified method is more stable pumerically, its parallel
implementation is significantly more costly. In our experience, classical orthogonalization has
worked well for the problems we have solved. Default = classical.

[Size of Krylov subspace = integer]

_ For the restarted GMRES method (Solutisn Algorithm choice gmres), the Krylov
subspace size is the number of Krylov vectors to store before restarting. With higher values of this
mumber, convergence of the linear solver is more robust, but more memory is neaded. Each
directional vector that is saved requires an amount of rnemory equivalent to an entire solution

vector. For finding steady states of large problems, this number can often (and should for
maximum efficiancy) excead 100. Default = 64.




[Maximum Linear Solve Iterations = infeger]

This line specifies the maximum munber of iterations allowed in any given linear solve.
When this maximom is reached before the residual has been reduced by the specified amount (as
specified by the Choice for Inexact Newton Foreing Term and Linear Solver
Normalized Residual Tolerance input lines), the linear solver terminates and an emror
condition is returned to the calling program. For nondinear problems, the solution is accepied
nonetheless and the next Newton step is started. For restarted GMRES, this number is usually
picked to be a small integer multiple (2 or 3) of the Krylov subspace size. Defautt = 300.

[Linear Solver Neormalized Residual Tolerance = finaf)

For linear problems and nonlinear problems for which the Choice for Inexact
Newton Forcing Term = 4, this input line specifies £, , the drop in the residual required by
the linear solver before it tenminates successfully. The Linear residual is checked after every
iteration of the linear solver, so the solver does not do more iterations than necessary. Default:
g, = 107 for nonlinear problems; &, = 10™° for linear problems.

3.4. Chemistry Specifications

The Chemistry Specifications section of the input file allows control over much of the
reaction and diffusion processes for problems with mass transfer. This section 1s required only if
the Problem Type indicates that mass balance equations are 1o be solved {(see Table 3.1). A
sample section of the input file, including the Chemistry Specifications header, is shown in Figure
34,

Energy scuation souros barms = On

Spmciaz aguation sourcs terms = on

Frassurs [(matmospherss) = 1.0

Thermal Diffusicn = off

Mul tigonponent Transport = gtefan_maswell
Chemkin file = chem. bin
Surfacs chepkin file = gurf.hin
Transport chemkin file = tran.bin

Figiure 3.4. Chemistry Specifications section eximple.

[Energy ecuation source terms = {on | off}]

This fag allows the user to twm on and off the energy source terms due to chemical
reactions. Defanit = on.




[Species egquation source terms = {on | off}]

This flag allows the user jo twm on and o££ the chemical reactions io the mtenor of the
domain. Surface reactions are controlled separately through the boundary condition section.
Default = on.

[Pressure (atmespheres) = float]

For problems with a CHEMKIN material type (see Section 3.6), the ideal gas equation of
state iz used to calculate the reaction rates and phyvsical properties, such as density. This flag sets
the thermodynamic pressure in the domain, which is assumed to be nearly constant. The locat
deviation of the pressure due to hydrodynamics, which is captured by the pressure unknown for
fluid Jow problems, is assumed to be negligible for the low Mach number applications that
MPSalsa is written for. This input line is not generally relevant for other material types, although
a user could writs their own material property fimctions that uss this quanticy, which is named
Pthermin the code. Defanlt = 1.0.

[Thermal Diffusion = {ocn | off}]

Thermal diffusion -- also called the Soret effect -- can be mmed on or of £ by this Aag.
Thermal diffusion can become a significant contributor to mass wansfer when gas species of

greaily varying molecular weights are exposed to a steep thermal gradient. This flag may be
tarmed off to save computational time when the effect is small, or to simplify the equations for
betier convergence behavior. The thermal diffusion term can be responsible for a modest increase
in time for the matrix fill. Currently, the thermal diffusion ferm is nonzerc only for the CHEMKTN
material type. Default = on for CHEMKIN materials.

[Multicomponent Transport = string]

This flag will, in the future, allow the user to switch between differeat diffusion
formulations for multicomporent transport. Currently, mixtare-averaged diffusion is the only
option, and is specified by the mixture_avg flag. Stefan-Maxwell and Dixon-Lewis
formulations are planned, and will take the flag values stefan_maxwell and dixon_lewis.
These flags are recognized but not included. Defankt = mixture_ave.

[Chamkin file = chem.bin]
[Burface chemkin file = surf.bin]
[Transport chemkin file = tran.bin]

These three input lines specify the names of the datz files for problems that use Chemkin
for the material properties. The Chernkin interpreter program “interp” (see¢ Section 2.3) creates




these files with the following names, which are also the defaults: chem.bin, surf.bin,
tran.bin. :

3.5. Enclosure Radiation Specifications

Enclosure radiation zlgorithms that are used in the Coyotell code [16] are being included
in MPSalsa. However, this capability is stil! under development and is nct yet supported. The
input-file section shown in Figure 3.5 may be included; however, it is optional.

T T = g g gy e e ————————

Enclesurs Radiation Speacifications

Figure 3.5. Enclosure Radiation Specifications section excmple.

3.6. Material Specifications

In the Matenal Specificanons section of the input file, the user can set the physical
properties of the system. The compuiational domain can consist of multiple materials, each with a
unique set of properties; at present, however, the same physics (.., governing equations) must be
solved in all materials. A malti-physics capability is under development.

An example of the Materials Specifications section is given in Figure 3.6, This saction is
required by MPSalsa, It differs from the previous sections in that it is mostly free-format. Only
the first two lines and the kast line are requived.

Number of Materials = meger

This line must be the first line of the Materials Properties section. It spacifies the number
of materials (usually one) that make up the computational domein. For multiple materials, the
“input lines that are described below are repeated multiple timies. The materials are assigned to a
block of elements in the mesh using the ELEM_BLOCK_IDS line described below.

The first line for each material specifies the material type, material ID, and material name,
and has the format:

Material Tyvpe = integer_id *Material Name~
The Material Type string can be one of several keywords. These keywords are listed in
Table 3.7. The CHEMEIN type is special, in that it t=]ls MPSalsa to gat the material properties
frotn the Chemkin database. The integer_id is a unique integer identification (ID) number for the
material. The user can supply any string, within quotes, as the Material Neme, which is only
echoed back by MPSalsa in place of the integer ID.




Mararial ID Speaificarctong
Number of Materials = 1
BOUSYINESG = 0 *3¥k-gas=*
BLEM_BLOCE_IDE = 1 2

KiN_SPECIES = 3
SPECIAL_SPECIES _PCH = veg

SPECIES_NAME i
SPECIES_NAME Yi_1
EFECIES NAME Yk 2

DIFF_COEEF
DIFF_CURFE ¥h_0
DIFF_COEFF

WCHPECIES
WISFECIES
WTrAPRCIES

DENEITY

cP

VIECOEITY
THERMAL_CONDIKT
VoL _EXFHS
G_VECTMOR
Q_VOLIEE_ VAR

KMF_0O
oFE_o

boi i

U_INTT = 10.8
T_INIT = 206.0

END Material ID Specifications

Figure 3.0, Mageriaf 1D Specifications section example.

The agsignment of the physical and trangport praperties for the current marerial follow the
Material Type line until they are terminated by the line:
END Material ID Specifications

Any entries after this line are ignored.

The material properties can follow in almost any order and all have default values. The
only ordering that is required is that the number of species (NUM_SPECIES) must be specified
before the species names (SPFECTIES_NAME} are given, and that the species names must be given
before the species-dependent propetties (DIFF_COEFF, WISPECIES, ZMF_ Q) are specified.




SOLID, NEWTONIAN Usual equations; isotropic conductivity, body force = pg.
BOUSSINESD Body force tenm replaced by linsar Bovssinesq spprox. in Temperatore.

CHEMKIN Al physical and ranspost propertees calculated from Chemkin —ideal gas equation
of state. Properties vary with thesmodynamic swate.

Table 3.7, ListofMaterial_Type designidors recognized by MPSaiva

Kxyword Argument Defautt Drescription
—— s e ——mn |
ELEM_RIOCK_TDS inteper list List of elemanit blocks, as specified by the mesh generator,
that compose the current material.
G_VECTOR 2 fioat 0,0,0 The x-, y-, and z-components of the gravity vecter. Tha
ugits are arbitrary except for CHEMKTHN materials, where
oge units are the default.
Table 3.8 Genernl Keywords: first of four tables listing and describing kevwords recognized for the specification of
marerial properties.
Keyword Arpument Default Description
DEHITY Foator 1.0 A fioating-point argument se43 a constant density
VARTARLE, FROP value; the VARIADBLE_FROT fag tells MPSalsa to gt
the vafoe from the fimetion “user_density.”
VISCOSITY Floaror 1.9 4 fAoadng-point argament seis a constant viscosicy
VARTABLE PROP value; the VARTABLE FROF flag tells MPSalsa to
2et the value from the function “user _viscosity.””
cp Jloat or L0 A floaling-point argumere sats a constant heat
VARIABLE_PROF capacity; the VARTAELE_FROF flag tells MPSalsa to
get the vailue from the function “user_Cp.™
THERMAL _CONDUCT Float or 10 A floating-point argument sets & constant therma]
VARTARLE PROP conductivity; the VARTABLE_PROP flag tells
MI'Salsa to get the value from the fanction
“uger_cond.™
VOI_EXPHS floar 0.0 Volnmetic expansion cosfficient (anits are inverse
teinperatme); used onky for BOUSSINESQ materials.
T _MNAUGET Joat o0 Refercnce temperatore for BOUSSINESQ
approximations.
£ VOLUME floar Constant volametric source added to the beat balance.
O_VOLUME_VAR Jh_nawie A volumetric source compuled by the function
fi_name and addad o the heaz balance.
VISC_DISSP Canses viscous dissipation tenms o be added to the

heat balance; this fag is not currently implemented.

Tabls 3.9. Fiuid and Thermal Properties: second of Jour tables listing and deseribing keywords recognized jor the
specification af mazerial properties.
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Eeywaord
WM _SFECIES

inteper

Default

Description
MNumber of speclas for problems that include
mass transier.

SPECIES_NAME

integer,

The integer ID of the species, betwesn 1 and the
entry for NUM_SFECTES, followsd by the
pame of the speciss.

WTSFECIEE

string, float

The molecular weight of spacies sirimg. where
siving is a SFECIES NAME mput above.
WTSPECIES shoald be given for each species.

DIFF_CCEFF

string, float

10

The diffusion cosfficient of spacies sfring,
where string 18 4 SDPECTES HAME fnput
above. DIPP_COBFF should be given for each
species.

SFEC_EPECIES_EQH

{ya=ino}

When this flag is ya=, the last spacies equation
is replaced by the requirement that the sum of
the mass fractions is one. For CHEMRIN
material types. the default vales of vas may
not be overridden.,

Y_VCLUME

fioat

A constant yolumetric somrcs term that is the
same for all species.

Y_VOLUME VAR

Jn_name,
{SIMGLE [
MELTIPLE}

Volumedric sourcs term for each mass halance
computed by the user-specified fanction
_pame. SINGLE or MULTIPLE indicates
whether the fimetion retums one equation’s
somrce tarm al & Hime of the anra vactor of
SONTce berme at ohoe.

JACOBIAN_SRC_TERMS VAR

fr_name

I this string bs present, e fonction fa_sawe is

used to compute the Jacobian eatries duc to the

source terms; otherwise, a numerical Jacobian
s compribed.

Tabie 3.10. Mass Transfer Properties: third af four wables listing and describing keywords recognized for the
specification of material properiies.

The recognized strings (or keywords) that can be used to specify matenial propertics are
listed and described in Table 3.8, Table 3.9, Table 3,10, and Table 3.11. The sirings are organized
into separate tables only for this document; there are no distinctions in the code.,

The ELEMENT_BLOCK_IDS line in Table 3.8 is required for each material type. All
glement blocks in the computational domain (see discussion in Section 2.1) must be specified in
one and only one material-type section,

For CHEMKE.IN material types, the number of species and their names are specified in the
Chemkin linking files. Additionally, the molecular weights, diffusion cocfiicients, mixture
viscosity, mixizre heat capacity, mixture thermal conductivity, multicomponent diffusion




U_INIT Foat The initial valoe for the x-component of all the velocity unknowns,

¥_INIT floa? The ivitial value far the y-component of all the velocity unkmowns.

W_INIT floar The initial value for the z-comporent of ali the velocity unknowns.

E_INIT Jioar The initial value for all of the pressure snknowns.

T_INIT o The initial vahse for a1l of the temperznre onknovms.

XMF_D string, float The inttial species mole fiactions, which are translated to mass
fractions and assigned 1o the mass-fraction unkpownos. The string is

the name of the species, which comes from the SPECIES_NAME
lin¢ or the Chemkin data fle.
Tabie 3,11, Irdtial Yolue Specificarions: foxrth of foar ables sting and describing keywonds recognized for the
specification of materia! properties.

coefficients, mixture density, and volune expansion coefficient are all specified or caloulated
from Chemkin functions. It is an error to redefine them in for a CHEMKIN material.

3.7, Boumdary Condition Specifications

CGeneralized surface vectors and boundary conditions for a problem are specified in the
Boundary Condition section of the input file. This section is required by MPSalsa. An exampie for
a4 WHOLE_ENCRILADA problem is given in Figure 3.7,

3.7.1. Generalized Surfaces

A generalized surface is a side set in the Exodus]l file for which the outward normal and
tangential vectors of the corresponding geometric surface are given in the input file, These vectors
may be used to specify side-set boundary conditions in the surface’s normal and tangential
directions. The rmmber of generalized surfaces included in the input file is listed first.

Numl=r of generalized surfaces = infeger
The format for specifying each generalized surface follows.

GENERALIZED SURFACE side set_number rmanber_of_vectors
TANGENT {real real [real] | function_name)}
[TANGENT {real real [reall | funcHion_namel)
[(NORMAL  {real real [real)l | function_name}]

where
side_ser_ntimber = the side set TD number in ExodusTT, and
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Humbaer of Ganeralized Surfacmes = 1
GENERALIZED _SURFACE 4 2

TERGERT 0.8 0.6 0.

TRANGENT -0.6 0.8 0.
GEMERALIIED _SURFACE 5 3

HOPMAL uper normal

TRMNGENT usar_ tangantl

TAMIERT 0., 0. 1.

Mumber of BC = 12
T_PC DIRICHLET 55 1 DNDEFENDENT 300. O
T_BC NEIMRAMN 58 & INDEPENDENT f_oom vy 1
BC_DATA = 1.0 2.0 0.5
T_BC MIXEDL 55 4 DEPEMDERT jbe £fn ¢.5 0.1 0.2 £ £ ©
= P_PBC DIRICHLET NS & INDEFENDEMT 1. 0

U_RC DIRICHLET S& 1 INDEPENDENT 0. 0
VEL_TAN1_RC DIRICELET 28 1 INDEPEMDENT f_xv_spin_diek 1
BC_DATA = 100.0 0. 0.

28 HB RA

¥_PBC DIRICHLET 85 1 INDEFENDENT 0. 0
VEL,_TANZ BC DIRICHLET G5 1 DEPEMDENT f_ xy_spin disk L
BC_DATA = 100G.0 0, ¢.

RE

W_EBC DIRICHLET 55 1 IMNDEFENDENT -9.
VEL_MOFM_BC DIRTOHLET 35 1 DEPENDENT surfaces chemkin_bhe O

¥_BC DIRICHLET =5 1 INMDECENEENT I _mole_fraction 1
SFECIBS_LIST = 2 1 4 3
BC_DATA = 1.232300&-04 1.095458e-02 9. 8892212-01 0.0
¥ _BC DIRICHLEYT 55 4 DEPEMDENT surface chamkin be O
SPECIEI LIST = ALL

Figure 3.7, Example of the Boundary Condition Specification section of the inpur file.

number_of_vectors = the number of vectors used to describe the surface.

Two orthogonal vnit tangent vectors shonld be given for 3-D problems; one unit tangent vector
suffices for 2-D problems. The unit cutward-normal vector is optional; for boundary conditions in
the ourwayd normal direction, MPSalsa uses a vector normal to the mesh geomeiry if a vector
normal to the surface is not specified.

The outward sormal vector and tangent vectors on the surface are described on the
following line{s). Either the coordinates of 2 vector or the name of a finction retumning the vector
may be used to specify the vectors (see Section 4.3). The exampte in Figure 3.7 includes two
generalized surfaces. The first consists of side set 4 with two unit tangent vectors; since a normal
vector is not specified, outward normal vectors on the surface are computed within MPSalsa. The




second consists of side set 5 with the outward normai vector returned by user_normal, a
tangent vector retemed by user_tangentl, and a constant tangent vectot.

MPSalsa numbers the gencralized surfaces (starting from one) in the order they appear in
the input file. Boundary condition statements for generalized surfaces reference the generalized
surface number assigned by MPSalsa as their set_id (see Section 3.7.2). Alternatively, the number
of the side set for which the generalized surface is described can be specified; MPSalsa associates
the appropriate generalized-surface definition with the side set.

3.7.2. Boundary Conditions

The number of boundary comditions included in the input file is specified before the
boundary conditions are listed:

Humber of BC = infeger
Each boundary condition has the following format:

BC = bc_name bc_iype sei_type ser_id dependence flag bc_valuesr nuwm_data_lines
where

be_nome = {U_BC | V_BC |W_BC|T_BC | P_RBC | Y_BC | VEL_NORM_BC |
VEL_TAN1_EC | VEL_TAN2Z_BC};

be_type = [DIRICHLET | NEUMANN | MIXED};

set_type=[NE5 | 858 | G8}

set_id = side set [T number, node set ID number, or generalized suwface pvmber,;

dependence_flag = {DEPENDENT | INDEPENDENT]);

be_values is described in Table 3.13; and

rian_data_lines = integer.

The bc_name indicates the variable to which the boundary condition should be applied.
Possible values for be_name are listed in Table 3.12. All velocity boundary conditions on a side
set must be specified in the same coordinate systern; normal and tangential velocity boundary
conditions (VEL_NORM_BC, VEL_TAN1_BC, VEL,_TAN2_BEC) may not be used with U_BC,
V_BC, or W_BC on the same side set.
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Variable to which the boundary cordition is applied.
velocity in the x-direction.

velocity in the y-direction.

wvelocity in the z-direction.

T_BC tenperatygs.

P_EC [Pressure.

Y_BC mass fractions.

VEL_MORM_E< | welocity in the direction normal 10 the surface. Nodte: only Dirichlet BCs we
valid for VET._WORM_BC.

VEL_TANY_BC | velocity in the directon of the first tangent vector {given by a generalized
surface) to the surface, Note: only Dririchlet BCs are valid for VEL_TANL_BC.

VEL_TANZ_BC | valocity in the direction of the second tangent vector (given by 2 genaralized
surface} to the surface. Mote: only Dirichlet BCs are valid for VEL_TaNz_EC.

Table 3. 12 Bomndary condition names and their corresponding variables.
The be_type indicates the type of boundary condition to apply. Three types of boundary
conditions are implemented in MPSalsa: Dirichlet, Nenmann, and Mixed (Robin). Dirichlet
boundary conditions have the foflowing forms:

y = fit,%x,u, P, T, Y) for U_BC, V_BC, W_EBC, P_BC, T_BC or Y_BC, (3.2)
neu = fir,x,u, P T,Y) for VEL_MORM_EC, and (3.3)
ten = fit,x,n, P, 7. Y) for VEL_TAN1_BC and VEL_TANZ_BC, 3.4

where y = uy, Wy, 3, P, T, 0r Y is the unknown whose boundary condition is assigned, m and t
are unit outward-normal and tangential vectors specified in a generalized-surface definition or
computed by MPSalsa, and § is a fupction of time ¢, position X, and the solution variables «, &,
T,and Y at x.

MNeumann boundary conditions take the form

n-q. = f{Lxu P T,Y), q = -AVT, for the temperature equation, (3.5

B-j, = AL X WP LY), J, = p¥,V,, for the A" mass fraction equation, and  (3.6)

(Tn), = fit,x,u, P, T,Y) forthe fk momentum aquation, (3.7

where m is the unit outward normal vector, A is the mixture thermal conductivity, f is the
mixture density, V; is the diffusion velocity of species &, and T is the shear stress tensor.




Mixed boundary conditions replace the function f on the right-band side of {3.5)-(3.7)
with

h(y—yy) +afit,x,w. P, T.Y), (3.8)

where « is a floating-point constant, and 2 = A, x,n, P, T Y) and 3y = ylt, X, w, P, T, ¥} are
functions of time ¢, position x, and the selution vector at X.

In MPSalsa, DIRICHLET boundary conditions replace the finite-clement equation for 2n
unknown. NEUMANN and MIXED boundary conditions add a surface integral contmbution to the
finite-clement equation for an voknown, Only DIRICHLET boundary condifions are ciamently
implemented for VEL_NORM_BC, VEL_TAN1_BEC, and VEL_TAN2_BC, NEUMANN and MIXED
types will be added for these boundary conditions in the future. Pressure boundary conditions
(P_BC) may alse be oaly of type DIEICHLET. All other boundary conditions may be of any
1ype.

The Exodus]] side or node set to which the boundary condition is applied is specified by a
ser_type and the sez_id_nam. The set_sype is 35 for a side sat, NS for a node set, or G5 for a
generalized surface side set. The set_id mumn 1s the namber of the side or node set in the ExodusT]
file, or the numbet of the generalized surface defined in the input file. NEUMANN and MIXED
boundary conditions may be applied only to side sets or generalized surfaces; DIRICHLET
boundary conditions may be applied to node sets, side sets, or generalized surfaces.

Boundary condition functions f, &, and y, in (3.2} - (3.8) may depend on the solution. If
terms resulling from this dependence are to be included in the Jacobjan matrix, the
dependence_flag should be set to DEPENDENT,; otherwise, the dependence_ flag should be set to
INDEPEWDENT. Mixed boundary conditions should be labeled DEPENDENT only if at least one
of the functions £, %, or y, depends on the solution. For TNDEPENDENT mixed boundary
conditions, the analytic Jacobian contribution

aa_y (e, 3) [3 - (5, D] +afls %) = A1, 3)

is comnputed by MPSalsa and included in the Jacobian.

The be_values vary depending on be_type and dependence_flag: the correct combinations
of arguments are listed in Table 3.13. The values of £, i, and y, in (3.2 - (3.8) may be given by
a real number or a function. The valee of a in (3.8) is a real nurnber. Analytic Jacobian enfries
may be given for DEPENDENT boundary condiions through spectfication of a
jacobian_function_name, a function that returns the partial derivative of the boundary condition
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with respect to the solution unknowns. If no jacobian_function_pame is specified, a numerical
Jacobian is used for DEPENDENT boundary conditions. Many functions for £, 4, and y,, and their
analytic Jacobian entries are included in MPSalss, see Section 4.2 and Appendix A.l.

bc_type dependence_flag be_vatues
mm'mm {fjﬁmﬁm_mne [£ ral}

DIRICHLET DEPENDENT [facobian_function_namel Uf_fimction_name | f_real}
WEUMANK INDEPENDENT {f_funcrion_name | f_real}

NEUMANN DERENDENT [jacobian_function_name)] (f_function_neame | f_real}

MIXED INDEPENDENT {h_funcrion_name § h_real} {y0_finction_name | y0_real}
{a_real} {f function_rame | f real}

MIXED DEPENDENT [facobian_funcion_namel [ h_funcrion_pame | k_real}
{ﬁjmm} ion_neone | yO_real) {a_real} {f_function_name |
freal

Table 3.13. Boundzry condition specification of be_values for various be_types and dependence_flags.

Additional data may be passed to bouadary condition functions through the use of
BC_TDATA lines. The number of these lines for a boundary condition is given as the last entry,
num_daia_lines, on the BC line. BC_DaTA lines ane formatted as follows:

BC_DATA = duia_type daia_values
where

daia_type = [FLOAT | INT | INTEGER | FUNCTION}; and

daza_values = 2 list of real numbers (for data_type FLOAT), integers (for data_types THT
and INTEGEP), or function names (for data_type FUNCTION). These data values are stored in
one-~dirnensional arrays associated with the boundary conditions and may be accessed by user-
defined functions. See Section 4.2.1 for examples of the use of these vaiues.

Examples of each type of boundary condition ate included in Figure 3.7. A few examples
are detailed below.

BC = P_BC DIRICELET NS % INDEPENDENT 1. O
A Dirichlet boundary condition value of 1 i2 applied to pressure unknowns in node set 9.

BC VEL_NCEM_PC DIRICHLET GS 1 DEPENDENT surface chemkin_beo 0
A Dirichlet outward-normal velocity boundary condition is applied 1o velogity unknowns
on the first generalized surface listed in the input file. The value of the boundary condition is
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file:///fJunction_name
file:///f_real
file:///jacobianJunction_name
file:///f_real}
file:///f_real
file:///jacobian
file:///f_real}
file:///fjreal}
file:///jacobianJunction_name
file:///fJunction_name

compuked in function surface_chenkin be (see Appendix A.l.1). Since the boundary
condition is DEPENDENT but no analytic Jacobian function is specified, nurnerical Jacobian
entrias for the boundary condition are computed.

BC = T_BC NEUMANM S5 5 INDEPENDENT £ xx yy 1
BC_DATA = 1.0 2.0 0.5

A Neumann boundary condition is applied to the temperature equations for nodes in side
set 3. The value of the boundary condition is computed in function £_so¢_yy. No Jacobian
eniries for the boundary condition are generated since the boundary condition is INDEPENDENT.
BC_DATA values of 1.0, 2.0, and 0.5 ar= passed to function £_xr_ vy for use in computing the
boundary condition value.

BC = T_BC MIXED S8 4 DEPENDENT jbc_fn 0.5 0.1 0.2 f_fn 0
A Mixed boundary condition of the form

n-q,=05(T-01)+02 {fuisx,u P T Y}

is applied to the temperature equations for nodes in side set 4. The boundary condition is
DEPENDENT; fimction jbc_£ndt, x,w, P, T, Y) is called to compnte analytic Jacobian entries
for the houndary condition terms.

Default: If no boundary condition is specified for an nnkmown in 2 node- or side-set, a
nairal bourklary condition with value 0 is applied to the equation for the upknown, Thus, the
defanlt boundary condition fos teraperature, mass fractions or velocities is effectively NEUMANN
with fir, x,n, P, T, Y} = 0 in (3.5}, (3.6), or (3.7), respectively.

3.7.2.1. Mass Fraction Boundary Conditions

A mass fraction boundary condition {¥_BC)} may be applied to one, some or all of the
species unknowns in the node or side set. The SPECIES_LTIST input line indicatzs t0 which
species the boundary condition shovld be applied. This line must directiy follow the BC
statement.

SPECIES_LIST = {ALL | [istof species numbers | list of species names)
The keyword ALL states the boundary condition should be applied to all species in the problem.
Individual species may be listed by number or name, where the name is given either in the
Materials Specifications {see Section 3.6) or the Chemkin files.
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All Y_BC boundary conditions are specified inn terms of mass fractions rather than mole
fractions. DIRICHLET boundary conditions may also be specified as mole fractions via the
function £_mole_fraction included in MPSaisa {zsee Section A.1.4).

3.7.2.2. Precedence of Bonndary Conditiens

For un¥knowns at nodes where two o more side or node sets intersect, Dirichlet boundary
conditions always have pracedence over othet types of boundary coaditions. That is, if & node has
uvnknowns upon which Dirichlet and, say, Neumann boundary conditions are specified, the
Dirichlet boundary condition is the boundary condition imposed. Moreover, the first Dirichiet
boundary condition in the input £le for such an unknown is the one applied. If a node belongs to
more than one node or side set, as Node A does in Figure 3.E, the first Dirichlet boundary
condition for ach unknown at that node is the one applied. In Figare 3.8, the Dirichlet boimdary
condition for node set 2 would be applied to Node A.

HodeSet1 O
Nods A Hode SetZz @

B = T_EC DIRICHLET Mg 2 INOEPEMDENT 200. O
BC = T_BC DIRICHLET NS 1 INDEPENDENT 100. {

-
—

Figure 3.8, Exampie demonstrating the precedence of Dirichiet boundary conditions. Node A belongs to
broth node sex 1 and rnode sei 2. Ris temperamire wowld be set to a valse of 300 in this example.

3.8. Initisl Conditien/Guess Specifications

In the Initial Coadition/Guess Specifications section of the input file, users can specify
what type of initial guess or initial conditons to use. This secton is required by MPSalsa. An
example is shown in Figure 3.9, MPSalsa’s iniiial guess for the solution vector is established in
several steps. The first step involves preprocessing the solution vector by setting all solution
components t0 a value of zero. Next the Set Initial Condition/Guess line described
below is processed. Then, if the solution 35 not being read from an ExodusIl file, 2l solution
variables are set to their “INTT™ values specified in the Material Specifications section of the inpet
file, if any are specified, (For example, this is where the condition that the sum of the mass




fractions must equal one is enforced for CHEMETN material types.) Finally, an additional user-
supplied function may be invoked as the last step. The remainder of this section describes each of
the lines in the Initial Condition/Guess Specifications section of MPSalsa's input file.

e e o A ek b ke ke v Sl L L L L S v -

Initial Condition/Guess Specifications

Zet Initial Condition/Guesa constant 0.6
2pply Function no

Time Index to Restart From 1

Figure 3.9, Example of Initia] Condition/Guess Specifications section of the input file.

[Set Initial Condition/Guess = siring [value] ]
This line is nsed to specify how to initialize the solution vector after the initial default
processing is carried out. Valid options for this ling are listed below:

= constant [vafue]

This option initializes all components of the solution vector thet do not have
material defanlts to the constant value valre. Default: valie = 0.

= random
This option randomly assigns initial solution vecter values in the interval [(,1].

= exoII_file
Previcusly stored solution vatues in the Output FEM fils, named in the General
Specification Section, are used as initial values. This option is used for restarts.

Default = constant Q.

[apply function = {functionname | no})

A user-written function can be specified on this line to process the ipitial guess. This
function is executed after the Set- Initial Condition/Guesas inpurline 2o the function can
be depaadent on a solution read in from an Exodusll file. See Section 4.4 for details on how to
write this function. Defanlt = no.,
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[Time Index to Restart From = integer]

This line specifies the index of the time step from which to perform restarts or take the
initial guess. This parameter is only pertinent if the Set Initial Conditien/Guess value
i5 exoII_f£file. Restarts can be performied from any dats on the same geometry for steady or
time-varying problems. Defzult = 1 if Initial Guess = exoXX_file; ighored otherwise.

3.9, Output Specifications

In the Cuiput Specifications saction, the user may specify how output is to be performed
to the Exodusll results file. Items such as which vanables to output, how often to output these
variables, and whether or not a user-definable subroutine is called are specified in this section. An
example of this section is given in Figure 3.10. This section is optional; if it is absent, no output
will be performed. A detailed description of each of the lines in the Output Specifications section
follows.

Cutput Specafications

User Defined Output

Faralls]l Cutput

goalar Tuiput

Time Index to utput To

Hodal variable output times:
every 1 stapa

hmber of nodal cutput variabless

Nodal variable nafies:
Temparatura

Humber of global cutput variakless L

Global variable names:
Imlea_kima

Test Exact Soclution Flag 1]
Kanz of BExact Solutiom Functiom £ xm_yy

Figure 3.10. Example of Owipiz Specifications section in the input file.

[User Defined Cutput = {ves | no}l

This flag indicates whether the standard user-defined function, user_out, should be
cafled to output information to stdout. This routine allows user-customized ontput 0 be added
eagily. The routine currently distributed in MPSalsa prints out the maximum, minimem, and
average value of each unknown as well as the positions of the maximmm and minimum, Defanlt =
yes.




[Parallel Cutput = {yes | no}l

This option allows the user to specify whether or not parallel cutpot showild be performed.
it can be vsed simultanesnsly with scalar output. See Sectron 2.5 and Section 3.10 for more
information on parallel /0. Defauk = no.

[Scalar Output = {yes | no}]

This option allows the user to specify whather or not output to a scalar Exodusll results
file should be performed. The name of the file is specified in the Genaral Problem Specifications
section {see Section 3.1). Defailt = no.

[Time Index tc Output To = ineger]

This line is needed only when {I) the MPSalsa ren is 4 restart, and (2) the user wishes to
control where in the Exodusli cutput file {which was used as the restart inpat file) the output is
writien. If the line is absent and the run is a restart, new output is appended to the end of the
Exodusll output/restart file. When this line included under these conditions, it specifies at what
time index {in the restart file) the output should start. The restart file will be overwritien at the
time index specified. Note that ihe initial gness, as read during restarts, is output first. It is
therefore suggested that the value of Time Index to Cutput To be set equal to the Time
Index to Restart FProm {see Section 3.8) 50 as to preclude having the same set of values
stored twice in the file, Defatlt = output appended to the end of the ExodusIl output file.

{Nodal wvariable output times:])

siring _

This line specifiss how often during eransient runs output of the variables is to be
performed. Valid values for string are

every n steps -- where # is a positive integer

every x.ax {seconds | units |mins} -- where x.xx is a real positive number.

Several things should be noted about this line. (1) The units are cumently ignored since there is no
way to specifly what these units are for time stepping; (2) the varizbles to be oatput are named in
the Nodal variable names line in the Ouiput Specifications section; and (3) outputting
every x {seconds|units|mins} outputs when the tire value is the first time velue
greater than #*y, for any integer #. Similacly, the next time step ontput will be the first to have a
time value greater thas (n+1)*x. Default = output every time step.
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(Mumbear of nodail output variables = integer]

The number of nodal vartables to output is specified here., Default = the total mumnber of
variables.

[Hodal variable names:]
stringd
string2

stringV

The names of the nodal variables to output are given here, The number of nodal variable
names N is given in the Number of nodal cutput variables line. Valid variable names
are

Taemperature
Valocity
Fressure
Mass_Fracticon
Displacement

where any combination of the above is valid. The keyword List is supported for the variable
aane Mass_Fraction. I the name is followed, on the samne line, by the word List, a list of

species names is expacted to follow vatil the keyword endliet is found. For example:

Mass_Fraction List
SIF4, H2, H
N2, N
STHF3

endlist

The case of the keywords is not sigpificant. Default: all nodal vanables are written in the defanlt
arder.

[Humber of glekal output variables = integer]

This line is used to specify the number of gicbal variables that are to be output to the
ExodusIl results file. Global variables are single-valued variables that oaly have the single
dimension of time. They are used to store parameters, timing information, global solution
information, ete. Defanlt = Q.




[Glockal variable names:)
string i
string2

stringN

The narnes of the global variables to be output to the ExodusI] results file is given here.
The number of global variables N to output is specified in the line Number of global
output variablas, Examples of variable names are

Time_index
Delta_time

Hatxix Fill Time
Matrix_Solve Time

This ling is required only if the number of global variables to ountput is greater than zero. The
variable names are case-insensitive. In the future, we kope to allow the user to define additonal
global variables on this line. The pre-processor “guacamoie™ will install space for them in the
output file, and the rovtine user_ocut will be used to ouiput values for these variables during an
MPSalsa run. Default = none.

[Test Exact Solution Plag = {0 | 1} [SUMMARY]]

This line specifies whether or not the computed solution should be tested against a known
analytic solution; 0 = off, 1 = on. This comparison includes L2 -norm and mAX-nOrm SrTor
computations. Additional information on the location of the maximum error and an estirnate of
the largest characteristic length of an element in the FE mesh is provided. The optional keyword
SUMMARY will lead to a separate errer analysis for cach variable in addition to the entire
solution vector, Defanlf = 0.

[Hame of Exact Solutlon Function = string)

This line gives the name of the function that will be called to evaluate the accuracy of the
computed solution. The generic {unction user_bc_exact may be used by programming the
desired exact solution function in the file “of_vser_bc_exact_fo.c.” Default = none.

3.10. Parallel I/O Specifications

The Paralle]l /O Section is used to specify characteristics about paralle] disk subsystems
coniected to specific machines. This section of the input file is optional; if it is absent, o paraliel
T/Q will be performed. Ap example is given in Figure 3.11. This section of the put file also




contains subsections for different paraltzl architectures. These subsections can remain in the file
with the user specifying which architecture to use at ren time. In this manner the file can be set up
for a number of architectures {currently nCUBE and Intel Paragon) without rewriting the section
each time a run is performed on a different architacture.

Parallel I/ aection
Machins = DATAGONL
Btaged writes = YaE

Nunbar of cantralletss= §

Disks per controllers 1

Root locakdon = fraf
Subdirectory = jng/fixenet
Cffaat numhering from raras 0

b

paTagon subsectlion

Hunher &f RAID controllerss 48

Reot looation e fraid/io_
Subdirectory = tmp/ins/fireset
Gffsmt nurbsring from zerc= 1

Figure 311, Example Parailel VO section,

[Machine = siring]
This line is used to specify the computer architecture. Currently supported architectures
gre paragen, and ncube, Default = paragon.

[Staged writes = {yes | no}l]

This lines specifies whether or not writes o paraliel disks should be staged. With staging,
only one processor writes to each disk at a time. Staging avoids problems with temporary file
name conflicts and limits or e number of concurrent open files on a single disk. It is
recommended that staging be set to veg. Default = yes.

{Number of controllers = infeger]

This line is specific to the nCUBE subsection and indicatss bow many controllers should
be used in performing the IJO. It must be less than or equal {0 the numbet of disk conirollers that
are actually attached to nCUBE. Default = none; arror when not specified for paratlel /0 on the
nCUBE.




[Disks per controller = inieger]

This line is specific to the nCUBE subsection and indicates how many of the disks
attached to each of the controllers should be used to perform the 0. It should be less than or
equal to the number of actual disks atiached to each coatroller. Default = none; etror when not
specified for parallel IO on the nCUBE.

[Number of RAID controllers = infeger)

This line is specific to the Intel Paragon and indicates how many RAID controllers showld
be used to perform the I70. It must be less than or equal to the actual number of contyollers on the
machine, The number of RAID disks is equal to the samber of RAID controllets on an Intel
Paragon system. Defavlt = none; emmor when mot specified for parailet O on the Paragon,

[Root location = string]

The root location is the root directory where writes to the parallel disk subsystem are to be
performed. Generally, parallel disk subsystems are in directories that begin with a string.
Embedded in the last part of the steing is an integer identifying a particular disk. On an nCUBE
system, for example, //df00 would be vsed to write to the first controller and first disk atiached to
that controller. Similarly, for an Inte] Paragon, the user could access the first disk by writing to
fpfsfio_01 and the second disk by writing to /pfsfio_02. The value to be specified on the Root
Location line of the input 4ile is the full pathname of the disk device excluding the identifying
integer ID. Figure 3.1} shows examples of the value of Root Locat ion for each of these cases.
Default = none; error when not specified for paralle] 170,

[Subdirectory = string]

The subdirectory hne specifies the subdirectory on the paralle] file system in which
MPSalsa shovld Iook for paralle]l output and input files, It should not begin with a 7 character.
Default = nons; error when not specified for parallel 140,

{Offset numbering from zerc = imeger)

The offset numbering specifies on wiich parallel disk 1/C should begin. For example, if
MPSalsa is to be yun on an Intel Paragon nsing 16 RAIDs beginning with /raidfio_08 then the
value of the offset should be sat ro 8. Default = 1.
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3.11. Funetion Data Specifications

Users may pass problem-specific data to functions using the Function Data Specification
section of the input file. The Function Data section is 0plionai; users need not include 1t in the
input file if they do not need problem-specific data. An example of the Function Data section is
included in Figure 3.12. The functions are nsed for boundary comditions, material properties,
specialized solution ontput, volumetric source terms, and testing of the code against exact
solutions. Four types of data may be passed to functions: integers, reals, strings, and tables.

Number of funstions Co pass Jdata to = 2

Function = upar_bg_exact 4

FR_DATA = -100. -200. -300. =400,

FH_DRTA = FLOART -500. -600,

FN_DATA = STRIMG VELOCITY APFLICATIONS CZAR
FN_DATA = INT -1 -2 =3 =4 =5

Function = lockup_tablas_1 2
FN_DATA = STRING TEMPERATURE
PH_DATA = TRBLE 6 2

2 iz
20 &8
40 104
a0 140
a0 176
10¢ 21z

Figure 3.12. An example of the Functdon Data Spectfication section of the inpul file.

The nurober of functions that use function data is specified first, with default = 0. For each
function, the function name and the number of FN_DATA lines io be passed o it are listed.

[Number of functions to pass data to = menber of functions)
Function = funcfion_name man_data lines

Each FN_DATA line consists of the type of data (INT, FLOAT, STRING, or TAELE). The default

is FLOAT. For INT, FLOAT, and STRING data, the data then follows the type keyword, A FLOAT
15 stored as a double-precision mumber. Each STRING may be up to 32 characters long.

FN_DATA = (FLOAT | INT | STRING] listofdata

TABLES allow the user o supply tabular datz to a fonction. The dimensions of the table follow
the TABLE keyword:




FN_DATA = TABLE #rows_in_table #columns_in_table
The TABLE data are included on the lines following the FIN_DATA = TABLE line. Oaly one table
may be specified in each entry for a function.

Several functions that require fonction data aze included in MPSaisa. Examples are
time_history_line, which writes to a file the solution along a line in the domain,
tima_history_points, which writes to a file the solution at a set of points in the domain,
and look-up table functions lookup_table_1 and lookup _table_2, which interpolate
data using a TABLE from the funciion datz section of the input fite. These and other functions that
require user-defined frmction data are described in Section 4 and Appendix A.




4. Tser Funciions

Many features in MPSalsa can be adapted for specific applications through user functions.
These functions provide the greatest flexibility for users to contro! their own simulations. User
functions are already mncluded in MPSalsa for quantities such as variable matenal properties,
boundary conditions, and solution measures; users muast change only the computations in these
routines to calculate the properties for their problems. For some quantities, such as boundary
conditions and source terms, users ¢an also write their own functions and compile them into
MPS8alsa. This process, however, requires mare effort and code modification than using the
included user functions. This chapter describes the various user functions available and their
usage in MPSalsa and the input file. For applicable properties, instructions for including new
functions in MPSalsa are also given. For all functions, the units are arbitrary except for CHEMKIN
materials for which ¢ps units are the default.

MPSalsa is written n the “C” programming language. The following discussion of
modifications to MPSalza’s user functions assumes the user has some knowledge of “C.”

4.1. Material Properties

4.1.1. Heat Capacity

The function user_Cp ia “rf_user_Cp.c” computes a user-defined specific heat flp of a
non-CHEMKIN material. It is called when the following line is included in the Materials
Properties section of the input file:

CP = VARIRELE FPROF
The value of the specific hest is refrned by user Cp in the argument *cp. Other arguments
passed to user_Cp are listed in Table 4.1,

Argument Description
double eemperature Temperawmrs at positicn (x, v, 7).

double X_X]] Vector of mole fractons &1 position (x, ¥, 2) indexed by the species
uiler.

double Fiherm - Thermodynamiic: pressure.
double x, y, z Coordinatss of the current position.
MATSTRUCT FTR matlD_ptor Podater to the material property structure for the material.

Table 4.1. Arguments passced to user-defined property functions usar_Cp, user_cond, user_dansity and
ugsar_vise.




4.1.2. Thermal Condluctivity

The function user_cond in “if_user_cond.c” computes a user-defined value of thermal
conductivity A for a non-CHEMKIN material. It is called when the following line is included in
the Materials Properties section of the input file:

THERMAL_CONDUCT = VARIABLE_FROF
The walve of the thermal conductivity is retmned by user_cond in the argument
*conductivity. Other arguments passed i0 user_cond are Hsted in Table 4.1.

£.1.3. Density

The function user_density in “ff_user_dsnsity.c” computes a wser-defined value of
demsity p for a non-CHEMKIN material. It is called when the following line is included in the
Materials Properties section of the impot file:

DENSITY = VARIARRLE_FROF
The value of the density is retarned by user_density in the argument *density. Other
arguments passed to user_density are listed in Table 4.1.

4.1.4. Viscosity

The function user_wigc in “rf_nser vise.c” computss a user-defined value of the
vigcosity W for a non-CHEMKTN material. It is called when the following line is included in the
Materials Properties section of the input file:

VISCOEITY = VARIABLE PROP
The value of the viscosity is retumed by user_wvisc in the argument *viscozity. Other
arguments passed to user_~wisc are listed in Table 4.1.

4.1.5. Volumetric Source Terms

Variable volumetric souree terms for temperatures and mass fractions are specified in the
mput file as

Q_VOLUME_VAR = function_name
and

Y_VOLUME_VAR = function_name {SINGLE | MULTIFLE}.
The related user functions included in MPSalsa are user source for temperatures and
STNGLE mass fraction source terms and user_source_mulri for MULTIEFLE mass fraction
SOUTCE teTIns.
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The user_source function retomns the value of the source term for one eguation. Its
prototype is '
double user socurce (SNELVAR _FUNCTION_ARGLIST)
where SHGLVAR_FUNCTION_ARGLIST. as defined in “ri_salsah,” is described in Table 4.2.
For SINGLE source term functions, the boundary condition pointer b is NULL.

Argimnent Description

double sofu[] Solution vector &t position (x, ¥, 7).
doubde 1, v, Z Coordinates of pasition (1, y, 2).
double 1 Time.

MATSTRUCT_PTR matlD_ptr | Pointsy to the material property structure for the matstial bemg processed
{defined in “rf_matr]_consth”).

int var_num Equation for which to compnte & valee (e.2., TEMPERATURE,
YELOCITY 1, MASS FRACTION) as defined in “rf_fem_constk.”

int sub_var_pum Speciex for which to compuis a value (applicable only when var_sum =
MASS_FRACTION).

int eqn_offset(] {Offset into soln[] for each variable; e.g., the temperature &t (x,v.2) is
soln[eqn_offeel[TEMPERATURE]]L

int num_dim | Humber of dimensions in the element

BCSTRUCT_PTR be Pointer to the boundary condition stracturs (defined io “rf_bc_const.h™)
for the current boundary condition being processed. This pointer is NULL
if the SNGLVAR_FUNCTTON fupction is cabled for a calculation not
Involving a boundary condition.

Table 4.2, Arguments included in SNGLVAR_FUNCTION_ARGLIST

An example of user_source is included in Figore 4.1. This function is stored in
“rf_user_source_fn.c.” To add new user-defined source functions, users should write the functions
in either “tf_source_fn.c™ or *vf_vser_source_fn.c,” imclude prototypes for the new functions in
“rf_source_fn_consth,” and add pointer assignments for the new functions to the routine
align_single_g ptr in “rf_scurce_fn.c” Users can look at prototypes and pointer
assignments for user_source as examples for their own functions.

To reduce the number of function calls needed to compute source terms for mass fraction
equations, user _source_multi may be used While user gource retumns only a single
source term value, user source_multi returns a vector of source terms for mass fraction
equations. The prototype for user_source multi is

vold user_source multi (MILTIVAR _FIRICTION _ARGLIST)

where MULTIVAR _FUNCTION_ARGLIST is described jn Table 4.3,




double user_sourcs | SHGLVAR FUNCTION _ARZLIST)
{
f* Beturns cha source tamms for the coupled lipear Aiffusion equations:

-
Vr-2=0
Vgt ¥-¥, = ¢
T, ¥ = 0
Vry—Fp-z =0
where #=2 in 1D, a=4 jin 2D, aad g=4 in iD.
VSAGE: In Hatearial Propartiss gecticn...

Q_VOLIME VAR = yser_scurce
Y_VOLIRE_WhE = vaer_socoreos SINGLE

ot 3 % 2 3 3 F & o F R oA

double catusy waluk;
double spacial coaff = 2 * nom_dim:

if {var_rum ss TEMBPERATITHE}
raturn_valus = -gpatial coafi;
alss if [(var pum == MASZ PRACTION && sub_wvar oum <= 2}
svitch (sub_var_noum) [
caze 0:
retura_valus = sololegn offset (MASE_FRACTION + 1]]
= solnleqr_offzet [MASS FRASPTON + 21]:

broak:
care 1:
raturn_Valum a -aolnfegn_offset [HRSS_FRACTION] * s3p(-%):
break:
Ccanes Z;
Teturn_ valuk = -apatial ocaff -zoln[egn offzet [MASS _FRACTION] )
break:
}
alza {
{vold) fprintf(stderr, "EPROR in uza of urer IcUroa.'\n");
drt(-l};

}
Taturn (return valuse)

Figure 4.1, Example of function user_souzce compating volumetric source tenms for lemperature and
mass fraction equations.

An example of user_source_multi is incleded in Figure 4.2. This fonction
computes the same mass fraction source terrns in one function call that funetion usexr_source
in Figure 4.1 would computs in three separate calls.

The fanction uger_source_multi is stored in “rf_pser_source fn.c.” Users may add
theit own MULTIPLE source functions to either *“if sowrce_fn.c” or “rf_user_sowrce_fin.c.”
Prototypes for the new finctions should be included i “rf_source_fn_consth,” and pointer
assighments must be added to the routine align _multi_q prr in “rf_source_fn.c.” Users
can look at prototypes and pointer assignments for user_source_multi as examples for their
own functions.
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vold uger_gource_milti (MULTIVAR _FUNCTION ARGLIST}
{
A* Returnes [(in sre ves[]) the avures berpmg for the oeupled linesy

: Aiffumion squaticme:
V¥sY,-¥, =0
o Ay
VY, -t-a=0
wheys g=2 in 1D, a4 1in 2D, and d = 6 ia 3D

UEAGE: In Material Properties section...
Y_VOLIME_VhE = uaar_sgoarcs_mialti MULTIPLE

PR I T I R

F
deuble spatial _coefd = F + puop dim;
int womY offset = sqo_ofisat [MASS _FRAOTTON] :

salnfegn¥ _offasc+l] - solofegnV cffaet+Z]
—selnfemy offast] * expi-x);
=-spatial_coeff - solnlegqny_offset]);

src_vec[d]
sro_vac[l]
sre_vens[2]

}
Figure 4.2. Example of function usex_source_ultl computing volumetric source terms far mass

Jraction equalions.
= — #

double sro_vecl] § Returned vector of source term values at (x, ¥, £}, with one vahe for each
mass fraction equation.

double soln{] Solution vector at position (x, ¥, 2).

donblex, v, 2 Coordinates of position (x,  2).

deuble € Time.

MATSTRUCT_FTE matfD_pr | Pointer to the material property siructure (defined in “ri_mat]l_const b™)
for the material being processed

int eqn_offsei]) Odffset into acln(] for each variable; &.g., the temperature at {x,w7) &
soln[eqn_offset TEMPERATURE]].

int num_dim Mumber of dimensioms in the #lement,

Tuble 4.3, Arpuments included in MULTIVAR_FGNCTION ARGLIST

Analytic Jacobian entries for variable volumetric temperature and mass fraction source
terms are specified in the Materials Specifications section of the input file as
JACOBIAN_SRC_TERMS_VAR = finciion name
where function_rame is a function computing a matrix of derivatives of the sotwee terms with
respect to temperature and mass fractions. The user function user_jea<_src is provided for

this purpose. The prototype for usex_jac_srcis
void user_jac_src {JAC_SRC_FUNCTION_ARGLIST)




where JAC_SRC_FUNCTION_ARGLIST is described in Table 4.4. The derivatives of the source
terms are returned in the matrix jac_vec, where jac_wvec[{][j] is the derivative of the source
term for the j™ equation with respect 1o the " variable.

Argument Desceiption
=

donble *jac_wec(] Retvned matrix of analytic Jacobian terms of source (erm valees with
taspect (0 temperatare and mass fractions: jac_ wec[illf] is te derivative
of the source term for the j& equation with respect 1o the I variable.

doubls solnf] Solution vector at position (x, ¥, 2).

double x, v, 2 Coondinates of position (x, ¥, 2).

double ¢ Time.

MATSTRUCT_PTR matD_ptr | Pointer to the material property structare {defined in “rf_matr. const h'™)
for the material being processed.

int eqo_offse]] Offset into solnf] for each variable; &g, the =mperanire at oy is
solnfeqn_offsei TEMFERATURE]].

int gum_dim Mumber of dimemions in the element.

Table 4.4. Arvpuments included in JAC_SRC_FUNCTTON_ARGLIST

Figure 4.3 includes an example of user_jac_src that computes the Jacobian eniries
for the source terms in fumction user_source in Figure 4.1. This function is stored in
“rf_user_jac_src_fn.c.” To add pew wser-defined amalyiic Jacobian functions for source terms,
users should write the functions in either “rf_jac_src_fn.c” or “rf_user_jac_src_fn.c,” include
prototypes for the new functions in “rf_sowrce_fn_consth,” and add peinter assignments for the
pew fonciions to the routine align_jac_sro_ptr in “rf_jac_src_fn.c.” Users can look at
prototypes and pointer assignments for user_Jjac_src as examples for their own functions.

The following rum-time error messages alert users to incorrect implementation of user
source tern and Jacobian entry fonctions.

> ERROR: Unknown name for volumetric source function: finction_name
> ERRORA: Unknown name for analytic Jacobian of source vactor function:

funcrion_name
The first message indicates an error with a function specified by Q _VOLUME_VAR oOr
¥_VOLUME_VAR in the input file; the second indicates an error with 2 function specified by
JACOBIAN SRC_TERMS_VAR. In both cases, a function name is either misspeiled in the input
file or not added comrectly to the pointer assignment routines.
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waid nseax_Jac_src (JAC_SRC_FUHCTION _ARGLIZT)

{

f* Feturps (dn jeac_ves[])] the snslytic Jacobian shatrier »f source bterma
t with resbest Lo (w.&.t.] Ceiparaturs atd pade fractiong
© for cha coupled lipear diffusion equaticens:

]
- L P
Ll
Fl
- v rn"" Yl_}rz = D
]

. Pr-Fe =0
-

* V'Y, -F -a =0
L ]

* whera ae=2 in 1B, a=4 in 2D, emd a=46 in 3D
n
* UShGE: In Material Proparcies section...

* JACOBIAN_SRC_TERMS VAR = user_jac_syo

L)
int iodxT = egn_cf{zet [TEHPERATURE], indxY = egn oFfset [HASS FRACTION] ;

F* Davivative of TEMSERRTUKE source term w.r.t. TEMPERATIRE, *+/
Jac_sec[1odx?] (inaxT] += 0.07

f** Derivarives of MRSE FRACTION arc termg w.».t. TEMPERATITRE ¥+ [
Jac_vec|[indxT] [ indx¥] += .07

Jac ves [ indx®] [indw¥+l} += O.0;

Jac_wee[inheT] [inde¥eZ] = 1.0;

Jev Dearivacive of TENPERATURE souras term w.x.t. Y 0. *%f
jac_vec|indeY] [imdnT] = 1.0;

f** Darivetives of MASE_FRACTION acurce berme w.r.t. Y_0. *v/
Jne_veC | indxT] [indxy] += 007

Jac v [ indxY ] (indx¥+l) += -wxp{-x)r

ane_wie [indet] [1ndx¥+X]) += -1.0r

S Darivative of TEMPERATURE soyurca tazm w.r.t. ¥ 1. **/f
jac_wae [indxy+1] [indet) «= 1.0

Fo* Derivatives of MASS_FRACTION acurce CECDS w.r.T. Y. 1. **f
Jac_veo [indx¥+1] [indx¥] e 1.0
Jac_ vec [indxy+1] [ind«¥+1] += 0. 0;
Joc _wec [Lodxy+l] (Indey+2] += -1_4;

fr* Derivative of TEMPERATORE =ouros LaAXM W.r.t. Y 2, *2fF
Jae_wen [indey+2] [indeD] »m ~1.0;

f** Darivatives of MASS_FRACTION SOUICE TEIME W.T.t. Y_3J. *9f
Jac_was [inde¥+2 ] | Lodwr) += -1.68)
Jae ves [indxe¥+2] [indw¥+3] += 0.0
Jac_vec [indxy+2} [indx¥+2] += 0.4

Figure 4.3. Example of fanction usexr_jac_src compating aralytlc Jovolian entries of source terms with
respect fo tempergiure qnd mass fractions for the source function e Figure 4.1,




4.2, Bountary Conditions

User functions may be used for several parts of the Boundary Condition Specifications
described in Section 3.7.2. The wser function designed to ¢compute boundary condition values is
user_bc_exact. The prototype for user_bc_exact is

double user_bc_exact (SNGLVAER_FUNCTION_ARGLISTI
where SNGLVAR_FINCTION _ARGLIST is described in Table 4.2, All arguments of
ENGLVAR_FUNCTION_ARGLIST are used for boundary condition functions.

An example demonstrating the usage of user_bc_exact is given in Figure 4.4, This
function is stored in “rf_user_bc_exact_fn.c.” To add eew user-defined boundary condition
functions, users should write ¢he functions ie  either “rf bc_exact fnc” or
“rf_nser_bc_exact_fo.c,” inclade prototypes for the new functions in “if_be_exact_fn_consth,”
and add pointer assignments for the new functions to the routine align £ ptr in
“rf_bc_exact_fnc.” Users can look at prototypes and pointer assignments for user_bhc_exact
as examples for their own functions.

Jacobian entries associated with boundary coaditions can be specified by the nser function
usger_jac_bc, Ths prototype for user_jac_bcis
double user. jac_lx {(JAC_EC FUNCTION_ARGLIST)
where JAC_BC_FUNCTION_ARGLIST is described in Table 4.5.

Figure 4.5 contains an example of user_jac_bc for the boundary conditions specified
by uzer_bc_exact in Figure 4.4. This function is stored in “rf_vser_jac be_fn.c.” To add new
nser-defined fimctions for the derivatives of boundary condition functions, usars should write the
fonctions in either “rf_jac_bc_fo.c™ or “rf_unser_jac_bc_inc,” includs prototypes for the new
fanctions in “rf_bec_exact_fu_consth,” and add pointer assignments for the new functions to the
routine align_jbe_ptr in “rf_jac_bc_fic™ The prototypes and pointer assignments for
user_jac_be serve as examples for new user functions for boundary condition derivatives.

The following run-time error messages alert users to incomect implementation of user-
defined boundary condition functions.

> ERROR: Unknown SNGLVAR_FUNCTION: function_name
= ERROR: Unknown JAC_BC_FUNCTION: fimction_name

The first message indicates an error in a boundary condition function name; the second indicates
#n error in the fopcion name for Jacobian entries of a boundary condition. In both cases, a
function name was cither misspelled in the input file or not added correctly to the appropriate
pointer alignment routine.
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doukle usexr ba_sxact (ENGLVEF_FUNCTICOH _ARGLIST]

i

/= metorng the following Dirichlet houndary cendicions for coupled
* linesyr Jiffysion swquaticms:

T zz-l- _'.'21-22

L]

L

* If',,:ae' whers a=2 in 1D, #a=4 in 2ZD. and a=§¢ in 3D
x

. ¥ =T

E ]

= r: - ru'f' i'i

[ 3

 TEARE: In Boursiary Conditicns asctien. ..

- BC =« T_PC DIRICHLET S5 1 INDBPEMDENT wmer _Lc_sxacst
L B = ¥_M DIRICHLET 55 1 INDEUENDENT wmer_ ko _sxack
L SPECIES LIST = 1

r BC = ¥_BQC DTRICHLET 55 1 DEPRNDENT uxer Do _oxact [

* SPECTES_LIST = 2 2

*f

double retuzrn, value, spatial _coafl;

if (var _rum sa TEMPERATIRE! {
oeturn_value = x*Xy
if (num Aim = 1) ceturs valus += ¥y
if {oum A = 2) raturp_valpe = IE;
H
ales 1f [wvar_num == MAES _FRASTION && mub_uar_nun <= 23 |
switch {sub <rar nuamt {
oagag 0;
spatial_coeff = X, o+ mom_dim;
racurT valiue = aparial _cowff * expixd;
break;
come -
recwr value = soln[en_offset [TENFERATURE]]:
braak;
oaga 2
return_velue = solo[ego _offsst [HASS _FRACTICHL]
+ zoln[egqn _offpet (MASS FRACTION + 1]1;

braak;
1
1
wlee {
{waid) fprintf(atdecsr, "DRRCR in wie of wear _bo_sxact.yo");
axiti-1);
3

TetuIn (return_valug) ;

Figure 44, Example of imction uaexr_beo_exact ured as a boundary condivion function.
42.1. Accessing BC_DATA in User Fonetions

Each boundary condition in the input file bas a Boundary Condition structure
{defined in “rf_bc_const.h™ associated with it. This structure contains the constant vaiuves,
pointers to boundary condition functions (such as user_bec_exact and those in Appendix
A.1), and BC_DATA associated with the boundary comdition. Each type of BC_DATA is stored in
a one-dimensiomal axray of that type. Integer data, specified by BC_DATA=INT, are stored in the




doubls user_dac_bo (JAS_BC_PFURCTION_MARGLIST)

{
/* Raturne the derivativer of tha following Dirichlat bBouneSary

conditriong for coupled linear dlffuslon aguacicns:

E

T-xi+:|r:+z:

Yy=ar where a=2 inib, a=4 in ID, and a=6 in 3D
f,=T

F, = Fy+ ¥,

UEAER: Im Boundary Cenditiona pection..,
BEC = T BC DIRICHLET 55 1 TMIREFENDENT usar _bo_axact O
BC = Y_EC DIRICHLET 35 1 INDEFENDENT vaer_bco axgcc O
SFECIRI LIST = 1
BC = ¥_BC DIRICHLET $3 1 DEFENDERT uaer jacs bo user e _exact O
AFECTES_LIST = 2 3

& ® K 4 & & o+ o 4 o+ =5 4 =+ i &

L
dauble returs valne = 0.0;

/* TENEERATURE B Jdoes not cepend on obher variables.
Y_ 0 BC dosa not Japend on other variablas,
* ¥ 1 BC does not dwpamd on otleer mass fractions.
* ¥ 2 BT doer ot depend on bemparature,
oetucs value iz alresdy set to rerc for thess anctries.

if (var_num == MASE_FRACTION && sub_wvar_num <= 2) {
gwitch {zub_var_num) [
case l:
i1E {wrt_var hgum == TEMPERATTRE)
f* Derlwative of Y1 BC w.r.t. TENPERATURE ig 1.0. */f
saturn_value = 1.0;
hraak;
caze 2:
Lf {wrt_wver _mm == HASS _PRACTICN
if (wrt_sub wvar_oamnm == 0 || wrt_sub ver num sx )]
/v Darivative of ¥ 2 BC w.r.t. Y_0 ox Y_1 g 1.0. */
return_seloe = 1.0;
break;
}
}
slaw 1f (var_num != TENPERATURE) {
{vodd) fprincf{stdery, "ERROR in uae of user jaz be.\n"}:
aiv{=1);
K

return (return_valuse);

}

Figure 4 5. Example of xser function usar_jac_bc that computes derivatives of the boundary condifions
inuser_bo_exact in Figure 4.4,

integer array BC_Data_Int in the Boundary Condltion struchwe; floating point data,
specified by BC_DATA=FLOAT, are stored in the double array BC_Data_Float; and function
pointer data, specified by BC_DATA=FUNCTION, are stored in the BC_Data_ User_Fn_PLr
atray. The data are stored in the order they appear in the input file, starting from amray index § in
each array.




Argument Description
donble solnf) Solution vector at pesition (x, w 2).

doudrle x, ¥, 2 Coodinates of position (x, » 2).
dounble t Titne.

MATSTRUCT_PTR madDD_pir | Pointer o the material property strocure (Jefined in “tf_matr]_consth™)
for the matrial being processed.

int var_num Deperdein variable of the partial derivacive (s.g., TEMPERATURE,
YELOCTTY 1, MASS_FRACTION) as defined in “0f_fern_consth.”

int suby_var_pum Species nusnber for the dependent variable of the partial derivative
{(applicable only when var_nun = MASS_FRACTION).

int wrt_var_nim Independant varisble of the partial dedvative to be taken {2.£..
TEMPERATURE, VELOCTTY |, MASE FRACTION) as defined in
“of_fem_coost.h”

int wri_sub_var_num Species number for the indepeodent variable of the partial derivahve
(applicable only when wrt_var_pum = MASS_FRACTION).

int egn_odfses]] Odfzet into soln[] for each variable; e.g., the temperamre at (x.».z) is
son[eqn_offs«t[ TEMPERATURE]].

int oum_dim Numnibar of dimensions in the elamant.

BCSTRUCT_PTR be Poimter to the boundary condition structure {(defined in “rf_be_consth'™)
sorresponding to the cument boundary condition being processed,

Toble 4.5. Arguments included in JAC. BC. FUNCTION ARGLIST

The argument | w'a) m SNGLVAR _FUNCTION_ARGLIST and
JAC_BC_FUNCTION_ARGLIST is a poiater to the Boundary Condition structure
assoctated with the boundary condition. BC_DATA can be accessed by following this pointer. For
example, the first BC_DATA=INT value entered in the input file woulid be accessed in boundary
condition functions by be->BC_Data_Int [0]. An cxample boundary condition function nsing
BC_DATR is included in Figure 4.6. In this example, the rotation rate and center of rotation of a
two-dimensional disk are given by BC_DATA=FLOAT values in the input file.

Functions listed in BC_DATA=FUNCTION lines must alse be boundary condition
functions as described in Section 4.2, They must have the same prototypes as user_bhe_exact
and be called with the SNGLVAR_FUNCTION_ARGLIST argument list in Table 4.2. As with all
user boundary condition functions, they must be included in the pointer assignment voutine
align_f ptr and compiled into MPSalsa. The syntax for calling, say, the second
BC_DATA=FUNCTION listed for a boundary condition is shown helow:

val = be->BC_Data_User Pn_Ptr[l] (soln, x, v, Z, t,
matID ptr, wvar hum, sub var nom, ecn offget,
num_dim, bec);




double £ 3y spin_dizk (SHGILYAR FINCTION _ARGLIST)

{
i
*

i

* W OB o+ B O o3 4

)

Function to raturn valum of the x,y valooity on a rocating disk.
Thiz funchbicti takes 3 AX{UMOCA:

BO Data_Fleoat{0] = rotation rake in rpm, counter clochkwisa
B _Daka _Float{l] = =0
BC Dota_Floatl2] = y_0O

Ueage: 2.g. Digk spimnding at S0rpm around x=0, y=0
U _BC DIRTICHLET N5 1 INGEPENDENT f_zy spin_disk L
BC_DATMN = 0.0 0.0 Q.0
V_BC CDIRICHLET M2 I INDEFEMDENT f_xy rpin disk 1
BC_DATA = 50.0 0.0 6.0

double caeegs s .0, 2 0= 0.0, w0 2 0.4; /¥ defanle values *f
doukie x offser, v_offset, result;

f* Uge BU_DATA valuas if any axa apacifisd in the input fille. *J

if (bo->BS_Data_Floak = NOLLY {
F* Corprersion from rmw to radiacs/sec dooa once in bo_input_pre _process *f
e orwgd = {bo->BC _Data Ploatfl] * 2.0 * pdlsed.g; ~/

oeks = bo->BE _Data Ploat[0];
x_0 = bo=>BC_Date _Float[l]:
¥0 = bo-=BC_Data _Float[z];

}

rooifaar = (x - x_0);
y oifgsr = [y - y_0);

if (war_mom == YELOCITYI) result = (-cmega * y_offaet);
elee if {vay_mm == VELOCITYZ] Tasult = [ omegs * s_offset):
alse if {var mum == TANGENT VELOCITY1}
F* Rdmumes tl = [0.8, O.&, 0.0] %/
rasule = 0.8 ¥ (-omega Y y_offaet] + 0.6 % | omege * x_offRet);
wlege if (var mum == TANGENE VELOUITYZ)
f* hagymea L2 a [=0.6; 0.8, 0.9] *f
rasule = =0.& * f(-mmega * y_offRet) + 0.8 = [ omega * x_offmet);:

ceturiy (resalt);

User-defined outward rormal and tangent vectors may be specified through the use of
generalized surfaces as described in Secton 3.7.1. The funchons user_normal,
user_ tangentl, and user_tangent2 are provided for this purpose. They retum the
approptiate sutface vector as a function of position on the surface. The prototypes for these
functions are

Figtire 4.0. Example demonsirating the use of BC_DATA in boundary conditionr functions.

4,3, Generalized Surfaces

void user_normal {(SURF_VECTOR FURNCTION_ARGLIST)
void user_tangentl (SURF_VECTOR_FUNCTION_ARGLIST)
volid user_tangent2 (SURF_VECTOR_FUNCTION_ARGLIST)

al




where SURF_VECTOR_FUNCTION_ARGLIST is defined in “if_be_consth™ and described in
Table 4.6,

doubla surf_vec[] Remamed vector containing the x-, y-, and z-components of a surface
Vectar.

double x, v, 2 Coordinates of position {x. » 2.
Table 4.6, Arguments included in SURF_VECTOR_FUNCTION_ARGLIST

Examples of the generalized serface functions are given in Figure 4.7, The functions are
stored in *“rf_user_tangent_fo.c.” To add new user-defined functions for describing generalized
surfaces, users should write the functions in either “if_tangent fn.¢” or “rf user_tangent_fn.c,”
include prototypes for the new functions in “rf_tangent_fn.c.” and add pointer assignments for the
new functions to the mutine align_surf_vector_ptr in “rf_tangent fn.c.” The prototypes
and pointer assignments for user noxmal serve as examples for newly written user fnctions
for ourward normal and tangent vectors.

The following run-time error message alerts users to incomect implementation of user-
defined normal and tangent functions:
= ERROR - unknown surface vector function: fimction_name
A fopction name was either misspelled in the input fle or not added comecdy to the
align_surf_vector_ptr routine.

4.4, Inftial Conditon/(uess

Initial guesses may be specified through the wser_init_cond function. The prototype

foruser_init_rondis
double user_init_ceond (SNGLVAR_FUONCTION_ARGLIST)

where SNGLVAR_PFUNCTICON_ARGLIST is described in Table 4.2, The argquments ma tID_ptr
and be in SNGLVAR _FUNCTION_ARGLIST are NULL when a function is used as an initial
condition function. The function user_init_cond is in file “'rff_user_init_cond_fin.c.” New
initial condition functions should be added to this file or to “rf_be_exact_fnc.” Prototypes for
new functions should be added to “if_be_exact_fn_consth,” and function pointers must be added
toalign_f£_ptrin “rf_bc_exact foc”




void user_normel | SURF_VECTIE_FUNCTION_ARGLISTI
{
!
outward normal vector (along cirole of radins one) of cylipnder aligued
ln z-dicwction.

USRZE: in Generalired Surfaces section ...
HOFHAL = ussr_niormel

T ¥ = 4 B W

LE
girf waslQ]l = x;
aprf_yac[l] = ¥
surf_vec[i]l = 0.0;
]

wvoid uper_tangentl (SURF_VECTOR_FURCTION_ARGLIST)
{
£
Tavgent vector (along cirela of rading onsl of eylindesr aligned
in r-direction.

D5ROB: in Qaperaliczed Suriacss soctiom ...
TANGENT = paer_Tangantl

d B ¢ ¥ = =

*f
purf vac[0] = -y
anrf_weo(l] = x;
aurf_wvacfl] = O.4;

)

vwoad naer_tangentl (STRF VBOTOR_FUNCTTON_ARGLIZIT)
{

Tangent vector (along height of cylindar} of eylinder aligned in z-direction.

CSAGE: in Ganeralized furfaces section ...
TANGENT = user _tangentl

aurf_wec[d] = 0.0;
gurf_srec[1l] = 0.0;
surf_vec[2] = 2.0;

Figure 4.7. Example of ferctions user_normal, uger_tangentl, anduser_tangentz for
Reneralized surfaces,

4.5, Exact Solutions

For problems having analytic solutions, MPSalsa can compare the computed solution with
the analytic solution. The user function user_be_exact in “rf_user_be_exact_fn.c” may bhe
used 1o specily the exact solution function. The prototype for user_be_exact is

double user bc _exact [(SHNELVAR_FUNCTION_ARGLIST)
where SNGLVAR FUNCTION_ARGLIST is described in Table 4.2, Since exact solutions depend
only on position and time, the arguments matID_ptr, be, and eqn_offset[] in
SNGLVAR_FUNCTION_ARGLIST are NULL when they are arguments to an exact solution
fimction. An example of user_bc_exact used as an exact solution function is given in Figure
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4.8. The procedures for adding new exact solution functions o MPSalsa are the same as those
described in Section 4.2 for adding new bouadary condition functions.

Aol user _be_suact (SHNELVAR _FUMCTTON_ARGLIST
i

/M Returns the exact solution wW@lues for the couplsd linear diffusion squationg:
L

T:r.t!-i-}"z-tzz

¥y=aé wvhere a=2 in 10, a=4 §n 20, and a=6 in 3D

¥ = .t=+ :|.'1+.z2

1.2 1
Foma +x +¥ 42

USARGE: in dutpukt Epacification esction. ..
Tast Exact Soluticn Flag = 1
Hamvw of Bmact Jolution Puncticon = usar_be_axact

4 % % 3 F B & B 2 F R F

dopkle return_valus, spatiel_coeff, sum;

epatial comff = 2 v num Afm;
nmo= XX

if (mom dinm = 1) sam += y*yg
if (yoon_dim » 2) Sum +m x¥x;

i ({war_jaum = TEMPERATURE) |
caturn valua = Fum;
1
else if [(var_nom == MASS FRACPTION && sub var_num <e 2 {
switeh {zub var nomb {
cage O:
reryurnvalue 3 apatial_coeff ¥ ssxpix}:
kraak;
cage 1z
raturn_walus = sum;
bEreak;
cage 27
raturn. valus = spatial_coeff * wxp(x] + zum:
break:
1
}
aloe {
{void} fpzinct(scdezr, “ERROR in uke of urer boc axact.yn"}:
exit [=1);
1
return {return_value]

Figure 4.8, Example of funclion uoer_bo_sexact used ar an exact solufion finction.

4.6. Output

Functions can be written to compuie specific output from the solution. At the initial
conditions, after every time step, and after calculating a steady-state solution, the functicn
uger_gut in the file “df_user_outc™ is called. The defanlt function user out computes the
maximum, minimum, and average value of ecach variable as well as the position of the maximuam




and minimbm. (Little investment has been made in providing output options for MP5alsa since
commercial visualization packages that read in the FE mesh and solutions from the ExodusIl
dasabase have satisfied most of our post-processing needs.)

‘Writing addifional ourput routines should be done using the user_out function, either
by replacing it with an alterpate function or by calling another fimction from within it. The second
option was chosen for implementing routines such as time history points {See Section
A3

The status integer flag passed to user_out contains information on whether the
solution is an initial goess, an intermediate time step, 2 failed time step, or a fieal solution. The
values of the flag are shown in Figure 4.9,

*  Valuss for status varisbhls:

L 4 S

= =0 = Some sort of arror condition hawr oecurred.

* 0 = Indiclel conddtions

. l = Pipal comdivioms, i.8., & successful rup hay completed
* Z2 = A gooosssful intermwdiate time stap bas oocurred.

Figure 4.9. Values of the status flag ar parsed 1o user_out.

To write new output functions, it is best to modify the default user_out or one of the
output functions listed in Appendix A. Many quantities that might be useful in output routines —
such as the values of physical properties at the nodes and wseful bookkeeping arrays -- are
unfortunately not readily available to the output routines. These quantities are stored in memaory
ocly during the matrix-fill section of the caleulation; after the matrix-fill, their memory is freed to
provide as much memory as possible for the matrix.solve.

4.7. Continustion

The function uzer_continuation in the file “rf_user_continnation.c™ is where the
continuation parameter is defined. The continoation parametar can be equated to any boundary
condition, physical property, or a combination of these quantities. The function takes as input the
pointer to the continaation parameier, and updates the appropriate physical quantity or boundary
condition. For instance, if the user would like to continne with respect to the viscosity of the first
material, stored globally as MatID Frop->»viscosity, user_continuation wopid
simply contain the appropriale assignment statement as shown in Figure 4.10.

Similarly, if the vser would like to continue with respect to the value of the sixth boundary
condition listed in the file, siored globally as BC_Types(S].BC_Fn_Value,
user_continuation would contain just the following assignment statement:




funckion vaid yasr _contirmaticm{doubhle *oon_parl:
/* con par is & pointer to the continomtion peramecer *¢
F* *zon par is the value of the contimuation paraneter =/
{

MacID _Prop-»vigcosity = *con_par;
}

Figure 4.10. Example of the function uzer_continuation foractigning the continuation parameler

to o physical quantity (in ihis case the fluid viscosity).

BC_Types[5] .BC_Fn_Value = *con_par;

{Since “C" numbering begins with zero, the sixth boundary condition in the input file is stored in
array entry five.)

Another cominon continuation parameter with boundary conditions is an entry in the
BC_DATA statement. To continue with respect to the third constant ("C™ amay entry 2} of the
BC_DATA FLOAT array of the twenty-third boundary condition (“C” array entry 22), the
assignment would be

BC_Types[22] .BC_Data_Float|[2] = *con_par;

All parts of the boundary condition structure, not only the BC_Fn Value and
BC_Date_Float [] examples shown bere, can be referenced for nse in continuation, The entire
structure is listed in the file “of_bc_consth* Similarly, the entire materials structure of physical
properties ¢an be referenced in the seme way the viscosity was above. The structure is defined in
the file “rf_mats]l_const.h.”

The continuation parameter can represent other quantities by more complicated
assignment statements. For instance, to continue with respect to the Reynolds number, where the
inlet velocity is entered as the fourth BC and the chammcteristic length is 2.0, the assignment
statement would be

BC_Tvrpes[3] .BC_Pn_Valus = *con_par * MatID Prop-»=viscosity
/(2.0 * MatID Prop-»density):

In this example, the inlet velocity is manipulated at constant viscosity and density so that the
continuation parameter equals the Reynolds number, and other dimensionless numbers stay
constant.

4.8. Funetion Data

User data specified in the Function Datza section of the input file (see Sectiop 3.11) may be
accessed by any of the above user functions. The nser function must first Jocate its particolar
function data. In the simplest case, the location is found by calling the function
fn_data_location:




FNDATA_PTR fn data locaticon (char yol], int data_requiread)
where yol[] is a character string containing the functior name associated with the data in the input
file, and data _required indicates whether the function data is mandatory of optional. If
data_reguired is TRUE and no function data was included in the input file, MPSaisa will quit
with an error condition. When data_required is FALSE, either default values for the data
shonld be supplied or the user function should return immediately without an rror.

The function £n_data_location feturns a pointer to 4 Function_pData stmchure
{defined in “tf_fn_data_consth”). Within the Function_Data stacture, Fn_Data _Int,
Fn_bata_Float, and Fn_Data_String are atrays of INT, STRING, and FLOAT function
data, respectively, from the input file. The numbers of entries in each amay are given by
Num_Fn_Data_Int, Num_Fn _Data_3String and Num_Fn_Data_Float. The arrays are
used in a manner analogous to the BC_DATA arrays for boundary conditions (see Section 4.2.1).
Data vatues are stored in the order they are read from the inpuat file, starting from index 0 in the
arrays. For example, the fifth string entered as function data would be addressed by
current_fn->Fn_Data_String[4]. An example of a boundary condition function that
uses optional fumction data is given in Figura 4.11.

deuble uger_be_gxact (SHGLYAR_FUNCTICN_ARGLIST)
{

Punction chat raturmg {.I—Io}:l-{y-}rﬂ)i whara X, and ), Wiy bho
specifisd by the uzar in the fobnetion daca section of che input file.

UPERGE: in Function Dats Specificatimm zection ...
Funcktion Ham = uzer_ bo axecc 1
FHN_DATA = FLOAT 3.8 2.0

FNDATA_ PTE currsnt_£o;

f* Bet the poinfer to the function data for thisa fumstion. *f
/* Thiz functien iz opticsoal; if no functicon data fs found, */
A*oxy aRd ¥, Bre Zaze. v/

current_fn = fn_dats_location!*user _bo_exmct, PALEE):

if (current_f£n = NULL}
if (current fo-rMNun Fo Daca Flcat = O)
x m {x = tqrrent_fn->Fn_Data_Float[0]):
if {ourrent_fo->Wam. Fn_Date_Float = 1)
¥ = (¥ - currents_fo->Fo_lata _Floacil]):
1
TAEWET (¥ ™t X+ Yy " Wit

Figure 411, Example usage af function data within a wser finctfon.,

A table supplied by the FN_DAT2=TAELE mechanism is stored in the Punction_Data
struchite as Fri_Data_Table, a two-dimenstonal array of double precision aumbers, Each row
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of the table in the input file is stoved as a row of the array; that is,i:he»,\‘”l entry on the * row of
the input table js stored in Fn_Data_Table[f][f]. The aumbers of rows and columns in the table
are stored in ¥n_Data_Table Dim{{] and Fn_Data_Takle_Dim[1], respectively. The
functicn lockup_table_1 in “f_fn_data.c™ provides a good example of the usage of function
dats tables (see Appendix A.2).

User functions that operate on several sets of function data are often useful. The function
time_history_line, for example, prints the solation along a line that is described by a
function data table. To print time histories along several lines, a function data entry 1s included m
the ioput file for each line. Such nser functions must loop over all the function dats and operate on
each instance of their fnction data. The function fn_data_next_location is provided to
sllow processing of two or more sets of function date by a single function. The prototype for
frn_data newxt_ locationis

FNOATA PTR fn_data next location(char vo(l,
int data_required, int start_ifd, Int *found_ ifd)

where yo[} is the function name specified in the input file, data_required indicates whether
the function data are required or optional, start_ifd is the first function data entry to be
checked for a match with yo[], and the index of the function data entry matching vo{l is returned
in found_ifd. The value of found ifd+] should be used as start_ifd in subsequent
searches for more function data for vo{]. A pointer to the function data indexed by found_if4

is returned by fn_data_ _next_location. An example demonstrating the usage of
frn_data_next_location inaloop over function data is given in Figure 4.12.




void functicn name{ I
1
lll"l-
= P2ASE: in FPuncticn Data Specifization section .
- Punation Mams = fupctiop_name 1
b FH_DATA = STRING dats et one
. Function Mama w function naow 1
. B _DATA = 2TRING data zat two
x
char yo[] = "functico_name";
FHCATA_DE purrank_fn = HILL;
int ifd = =1:
#xtexn ot Fun Fn Decs; /¢ Nutber of funckicon data eatyles in the inpat file */

while (ifd = thon_Fn_Data) [

A* Gat the pointer te the function dacm for this funceion */
current_fo = fp_data next location(yo, FALSE, ifd+l, &i2d4);

if {cuwrranc_fn == NOULL] {
printf(*Ne addicional Fonetion Tata Found fox %E\R*, Yyo!t
break:
}
alsw {
Ilfi
* procexs the deta pointed vo by corremt_fn.
afd

Figure 4.12. Example usage of fn_data_next_location io process more than one set of function data
within a function




5. Solution Strategies

5.1. Getting to a Steady State

Someiimes a steady-state solution to a non-linear problem is desired but MPSalsa will not
convergs to it for a given input file and a simpie initial gness. The following is a list of some input
file options and techniques that can help. Sorne of the options are discussed in more detail later in
this chapter.

{1) Increase the maximum number of Newton jleratjons. (See Section 3.3.1.)

{2y Choose a more robust preconditioner such as no_overliap bilu or
real_overlap_ilu. If the program runs out of memory, use a larger anmber of processars.
(See Section 3.3.2.)

{3) Increase the number of Krvlov subspace vectors for GMRES. If the program runs
ot of memory, use a larger number of processors. For problems of a few hundred thousand
unknovwns, a Krylov subspace size over 100 is desirable. (See Section 3.3.2.)

{4} Switch the Enable backtracking for residual reduction flag
from on to of £, or from o££ to on. We have seen examples where the problem converges only
with bacltracking on, and we have seen cases that converge only with backtracking o£f. (See
Section 3.3.1.)

If none of the easy solutions above wotks, the following options may.

(5)  Use pzeudo time-stepping as the Soluticn Type to relax the system. If the
initial time step is small and Time Step Control is on, pseudo time stepping increases the
time step for any step that converges, regandless of integration ervor. After 5-20 successful time
steps have been taken, one can often restart from the last time step and converge to the steady-
state. (See Section 3.2.)

{6)  Use the restart capability to step 10 the solution by first solving the problem at
simpker conditions, such as at a reduced deasity or thermodynamic pressure, an elevated viscosity,
or with yeactions turned off uging the Species equation source terms and Energy

equation source terms flags. Then, use this intermediate solution as an initial guess for
the desired solution. (See Section 3.8.)

{7y  Use contipmation to antomatically step throagh a series of steady states as a single
parameter is incremented until reaching the desired conditions. (See Saction 5.4.)




(8) Do mesh seauencme to first solve the problem on a coarse mesh, and work toward
a fine mesh. Convergence is oficn betier on ¢oarse meshes becavse the preconditioners span more

of the domain. {(See Section 5.3.)

{9  Write an initial suess function with an educated guess of what the solution will
look like as a function of x, ¥, and z. (Se¢ Section 3.8 and Section 4.4.)

5.2, Picking a Linear Solver and Preconditioner

The choices for the linear solver, the preconditioner, and the scaling method are listed in
Table 3.3, Table 3.5, and Table 3.6, respectively, and lead to bundreds of possible combinations.
In Table 5.1 below, we list the three combinations that we use most often. The most common
combination 13 #1, which does well for getting to a steady-state (i.e., for steady, paeudo, or
continuatiocn solution types as listed in Section 3.2). With the GMRES method, the Krylov
subspace dimension can be increased to be as big as will fit on the machine without ninaing out of
memory (or causing excess swapping on some machines), up to a vajue of a few hundred. The
totzl number of linear solver iterations should usually be two or thyee titnes the Krylov subspace
size, since GMRES tends to make Little progress after restarting three times.

If a steady state is desired but the job runs out of memory at low vaines of the Krylov
subspace, there are two options: {1) use a larger number of procassors, and (2} switch to a
different solver such as the tfgmr solver (combrnation #2).

For transient mns where speed is more important than robustness, the scheme #3 is

often vsed. This schetne uses only about half the memoty of scheme #1 and the cakenlation of the
scaling matrix is much quicker than an ILU-type preconditioner.

Scheme, in decreasing crder of Linear Preconditioner Scaling Krylov
robustaess and memory use Solver subspace
1. Robust; good for Steady-State gmres no_overlap_ilu row_sum large {>100)
2. Robust; uses less Memory tfgme no_overlap_iu [OW_SIm

3. Fast; Good for Transient gmres none block_Jacobi | moderate

Table 5.1, Three comanon Unear solution schemes.

5.3. Mesh Sequencing

Mesh sequencing is a strategy for more easily obtaining steady-state solutions on fine
meshes. In mesh sequencing, a solution is first computed on a coarse mesh, This solution is
interpolated to a finer mesh and used as the initial gness for the solution on the fine mesh.
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Sequences of successively finer meshes can be used until a solntion with the desired resolution is
obtained.

Using MerlinlI [15] to interpolate the solution from coarse meshes to fine ones, we have
run some experiments with mesh sequencing in MP3Salsa. In Table 5.2, we show results for the
Lid-Driven Cavity problem (see Appendix C.2) with an upper-wall velocity of u = 1500.
Steady-state solutions were obtained with an inittal guess of zero for all unkmowns and with initial
guesses interpolated from coarser meshes. The linear solver was GMRES with an ILU
preconditioner. The number of Newton iterations and the solution times on the Intel Paragon are

compared.

Mash Size | Number of Ini dal Grusss Number of Execution Merlinll's
Processors Newton Teme Execution Time
Tterarions {seconds) {seconds)
16xlé 1 0.0 13 Je2
32x32 4 0.0 10 73.1
Sol"n from [6x16 6 446.3 10
GAxtd 16 o 13 220.0
Eol'n from 16x16 8 1855 27
Sol'n from 32x32 G 1225 a2
128x128 64 0.0 39 1406.1
Sol'n from 16x16 20 253 9.1
Sol'n irom 32x32 23 820.3 17.6
Sol™n trom 64x04 17 610.8 534

Tuble 5.2, Performance of the pon-linsgr solver for the Lid-Diriven Covity sxample using initial gussses of zero and
ingtial guesses obizined from coarse-mesh solutions.

Merinil is included in the SEACAS distribution of utilities for Exodusll. If the SEACAS
utilities are imstalled in directory $ACCESS, the path $ACCESS/etc must be included in the
user’s path. The command iine for Merlindl to interpolate the solution from a coarse mesh to a fine
mesh is shown below:

> menin -input merlin.inp -output merin.out -plot coarsa_soln.excll -mesh
fine_mesh.exoli -interpolate merlin.exoll

where “coarse_solnexoll” 35 the Exclusll file coutaining the <oarse-mesh solution,
“fine_mesh.exoll” is the ExodusIl file containing the fine mesh, “merdin.exoll” is the resulting
Exodusll file containing the fine-mesh solution interpolated from the coarse-mesh solution,
“meriinout” is a text file containing error messages, if any, and “merlininp"” is an input file




containing processing instrections for MerlinIl. The Merlinil input file for the Lid-Driven Cavity
example above is shown in Figure 5.1; see {15] for more details.

& INPUT FILE FOR THE LID-DRIVEHM CAVITY EXAMPLE
% Daclarw that the files to intexrpolate both from end to are EXODUA files.
MESH-A, EXCODES

HMESEH-E, EXCTUS

L Lipt the variables to be interpolated.
VARIABLES

VX

vy

Frasz

BEMD

5 List the timm planes to be interpolated.
TIMEFPLANE

ALl

21 1)

§ Poarfarynm the incarpalation and quit.

EXECUTE

STO0P

Figure 5.1, Merdinll input file Jor mesk sequencing i the Lid-Driven Cavity example.

5.4. Continuation

Continuation methods are used to sobve for a series of steady-state solutions 25 a function
of a parameter. These methods are conumoniy used for analysis to study trends in performance or
behavior, as we have studied the effect of the disk spin rate on the CVD reactor performance in
Section D.3. Continnation can also be an efficient way of reaching a steady-state solution at
conditions where & trivial initial guess is not close enough for Newton's method to converge. For
instance, a flow problem can be solved easily at low density, and then the density can be
incremented over several steps until reaching the desired conditions.

To implement continnation, the user must edit the function uger_continuation in
the file “rf_nser_comtinuation.c™ 1o associate the continnation parameter with a specific boundary
condition or a physical, transport, or kinefic property. This can usually be dope by editing only
one line of code. Por details, sea Saction 4.7.

Users coatrol the continuation routine through the Solution Specifications section of the
input file. An example of this section configured for a continvation run is shown in Figure 5.2,
The seven lines in this section specify that (1) we are solving a continuation problem; (2) first-
order (a.k.a. Euler-Newton) continuation is to be used; (3) & constant step size is to be used as
long as a sieady-state sohition is reached within the maximum number of Newton iterations; (4)
the first solution is for a parameter value of 100.0; (5) the first parameter step is of size 100.0;
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(6,7) the run will stop when either 20 continuation steps have been taken or when the paramster
value exceeds 1300.0.

Solution Specifications

T T T . ke Sy e -

Soluticn Tyvpe = sontirnuation
arder of integration/continvaticna 1

Step Tontrol = gff

Initial Parameter Value = 100.0
Initial Seap Sizw = 100.0
Maxinum Hupber of Stepa = Z0
Maximum Time or Faramstsr Valoa = 1300.0

Figure 5.2 Sampie Solution Specifications seciion for @ continuation run.

The Order of integration/continuation flagcan have valvesof 0, 1, or2. A
value of zero indicates zepoth order continuation, where the solution at step 7 is used as an initial
guess for solution r+1 at the next parameter value. This type of continuation is just an antomation
of doing & series of steady-state calculations where, for each calculation, the parameter is changed
in the 1nput file between cach run and the initial solution valne 15 taken from the previous solution.

First-order continuation (whea this flag equals one) requires one additiopal matrix solve to
calculate the derivative of the solution with respect to the parameter at step », and uses this

tangent to predict an initial guess at the pararneter value for step n+1. The resulting improvement
in the mitial puess vsing first-order contimuation usually saves at least one Newton iteration in
converging to the solution af step #+1, which makes up for the additienal cost of the tangent
caleulation.

A value of two for this flag indicates pseudo arc-length continuation, a capability that is
not currently implemented. This method is a powerful tool in bifurcation analysis as it can track
solutions around tuming points in the solution branch. In pseudo arc-length continvation, the
distznes along the solution branch {hot the change in the parametsr) is chosen, o the parameter
valoe is free to increase or decrease. With our block matrix storage format, we have decided not to
implement psendo arc-length continnation by augmenting the system of equations by one, as is
commorly done [38], but to use the mathod described in the Ph.D. dissertation of Shadid [41]. In
this method, the continuation step takes two matrix solves to form the initial guess for step n+l,
although the same preconditioner can be used for both sobves.

The other input file choice that dessrves additionai mentior is the Step Control flag.
When Time Step Control is of f, the step size is beld constant for successful steps (where
convergence of the nonlinear solver is reached within the maximum number of allowed Newton




iterations) and cut in half when a step is unsuccessful. When Time Step Control is on, the
step size is increased after each successful step. The increase in step size is larger when the ratio
of the awmber of Newton iterations needed for convergence to the éotal nnmber of Newton
terations allowed is small. Failed steps cut the step size in half.

75




6. Future Development

The following is a list of development work for the MPSalsa code that is already planned
or underway.

« Multicomponent Diffusion: A full multicomponent diffusion option will be added, which
will be more accurate than the currént mixture-average model, yet much more costly to
compute.

+ Cylindrical coordinates: For 2D meshes, the capability to solve for axisymmetric solutions
will be added, with the option of two or three components of the velocity for problems
with fluid flow.

+ Multi- ics: This work will add the ability to solve Tor different physics, and different
numbers of unknowms, in distinct “realms™ of the computational domain. For instance,
beat ransfer can be modeled in the solid walls of & reactor together with the reacting gas
flows on the inside.

* Turbulence: [Implementation of a k—€ model for time-averaged trbulerce is anderway,
and an LES (Large Eddy Simulation) mode] for transient turbulence will follow.

+ Adaptive Mesh Refinement and Dynamic [oad Balancing: The ability to automatically

refine a mesh to reduce a measure of the discretization emor below a given tolerance will
be added. As elements are created and destroyed nonuniformly, the work load will be

+ Stability Analysis: A pseudo arc-length continpation routine will be added to track steady-
state solution branches, even if they lose stability through a torming point. To check the
stability of steady solutions, the ability to calculate eigenvaloes of the Jacobian matrix will
be added through ARPACK [47], which we will access through the Aztec library.

= Radiation: The ability to include the radiant energy exchange due to enclosure radiation
using the metheds in COYOTE I [16] is mostly implementsd in MPSalsa, Work is also
underway to implement a participating media radiation model,

* Porous Media: The ability to model mmitiphase flow in porous media has been
implemented in a previous version of MPSalsa [32), and will be tntegrated into the current
version in the futore, The Brinkman equation, which just requires the addition of drag
terms 10 the Navier-Stokes equations, will also be included.

+ Plasma Physics: The ability to model dense, partially ionized plasma/gas mixtures using
self-consistent charged species transport models will be added.




Appendix A, Inclnded Functions

A.l. Boundary Conditions
A.Ll. Surface Chemistry Boundary Conditions

Effects due to surface reactions are included through the use of steface chemistry
boundary conditions, The function surface_chemkin_be¢ computes the temperature and
mass fraction NEUMANN boundary conditions, and Stefan flow DIRICHLET velocity boundary
conditions below:

N
k=1
n-j, =-§W,—-(n-p¥u), and {A.2)
NI'
nows -2 Y oW, (A3)
Pe=1

where §, = £,(P, T, Y, Z) is the production rate of gas- o surface-phase species & due to surface
reaction, Z is the vector of surface site fractions, W, is the molecular weight of species &, #,_is
the enthalpy of species k, Ng is the number of gas-phase species, and ¥ js the total number of
gas-, surface-, and bulk-phase species (see [5. 42] for more details of these surface reaction
boundary conditions). Examples using the surface_chemkin_bhe function for (A.1) - (A3}
are included in Figure A.1. The Stefan velocity boundary condition (A.3) may be immpiemented as
either & VEL_NORM_BC or as 2 U_BC, V_EC, or W_BC when the normal vector is paraliel to the
X-, ¥=, OF 7-axis, raspectively. In the later case, the sign of the norpial vector will be taken into
account sutomnatically.

The initial surface site fractions and bulk species mass fractions may be specified in the
mput file by including SURF_SPECIES LIST and BC_DATA lines with the
surface_chemkin_bc mass fraction boundary condition. The format for these lines follows:

SURF_SPECIES LIST = {ALL | list of species mumbers | list of species nmmes}
BC_DATA = FLOAT [ist of surface site fractions or mass fraciions

The arguments of SURF_SPECIES_LIST are analogous to those of the SPECIES_LIST
desctibed in Section 3.7.2.1, with the exception that the numbers or pames must correspond to
surface or bulk species. These two lines together count as one data kine in the mon_ dara_lines




BZ = T_BC NEUMANN 55 4 DEFENDENT surfacs_chamkin ko O
Mass fracticon BC of sguation (R.2}.
BC = ¥ _BC DIBICHLET 58 4 DEPENDENT surface_chemkin kg 2
SPECIES I7ST = ALL
SURF_SPRECIES, LIST = GaMa(S) Gei(S) GaH(S) A=H(S) hcMe(S) Asis)
BC_DATA = 1.0a-& 0.5 1.08-6 1.0k=-8 1.0e-6 0.5
SIFRF_SPECIES_LIST = GE~GEaas (D} As-Gaas (L}
BC_DATa = 1.0 1.0
* Tangential wvelocity BC with wvalue (.0,
BC = U_Bf DIRICHLET 52 4 INDEFPEMDENT 0. £
BT = V_BC DYRICHLET 25 4 INDERENDENT (. O
B Hormal velosity BC of sequation (A.3} {Stefan flew).
EC = Z_BC DIRICHLET 5 4 DEPENDENT surface chemkin bc 0

t Tapperature BT of squatisn (A 1),

Figure A 1. Example wspge of surfare_chemkin_be for surfitce reaction boundary conditions on tempermure,
mass fraciions and velocity (where the normal ta side et 4 is paralie! w the z-axis),
arpurnent of the BC line (see Section 3.7.2). The example in Fignre Al uses
SURF_SPECIES_LIST to mitialize both surface site fractions and bulk mass fractions.

A.1.2. Danckwerts’ Boundary Conditions

Danckwerts’ boundary condition can be applied using the included functions
f_Danckwerts and f_Danckwerts_X0. Danckwerts’ boundary condition i used as an inlet
boundary condition When the user wants to specify the tota] fux of each species into the system,
rather than the mole or mass fraction of species at the edge of the domain. This is particularly
important in fow pressure reacting systems, where the diffusive component of the inlet flux of a
species i is significant compared to the convective coatribution:

i i ;

Jiotat = Jaigpesive *Jconvective (Ad)
This boundary condition is also important }'ur matching experimentaf resuits, where it is generally
the total fiux of a species § that is known, not the mole fractions at the edge of the computational
domain,

It is assumed that the user kpows the total Sux of each species into the system in terms of
the upsiream velocity u,, the normal flow velocity inte the domain v, = —n » 1y, the upstream
density pg. and the relative species mole fractions X;. The weak form of the FE discretization
yields a surface integral of the diffusive flux over the inlet boundary. Using (A.4) to solve for the
diffusive flux, we have

n .j:;{ﬂ’u.riv¢ =n+* {j:niﬁi'_jiauv:ﬂive_) = ‘l}u"n}':}"' pvf! (ﬁhs:l




where ¥j is the mass fraction of species i computed from the given mole fractions X, ¥’ is the
unknown mass fraction of species § at the inlet bovndary, v = —n #n is the unknown nonmat
velocity into the domain at the inlet boundary, and p and p, are the densities calculated for Y
and Y,. By conservation of mass, the total mass Jux of species i at the inlet boundary must be
egual to the given mass fux into the system,

Py = Poly, (A.6)
which leads 0 a Dirichlet condition on the inlet velociry:

V= puvuf P (AT

Using (A.7) to simplify {A.5), we get a MIXED boundary condition for each species,

e ifﬂiﬁ‘mive = Pavo (Y= Ty) . (AE)

With MPSalsa, {A.7) and (A.8) are applied with the following lines in the Boundary
Condition section of the input file (assuming that the boundary is side set 1 and has 2 normal in
the y-direction):

BC V.EC DIRICHLET 55 1 DEPEMDENT f_Danckwerts X0 1

BC_DATh = FLOAT S_0 X1 X2 X3 .. XN

YT_BDQ MIXEBD 55 1 INDEPEMDENT f_Danckwerts f{_Doanckwerts X0 4.0 0.0 1
SPECTIES LIST = ALL

BC_DATA = FLOAT S5_0 XI %2 X3 .. ¥W
The BC_DATA staternents following the v_BC and Y_BC statements must be the same, and
consist of an upstreamn velocity S_0 followed by the list of molar flux fractions. The sxpression
for S_0 varies depending on the type of velocity boundary conditton in which it is used. For
Dirichlet boundary conditions on one component i, of the velocity u (i.e., U_BC, V_BC, or
W_BC),

EC

S_0 = vy(~meey, (A9

where e, is the vnit vector in the i -coordinate direction. For Dirichlet boundary conditions on
the normal velocity n+n (i.e., VEL_MNORM_BCOY,

S 0 =nen, = —v. {A.10)

In both of these cases, S_0 is the velocity value that would be used i regular Dirichlet boundary
conditions on velocity were being imposed instead of Danckwerts’ boundary condition.
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The function £ Danckwerts_X0, when used as a welocity boundary condition,
calculates the ratio of the densities in (A.7) and mnltiplies it by S_0. When used as a Y_BC, this
function returns the appropriate mass fraction calculated from the mole fractions X, X, ..., Xj.
The function £_Danckwerts retamns the quantity p,v, = pglS_0|, which is analogous to the
heat transfer coefficient in the typical MIXED boundary condition. It calculates p,, assuming that
the temperanire and pressire upstream of the boundary are equal to those valies used at the
boundary. Thus, only the mass fractions and the normal velocity are allowed 0 bave a jump
discontinuity between the upstream and the domain. This limits effective usage of this boundary
condition to cases where there is a Dirichlet condition on the temperature on the same boundary.

If the inlet fluxes are known in terms of mass fractions instead of mole fractions, the
function f_Danckwerts_Y0 can be used in place of the f_Danckwerts_X0 above, and the
list of mass fractions must follow 5_0 in the BC_DATA statements.

A.1.3. Spinning Disk Boundary Conditions
A.1.3.1. Spinning Disk in the xy-Plane

The boundary condition fumction £_xy_spin_disk is used to apply Dirichlet boundary
conditions on velocities on 2 spinning disk in the xy-plane. This function retuns non-zeroe values
only for boundary condition iypcs U_BC and V_BC. It should be called as an indepeadent
Dirichlet condition on either side sets or node sets, and requires & BC_DATA statement. The
BC_DATA line must include three floating point numbers, the first being the disk rotation rate in
1pms (revolutions per minute) in the counterclockwise direction. The next two entries are the
coordinates of the rotation center.

For exampie, boundary conditions for & disk rotating at 80 rpin that is centared at the point
{x.») = {2-3) would be imposed vsing the following lines in the foput file:

U_BC DIRICHLET N5 1 INDEPENDENT f_xy spin_disk 1
BC_DATA = 80.0 2.0 -3.0

V_BC DIRICHLET NS 1 INDEPENDENT f_xv_spin_disk 1
BC_DATA = 80.0 2.0 =3.0

The rotation rate is translated from rpm to radians/sec in a pre-processing step in the file
“rf_input_be.g.”

A.13.2, Spinning Tilted Disk
The boundary condition £_xy_spin_ tilt9_disk was written for the Tilted CVD

reactor (se¢ the example in Appendix D.3). In this reactor, the rotating substrate is on a tilted
plane whose tangent vectors are (1,1, 0) and (0, coso, sing) , with ¢ = 9 degrees. Since the




velocity normal to the disk can be non-zero doe to the Stefan velocity, the rotation boundary
conditions are imposed in the two tangential directions using the Generalized Surface

As with the spinning disk boundary condition in Appendix A.1.3.1, this independent
Dirichlet condition requires 2 BC_DATA statement with the rotation rate, followed by the center
of rotation. An example wsing this boundary condition, including the specification of the
generalized surface along side set 5, is shown in Figure A.2. This specification is for a disk
centered at (0, 0, 1.3046) that is rotating at 0 rpm.

Humkesr of Gansralizad Surfacex = 1
GENERATLIZED SURFACE 5 2

TANGENT 1.0 0.0 4.0

TANGENT (.0 0.9876 0.1564

Hunbar of BO = 33

BT = WEL_TAN]_BC DIRICHLET 25 1 INDEPRHNDENT € sy spin ={1t0_diegk 1
BO_DATA = FLOAT 80,0 0.0 0.0 1.50446

EC = VEL_TANZ BC DIRICHLET G£ 1 INDEFERDENT [0 spin tiltd disk 1
BS_DRTA = FLOAT 850.0 9.0 0.0 1.5244

Figure A.2. Fxample usage of £_xy._spin tilt9_disk tospecily Divichier boundary conditions for
velocities on g spinning, tilted dis

A.1.4, Mass Fraction Divichlet Boundary Conditions expressed as Mole Fractions

In MPSalsa, the primitive variables for mass transfer are mass fractions, but for many
applications, it is the mole fractions that are known. MPSalsa includes the fonction
f_mole_fracticn which allows the user to specify the mole fractions as a Dinchlet condition
along a side set or node set. An example of this boundary condition is in Figure A.3. The mole
fractions for all species are listed on the BC_DATA line in the order of the SPECIES_LIST
arguments above it. For SPECIES_LIST = ALL, the mole fractions should be listed in order
from the first species to the last species. The mole fractions can be spread across more than one
BC_DATA statement, sach precedsd by a SPECIES_LIST statement.

BC = Y_EC DIRICHLET 55 1 INDEPENORNT f_mole, frackion 1
SPECIES TIST = 2 1 4 2

BC_LATA = 1.232%00a-04 1,.095458&-02 5.8B5221a-01 0.0

Figure A.3. Exomple usage of £_mole_fraction io specify Dirichiet boundary conditions for mears
Jractians in terms of maele fractions,
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The conversion from mole fractions to mass fractions is done once it a preprocessing step.
with the reswlting mass fractions being stored in the BC_Data_Float array where the mole
fractions originally were. Error checking makes sure that each species is assigned 2 mole fraction
and that the sum of mole fractions is near unity.

A.1S5. Outflow Boundary Condition

The included fuonction f_pressure retmms the hydrodynamic pressiee unknown
weighted by a constant. This value can be used as an outflow boundary condition by umposing this
function as a Neumann condition on the normal component of the momennmn equation. The
usage of the function in the case of outflow from the compatational domain on side set 3, with a
normal in the y-direction, is

BC = V_BC NEUMANIN SS 3 DEPENDENT f_pressure 1
BC_DATR = FLOAT 1.0

The single foating point data statement required with the £_pressure boundary condition is a
multiplicative factor, which will be discussed later.

A reasongble oufow boundary condition on the pormal component of the momentum
balance is that the normal velocity is not changing as it leaves the domain, ie. du /dn = 0
whamnmpmsentsthedirocﬁuﬁnmmalmﬂmbmndaryand i, is the normal velocity. The weak
form of the FE residural equation in the direction normal to the surface with respect to test function
‘-Pj renders the following surface integral for the normal component of the stress tensor:

2 d"u
[|-P-SuVeu+2p—" W dr. (A.11)
] 3 dn | i

From the continuity equation, the middle term is identically zero for incompressible flows
and is often negligible for variable-density flows. A natasal condition thag sets the entire integral
to zero works for many cases as an outlow boundary condition and has the added feature of
setting the pressure datum to near zers altong the outflow surface. Thus, ne boundary condition for
pressure is needed for open flows whilé the pressure must be set at one node for closed flows.

This natral condition does not work for cases where the pressare is not constan? along the
outflow surface, such as a vertical outflow plane in systems with gravity and swirling fows such
as the Rotating Disk Reactor configuration in Appendix D.2. It is for these systems that we
impose the simple f_pressursa Neumann boundary condition




kj (-P)¥dr. (A.12)
r

In (A.12), k is the multiplicative floating point number input in the BC_DATA statement,
When & = 1.0 and the divergence of the velocity is negligible, this boundary condition weakly
imposes the desired outflow boundary condition. However, this results in an arbitrary pressure
datum again. We have found empirically that setting the multiplicative consiant in the range of
ke [09,099] gives smooth ootflow profiles while still setting the average pressure on the
outflow bouadary to zero.

The FIDAP package [13] also integrates the pressure 25 an outflow boundary condition,
but does not inclede the derivatives of the boundary condition in the Jacobian mairix. The
pressure from the previous Newton iteration sets the pressure at the current step, removing the
need for a value of k other than unity 1o set the pressure datum. However, this omission can
greatly dagrade convergence of Newion's method. The user can try this method by changing the
boundary condition to type INDEPENDENT so that no Jacobian entries are computed for this
boundary condition. Other outilow boundary conditions are under development.

A2, Look-up Tables

Valvees of properties and boundary conditions may be interpolated from tables of data
specified in the Function Data section of the input file (see Section 3.11). Twe of these look-up
tables, 1ockup_table_ 1 and lockup_table_Z2, are included in MPSalsa Other look-up
tables can be easily added by following the example of lookup_table_1 in “rf fn_datac”
(actual code for the function), “ri_fill_const.h” (prototype for the function), and
“rf_bc_exact_fn.c” and “rf_source_fn.c” (pointer assignment routines for the function).

Look-up tables can be used anywhere a SNGLVAR_FUNCTION can be used (see Table
4.2). For example, to use a look-up tablke to compute the volumetric source term as a function of
temperature for the mass fraction equations, a variable mass fraction source terin is specified in
the Material Properties section of the input file (see Section 3.6):

Y_VOLUME _VAR = laokup_table 1 sgsingle
The data for lookup_table_1 is included as a TABLE in the Function Data section of the
input file;




Fuanction = lookup_table_1 2
FN_DATA = BTRING TEMPERATURE
FN_DATA = TABLE n 2

where ¢, Ly veuy £, BIC the values of the temperatures (in increasing order} and gy, ¢4, +..y 4, 41
comresponding mass fracton source ferm values. The FN_DAT2 STRING indicates the
independent variable to use in the table. The look-up function uses linear interpolation to compute
the scurce term using the values of the independent variable passed to lookup_table 1.

A.3. Output

The folowing functions have been written to provide some useful cutput from MPSalsa
for the analysis of solutions. Still, the majority of post-processing is left to graphics packages that
can read Exodus]l files,

None of the following functions are called awtomatically from MPSalsa, but must be
explicitly called from the function wser_out in the file “tf_user_out.c.” The function cafls and
argument lists are described in comuments at the top of each function.

The status vatiable, described in Figure 4.9, can be used to restrict the ontput, For
instance, the function call can be praceded by the following condition if owtput is not destred for
failed time steps:

1f (status »=0).

A1, Evolution of the Solution at a Point

The evolution of the solution at a point (or points) in the domain can be cutput from
MPSalsa using the time_history_points output function. Two things must be done to use
this function, First, the function call

time_history pointsitime, time step num, soln);
must be added to the function user_out in the file “f user outc” and the code must be
recompiled. Second, data must be input for this fonction in the Function Data Specifications
section of the input file (see Section 3.11). This function needs only a list of points at which the
solution output is desired. For instance, the folowing section of input file




Function Name = time history_points 1
FN_DATA = TABLE 2 3

0.0 0.01 0.5

0.0 0.5% 0.5

would cause the entire solution at (0, 0.01,0.5) to be print=d at each time step to the file
“time_his.0,” and the solution (0, 0.99, 0.5) to be printed to the file “time_his.1.” The two
integers following the TABLE keyword specify the dimensions of the table to be read, with the
first number (2) representing the sumber of points at which to print data and the second aumber
(3) specifying the dimension of the system.

Each line of the output file contains the following information: time step number, time, x,
y, z (for 3D problems), and the entire solution at the point (with mass fractions translated to mole
fractions), in the following order: w, P, T, X,, X, ..., X),. This output format allows for easy
plotting with a package such as “gnuplot,” where plotting colamn 7 versus cofumn 3 gives a plot
of y-velocity i, versns time.

AA2 The Solution along a Line

The time_kistoxry_line output function gives the ability to analyze the solution
alontg & line through the computational domain. This function has been used 1 generate many of
the plots in the example problems shown in subsequent appendices.

The implementation of this function is almost ideatical to time_hilstory points. A
call to the function

time history_line{time, tlme_step_num, scln};
must be inclnded in user_osut and the code must ba recompiled. The statue flag can be usad
10 rastrict some outpit, as described in Fipure 4.9,

In the Function Bata Specifications section of the imput file (see Section 3.11), data must
be entered for this fonction. Two data lines are required: an intager that tells how many points on
the line are desired, and a table with two rows that gives the beginning and ending peints of the
line. Solutions along more than one line can be outpat by supplying more than one set of data to
the fumcticn. The input lines in Figure A.4 show how this is done for a 2D problem. One line
gives a slice through the domain as a function of x, and the other is a slice in the y-direction. Each
line is written to a separate file and, unlike the time_history points function, the data at
each time step is written i0 a separate file. For instance, with rthe input data in Figore A4, the
solution at the 80 points equally spaced on the line berween (0,0) and (1.0) at the 142 time step
will be in the file “time_his_line.0.14,” and the 50 potnts equally spaced between (0.5,-10.0) and
(0.5,10.0) ar the 72 time step will be in the file “time_his_line.1.7.”




Function Name = Ekime_history line 2
FN_DATA = INT B0
FN_DATA = TABLE 7 %

0.0 0.¢

1.0 0.4
& Second line for time history output:
Pmction Hame = fipee higrory Jine 2
FH_DATZ = INT 50
FH_DATA = TRAELE 2 2

0.5 -14.0

0.5 10.0

Figure A 4. Example funcrion data lines for time history. line

As with the time_history_points function, ¢ach line of the ouiput file contains the
foltowing information: time step nurnber, time, x, y, z (for 3D problems), and the entire solation at
the point {with mass fractions translated to mole fractions), in the following order m, P, T,
XX oons Xy

A33. Information on & Side Set

The fusction £_ss_centroid gives the user the ability o print many useful pieces of
information along a side set. Information from this function can be vsed o get such information
as the average temperature on a surface, the total heat flux into a wall, and the drag coeificient

over a body. The function calculates positions, solution values, nommal gradients, and other
information at the centroid of the surface elements in one or more side sets.

The implernentation of this routine requires that the following fimction call be added as
one of the first executable statements of fanction user_out.:

f_s=_centroiditime, time_step num, soln);

The code then must be recompiled. Also, data must be given to this function in the Function Data
Specifications section of the input file (see Section 3.11). An example is given here.

Function Name = f_ss_centroid 2
FM_DATA INT 1 2 3
FN_DATA STRING x T Area

The required integer data is a list of side set IDs for which information is to be printed. In this
case, information will be output for side sets 1, 2, and 3 all to the same output file. If it is desired
that the data be separated into different fikes for cach side set, mnltiple sets of data can be supplied
to this function (with repeated Funct ion Name lines), each with a single integer for the side set
list.




The STRING data specifies the quantities to be output. In this example, the x-coordinate,
the temperature, and the area (length) of the smface element are output. Table A1 lists the strings
cucrently recognized by this function and the quantity that each string refers to. In the future, we
hope to add physical quantities such as the Jocal density or viscosity to the list of recognized

strings.
| STRLING QUTEUT
., time Time value
s x-cocmdmate of position
¥ y-coordinete of pesition
z z-coordivate of position
U Velacity in the ¥ direction
v Velocity in the v direction
W Velocity in the 7 direction
P Rydredynamic pressurs
T Tamperature
;4 Array of mass fractions
A, Araa " Arca (length} of the ciement
n, normal Outward pointing normat vector
tl, tangeat Tangent vector
td, tangentl Second tangent vector (for 3D problems)
Yn, Un Velacity in the normal direction
n_grad U Normnal component of the gradient of the x-componest of velocity
n grad v Normai component of the gradieat of the y-component of velcocity
n_grad_W Normai component of the gradient of the s-componsnt of velocity
n_grad_p Normsl compooent of the gradient of P
n_grad_T Normal component of the gradient of T
n_grad ¥ Nermal component of the gmdient of ¥, for all §
tau_n Traction vector / viscosity, ho peeasms contribaition
Table AL List of Strings currently recognized by the £_ss_centroid owput function. The bold sirings lead o
more than one column of outpus,

The output from this function is written to files of the form *ss_datan.m” where the
integer » identifies the set of function data (n = O for the first occurrence of £_ss_centroid,
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n = 1 for the second aecurrence, etc.), and m is the time step namber. Each file has one line for
each element jn the side sei(s), and sach line has at least ore column for each quantity specified in
the STRING data statement.

Integrated quantities over the side set can be calenlated using the element area
tnformation. For instance, the total conductive heat flux through the side set can be calenlated by
smnming over all surfaces in the side set the prodocts of the area (3) of each suwrface with the
normal gradient of the temperature (n_grad_T} and the thermal conductivity. Averages can be
computed by summing over all smfaces the product of a quantity with the surface’s area, and
dividing the sum by the total area.

The cau_n siring leads to an array of output that includes the components of the viscous
traction vector atong the surface:

2y ﬂ" A3
ta = ~zVen + 227, (A.13)

Note that t.anu_z does not include the pressure term, which can be output independently, and does
not include the multiplication by the viscosity. The total drag force over an object in the x-
direction is the sum of the first component of tau_n (tau_x) multiplied by the viscosity and the
clement arca (A). '

Ad. Interprocessor Communication Utilities

This section details some machine-independent communication functions callable within
MPSzlsa that are vsefol when programming new functions for parallel appiications, especially
when I¥0 is involved. The code for these functions is in “rf_comm.ec.”

Ad.l. Synchronization

ﬂeﬂainopamﬁmsmquimthmﬂlpmcmmmattb:smpaﬁnfﬂmmdcattb:m&
time. A call 10 the =ync funetion causas each processor o wait until all processors have reached
the staternent, The syntax is

sync ({Proc, Num Proc);
where Num_Proc is the total number of processors running the problem, and Proc is the unique
processor ID with a value between 0 and (Num_Proc - 1) of the cument processor. Both
Mum_Proc and Proc are defined as global integer variables in MPSalsa and are initialized at the
beginning of MPSalsa’s execution. If any processor fails to reach the syne statement, the
computation will idle indefinitely.
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When each processor must write to a commen output file, the print statement should be
surrounded by the print_sync_start and print_sync_end functon calls. These
functions synchronize the processors so that only one processor at a time executes the statements
berween the calls. There can be no communication calls between these statements; such calls
would cause the program to reach a deadlocked state.

The code fragment in Figure A.5 demonstrates the use of print_sync_start and

print_sync_end. Theresalting output file would contain the processor ID nuanbers printed in
order from O to Hum_Proc - 1.

print_syne_start{Proc, Num_Proc,l):
if {Proc==0) ifp = fopen(*filename”, *w"):
elze ifp = fopen(*filename”, "a“*);
forintf (ifp, "84 \n*,Proc);
folozsm{ifp);
print_=mync and (Prog, Num _Proc):

Figure A.5. Code fragment demonstrating the use of print_sync_start and print_syne_end

A4.2. Broadcast

A machine-independent broadcas: routine calied brdest bas been writien for use in
MPSalsa. Information on one processor (usually processor zero) is sent to all other processors
using this routine. There are five arguments for this function; the first two are Proc and
Num_Froc; the third is the pointer to the memory location where the information is stored or 10
be stored; the fourth is the message size, and the last is the pumber of the processor that is
initiating the broadeast (usually processor 2810},

The code fragment m Figure A.S illustrales the use of this routine, by broadcasting an
array of length two from processor zero to all other processors. The message size is the army
length (two) times the size of a double variable (computed nsing the sizeof function).

dpuble x[2]:

if {(Froc==0} {
x[0] = :0.5;
®x[1]l = 0.123;
1
brdcst{Froc, Num_Froc, {(char *) =, 2*gizect (double). 0);

Figure A.G. Codz fragment demonsirating ihe use of brdcst. Upon return from brdcst, x={I0.5, (.123]
ot ail processors,
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A4.3. Global Sumn, Maxiomum, and Minimuom

Several functions that compute the sumn, maxirnom or minimum of some vaiue over all
processors are included in MPSalsa Severs] of these functions are listed in Figure A.7. The
functions gsum_int, gmax_int, and gmin_int compute the sum, maximwm and minimum,
respectively, of sn integer valpe. The functions gsum_double, gmax_dcouble, and
grin_double, perform the same operations on double precision variables. In all cases, the first
argument is the quantity that is to be summed or cormpared.

int 1,35
dovbhle x,yv;

grum_int {i, Mam_Pros) ;
gméx_ink {i, ¥um_Proc) ;
gindin_int {1, Num_Proc) :
gaum_doubla [, Bum_Prac) ;
ga_double {x, Hun_Proc) ;
gmin_double {x, Hum_Pros) ;

Figure A7, Funetiors for computing the sum. moxinuem angd mirdmem of o volue over afl processors. The
Junctions gsum_int, gmax_int end emin_int operate on integers; the functions gaun, double,
gmac_double, and gmin_doubl e operaiz on le precision variables,




Appendix B. Mass Transfer Examples

B.1. Diffusion in an Annulus

This simple example problem consists of a single species diffusing in an annular region,
and is designed to illustrate the use of the three different boundary condition types: Dirichlet,
Neumann, and Mixed. The domain has inner mdins of R; = 1 and an outer radivs of R, = 2.
The domain is discretized with the 2048 element mesh shown Figure B.1, with the inper circle
designated Side Set 1 and the outer circle designated Side Set 2.

Figure B.]. Finite elemnens mesh for the Diffusion in an Arnulos sxampis problem. The mesh containg 2048
elements and 2112 rodes and is stored in the file washerexoll,

A volumetric mass source of magnitude one generates mass uniformly over the domain,
#md the diffosion coefiicient is also set equal to unity, leading to the foBowing governing
&quation:

Vic+1=0, (B.1)

where C is a dimensionless concentration. At the inner circle of the anavlus, we sat a Dirichlet
condition of

Ej |




C=1forr=ds+y =R, (B.2)

To illustrate the three different standard boundary condition types available in MPSalsa, we pose
thres options for the boundary condition st tha outer gircle (Side Sat 2):

cither Dirichlet:

C=1l/4frr=R;

n-¥C=1fwr= R,
or Mixzed {(Robin):
n-VC=4(C-0) forr = R

Any of these three boundary conditions leads to the same analytic solution:

5 xz
c=2"*"F (B.6)
4
This function has been programmed into a function called £_annulus_exact to test the

computed solution.

The MPSalsa input file for solving this problem is given in Figure B.2. It shows that we
are solving a diffusion-only problem to a steady-state solution using the GMRES method with
preconditioning. The mumber of species and the volumetric source term are set in the Materjals
Specifications section. At the end of the Outprt Specifications section, it is specified that the final
sclution be tested against the analytic sclution programmed in £_annulus_exact. As can be
seen in the Boundary Conditions section, this file applies the Dirichlet condition (B.3) on Side Set
2. The options of applying the Neumann condition (B.4) or Mixed condition (B.5) are ¢commented
out by the pound sign (#).

Tuable B.]1 compares the sohutions for the thees boundary condition types, by showing the
LE—HI'N of the computed solution with respect to the analytic solution, the CPU time on an 8GI
workstation needed 1o reach the solution, and the number of GMRES linear solve iterations
nesded to reach the solution. Since the problem is linear, each solution required only one Newton
iteration. There is no significant diffevence betwsen the three solutions, except the Nenmann case
required a few more linear iterations.
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Figure B.2. Inpui jile for the Diffusion 0 an Aontilus exemple probiem,
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Number of GMREES Itavations

Table B.1. Comparison of the three boundary condition types for tre Diffuzion n an Antndus example problem
B.2. The Soret Effect

This simple example of thermal diffusion (the Soret effect) illustrates the use of a
CHEMKIN material type. The problem is solved on 2 2D mesh bint is essentially ID. Hydrogen
(HZ - molecular weight 2.016) and Trimsthyigallium (GaMe3 — molecular weight 114.83) are
gllowed to interdiffuse along a sisep thermal gradient. The 100-slement mesh and boundary
conditions are shown in Figure B.3.

_-.
X-axiy

Figure B.3. 100 elemens mesh and Boundary conditions for the Soret Effect exampir problem.

The input file for this example problem is shown in Figure B.4, and shows that this is an
energy and mass transfer problem, being solved directly to the steady-state using GMRES and a
preconditioner. Because the material is a CHEMKIN material, the number of species, species
names, molecular weights, and transport propertiss are not specified in the Materials
Specifications section. This information is read into MPSalsa from the file “chem.bin,™ which is
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Figure B.4. Input file for the Soret Effect example problem.
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generated using the “interp™ wtlity acting on the Chemkin input file for gas-phase species and
reactions, “gaas_b.gas” (Figare B.5). This file contains four species used in the deposition of
Gallinm Arsenide crystals: AsH3, GaMe3, CH4, and H2; the first and third have zero mole
fractions in this problem.
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Figure B.3. Chemidn inpur file gaas_b. gas, whick corgaing the four species and thelr thermodynamls:
dan, Mo reactions are included,

The selution of this problem requires only 2.16 seconds on an 5GI workstation, 3 Newton
iterations, and a total of 68 linear solve iterations. The solution across the domain at ¥ = 0.5 is
output using the time_history_line incleded function, as can be seen on the last lines of
the input file. By plotting the ontput with “gnuplot,” the temperature and mole fraction of GaMe3
across the width of the domain can analyzed, as in Figure B.6.

B.3. S5i3Nd Equilibrium

This example differs from the previons examples in that it is run on multiple processors,
there are chemical reactions, and the steady-state solution is reached through time integration.
The example uses a large gas-phase reaction mechanism for the formation of Silicon Nitride
involving 17 species and 33 reactions. The species list and reaction mechanisim are contained in
the Chemkin input file “si3nd.gas,” which is not shown bere. An inital mixture of three reactants
is set in a 2D domain at a high temperamre and allowed to react until equilibrinm. Ne spatial
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igure B.G. bes of temperature and GaMe3 mole fraction in the Soret Effect axample probiem. Tha
:emehsmm uﬁ;’gmb?ﬂtmmmemﬂeﬁmﬁm is',f{ra:dnrrhe feft ride. The drop in the mole fraction as
X increases is due solely to thermal diffusion.

gradients are given in the problem, either as initial conditions or boundary conditions, so the
solution is essentially 0D

The input file for this problem can be seen in Figure B.7. An accurate transient solution of
the problem 15 oot desired; rather, only the solution at the final equilibriven state is of interest,
Thus, the pzeude tine int:gration option is used with a stopping point of 100 seconds. The use
of only block-Jacobi scaling for preconditioning the matrix is adequate for many time-dependent
problems, since the matrix is better conditioned than with the steady-state formulation.

The input file is set up for running on & processors, and requires that a load balance file
“Meshes/testa-3-bKL.exoll" has been creatsd. To run this problem in parallel on the Intel
Paragon, the file “chem bin™ must first be created on this machine from the Chemkio input file by
the following comenand:

> interp sid3nd
To then solve the problem with MPSalsa, with an executable “salsa-smos™ and the input file
“input-si3nd,” the user must type:

> yod -3z B salsa-smos input-si3nd
This run took 23 time steps to reach 100 seconds, and required 376 seconds.

Figure B .8 shows how the mole fractions of many species evolve with thme, The data for
these plots was output using the time history points fanction, which is called within
function user_out and has data supplied to it at the boitom of the input file. The plots were
made directly from this output using “gnuplot.”
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Figure B.7. Input file for the Si3N4 Equilbriom exampis probiem.
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Figure B.8. Evoluiion in time of mole jans of major specles in the Si3N4 Equilibrivm problem. The firse

Flot shows the three reactants, while the second shows the mafor products of the reactiors. Since the prendo
rime integration scheine was weed, these hisiaries are not time acourate,

B.4. Surface Reaction

This simple reaction-diffusion problem illustrates the use of surface_chemkin_ bc,
the fonction used to impose surface reactions as boundary conditions by interfacing with the
Surface Chemkin library (see Appendix A.1.1). Just as Chemkin is used for information on gas-
phase species, reactions, and properties, Surface Chemkin is used to access this information about
the surface and underdying bulk solid.

The problem is defined in a 2D box and uses the mechanism for the deposition of Gallivin
Arsenide semiconductor ¢rystals. This mechanism contains 17 gas-phase species, 24 gas-phase
reactions, 6 surface species, 38 surface reactions, and 2 bulk species. The surface reactions occur
on the left side of the box, and Disichlet conditions for the main reactants and carrier gas are set
cn the right side, as shown in Figure B.9. The system is assumed isotherrnal {at 913K); no-slip
velocities are tmposed on all walls and no penetration is assurned on the top and bottom. At the
reacting surface, the normal velocity s not zero, but is set equal to the total mass flux per unit area
into the swface, divided by the density. This term is often called the Stefan velocity (see equation
(A.3)). At the right side, the nommal momentum balance has a natural condition applied that sets
the normat componeat of the norma! stress to zere. This borndary condition allows for a non-zero
velocity at this surface.

The surface stie fractions of surface species and the bulk fractions are also unknowns in
thus problem. To specify their values, we use a quasi-steady state assumption that these species are
always in equilibrium with the gas phase. This approximation adds no emor for a sicady-state
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Figure B8 200-element mech and boundary conditions for the Surface Rasction exaomple probiem. gy is the
molar production rafe of species b due o the mﬁc& reqerion, Wy i the molecular weigit o5 species k. ord p
is the density. The nonzerc velocity to surface reaction is called the Skefor velocity
solntion and is 2 good approximation in t{ransient problems because of the relative speed of
surface reactions, Using the requirerent that the peneration rate of any surface species 1s equal to
its cotisumption rate, and given the gas-phase species mole fractions, these nokrowns can be
solved for implicitly and removed from the problem.

The input file for this problem is shown in Figure B.10. There are 20 unknowns per node
in this problem: 2 velocities, 1 pressore, and 17 species. The steady solution is solved for directly
using a preconditioned GMRES method, statting from an inftial guess whers 3 species have
nonzero mole fractions (see the XMF_O lines in the Materisls Specifications section). The
gurface_chamkin_bc boundary condition function is used for reacting surfaces. The Stefan
velocity is set as a dependent Dirichlet condition where the value comes from the
surface_chemkin_be function. (The DEPENDENT keyword in this boundary condition
specifies that Jacobizn entries are included for this term.} The same function is used for the
species balance equations, thovgh in this case it is a Neumann boundary condition since it is a
specification on the Aux.

There is an option with the surface_chemkin_bc to input initial guesses for the
surface site and bulk fractions. Since the equations for these species can be highly nonlinear, there
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Figure B.10. Inpag file for the Surface Reactoon example probiem.
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are initial guesses that do not lead te a converged solution, snd sometimes there are multiple
solutions. The mitial guesses are mput vsing the SURF_SPECIES_LIST keyword, as can be
seem in the inpiw file. The defatlt initial goess is equal fractions of all species within a given
siwrface or bulk phase. For the mechanism in this sxample, the surface r=action calenlations fail
with the default imitial guess. The initial guess is nsed only the first time the surface reacvion
calculations are computed; for subssquent Newton iterations and time steps, the previous
calculation of surface site and bulk fractions are used as the initial guess.

The steady-state solution for the 4620 unknowns in this problem required 4 Newion
iterations and 29 seconds on an SGI workstation. A visvalization of the solution is presented in
Figure B.11. The weak flow driven by the Stefan velocity is shown with velocity vectors, as are
contours of one of the species generated by the swriace reactions and consumed in gas-phase
reactioms. The vertical contours show that the Bow is too weak for convection 1o distort the LD
diffusion-reaction problem.
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Figure B.}l. Visualization of the solurion for the Surface Reaction example problem. The deposition on the

left wall drives o velochty to the left, ax shown in the plot on the left. The velocity is reariy uniform near the

wall, but is more parobolic of the sedtree on Hie right side. Shover on the right are mols fraction contours of
the H atorn, whick is produced of the surface.
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Appendix C. Finid Mechanics and Heat Transfer Examples

The example problems in Section C.3 through Section C.5 were developed, run, and
written up by Professor Michael jensen of the Mechanical Engineering Department of Rensselaer
Polytechnic Institute during a sabbatical at Samdia National Laboratories in Spring 19%6.
Exhaustive mesh independence studies were not done for any of the examples in Section C.3
through Sectioa C_5, but the meshes were refined to adequately show agreement with data from
the literature. For these exampies, the mks unit systemn was wsed; that is, the units nsed on all the
quantities are length {m); velocity (mv/s); temperature (K); pressure (N/m*2); heat flux (W/m*2);
density (kg/m”3): specific heat (J/kgR): thermal conductivity (W/mK); and dynamic viscosity
{Ns/m"2).

C.1. Navier-Siokes 3D Exact Solution

An analytic solution to the Navier-Stokes equations for a three-dimensional time-
dependent problem is knewn for a generalized Beltrami-type flow [11]. We use this problem to
demonstrate the solution of a transient fluid mechanics system and to decurpent the convergence
properties of our implementation of the finite elemnent method.

In MPSalsa, the function £ 3d navier stokes provides the exact solution for this
flow in a cube of unit length when these same functions, evaloated at ali boundarics, are imposed
15 boundary conditions:

[~
1l

-ae'd:r( ¢*sin (ay+dz) + e“*cos (ax +dy) )
y = —ae_dz'( e sin {az + dx) + ¢™ cos {(@x +dz) }

w = —ae'd:'(e“sin (ax +dy) + ¢ cos {az + dx)
1z —zd’r( Zax  2ey @ Zaz
=—ca'e £

P = +e " +¢ T+
2 {C.1)
2sin (ax+dy}cns(az+dx)eﬂ{y+z} +
25in (ay + dz) cos (ax+dy) " 7 +
2¢in (1 + dx) cos (ay +dz)e”
a = 0.25n
d = 05%

The MPSadsa input file for this test problent is shown in Figure C.1. The first line specifies
that a fliid mechanies problem is to be solved. A linear spatial approximation 15 to be used. A
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time-accurate transient solution method with a second-order time integration scheme and variabie
time step is selected. The mun is set to tarminate at a time of (.1 seconds. As can be seen in the
Boundary Condition Specifications section, Dirichlet boundary conditions computed by the
fupction £_3d_navier_stokes are prescribed for all velocity and pressure unknowns on all
domain boundaries, This same function used to specify the initial conditions. In addition, the
exact solation is compared with the compmed solution for convergence analyses by setting
f_3d _navier_stokes in the input file as the exact solution.

The input ExodusII mesh is an Bx8x8-clement mesh with 729 nodes and 2916 total
unknowns. The same problern was solved asing discretizations of 4xdxd, 16x16x16, and
32x32x32 clements. Details of the four rims are show in Table C.1. All runs required 27 time steps
to reach 0.1 seconds.

MNumber of
clemsnts in
1D

4

Total
Mumber of
Elements

&4

Processors
1

305

Lemror

of Velocity in the x-
direction at 0.1 sec.

LO0Be-0r3

72 -ermor of

Pressure at 9.1 sec

1. 90de-002

5

16

308

2.785e-04

1183e-02

14

4036

o

452

6.512¢-03

L4303

3

3L TH8

128

1342

1.381e-0%

3.090e-04

Table C.1. Detoile of the mesh comeergence calewlztions for the Naviee-Stokes 3D Exact Solution problem.

The error in the computed solution as compared (o the exact solution is presented in Table
C.1 and shown graphically in Figure C.2. The I2-norms of the error in the x-component of the
velocity and in the pressure vnknown are plotted versus the element size. The slopes of the lines
commecting the results for the coarsest mesh and the finest mesh on the log-log plot are nesr 2, the
expected valie for the linear discretization scheme.

C.2. Lid-Driven Cayity Problem

The lid-driven cavity problem is a two-dimensional fluid mechanics problen: on a square
domain that has often been used as a benchmark problem [19]. The fuid is confined in the square,
but the top surface is pulled horizontally, driving clockwise flow. The geometry, boundary
conditions, and 64x64-element mesh are shown in Figure C.3.

The input file for this example is shown in Figure C.4. The viscosity and density are set 1o

omne, so that the velocity is equal to ihe Reynolds number. This problem is increasingly difficult to
solve as the Revnolds number is increased. SUPG stabilization is tamed on ¢in the General
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Frgure C.I. Input file for the Navier-Sickes 3D Exact Solunos example problem.




L2 Error

0.00001

Element width

Figure C.2, Log-Jog plot of the L2-error in the solution versus the element width for the Navier-Stokes 3D
Exact Solution problem. Second-coder comvergence with respect to the mesh Spacing iv observed.

Problem Specifications section of the input file), which reduces the oscillations in highly-

convective lows and greatly improves convergence.

The backtracking sigorithm in the nonlinear solver is also tumed on. For this calculation,
which starts from a trivial initial guess and attempts to reach a steady state at a Reynolds number
of 1500, Newton's method without backitracking diverges. With backitracking, this calculation
converged 1o a steady state in 11 Newton iterations, which took 229 seconds on 16 processors of
the Intz] Paragon.

In . Section 5.3, this example problem was used 10 demonstrate the method of mesh
sequencing for obtaining a converged solution to a difficult problem. For large problems that are
spread across many processors, the ILU (domain decomposition) preconditioners are not as
mobust. In many cases, the same problern on a coarser mesh and spread scross fewer processors
will converge more readily. Mesh sequencing is a method to capitalize on this phenomena by first
solving the problem on a coarse mesh, interpolating the converged selution to a finer mesh, and
then using this sclution as an injtial guess on the fine, accurate mesh, See Table 5.2 in Section 5.3
for an example of the benefit of this approach.
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Figure C.3. 409G-element mesh and bowndary conditions for the Lid-Drivan Cavity example problem.

CA. Hydrodynamically Developing Flow in an Infinite Parallel Plate Channel

Dreveloping steady laminar flow in the entrance region of a straight parallel plate channel
is demonstrated in this example. To resolve the flow near the inlet, a mesh that was finer near the
inlet than at the outlet was nsed. The mesh was also refined pear the lower wall boundary. The
entire mesh had 500x60 eletnents. A small section of the domain in the entrance region is shown
in Figure C.5 to show the expanding mesh. Advantage is taken of the line of symmenry through
the channel centertine, An expanding grid is used from the wall to the centerdine and from the
cotrance along the channel. The wpper plate is located 0.5 units from the channel centerline, and
the channel has a length of 10. The upper plate is designated Side Set 1; the ouflow boundary is
Side Set 2; the channel centerline is Side Set 3; and the inlet boundary is Side Set 4.
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Figare C.5. Expanding mesh of the entremce region for developing flow between parallel plates.

A uniform velocity profile is provided at the entrance to the channel. No slip is imposed at
the solid wall, and no shear is set at both the channel centerline and the outflow boundary;
fransverse velocities are set to zero on all side sets, The MPSalsa inpuat file is listed in Figure C.6.

Shown in Figure C.7 is the developing velocity profile along the channel; comparison is
made against results from a similar calculation using the finite difference algorithmn SIMPLER
[36] on a coarser grid. (The characteristic overshoot in velocity at locations near the entrance is
physically possible and can be obtained numerically using the appropriate entrance and boundary
conditions, as discussed in Shah and London [45].) The analytic solution for fully-developed Aow
in a channe] predicts that the product of the friction factor and the Reynolds number is 24.0. The
value of 23.97 calculated by MPSalsa at the exit of the channe] compares welt with the analytic
result

C.4. Thermally Developing Flow in an Infinite Paraile) Plate Channel

A variation of the example in Apperdix C.3 is to impose a hydrodynamically folly-
developed flow (parabolic velocity profile) at the entrance of the channel and to heat the wall ata
constant heat fiux. The mesh used in Appendix C.3 is also used for this example (Figure C.5). The
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MPSalza input file is given in Figure C.8. The hydrodynamic bovndary conditions are the same as
in Appendix C.3 except for the inlet velocity bonndary condition. For thiz condition, the function
user_bc_exact is called. The user must program an expression for & parabolic velocity profile
and place it in “rf_user_be_exact_fn.c.” For this example, the profile for the x-component of
velocity was 6y —6y° at the inlet. For the energy squation, the Neumann boundary condition is
wsed to set the heat flux on the solid plate; a Dirichiet boundary condition is used to set the inlet

tamperature level,

Reducing the temperanire fteld data to calculate the focal Nusselt numbers, the data are
shown on Figure C.9 where ¥z = 2D, /k and % = x/D RePr for heat transfer coefficient &,
thermal conductivity £, and half-distance between the plaies I3, . Comparison with the three part
correlation of Shah and Bhatti [46] generally were within 2% over the entire range, excepl where
their correlation is discontinuous.

0 02

C.5. Yortex Shedding from a Circular Cylinder

Slow flow over a cylinder yields steady solutions; however, as the Reynolds number is
increased above 60, the character of laminar flow across a cylinder changes. A steady flow can 1o
longer be maintained; rather, the flow takes on a time varying behavior with a periodic shedding
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Loaal Mussslt Number for Thermally Devaloning Flow in Enfinite Parellel Plaie Channel
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Figure .9 Compariton of the MPSalva calculorion and an established correlation for the Nusselt munber
Jor thermaliy-deveipping flow in o parailel plate chamnel

of vortices [19]. This trangient behavior is illustrated in this exarmple. The 2D mesh consists of
4300 elements - 80 elements around the circumfersnce and 50 expanding away from the
cylinder, The domain is shown in Figure C.10, with a channel width of 30 diameters. The
circumnference of the cylinder is desagmated Side Set 1; the two channel walls are Side Set 2; the
inlet is Side Set 3; and the outflow boundary is Side Set 4.

A uniform velocity profile is provided at the inlet to the channel. The channe] walls’
boundary conditions are oo shesr and impervious. The cylinder’s boundary conditions are no slip
and impervions. No shear is set at the ootflow boundary. Experiments with Reynolds pumbers
Re = 60, 100, 200, and 600 were done. The input file for Re = 600 is given in Figure C.11.

To indicate the transient natore of the flow, the time varying variables were recorded at a
location a distance 4.0 downstream from the cylinder and 0.5 from the line of symmetry using the
time_historyv_point function. The calculation for Re = 60 was starred from an initial
guess of zero. For higher Reynolds numbers, the calculations were started using the restayt option;
the solution for the next lower Reynolds number was used as the starting point. At all times, the
automatic time step control was set t0 on. Care must be used in setting the initial time step size,
Relative Time Integration Error, and Solution Relative Error Tolarahce:
values that are too large can resude in the fransient being missed.
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Figure C.I0. The finite slement mesh af 4300 eiementy for the Vortex. Shedding from a Circular Cylinder
example problem.

Shown in Figure C.12(b) is the y-component of velocity as a fimction of time for the flow
with Re = 600. {Density was set to 1.0 and wviscosity was set to 0.1 in this exanple, so for
Re = 600, the average x-component of velocity was 60.) Figure C.12(a) shows a similar trace
for Re = 60, The von Kannan vortex gtreet behind the cylinder with Re = 600 is shown in
Figure C.13. In Figure C.12(a) and (b), the transient behavior before the steady pariodic nature of
the flow is fully established depends upon the grid geometry, convergence criteria, and initial
condition. For the fully-dsveloped, steady, periodic flow, the frequency of vortex shedding can be
charactenzed by the non-dimensional Strouhal namber, $7 = fD/V, where f is the frequency of
shedding, D is the cylinder diameter, and V is the finid approach velocity. St is a function of
Reynolds nomber. For the flosws calculated with MPSalsa, the resulis are shown in Table C.2,
Comparison is made against eXperimental data presented in Schlichting [39].
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Figure C.12. Time history plots for vortex shedding befind a cylinder: (o) Re=60, (&) Re=g00,




Figare C.13. Comtour plot showing the shedding vortices behind o cylinder af Re=600.

Re St St
(MPSalsa) {Schlichting)
&0 0.132 0.133
100 {1163 0.166
200 0.189 01%0
&00 0218 0.210
Tabie C.2. Comparison of Strouhal numbers as a function of Reyrolds number for MPSalsa and the experimenial
dara of Schlichting 391
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Appendix . CVD Reactor Examples
D.1. SPIN Comparison

This examnple problem was nsed to benchmark many of the capabilities of MPSalsa by
comparing results with another code, SPIN [6]. SPIN solves for reacting flows in the idealized
geormnetry of uwniform flow impinging on a otating disk of nfinite radivs, by using the von
Karman similerity solution that reduces the 3D problem to 1D. We solve a full 3D problem using
MPSalsa of flow impinging on a rotating disk with large radins, and compare the solutions near
the center of the disk with SPIN. The excellent agreement betwesn the two solutions verifies our
implemnentation of the fluid mechanics, heat and mass tramsfer, gas-phase reactions, surface
reactions, and the Danckwerts’ boundary conditions.

Our computational dernain for the MP3alsa calculation is cylindrical, with an inlet at
Hcm above a reactive rotating disk with a radivs of 7em. The surface of the 12,660-element mesh
used in this caleulartion, generated using CURIT {24], is showt: in Fipure D. 1.

1

L

Figure D.I. Surface of 12.660-clement mesh for SPIN Comparison sxample problem.

The reaction mechanism used in this calculation is for the deposition of Silicon, and has 8
gus-phase specics, 10 gas-phasc reactions, 2 surface specics, 8 surface reactions, and 1 bulk
component {solid silicon). A schematic diagram of the system is shown in Figure D.2.
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Inlet;
98.455% Hyp, 1.545% SiH,

T=600K, Vo=3cm/sec

RN,

10cm

Figure D.2. Schematic diagram of SPTN Comparison b problem. Plug flow enters the low
pFressure reactor 10 em ahmddwtwiﬁraﬁmgmﬁmitmmntwrpm ras-
phase reqctions and swrfuce reactions proceed as g function of concentragions and temperature.

Since the system is operating at a low pressure of 0.0G2 ammospheres, the diffusive flux of
species at the inlet boundary of the computational domain is non-negligible. In experiments, it is
the total flux of each species inte the domain that is known, but setiing Dirichlet conditions for the
species mole fractions and inlet velocity sets only the convective flux while ignoring the diffusive
comtribution. Danckwerts” boundary condition allows for the specification of the total flux at the
inlet boundary of the computational dornain, and functions are included in MPSalsa to implement
this condition (ses Section A.1.2).

The input file for this example problem is shown in Figure D.3. The problem is Tun on 256
processors, and can reach the steady-state directly usimg the tfomr linear solver with
no_owverlap bilu preconditioning, Danckwerts’ boundary condition on the wvelocity and
species mole fractions is specified at the inlet (side set 1), and surface reactions and spinning
conditions are spectfied on the disk surface (side sei 2). The outpot function
time_history_line is used to print information along a vertcal line at radins lcm, as
specified at the bottom of the input file.

The 3D steady state was reached in 10 minwtes on 256 Processors of the Intei Paragon,
and required 7 Newton iterations and 1149 total iterations of the lincar solver. Solving the
analogous infinite disk problem with SPIN required oaly 20 seconds on a wotkstation. The
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adaptive gridding strategy placed 171 nodes in the 1D mesh, as compared to the 30 elements in
the axial direction of the 3D MPSalsa mesh,

Comgarisons between MPSalsa and SPIN can be seen in Figure ID.4. Excellent agreement
can be seen for all quantities except the axial velocity, for which the differences reflect the fact
that SPIN is solving the problem on an infinite domain while MPSalsa uses a finite domain. The
axial velocity in the MPSalsa calculation is strengly eifected by the boundaries of the
computational domain at finite radius. The discrepancy diminishes at higher flow mtes. The
Stefan velocity into the disk does agree between the calculations, and is vacommonly large
because of the huge difference in molecular weights between Si and Ho and the low operating
PIESSuEe,

D.2. Rotating Disk Reactor

A real reactor used for the growth of Gallium Arsenide single crystals is the rotating disk
reactor [2, £2]. The reactor is desighed to capitalize on the perfect vaiformity of deposition of the
infinite disk configuretion, with the plug Gow of reactants Gnpinging on a rotating disk. The
reactor geomeiry, shown in Figure D.5, consists of a vertical cylinder sitting concentrically inside
a larger cylindrical reaction vessel. Flow enters uniformly through the circular cross-section of the
reactor and the inper cylinder is rotated, with the reaction occurring on the top heaied surface.
Flow exits through the anpular region between the cylinders. Very umiform growth has been
observed in this reactor over a large ceniral section of the disk where the effects of a finite rading
systamn are small.

The reaction mechanism used in this system for chemical vapor deposition of Gallium
Arsenide (from Moffat et al. [35]) consists of 4 gas-phase species, 3 surface species, and 2 balk
species, and can be found in the Chemkin input files “gaas_block.gas” and “gaas_block.sur.”
Thete are no gas-phase reactions, and 3 surface reactions.

In this example problem, we demonstrate the restarting capebility in MP35alsa by solving
for three different steady states of the reactor at three different sets of operating parameters, as
presented in Table D.1. The solation at the first set of conditions is used ag the initial guess for
finding the steady state at the second set, since it is closer to the selution than a trivial initial
guess. Similarly, the third solution uses the second solution as an initial guess. Being able to
restart from & previous solution is necessary for reactor analysis, where many seis of operating
conditions need to be explored. Also, using a series of steady-state jumps can be an efficient way
of reachipg a solution at conditions that are too complicated to allow convergence from a trivial
initial pness.
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The input file used to solve for the steady-staie at the second set of conditions in Table I».1
(vsing the solution at the first set of conditions in as the initial guess) can be seen in Figure D.6. In
the Initial Guess/Condition Specifications section, the lines
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on the top aof the inner eylinder, which 15 wsnally rotating. The flow ersters uniformly within the entire top
circie, flows over the disk, and flows out threugh an anrdar region.

Solution Disk Spin Rate Iniet Flow Tnkt Mole Fraction
Number {rpm) Velosity (cm/fsec) of GaMay

1 50 5 0.00013

2 100 15 0.00013

3 100 15 0.00065

Tuabie D.1. Three sets of conditions for three rans of the Rotating Disk Reactor axampls probiem.

Zat Initial Condition/Guass EXCIT_FILE
Time Index to Restart From 1

control the restarting, The keyword EXOII_FILE tells MPSalsa to get the initial guess from the
output file, which in this case is named “run-out.exoll.” Since thig file can store many solutions
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for thiz mesh, the second line talls MPSalza to use the first solution. The input lines Time Indax
to Output To and Nodal variable output times control the solution outpat to the
ExodusIl file, When a solution is being written, the tiny index is echoed to the standard output so
the user can keep track of which solution is stored in which location of the output file.

The boundary conditions in the input file are imposed over 6 different side sets, with S3§1
being the top circular inlet, SS#2 the annular outlet region, SS#3 being the cooled outer walls,
55#4 the heated, reactive, rotating disk, and S8#5 and SS#6 being the outside of the inner,
rotating cylinder, The f_xy_spin_disk function is used to specify velocity boundary
conditions for the rotation of the inwer cylinder, with the BC_DATA statement following it
supplying the rotation rate (in rpm) and the (x,y)} center of rotation. The
gurface_chemkin_be boundary condition uses the surface reaction information to specify
the mass flux of each species to the surface as well as the velocity into it (see Appendix A.1.1}.
The £_mole_fraction boundary condition is used 10 specify the mole Iractions of species at
the ilet, 25 opposed to the mass fractions that are the primitive vatiables (see Appendix A.1.4).
The SPECIES_LIST information is used te match up the input with the order that the species
are in the Chemkin input file, (Since the SPECIES_LIST has “1” as the first entry, 0.0044 is the
specified mole fraction for the first species in the Chemkin input file, which is AsHg ir this case.
The SFECIES_LIST can be listed as species namnes instead of imtegers to reduce possible
cogfusion.} The f_pressure boundary condition is an outflow boundary condition that
maiches the normal component of the normal stress with the local pressure (see Appendix A.1.5).

With finid mechanics and heat transfer, there are a total of 9 vmknowns per node. For the
coarse mesh of 7472 elements and 8499 nodes oged in this example problem, this corresponds to
76,491 total unknowns. (Published resulis for this reactor use a much finer mesh of around 40,000
elemnents [2, 12).) The problem is solved on &4 processors of the Intel Paragon.

Table D.2 shows. some solution statistics for the three solutions. The oumber of Newton
iterations and the solution time for the second and third solutions were less than those of the first
solution -~ even though they were at more difficult parameter values - because the initial guess
from a previous solution was ased.

Salwiion
Murber

1

Initisl Guess

—_———

Trivial

# of Mawion
Teerations

10

# of GMRES
Terations

e e ]

863

Executica Time on
4 Processors

510 sec

2

Seclation 1

B

204

459 gec

3

Sclution 2

6

637

336 ge

Table D.2. Seolution statistics for ihe three sohiions for the Rotaing Disk Reactor example problem. The parameter

values are shown in Toble D1 Resrarring from the previous solution decreased the execution Hime.
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Figure D.6. MPSalsa input fife jor the Rotating Disk Reactor exgmpie problem.
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The three stesdy-state solutions computed here are axisymmetric. The deposition rate of
Gallium Arsenide on the reacting surface as a function of the radial position is shown in Figure
D.7. An increase in velocity increases the deposition rate between sofutions 1 and 2, and the
increase in the reactant concentration increases the deposition rate between solations 2 and 3. The
large deposition rate at large radii is due to the rapid flow rate passing by the comer of the disk on
its way out the annular exit region. Crystal is harvested only in the center 2.5 cm region where the
deposition rate i more nniform.

5'0 L | . i r |

E‘ u

A 40 F -
e

o ] J
g a0 -
§ 20f Sol. '3 7
- ]
@

g 10fF - -
g Eﬂl! fE _/ -
D 1 1 L -’1
D 1 2 3 4
Radius [em)]

Figure D.7. Deposition profiles of Gads crystal in the Botating Disk Reactor for three
differenst sers of comditions (see Table D.1) a5 a function of the radial position on the disk

D.3. Tilted Reactor

The horizental CVD reactor with tilted susceptor and rotating substrate admits only three-
dimensional solutions. This configuration is an altsrnative to the rotating disk reactor for growing
Galliom Arsenide semiconductor crystals. We have used the same mechanism as in Appendix
D.2, which includes four gas-phase species.

The meactor configuration is shown in Figure D.8, Surface reaction (deposition) occurs
over the entire rectangular susceptor region, though the ¢rystal is harvested only from the insat
otating disk. The tilted bottom of the reactor canzes the flow to accelerate down the reactor
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length which decreases the boundary layer thickness, The increase in mass transfer to the surface
due to the thinning boundary layer is in part counterbalanced by the decrease in available reactant.

Figure D.8. S%&ca mesh for the Tilted Rescton exampie problem, The kexakedral mesk consisis of 43,568
, 45, nocdes, and 432,225 iotal ueimowrns. A sieady-sigte solution requines 20 minutes on 256
processors of the Intel Paragon.

In this example problem, the continvation solution type is demonstrated. The details can
be seen in the Solution Specifications section of the input file Figure D.9), which is reproduced

kete.
Solution Typa = continuaticn
order of Integration/continvation = 1
Etep Control s oEf
Inicial Paramatay Valipse = 0.0
Initial Step Size = 100.0
Maimem Nuphear of Steps = 3

The above six lines icll the program, respectively, that a continuation run is to take place, that
fisst-order continuation is 1o be used, that the parameter step size between solutions is to remain
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constant, that the initial parameter value is 0.0, that the step size is 100, and that the rua will stop
after thres steps.

The continuation parameter itself is assigned in the file “ef_user_continuation.c,” and in
this case is assigned to the disk spin rate. Since the disk spin rate is supplied in the first two
boundary conditions (numbered O apd 1), 2and is entered as the first component (indexed 0) of the
BC_DATA = FLOAT data ammay, the assigniment of the continuation paramester to the disk spin rate
requires only this bine:

BC_Types[0].BC Data ¥Float[d] = BC. Types[l].BC_Data_Float{ll = *con_par;

Also of note in the mput file are the use of generalized surfaces and boundary condition
functions. Since the disk bas both velocity boundary conditions due to disk rotation in each of the
tangential directions and reaction-induced Aow (the Stefan velocity) in the normal direction, and
since these directions do pot line np with the Cartesian coordinates, generalized surfaces are
naeﬁnd. The function £_xy_ spin_tilt%_disk (see Appendix A.1.3.2} is a special function
to calculate the tangential velocities of the rotating disk as a function of the position. This
function requires four arguments: the disk rotation rate (in rpm) and the coordinates of the center
of the disk. The Stefan velocity is imposed using the surface_chemkin_bc as a Dirichlet
condition on the normal velocity (see Appendix A.1.1).

At the end of the boundary condition section, the surface_chemkin_bc is also used
o capture the effects of the surface reactions on the mass balances. In this case, we have exercised
the option of providing initial goesses for the surface site and bulk fractions by uwse of the
SURFACE_SPECIES_LIST and associared BC_DATA statements.

The GMRES linear solver was used with a Krylov subspace size of 140, which, for this
preblem, is the largest subspace that fits on 256 processors of the Intel Paragon at Sandia National
Laboratories. The no_overlap_bilu preconditioner (incomplete block-LU decomposition
without overlap betwsen processors) was used sloag with row_sum scaling. A standard
Newton's method was used, with backtracking turned off apd a forcing term flag value of 4 to tum
off the incxact Newton algorithms.

The problem was run on 256 processors of the Intel paragon. MPSalsa required 62
minntes to complete the continnation yun on a reesh with 43,568 elements, 48,025 nodes, and
432225 total unknowns. The four solutions at disk spin rates of 0, 100, 200, and 300 rpms
required 12, 9, 8, and 9 Newton iterations, respectively. The first solution required more iterations
because it vsed a tovial initial guess. The first-order continuation algorithm requires one
additional matrix fill and solve after sach step to caleulate the tangent to the solution branch,
which is nsed to predict am mnitial guess for the next step.
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Figure 1.9, MFSalsa Input file for the Tilted Reactor example problom.
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A typical solution is shown in Figure D.10, which includes the str=amlines through the
domain and the contours of the reactant (GaMe3) on the swface. The effect of the counter-
clockwise rotating disk on the flow and susface concentrations can be seen.

Contours of GaMe3
on Reacting Susface

Figure D1, Srreamilines and surface concentrations for a solution 1o the Tilted Reactor sxample problem.

Figure 1,11 shows the time-averaged (spin-avetraged) deposition profiles over the disk for
the four different spin rates calculated in the one continuations run. (The profiles are calendated
using a non-standard post-processing routine, £_xy._spin_average, which expands the radial
variation in the deposition as a series of orthonermal pelynomials.} The disk rotation rate is seen
t0 be a munor factor in the pon-uniformity of the deposition, but it ¢an be seen that rotation
degrades uniformity.

130




Disk Spin Rate

300 rpm

GaAs Deposition Rate [A/sec]

0 1 2 3
Radius [em]

Figure D.11. Plot of the spin-queraged deposition rate or tae rotating disk in she Tilted Reactor exampls
problem for the 4 different spin rater.
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