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Abstract 

This manual describes the use of MPSalsa, an unstructured finite element (FE) code for 
solving chemically reacting flow problems on massively parallel computers. MPSalsa has been 
written to enable the rigorous modeling of the complex geometry and physics found in 
engineering systems that exhibit coupled fluid flow, heat transfer, mass transfer, and detailed 
reactions. In addition, considerable effort has been made to ensure that the code makes efficient 
use of the computational resources of massively parallel (MP), distributed memory architectures 
in a way that is nearly transparent to the user. The result is the ability to simultaneously model 
both three-dimensional geometries and flow as well as detailed reaction chemistry in a timely 
manner on MP computers, an ability we believe to be unique. 

MPSalsa has been designed to allow the experienced researcher considerable flexibility in 
modeling a system. Any combination of the momentum equations, energy balance, and an 
arbitrary number of species mass balances can be solved. The physical and transport properties 
can be specified as constants, as functions, or taken from the Chemkin library and associated 
database. Any of the standard set of boundary conditions and source terms can be adapted by 
writing user functions, for which templates and examples exist. 

The user can choose between a steady-state solution, an accurate transient run, a pseudo-
transient method for relaxing stiff steady-state problems, and a continuation run for analysis of the 
system's steady-state behavior with respect to a parameter. 

Through the input file, the user has considerable control over the nonlinear and linear 
solution strategies in order to find the fastest and most robust method for solving a given problem. 
The nonlinear solver includes an inexact Newton method and a backtracking strategy. For solving 
linear systems, a number of Krylov-based iterative methods along with several choices for 
preconditioners are available through the Aztec library. 

A large set of example problems is included in Appendices to familiarize the user with the 
capabilities and choices within MPSalsa. These examples serve to illustrate MPSalsa capabilities 
and to provide a variety of input files to use as templates for closely related application problems. 
Many of these examples can be run on a single processor or on multiple parallel processors. 
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1. Introduction 

In this report, the practical details and interface for running the suite of computer codes 
called MPSalsa are presented, along with a number of example problems. A companion theory 
manual provides the equations and solution methodology [42]. Employing unstructured meshes 
on massively parallel (MP) computers, MPSalsa is designed to solve two- or three-ciimensional 
problems that exhibit coupled fluid flow, heat transport, species transport, and chemical reactions. 
The equations defined in MPSalsa for fluid flow and mass conservation are the momentum 
transport and the total mass continuity equations for incompressible or variable density 
Newtonian fluids (Navier-Stokes equations). The heat transport equation and an arbitrary number 
of species transport-reaction equations are coupled with each other through chemical reaction 
source terms and with the fluid flow equations through property variation and body force terms. 

MPSalsa employs unstructured grids, using the ExodusH finite element database for its 
input and output files [40]. Therefore, it can be used in conjunction with the CUBIT mesh 
generation package [24], as well as other mesh generation packages that support the ExodusII 
standard. A number of pre- and post-processing routines for the ExodusH database can be used. 
Currently, two- and three-dimensional grids with Cartesian coordinates are supported. 

From its inception, MPSalsa has been designed for distributed memory MIMD computers 
with thousands of processors. It also runs on traditional serial workstations and networks of serial 
workstations. Interprocessor data communication and global synchronization are accomplished 
by a small number of message passing routines. These routines have been ported to many 
different message passing protocols, including the MPI standard [34] and the native nCUBE and 
Intel Paragon protocols. To achieve efficient parallel execution, the unstructured finite element 
mesh is partitioned or load-balanced in a pre-processing step. Each processor is assigned nodes 
from the mesh such that the computational load is balanced and the total amount of information 
communicated between neighboring processors is minimized. A general, automated method for 
subdividing an unstructured computational mesh is necessary. An ad-hoc or by-hand method 
would prove to be unusable for large meshes, and the resulting parallel communication efficiency 
would be difficult to predict, assess and control. In our implementation, we have used a general 
graph and mesh partitioning utility, Chaco [22], developed at Sandia National Laboratories. 

MPSalsa uses a finite element (FE) method to approximate the solution to the transport 
equations for momentum, total mass, thermal energy, and individual gas-phase chemical species. 
The approach is designed for low Mach number flows where an algorithm employing an implicit 
coupling between the pressure and velocity field is required. The discretization method is a 
Petrov-Galerkin finite element method (PGFEM) with pressure stabilization [25]. For more 
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highly-convective flows that are still laminar, a streamwise-upwinding (SUPG) stabilization is 
available [3, 48]. Each processor is responsible for calculating updates for all the unknowns at 
each of its assigned FE nodes. Each processor also stores and performs operations on the rows in 
the fully-summed, distributed matrix associated with these unknowns. Along processor 
subdomain boundaries, replicated FE unknowns, called "ghost unknowns," are stored and 
updated through interprocessor communication. These ghost unknowns are quantities needed for 
the local residual calculation and matrix-vector multiplication on a processor. Interprocessor 
communication occurs for each step of the iterative solution of the linear system as well as for 
each outer step in the non-linear and time-transient algorithms. This communication constitutes 
the major unstructured interprocessor communication cost in the program, and its algorithm has 
been extensively optimized within MPSalsa [43]. 

MPSalsa includes the option of using the Chemkin library to provide rigorous treatment of 
ideal-gas multicomponent transport, including the effects of thermal diffusion [28]. Chemical 
reactions occurring in the gas phase and on surfaces are also treated by calls to Chemkin [28] and 
Surface Chemkin [5], respectively. Thus, MPSalsa can handle varying numbers and types of 
chemical reactions and species in a robust manner. For example, the code can handle the complex 
temperature and pressure dependence predicted for unimolecular reactions (using the Troe 
parameterization [14]), important for chemical vapor deposition (CVD) systems which typically 
run at sub-atmospheric pressures. Surface site fractions and bulk-phase mole fractions are defined 
on all reacting surfaces using the Surface Chemkin package. Through this method, complex 
Langmuir-Hinshelwood-type [30] and precursor adsorption surface mechanisms, characteristic of 
many real CVD and catalysis surface systems, can be incorporated into the reacting flow analysis 
code. The capability of modeling simple dilute species transport and reaction, without the need of 
linking to Chemkin, is also included in MPSalsa. 

Both steady and transient flows may be analyzed. The time integration methods include 
true transient, pseudo-transient, and steady implicit solvers. The steady solver can be driven by a 
continuation routine for efficient parameter study of a system. A fully-implicit, fully-coupled 
Newton routine is implemented for robustness. The Jacobian matrix includes all coupling 
between the equations and unknowns, and neglects only terms due to the variation of physical 
properties calculated by Chemkin. A full numerical Jacobian that includes all terms is also 
available. The nonlinear solver has additional features for speed and robustness, including an 
inexact Newton approach and a backtracking algorithm. 

After construction of the distributed sparse matrix, the FE application calls the Aztec 
library of parallel, preconditioned Krylov solvers [26, 43, 44]. On each processor, the solvers 
operate on the local distributed sparse matrix and local solution vector using a combination of 
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global structured communication and unstructured communication to implement the parallel 
solver kernels. A substantial set of preconditioners is available, including several versions of ILU 
factorization, a domain-decomposition method. Although these advanced preconditioners require 
considerable memory, they provide a huge gain in robustness. 

Solution output from the program is achieved through several means. Output can be 
written to either a standard serial ExodusII file format [40] or a parallel extension of the ExodusII 
file format [23]. This extension consists of an individual standard serial ExodusII file for each 
processor with extra arrays that map the local numbering scheme on an individual processor to the 
global numbering scheme and encode the necessary communication information. The format can 
be used on both MP computers, such as the Intel Paragon, and distributed computing systems, 
such as groups of workstations. This parallel I/O capability can be used with today's primitive 
parallel I/O facilities with nearly linear speedup. A small but growing number of specialized 
output functions that analyze the solution and write solution information in non-ExodusJJ. formats 
have been written for specific applications. 

This report serves to document the user interfaces within MPSalsa and to provide several 
example problems. Chapter 2 describes several important pre-processing steps needed to carry out 
numerical simulations in an MP environment and the user interfaces to them. Section 2.1 gives a 
general description of mesh generation capabilities for ExodusII meshes. Section 2.2 describes 
how to run "exoIHb," an ExodusII interface to the Chaco package described above. Section 2.3 
describes how to set up and run Chemkin. Section 2.4 describes the pre-processor, "guacamole," 
which is used to set up and manipulate the ExodusII serial output file. Section 2.5 describes the 
serial and parallel I/O capabilities of the code. Section 2.6 gives some information on how to 
compile the code, and Section 2.7 shows how to run it. 

MPSalsa is controlled by a large input file, in which the user can change everything from 
the number of processors to the convergence criteria for the linear solver routine. Chapter 3 
describes the MPSalsa input file line by line. For instance, the problem type, which indicates 
which equations are to be solved, is specified in the General Specifications section, described in 
Section 3.1. Material properties and equations of state are described in Section 3.6. MPSalsa has 
extensive facilities for incorporating boundary conditions, which are documented in Section 3.7. 

The user can extend the models past what has been pre-defined within MPSalsa [42]. 
Functions can be written to represent variations in physical properties, additional source terms, 
and special boundary conditions, any of which can be dependent on the current solution, position, 
or time. In addition, functions can be written for specifying an initial guess, for testing the 
MPSalsa solution with an analytic solution, and for specifying a continuation parameter. The 
interfaces to these routines are described in Chapter 4. 

3 



Chapter 5 involves a general discussion of some solution strategies that can help the user 
tune MPSalsa for a specific application. MPSalsa implements a number of advanced numerical 
solution procedures for solving systems of nonlinear PDEs. The optimal choice of these methods 
can be difficult and, thus, we include a section to aid in this selection. Section 5.1 describes 
strategies for reaching steady-state solutions. There are many choices and parameters in the 
MPSalsa input file that control the solution algorithm and can greatly effect speed, convergence 
behavior, and robustness. This chapter is intended to introduce the user to some of these options. 

Appendix A lists and describes some user functions for application-specific boundary 
conditions and output routines (e.g., Danckwerts' boundary condition and time history output). 

The next three appendices contain example problems. Appendix B covers four simple 
examples with mass transfer, most of which can be run on a single processor. Appendix C covers 
a set of fluid mechanics and heat transfer problems on refined two-dimensional meshes. Appendix 
D contains three models for Chemical Vapor Deposition (CVD) reactors which involve flow, heat 
transfer, and mass transfer on three-dimensional meshes. 
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2. Pre-Processing and Running MPSalsa 

This chapter details the steps needed to run a successful MPSalsa simulation. It is 
recommended that the user first try this process with some example problems before starting on a 
new problem. There are several preprocessing steps that need to be done for every new mesh 
before running the MPSalsa program itself. They reflect the added complexities of conducting 
numerical simulations in a massively parallel computing environment. These steps include mesh 
generation, load balancing (only for multi-processor problems), and running the "guacamole" 
pre-processor for setting up the serial ExodusII output file and checking the input file for errors. 
For problems that get information from the Chemkin library, the Chemkin interpreter must also be 
run to create input files for the Chemkin suite of subroutines. 

2.1. Mesh Generation 

MPSalsa uses the ExodusII [40] finite element database format for storing the mesh and 
solution information. The FASTQ [1] package can be used to generate two-dimensional meshes, 
and either CUBIT [24] or FASTQ with GEN3D [17] can be used to create three-dimensional 
meshes. All of the mesh generation is done on workstations. 

During mesh generation, parts of the mesh are grouped as separate element blocks and 
identified with an integer element block ID. In the Materials Specifications section of the 
MPSalsa input file, the element block IDs of the computational domain are associated with a 
material, which may have different transport properties and constitutive models than other 
materials. Not all element blocks created in the mesh generation and stored in the ExodusII mesh 
file need be associated with a material, in which case such element blocks are not included in 
MPSalsa's computational domain. Note, however, that severe load imbalances may result, since 
load balancing is currently conducted only over all element blocks defined in an ExodusII file. 

All surfaces where boundary conditions will be applied must be identified as node sets or 
side sets during mesh generation. The application of boundary conditions is simpler if all surfaces 
that share the same boundary conditions for all equations are grouped into the same node set or 
side set. A node set is a list of nodes, while a side set contains sides of elements. Node sets can 
have Dirichlet conditions applied to them, but cannot support Neumann or Mixed conditions 
which require integration over the surface. Side sets may have all types of boundary conditions 
applied (Dirichlet, Neumann, or Mixed), since the elemental information is available to compute 
surface integrals. 
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2.2. Mesh Partitioning / Load Balancing 

When running MPSalsa on more than one processor, the mesh is partitioned into 
subdomains so that each processor "owns" a set of nodes. To assure that the work load is balanced 
among the processors, an equal number of nodes is assigned to each processor. At the same time, 
an optimal partition will minimize the amount of interprocessor communication needed to build 
the finite element residuals and Jacobian matrix by grouping neighboring nodes together on one 
processor. 

The Chaco [22] package, developed at Sandia, is a general graph partitioning program. We 
use the application "exoUlb" to run Chaco to partition the nodes of a finite element mesh stored in 
the ExodusII database. The "exolflb" program creates partitioning information and writes it in a 
load-balance file (with a ".neml" extension) in the NemesisI format [23]. (Note that this interface 
to the load balancer is new as of May, 1996, so many of the example problems have load balance 
files with the old naming convention, including the ".exoll" extension.) The load balance file 
contains information about the nodes owned by each processor and about "ghost nodes," which 
are owned by another processor but needed for residual calculations. With this information, the 
communication pattern for updates of ghost nodes for the mesh may be generated without any 
interprocessor communication. 

The utility "exoIUb" is run on a serial workstation and requires either command line 
parameters or a small input file to specify the name of the ExodusII mesh, the number of 
processors to partition it into, and the partitioning method. There are a variety of options for the 
partitioning algorithm, but we generally use the multilevel method [21]. An example of the input 
file, often called "input-ldbl," is shown in Figure 2.1. The only lines that are commonly changed 
are the input ExodusII file name and the number of partitions (processors), which is expressed as 
a product of two integers on the last line. Although any pair of integers whose product is 32 would 
also partition the mesh for 32 processors, the 4x8 designation would minimize communication for 
running on a rectangular set of processors that has dimensions 4x8. For hypercube-based 
machines, the argument for the Machine D e s c r i p t i o n line may be designated as 
HYPERCUBE = n, where n is the dimension of the hypercube. 

Additional options for "exoJJIb" parameters, including how to visualize the resulting mesh 
decomposition, may found in the "exolflb" manual page, the Chaco User's Guide [22], and the 
Nemesis User's Guide [23]. 

To partition the mesh, type the following command: 
> exolllb -a input-ldbl 
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INPUT EXODUSII PILE = box200.exoll 
GRAPH TYPE = NODAL 

DECOMPOSITION METHOD = MULTIKL, NUM_SECTS=1 
SOLVER SPECIFICATIONS = TOLERANCE=2.Oe-3,USE_RQI,RQI_VMAX=200 

MACHINE DESCRIPTION = MESH= 4x8 

Figure 2.1. Sample input file, usually named "input-ldbl, "for the e x o l l l b load balancing command. 

The load-balance file created from the file in Figure 2.1 will be named "box200-m32-bKL.nemI." 
The root name is the same as the ExodusII mesh file, the "m" signifies a mesh architecture, 
followed by the number of processors, while the "bKL" term refers to the multilevel method [21] 
with Kernighan-Lin improvement [29]. For information on the partitioning algorithm, see the 
Chaco [22] and NemesisI [23] manuals. 

2.3. Chemkin Interpreter 

Kinetic and transport data, such as the mixture viscosity, mixture thermal conductivity, 
multicomponent diffusion coefficients, and reaction rates, can be computed using the Chemkin 
library [28]. If Chemkin is to be used, information on the species and reactions for both the gas 
and surface phases must be supplied in the Chemkin and Surface Chemkin [5] input files. We use 
the convention that these files have ".gas" and ".sur" extensions. For example, the mechanism for 
the deposition of silicon nitride from SiF4 and NH3 in H2 carrier gas is contained in the files 
"Si3N4.gas" and "Si3N4.sur." These input files must be interpreted once to form linking files that 
can be efficiently read into MPSalsa. The current version that is installed in MPSalsa, Chemkinll, 
creates binary linking files, so the interpreter must be rerun on every new machine. 

A utility shell script called "interp" for executing the interpreters on a front-end 
workstation or the MP machine itself has been created and resides in the "bin" directory for each 
machine and operating system (e.g., "$MPSALSA_HOME/arch/sgi/bin/interp" for an SGI 
workstation, and "$MPSALSA_HOME/arch/smostoin/interp" for SUNMOS, where 
$MPSALSA_HOME is the directory in which all MPSalsa libraries and utilities have been 
installed). For all machines, interp can be run on the command line followed by the root name of 
the Chemkin data files, for instance: 

> interp Si3N4 
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for the silicon nitride mechanism. On the Intel Paragon, it can be run this same way using the 
"paragon" executable (for the OSF operating system) or using the "smos" executable (for 
SUNMOS). 

The "interp" command is a script that runs three separate interpreters: "ckinterp" for the 
gas-phase chemistry mechanism, "skinterp" for the surface-phase chemistry mechanism, and 
"tranfit" for the dilute multicomponent gas-phase transport properties [5, 27, 28]. Several recent 
publications include further details and examples of application programs using the Chemkin 
libraries [6,7,33]. 

The "interp" utility creates three linking files needed for MPSalsa execution: "chem.bin," 
"surf.bin," and "tran.bin." In addition, two links to databases are created ("tran.dat" and 
"therm.dat"). The other files that are created are not needed. The names of the three "*.bin" files 
can be changed, but they must be specified in the Chemistry Specifications section of the input file 
(see Section 3.4). 

When "interp" is run on a workstation, copies of the "*.bin" linking files are also created: 
"chem.bin.ws," "surf.bin.ws," and "tran.bin.ws." The "guacamole" pre-processor, described in 
Section 2.4, automatically adds the ".ws" extension to the file names given in the input file before 
looking for the files. The Chemkin binary files created on a parallel machine will not overwrite 
the ".ws" files, so "guacamole" can be run on one processor using the same input file as the 
parallel run. 

MPSalsa will soon be upgrading to the newest Chemkin version, ChemkinlJI, which 
allows for the creation of ASCII (and, therefore, machine-independent) linking files, which will 
greatly simplify the use of the interpreter. 

2.4. Guacamole 

A pre-processing routine called "guacamole" runs on a single processor and has two main 
purposes: to error-check the input file and to produce a serial ExodusII output file, creating fields 
and header information for user-defined output variables. This utility uses the same I/O routines 
as MPSalsa. The command for executing the pre-processor is 

> guacamole <input-file> 
where <input-file> is the name of the MPSalsa input file, and is, by default, "input-salsa." The 
executable is normally in the "bin" directory for the current workstation, so for an SGI 
workstation, the executable is "$MPSALSA_HOME/arch/sgi/bin/guacamole." The preprocessor 
sets up header information in the ExodusII output file, which requires that all variable information 
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be predefined. However, once the variables are defined, time series data of arbitrary size may be 
efficiently output to the ExodusII file. 

When "guacamole" creates the ExodusII output file, it writes all the mesh information to 
the file and creates space for the output of the solution variables. Therefore, whenever the mesh 
changes or the number of variables changes, "guacamole" must be rerun. For example, if a user 
has been running a fluid-mechanics problem (Problem Type f l u id_f low) and decides to add 
the energy equation (Problem Type f luid_flow_energy) and request output of the 
temperature unknowns, "guacamole" must be rerun. It must also be rerun if the user redefines the 
selection of solution components to be included in the output file. 

If "guacamole" is not run to generate the output file and scalar output of the results is 
requested, then MPSalsa will quickly terminate with the message: 

check_output_specs: WARNING, output file "outputjile.exoll" does not exist! 
[ex_open] Error: failed to open outputjile.exoll read only 

exerrval = -1 
ERROR returned from ex_open on Processor 0! 

2.5. Serial and Parallel I/O Utilities 

MPSalsa may be run using either serial (i.e., scalar) or parallel I/O facilities. The least 
complicated way to run MPSalsa is by using the scalar input - scalar output mode. A diagram of 
what is involved is included in Figure 2.2. As an initial step, "guacamole" is run to create the 
serial ExodusII output file. The pre-processor "guacamole" parses the MPSalsa input file to 
determine the user's choice of variables to output. When Chemkin is being used, "guacamole" 
also parses the Chemkin linking files to obtain the number of gas-phase species and their 
character string names. 

The user is now ready to run MPSalsa in scalar I/O mode, either on one or on many 
processors. In MPSalsa, processor 0 first reads the MPSalsa input file and, when Chemkin is to be 
used, the Chemkin linking files. This information is broadcast to all processors. Then, processor 0 
reads the serial load balance file, and its information is broadcast to all nodes and processed in 
parallel. Once this step is done, each processor knows which nodes it "owns," and additionally, 
which nodal information it needs from other processors. Processor 0 then reads the ExodusII 
mesh file and broadcasts its information to all processors. Each processor searches the messages 
for mesh information that it needs. Finally, each processor renumbers elements and nodes 
contiguously in its local memory. Local-to-global mapping vectors are retained for output 
processing. 

Alternatively, MPSalsa can do I/O on the parallel file system using the NemesisI package 
[23], as depicted in Figure 2.3. The parallel format is a multiple file format, with the number of 
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SERIAL FRONT END PARALLEL COMPUTE NODES 
Input-salsa 

chem.bin 
surf.bin 
tran.bin 

Q input.exoll J 

Reserve Space for Output fields 

(output.exollY 

Figure 2.2. Scalar Input - Scalar Output mode for I/O. The Broadcast and Fan-in routines have the 
potential to create I/O bottlenecks. 

files equaling the number of processors. A file name's suffix denotes which processor owns the 
file. The file structure within each parallel file is similar to the serial format, with the addition of 
local-to-global mapping information. It includes all load-balancing information contained in the 
serial load balance file as well as all information needed to set up the local computing 
environment on a processor, including ghost-node and communication information. 

The parallel I/O capability is enabled in MPSalsa via compilation flag options. The pre­
processor "guacamole" must be run to include user-defined header information in the output file. 
The "ex2pex" utility, part of the NemesisI package [23], is run next on the parallel computer. It 
translates the serial ExodusII file into the parallel file format and stores the parallel files on the file 
system to be used for MPSalsa's parallel I/O. It requires exactly the number of processors that 
will be used in the subsequent MPSalsa calculation. When MPSalsa is executed, processor 0 reads 
the input file and broadcasts its information to all processors as in the serial I/O case. However, in 
the parallel I/O case, each processor then reads its own parallel ExodusII file to initialize the 
mesh. Parallel solution output occurs in a reverse fashion, with each processor writing its own 
portion of the solution vector to its own output file. 

For visualization of results, results in a set of parallel ExodusII files must be collected to a 
serial ExodusII file. A utility "pex2ex" is currently being developed that will automatically 
combine parallel ExodusII files into one ExodusII file. Until it is completed, however, two 
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SERIAL FRONT END PARALLEL COMPUTE NODES 

Figure 2.3. Parallel I/O capabilities of MPSalsa. 

methods of obtaining serial ExodusII files exist. Both serial and parallel output may be specified 
for the run (see Section 3.9). This option will produce complete ExodusII files containing results 
from all time steps on both the serial and parallel file systems. If only the final result in a set of 
parallel ExodusII files is desired, the user can restart MPSalsa using the final result as the initial 
condition read from the parallel file system (see Section 3.8), maintaining the same stopping 
criteria as were used in the original computation, and specifying serial output. MPSalsa takes one 
Newton step to recognize that the stopping criteria are satisfied and writes the result to the serial 
file system. 

2.6. Compiling MPSalsa 

MPSalsa can be compiled on a number of different architectures. The GNU "make" 
program should be used to process the two-level Makefile structure. Machine-specific makefiles 
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have been created since the message-passing routines, compiler names, and compiler options vary 
between machines. The source code usually is installed in a directory named "*/Salsa." This 
directory usually has the following files and subdirectories (identified by appending "/"): 

> Is 
CVS/ Obj_ncube/ Obj_sgi/ Obj_sun/ 
CVS-CFile-Header Obj_ncube_ps/ Obj_sgim4/ el/ 
CVS-MFile-Header Obj_paragon/ Obj_smos/ md/ 
Makefile Obj_paragon_ps/ Obj_smos_ps/ pe/ 
Obj_alpha/ Obj_puma/ Obj_sol/ ps/ 
Obj_hp/ Obj_puma_ps/ Obj_sp2/ rf/ 

The source code for MPSalsa is stored in the last five subdirectories, which have two-character 
names. The directories starting with "Obj_*" hold the compiled object files, dependency files, and 
the executable ("salsa") for a specific machine/operating system. All of the parallel machines 
have the additional option of compiling for parallel I/O, for which there are the separate 
directories with the "_ps" suffix. 

To compile for a specific machine/operating system, the GNU make utility "gmake" is 
used. The target is the same as the extension on the "Obj_*" directory. For example, to compile 
for a Silicon Graphics workstation, a user would type 

> gmake sgi 
in the "*/Salsa" directory. To compile for the Intel Paragon with the SUNMOS operating system, 
a user would type 

> gmake smos 
on a workstation that has cross-compilers installed. 

MPSalsa runs on top of several software packages. Before MPSalsa may be linked, these 
packages must be compiled and stored in architecture-dependent directories. For example, the 
following directories are used to store libraries, include files, and binaries for SGI computers: 
$MPSALSA_HOME/arch/sgi/Ub, $MPSALSA_HOME/arch/sgi/include, $MPSALSA_HOME/ 
arch/sgi/bin, where $MPSALSA_HOME is the directory in which all MPSalsa libraries and 
utilities have been installed. Pointers to these directories are included in the top level MPSalsa 
Makefile. The first I/O package needed is NetCDF [37], the underlying format of the ExodusII 
unstructured finite element package [40]. ExodusII is the next package that needs to be installed. 
The other I/O package needed is NemesisI [23], the parallel extension to ExodusII. In addition, 
the Chemkin libraries [5, 27, 28] are needed if the user wants to use this database for ideal gas 
transport and gas- and surface-phase reactions. The Chaco package is need for load balancing 
[22]. MP linear solvers within MPSalsa are implemented in the Aztec package [26], which in turn 
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needs to have the Y12 package of sparse matrix linear solver routines [49]. Aztec, as well as a few 
of the other packages, require LAPACK [31] and BLAS [4] as well. 

2.7. Running MPSalsa 

The successful compilation of MPSalsa results in the creation of an executable in the 
machine-dependent subdirectory, "*/Salsa/Obj_xxx/salsa." MPSalsa can be run on workstations 
by executing the program with the input file name as the argument, i.e., 

> salsa <input-file> 
The default input file name is "input-salsa." 

On the Intel Paragon with the SUNMOS version of MPSalsa (whose executable is in the 
"Obj_smos" subdirectory), MPSalsa can be executed with the following command, 

> yod -sz <np> salsa <input-file> 
where np is the number of processors. The value of np must agree with the number of processors 
specified in the input file and the number of processors that the mesh was partitioned for. 
Execution of the "yod" command will spawn an MPsalsa job in the compute partition of the 
Paragon. As described in Section 2.5, either a serial file or a set of parallel files on the parallel file 
system must have been initialized previously for solution output to occur. Best results are 
obtained when both the executable and the VO files are stored on local Paragon disks, rather than 
on nfs-mounted disks. 
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3. The Input File 

In MPSalsa, problem-specific parameters are specified through an input file, which has the 
default name of "input-salsa." The input file is organized into 11 sections. The inclusion of certain 
sections is mandatory (General, Solution, Solver, Material, Boundary Condition and Initial 
Condition/Guess Specifications); other sections are optional (Enclosure Radiation, Output, 
Parallel I/O and Function Data Specifications). The Chemistry Specifications section is required 
only for problem types for which mass balance equations are solved (see Table 3.1). Each section 
is identified by MPSalsa by a unique section header, shown between two dashed lines in all of the 
examples below. MPSalsa does not parse a section unless it can find the section's header. If a 
required section's header is not found, MPSalsa generates an error message and exits. If an 
optional section's header is not found, no error message is generated. 

Each section is made up of several lines. Each line consists of a keyword followed by an 
equals sign and arguments that can be strings, integers, flags, or real numbers. In this chapter, 
each line of input is described and the type of acceptable argument is given in italics. When there 
are a small number of choices for an argument, such as yes or no, they are represented using the 
format {yes | no}. Optional text is listed between square brackets, such as [int], and input 
lines that are optional are completely enclosed in square brackets. For these input parameters, 
MPSalsa assigns the default value that is specified in the text. 

3.1. General Specifications 

General aspects of an MPSalsa execution are specified in the General Specifications 
section of the input file. Items such as the type of equations to be solved and the number of 
processors to be used in obtaining a solution are given in this section. This section is required and 
must begin with the General Specifications header, as illustrated in Figure 3.1. 

General Specifications 

Problem type 
Input FEM file 
LB file 
Output FEM file 
Number of processors 
Cartesian or Cylindrical 
Stabilization 
Debug 

when 2D 

= whole_enchilada 
= cvd-reacl.exoll 
= cvd-reacl-m256-bKL.nemI 
= cvd-reacl-out.exoll 
= 256 
= Cartesian 
= default 
= 3 

Figure 3.1. General Specifications example section. 
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Problem type = string 

The problem type input file line tells MPSalsa which equations are to be solved. MPSalsa 
can solve the Navier-Stokes equations in conjunction with the continuity equation, an energy 
equation, and an arbitrary number of species mass balance equations. Currently being tested are 
equations for flow in porous media and the k and e equations for modeling turbulent flow, which 
will be detailed in future releases of this document. Equations for modeling plasma and 
electromagnetism may be incorporated in the future, as may the capability of using a pre-
computed velocity field in the convective terms of the energy and species transport equations (for 
decoupled physics). 

The current strings recognized by MPSalsa and the equations that they enable are listed in 
Table 3.1. 

Equation Type —> 

Number of Equations in Type —» 

Problem Type i 

f l u i d _ f l o w 

e n e r g y _ d i f f 

m a s s _ d i f f 

f l u i d _ f l o w _ e n e r g y 

f l u i d _ f l o w _ m a s s 

energy_mas s _ d i f f 

who1e_ench i1ada 

Momentum 

Dim 

X 

X 

X 

X 

Total Mass 

1 

X 

X 

X 

X 

Energy 

1 

X 

X 

X 

X 

Species Mass 

NS 

X 

X 

X 

X 

Table 3.1. The seven currently recognized strings for the Problem Type input file line are listed, and the 
governing equation types that each flag enables are indicated. The number of equations associated with each type is 
shown in the second row, where Nj^im is the number of spatial dimensions in the problem and N$ is the number of 

species, specified in Section 3.6. 

Input FEM f i l e = filename 

This line specifies the name of the input ExodusII file containing the FEM geometry 
information. This file usually has a ".exoll" extension. It can include a path specification. This file 
must exist prior to the run. 
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[LB f i l e = filename] 

This line specifies the name of the load-balance file for runs to be performed on more than 
one processor. It can include a path specification. The file must be in the NemesisI format, and 
usually has a ".nemT extension. (Older files have the ".exoH" extension.) This input line is read 
only for runs performed on multiple processors. Default = none; error if not specified for multi­
processor runs. 

[Outpu t FEM f i l e = filename] 

This line specifies the name of the ExodusII output file. This file is also used to provide 
initial solution data for restarts, which are specified on the S e t I n i t i a l C o n d i t i o n / G u e s s 
input file line in Section 3.8. The file name can include a path specification. This ExodusII file 
must exist prior to the run, having been generated by the "guacamole" preprocessor (see Section 
2.4). Visualization of the FE solution uses this file. This input line is used only for scalar I/O; for 
runs utilizing parallel I/O, special file names are generated (see Section 3.10). Default = none; 
error if not specified for restarts or runs with scalar output. 

[Number of p r o c e s s o r s = integer] 

This line is used to specify the number of processors that will be utilized in solving the 
problem. For multiprocessor runs, this number must match the number of processors that the 
mesh was partitioned for. Default = 1. 

[ C a r t e s i a n o r C y l i n d r i c a l when 2D = string] 

This line specifies what coordinate system to use for 2D problems. Currently the only 
valid value is C a r t e s i a n . Future choices will include C y l i n d r i c a l _ 2 and 
C y l i n d r i c a l _ 3 for axisymmetric problems with two or three momentum balances to be 
solved. Default = C a r t e s i a n . 

[ I n t e r p o l a t i o n o r d e r = string] 

This line specifies the interpolation order for all quantities in the finite-element model. 
Valid options are l i n e a r and q u a d r a t i c . Default = l i n e a r . 

[Stabilization = {default ) supg}] 

There are currently two choices for stabilization of the FE equations: d e f a u l t and 
supg. The d e f a u l t option is a pressure-stabilized Petrov Galerkin method [25, 48], which 
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allows the use of equal-order interpolation of the pressure and velocity primitive variables. The 
supg option activates the streamwise-upwinding Petrov-Galerkin stabilization scheme [3] in 
addition to the pressure stabilization. Streamwise upwinding improves convergence to highly-
convected solutions (high Reynolds number flows) and reduces the amplitude of oscillations in 
the solution. Default = d e f a u l t . 

[Debug = integer] 

This line specifies how much information should be output to stdout during the run of 
MPSalsa, as well as how much summary information the linear solver library should output. The 
value of integer must lie in the range [0, 10], with 2 being a common value. Examples are: 

Debug = 0 

Debug>0 

Debug>6 

Debug>9 

Default = 2. 

3.2. Solution Specifications 

Minimal info is printed to stdout; only a summary of 
important flags and entries into important code segments are 
printed. 

Along with the above information, timing information and 
summary information on the global FE model (not the local 
processor FE model), node sets, side sets, and boundary 
conditions are printed. The solver library prints out residual 
summaries as well. 

Along with the above information, summary information on 
the local processor FE model is printed. Processor-based 
vector quantities such as residual, initial guesses, and 
solutions are included. Processor-based communication 
summaries and local-to-global mapping information are 
also printed. 

Along with the above information, information on the local 
matrix is printed. This can be a significant amount of 
information and is really meant to debug smaller problems 
in detail. 

The Solution Specifications section of the input file allows the user to choose the desired 
solution type, such as steady-state or time-dependent, and to control aspects of the solution 
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procedure, such as the time step size. This section of the input file is mandatory and must begin 
with the Solution Specifications header, as shown in Figure 3.2. 

Solution Specifications 

Solution Type 
Order of integration/continuation 
Step Control 
Relative Time Integration Error 
Initial Parameter Value 
Initial Step Size 
Maximum Number of Steps 
Maximum Time or Parameter Value 

= transient 
= 1 
= on 
= 4.0e-3 
= 100.0 
= 1.0e-5 
= 75 
= 100.0 

Figure 3.2. Solution Specifications section example. 

In the rest of this section, each line of the Solution Specifications section is described 
separately. Since time-dependent and continuation runs both take steps from one solution to the 
next, many of the lines have dual meanings depending on the solution type. 

So lu t ion Type = string 

This line specifies the type of solution desired, which can be one of the following five 
strings: s teady, t r a n s i e n t , pseudo, c o n t i n u a t i o n , and o p t i m i z a t i o n . If the 
s t e a d y string is specified, the code will attempt to solve the steady-state version of the 
governing equations (with no time derivative terms). The rest of this section of the input file is 
then ignored. 

When the solution type is t r a n s i e n t or pseudo, the time-dependent equations will be 
solved. A t r a n s i e n t run attempts to follow the solution in a time-accurate manner by keeping 
the integration error under a specified tolerance, while the pseudo option is used to time step to 
a steady state (or past uninteresting transient behavior) by aggressively increasing the time step 
size regardless of the error in the time integrator. The specifics of the integration and stepping 
scheme can be manipulated with the subsequent input file lines. 

The c o n t i n u a t i o n solution type is used to solve for a series of steady-state solutions 
as a function of a parameter. The steady-state versions of the governing equations are solved, the 
continuation parameter is incremented and a new steady-state solution is sought. The subsequent 
lines in this section are used to control the run. The user has the flexibility of choosing any 
combination of physical properties and boundary condition values as the continuation parameter, 
but must do so by programming the routine u s e r _ c o n t i n u a t i o n in file 
"rf_user_continuation.c" and recompiling (see Section 4.7 and Section 5.4). 
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The opt imi z a t i o n solution type is not currently a supported feature, but has been used 
successfully for one application [8]. This solution type is similar to continuation, but instead of a 
single parameter being incremented within MPSalsa, a set of parameters is changed by an 
external optimization program. MPSalsa must be modified to calculate and write out an objective 
function after every solution for the optimization package to use. 

[Order of i n t e g r a t i o n / c o n t i n u a t i o n = integer] 

This flag has separate meanings depending on whether the solution type is time-dependent 
( t r a n s i e n t or pseudo) or con t inua t i on . For t r a n s i e n t or pseudo solutions, this 
flag has a value of 1 for first-order Forward-Euler/Backward-Euler predictor/corrector 
integration, and a value of 2 for a second-order Adams-Bashforth/Trapezoid-Rule scheme. (The 
second-order scheme starts with pair of first-order steps to get started.) Default = 1. 

For c o n t i n u a t i o n runs, this flag can have a value of 0 ,1 , or 2. A value of 0 turns on 
zero-order continuation, where the solution at the previous step is used as an initial guess for the 
current step. (This is equivalent to changing the value of the continuation parameter in the input 
file and restarting from the previous solution.) A value of 1 selects first-order (or Euler-Newton) 
continuation. In this case, the tangent to the previous solution with respect to the continuation 
parameter is calculated numerically, and is used to calculate an initial guess for the current 
solution. For problems whose solutions vary linearly with respect to the continuation parameter, 
this guess should be the correct solution. A flag value of 2 selects arc-length continuation, which 
is not currently implemented. This option will allow the user to follow steady-state solution 
branches that pass through turning points with respect to the continuation parameter. Default = 1. 

[Step Control = {on | off}] 

The Step Cont ro l input line is read for t r a n s i e n t , pseudo, and 
c o n t i n u a t i o n solution types, and can have values of on or off. When step control is on, the 
step size will be adjusted after successful steps. For t r a n s i e n t runs, the step size is chosen as a 
function of the value of the R e l a t i v e Time I n t e g r a t i o n E r ro r (described below). For 
pseudo and c o n t i n u a t i o n runs, the step size will always be increased following a 
successful step, with the increase depending on the ratio of the number of Newton iterations 
needed for convergence divided by the maximum number of Newton iterations allowed. If the 
value of the Step Cont ro l is off, the step size is never increased. For any of the solution 
types and either of the flag values, the step size is cut in half after a failed step (i.e., when a 
converged solution is not found in the maximum number of Newton iterations). Default = on. 
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[Re l a t i ve Time I n t e g r a t i o n E r ro r = float] 

The R e l a t i v e Time I n t e g r a t i o n E r r o r input line is used only for t r a n s i e n t 
solutions. This line sets the target for the error incurred on each time step. A value of the time 
integration error is calculated using the difference between the predicted and corrected value of 
the solution by the method of [20]. If this estimated error is twice the value set in the input file, the 
time step is rejected and the time step size is cut in half. Otherwise, if Step Cont ro l is on, the 
ratio of the input error value and the estimated error are used to pick the next step size. The value 
of the R e l a t i v e Time I n t e g r a t i o n E r ro r must be greater than the So lu t i on 
R e l a t i v e E r r o r Tolerance, which is input in the Solver Specifications section to set the 

_3 
convergence criterion for the linear solver. Default = 10 . 

[ I n i t i a l Parameter Value = float] 

The I n i t i a l Parameter Value input line is used only for continuation runs. The 
number is the initial value of the continuation parameter. See Section 4.7 for details on the 
implementation of continuation. Default = none, which is an error for continuation runs. 

[ I n i t i a l Step Size = float] 

The I n i t i a l Step Size input line is used for t r a n s i e n t , pseudo, and 
c o n t i n u a t i o n runs. The value is the size of the first time step for time integration runs and the 
first continuation parameter step size for continuation runs. When Step Cont ro l is off, this 
step size stays constant throughout the run as long as each step converges. Default = none, which 
is an error for t r a n s i e n t , pseudo, and c o n t i n u a t i o n runs. 

[Maximum Number of S teps = integer] 

This input line is used for t r a n s i e n t , pseudo, and c o n t i n u a t i o n runs. When this 
maximum number of steps is reached, the program will terminate. Default = 1000. 

[Maximum Time or Parameter Value = float] 

This input file line is used for t r a n s i e n t , pseudo, and c o n t i n u a t i o n runs. When 
this value is exceeded by the time value in time-dependent runs or the continuation parameter in 
continuation runs, the program will terminate. Default = none. 
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3.3. Solver Specifications 

The Solver Specifications section of the input file controls the nonlinear and linear solver 
routines used in MPSalsa. It is a required section of the input file. An example of this section, 
including the Solver Specifications header, is found in Figure 3.3. Each line is discussed below. 

Solver Specifications 

Override Default Linearity Choice 

— nonlinear solver subsection: 

Number of Newton Iterations 
Use Modified Newton Iteration 
Enable backtracking for residual reduction 
Choice for Inexact Newton Forcing Term 
Calculate the Jacobian Numerically 
Solution Relative Error Tolerance 
Solution Absolute Error Tolerance 

— linear solver subsection: 

Solution Algorithm 
Convergence Norm 
Preconditioner 
Polynomial 
Scaling-
Orthogonalization 
Size of Krylov subspace 
Maximum Linear Solve Iterations 
Linear Solver Normalized Residual Tolerance 

= 

-
= 
= 
= 
= 
= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 

default 

15 
no 
no 
4 
no 
1.0e-3 
1.0e-8 

gmres 
0 
no_overlap_ilu 
LS,1 
row_sum 
classical 
25 
50 
1.0e-6 

Figure 3.3. Solver Specifications section example. 

[Override Defaul t L i n e a r i t y Choice = string] 
This input line can be set to three possible strings: d e f a u l t , l i n e a r , or non l inea r . 

The code decides whether the set of governing equations are linear or nonlinear depending on the 
problem type specified at the top of the input file. For instance, an energy_dif f problem is 
assumed to be linear, while a f lu id_f low_energy problem is assumed to be nonlinear. If 
users decide to override this default, as would be needed, for example, when using a temperature-
dependent thermal conductivity with an otherwise linear heat equation, they can set the flag to 
l i n e a r or non l inea r . Default = de f au l t . 
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3.3.1. Nonlinear Solver Subsection 

[Number of Newton I t e r a t i o n s = integer] 
This line specifies the maximum number of Newton iterations that MPSalsa will allow in a 

single nonlinear solve. If this maximum is reached and the convergence criterion has not been 
met, the nonlinear solve ends unsuccessfully. For steady-state problems, MPSalsa terminates with 
a fatal error. For time-dependent problems, a convergence error is triggered for the current time 
step, and control is returned to the time stepping routine. Currently, the time stepping routine 
reverts to a Backward Euler method, halves the time step, and tries again. Similarly for 
continuation problems, the continuation algorithm cuts the parameter step-size in half and 
attempts to resolve the problem. Default = 25. 

[Use Modified Newton Iteration = {yes | no}] 
A modified Newton iteration uses a previously-computed preconditioning matrix for the 

Newton step, instead of recomputing the preconditioner from the Jacobian at the current solution. 
This option is not yet supported. Default = no. 

[Enable b a c k t r a c k i n g f o r r e s i d u a l r e d u c t i o n = {yes | no | d e f a u l t } ] 
When a Newton iteration causes the norm of the residual to increase rather than decrease, 

backtracking will not accept the update. Instead, the algorithm looks in the same direction as the 
solution update from the Newton iteration. Performing residual calculations along the solution 
path given by this direction, it finds the solution that minimizes the residual [9,10]. Backtracking 
has been shown in some cases to help converge to a steady-state when Newton's method without 
backtracking failed. The d e f a u l t flag disables backtracking for t r a n s i e n t runs but enables 
backtracking for all other solution types (pseudo, s teady, and con t inua t ion) . Default = 
d e f a u l t . 

[Choice fo r Inexac t Newton Forc ing Term = integer] 
An inexact Newton's method uses Newton's method with an iterative linear solver, where 

the linear solver method (e.g., GMRES) is not forced to fully converge at each step. The 
reasoning behind this method is that it is a waste of computational time to fully solve the linear 
system when the nonlinear system itself is far from a converged solution. Inexact Newton steps 
are controlled by a single parameter, etajc, which is the required drop in the ratio of the norm of 
the residual to the initial norm of the residual for a given linear solve. A normal Newton's method 
uses a small, constant value for etajc so that each linear solve is accurate, as it would be when 
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using a direct solver. This is the case when the inexact Newton forcing term is set to 4, with the 
etajc tolerance value given by the L inear Solver Normalized Res idual Tolerance 
input line below. Other values for the inexact Newton forcing term, 0-3, allow for larger values of 
etajc, so that each Newton iteration takes less time; however, more Newton iterations are often 
required for convergence. The possible values for the flag are summarized in Table 3.2. Default = 
0. 

Flag Value 

0-1 

2 

3 

4 

Choice for etajc in Inexact Newton's Method 

Eisenstat and Walker, Method 1 [9, 10] 

Eisenstat and Walker, Method 2a 

Eisenstat and Walker, Method 2b 

Linear Solver Normalized Residual Tolerance ("Exact Newton") 

Table 3.2. This table summarizes the choices for the Inexact Newton forcing term. The variable etajc is the required 
drop in the linear residual for a successful linear solve. 

[Calculate the Jacobian Numerically = {yes | no}] 
A fully numerical Jacobian may be used in MPSalsa for debugging purposes. Instead of 

the Jacobian matrix being computed analytically, the residual equations for each element are 
recomputed one extra time for each unknown in the element while that unknown is numerically 
perturbed. A forward difference formula is used to calculate the Jacobian contributions. For 
problems with large numbers of unknowns per node, the numerical Jacobian can be more than an 
order of magnitude slower than the analytic Jacobian, in part because rigorous property 
evaluations for multicomponent gas equations are very expensive. The numerical Jacobian is a 
powerful tool for debugging changes to the governing equations as well as for checking the effect 
of physical property variations — some of which are ignored in the analytic Jacobian but included 
in the numerical one — on the convergence behavior. Default = no. 

[So lu t ion R e l a t i v e E r r o r Tolerance = float] 
[So lu t ion Abso lu te E r r o r Tolerance = float] 

These two flags set the tolerances that are used in calculating the convergence criterion for 
the update vector in the nonlinear solver. This criterion is 

N ig i 

TrY—r^r <l-0, (3.1) 
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where e^ and eA are the relative and absolute tolerances entered in the above input lines, 5{. is the 
update for the unknown xt, and N is the total number of unknowns. The quantity on the left side 
of this inequality is what is output from the solver as the update norm. 

The convergence of the nonlinear solver requires that the above inequality be met and that 
the nonlinear residual drop by two orders of magnitude from its original value. (This ratio is 

_3 
output by the code as the "Ratio of scaled residual_k/residual_0.") Default: e^ = 10 and 

>* - 1 0 ~ 8 -

3.3.2. Linear Solver Subsection 

[So lu t ion Algor i thm = string] 
This flag chooses the linear solution algorithm from the Aztec package. The choices are 

listed in Table 3.3. For a description of the different methods, see the Aztec manual [26]. Default 
= gmres. 

Keyword 

gnures 

t f q m r 

e g 

c g s 

c g s t a b 

l u 

Linear Solution Algorithm 

Restarted General Miriirnized Residual Method 

Transpose-Free Quasi Minimum Residual Method 

Conjugate Gradient Method 

Conjugate Gradient Squared Method 

Stabilized Biconjugate Gradient Method 

Full sparse LU factorization (available only on 1 processor) 

Table 3.3. This table enumerates the choices of linear Solution Algorithm-/2ag. The strings in the left columns are the 
keywords recognized by MPSalsa. 

[Convergence Norm = integer] 
There are five choices for the norm that measures the progress of the linear solver. These 

are described in Table 3.4. The most common choice is 0, since this corresponds to the norm in 
the GMRES method. Default = 0. 

[ P r e c o n d i t i o n e r = string] 
This flag chooses the preconditioning method. For many problems, a good preconditioner 

is essential if the linear solver is to converge. The more robust preconditioning methods require 
more memory. Table 3.5 lists the available options for the preconditioner flag. Default = 
no_over l a p _ i lu. 
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Convergence Norm Specified Norm 
0 

1 

2 

3 

4 

II *B A °ll Ik Ik/Ik lb 

\\rk\\2/\\b\\2 

I|r12/||A|L 

H-/(WIJ*1I+IHJ 

(I N 

^ i= 1 ^
£/?N +eA7 > 

1/2 

7&We 3.4. The five choices for the Convergence Nona flag are shown. The linear system is Ax-b, for which at each 
iterate k (in the linear solution algorithm), r* = b- Ax*. The tolerances En and £« are those used by the nonlinear 

solver (Eq. (3.1)). For nonlinear problems, an initial guess ofx—0 is used, so choices 0 and 1 are equivalent. 

Keyword 

f u l l _ o v e r l a p _ i l u 
f u l l _ o v e r l a p _ b i l u 

d i a g _ o v e r l a p _ i l u 
d i a g _ o v e r l a p _ b i l u 

n o _ o v e r l a p _ i l u 
n o _ o v e r l a p _ b i l u 

p o l y 

s g s 

j a c o b i 

none 

Preconditioner 

ILU(0) and Block-ILU(0) with one level of overlap between processors. 

ILU(O) and Block-ILU(0) with overlapping of diagonal blocks between 
processors. 

ILU(0) and Block-ILU(0) with no overlapping between processors. 

Polynomial preconditioner, with the order specified by the next input line. 

Domain decomposition, no overlap, symmetric Gauss-Seidel. 

Jacobi preconditioner. 

No preconditioner applied. 

Table 3.5. This table enumerates the choices for the Preconditioneryfog. The strings in the left columns are the 
keywords recognized by MPSalsa. The Sca l ing file line has more options that can be used in combination with 

these. 

[Polynomial = {LS | NS}, integer] 
When a polynomial preconditioner is selected in the previous input line, this line specifies 

the type of polynomial and the order. The two choices for the polynomial type are "LS" for least-
squares, and "NS" for Neumann series. The polynomial order is an integer that must be preceded 
by a comma. For a least-squares polynomial, the choices for the order are 0-9, while for the 
Neumann series the choice is O-infinity. Default = LS, 3. 
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[Sca l ing = string] 
The Seal ing option specifies what type of scaling is done by the linear solver at the start 

of the linear solve. Scaling is similar to preconditioning but is carried out only once at the 
beginning of the linear solve. Each scaling option may be used in conjunction with any choice of 
a P recond i t i one r , although only the symmetric scaling options should be used with the 
conjugate gradient preconditioner. The available scaling options are listed in Table 3.6. Block 
Jacobi scaling uses Gaussian elimination to invert the diagonal (Nu x Nu) blocks of the matrix, 
where Nu is the number of unknowns per node. The inverted block is then multiplied into the 
matrix and right-hand side. Row-sum scaling uses a diagonal matrix as the preconditioner, with 
the row sums as the diagonal entries. Default = row_sum. 

Keyword 

b l o c k _ j a c o b i 

sym_diag 

row_sum 

none 

Scaling Method 

Right hand scaling using the inverted diagonal block. 

Symmetric (right and left) scaling using the matrix diagonal. 

Right hand scaling with the sum of the absolute values of the column entries. 

No scaling. 

Table 3.6. This table enumerates the choices for Scal ing. The strings in the left columns are the keywords 
recognized by MPSalsa. 

[Orthogonalization = {classical | modified}] 
For the GMRES method, the vectors of the Krylov subspace must be made orthonormal. 

The two options for the Gram-Schmidt orthogonalization method are c l a s s i c a l and 
modif ied [18]. While the modified method is more stable numerically, its parallel 
implementation is significantly more costly. In our experience, classical orthogonalization has 
worked well for the problems we have solved. Default = c l a s s i c a l . 

[Size of Krylov subspace = integer] 
For the restarted GMRES method (So lu t ion Algori thm choice gmres), the Krylov 

subspace size is the number of Krylov vectors to store before restarting. With higher values of this 
number, convergence of the linear solver is more robust, but more memory is needed. Each 
directional vector that is saved requires an amount of memory equivalent to an entire solution 
vector. For finding steady states of large problems, this number can often (and should for 
maximum efficiency) exceed 100. Default =64. 
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[Maximum Linear Solve I t e r a t i o n s = integer] 
This line specifies the maximum number of iterations allowed in any given linear solve. 

When this maximum is reached before the residual has been reduced by the specified amount (as 
specified by the Choice for Inexac t Newton Forc ing Term and Linear Solver 
Normalized Residual Tolerance input lines), the linear solver terminates and an error 
condition is returned to the calling program. For nonlinear problems, the solution is accepted 
nonetheless and the next Newton step is started. For restarted GMRES, this number is usually 
picked to be a small integer multiple (2 or 3) of the Krylov subspace size. Default = 300. 

[Linear Solver Normalized Residual Tolerance = float] 
For linear problems and nonlinear problems for which the Choice for Inexac t 

Newton Forc ing Term = 4, this input line specifies eL, the drop in the residual required by 
the linear solver before it terminates successfully. The linear residual is checked after every 
iteration of the linear solver, so the solver does not do more iterations than necessary. Default: 

-4 -6 
eL = 10 for nonlinear problems; eL = 10 for linear problems. 

3.4. Chemistry Specifications 

The Chemistry Specifications section of the input file allows control over much of the 
reaction and diffusion processes for problems with mass transfer. This section is required only if 
the Problem Type indicates that mass balance equations are to be solved (see Table 3.1). A 
sample section of the input file, including the Chemistry Specifications header, is shown in Figure 
3.4. 

Chemistry Specifications 

Energy equation source terms 
Species equation source terms 
Pressure (atmospheres) 
Thermal Diffusion 
Multicomponent Transport 
Chemkin file 
Surface chemkin file 
Transport chemkin file 

= on 
= on 
= 1.0 
= off 
= stefan_maxwell 
= chem.bin 
= surf.bin 
= tran.bin 

Figure 3.4. Chemistry Specifications section example. 

[Energy equation source terms = {on | off}] 
This flag allows the user to turn on and of f the energy source terms due to chemical 

reactions. Default = on. 
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[Species equation source terms = {on | off}] 
This flag allows the user to turn on and of f the chemical reactions in the interior of the 

domain. Surface reactions are controlled separately through the boundary condition section. 
Default = on. 

[Pressure (atmospheres) = float] 
For problems with a CHEMKIN material type (see Section 3.6), the ideal gas equation of 

state is used to calculate the reaction rates and physical properties, such as density. This flag sets 
the thermodynamic pressure in the domain, which is assumed to be nearly constant. The local 
deviation of the pressure due to hydrodynamics, which is captured by the pressure unknown for 
fluid flow problems, is assumed to be negligible for the low Mach number applications that 
MPSalsa is written for. This input line is not generally relevant for other material types, although 
a user could write their own material property functions that use this quantity, which is named 
P therm in the code. Default = 1.0. 

[Thermal Diffusion = {on | off}] 
Thermal diffusion — also called the Soret effect ~ can be turned on or of f by this flag. 

Thermal diffusion can become a significant contributor to mass transfer when gas species of 
greatly varying molecular weights are exposed to a steep thermal gradient. This flag may be 
turned off to save computational time when the effect is small, or to simplify the equations for 
better convergence behavior. The thermal diffusion term can be responsible for a modest increase 
in time for the matrix fill. Currently, the thermal diffusion term is nonzero only for the CHEMKIN 
material type. Default = on for CHEMKIN materials. 

[Multicomponent Transpor t = string] 
This flag will, in the future, allow the user to switch between different diffusion 

formulations for multicomponent transport. Currently, mixture-averaged diffusion is the only 
option, and is specified by the mixture_avg flag. Stefan-Maxwell and Dixon-Lewis 
formulations are planned, and will take the flag values s t e f an_maxwell and d ixon_lewis . 
These flags are recognized but not included. Default = mixture_avg. 

[Chemkin file = chem.bin] 
[Surface chemkin file = surf.bin] 
[Transport chemkin file = tran.bin] 

These three input lines specify the names of the data files for problems that use Chemkin 
for the material properties. The Chemkin interpreter program "interp" (see Section 2.3) creates 
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these files with the following names, which are also the defaults: chem.bin, s u r f . b i n , 
t r a n . b i n . 

3.5. Enclosure Radiation Specifications 

Enclosure radiation algorithms that are used in the Coyotell code [16] are being included 
in MPSalsa. However, this capability is still under development and is not yet supported. The 
input-file section shown in Figure 3.5 may be included; however, it is optional. 

Enclosure Radia t ion S p e c i f i c a t i o n s 

Enclosure Radia t ion source terms = off 

Figure 3.5. Enclosure Radiation Specifications section example. 

3.6. Material Specifications 

In the Material Specifications section of the input file, the user can set the physical 
properties of the system. The computational domain can consist of multiple materials, each with a 
unique set of properties; at present, however, the same physics (i.e., governing equations) must be 
solved in all materials. A multi-physics capability is under development. 

An example of the Materials Specifications section is given in Figure 3.6. This section is 
required by MPSalsa. It differs from the previous sections in that it is mostly free-format. Only 
the first two lines and the last line are required. 

Number of M a t e r i a l s = integer 
This line must be the first fine of the Materials Properties section. It specifies the number 

of materials (usually one) that make up the computational domain. For multiple materials, the 
input lines that are described below are repeated multiple times. The materials are assigned to a 
block of elements in the mesh using the ELEM_BLOCK_IDS line described below. 

The first line for each material specifies the material type, material ID, and material name, 
and has the format: 

Mater ia l_Type = integerjd *Material_Name" 
The Mater ia l_Type string can be one of several keywords. These keywords are listed in 
Table 3.7. The CHEMKIN type is special, in that it tells MPSalsa to get the material properties 
from the Chemkin database. The integerjd is a unique integer identification (ID) number for the 
material. The user can supply any string, within quotes, as the Material_Name, which is only 
echoed back by MPSalsa in place of the integer ID. 
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Material ID Spec 

Number of Materials 
BOUSSINESQ 
ELEM_BLOCK_IDS = 1 2 

NUM_SPECIES 
SPECIAL_SPECIES 

SPECIES_NAME 
SPECIES_NAME 
SPECIES_NAME 

DIFF_COEFF 
DIFF_COEFF 
DIFF_COEFF 

WTSPECIES 
WTSPECIES 
WTSPECIES 

DENSITY 
CP 
VISCOSITY 
THERMAL_CONDUCT 
VOL_EXPNS 
G_VECTOR 
0_V0LUME_VAR-

XMF_0 
XMF_0 
XMF_0 
U_INIT = 10.0 
T_INIT = 298.0 

ifications 

= 1 
= 0 

= 3 
_EQN = yes 

1 Yk_0 
2 Yk_l 
3 Yk_2 

Yk_2 0.4 
Yk_0 0.5 
Yk_l 0.6 

Yk_0 1.0 
Yk_l 1.0 
Yk_2 1.0 

= 1.0 
= 2.0 
= 3.0 
= 1.0 
= 5.0 
= 0.0, 9.8, 0.0 
= Q_xx_yy 

Yk_0 0.2 
Yk_l 0.1 
Yk_2 0.6 

END Material ID Specifications 

"3Yk-gas" 

Figure 3.6. Material ID Specifications section example. 

The assignment of the physical and transport properties for the current material follow the 
Mater ia l_Type line until they are terminated by the line: 

END M a t e r i a l ID S p e c i f i c a t i o n s 
Any entries after this line are ignored. 

The material properties can follow in almost any order and all have default values. The 
only ordering that is required is that the number of species (NUM_SPECIES) must be specified 
before the species names (SPECIES_NAME) are given, and that the species names must be given 
before the species-dependent properties (DIFF_COEFFs WTSPECIES, XMF_0) are specified. 
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Material Type 

SOLID, NEWTONIAN 

BOUSSINESQ 

CHEMKIN 

Description 

Usual equations; isotropic conductivity, body force = p g . 

Body force term replaced by linear Boussinesq approx. in Temperature. 

All physical and transport properties calculated from Chemkin —ideal gas equation 
of state. Properties vary with thermodynamic state. 

Table 3.7. List o/Material_Type designators recognized by MPSalsa. 

Keyword 

ELEM_BLOCK_IDS 

G_VECTOR 

Argument 

integer list 

3 float 

Default 

0,0,0 

Description 

List of element blocks, as specified by the mesh generator, 
that compose the current material. 

The x-, y-, and z-components of the gravity vector. The 
units are arbitrary except for CHEMKIN materials, where 

cgs units are the default. 

Table 3.8. General Keywords: first of four tables listing and describing keywords recognized for the specification of 
material properties. 

Keyword 

DENSITY 

VISCOSITY 

CP 

THERMAL_CONDUCT 

VOL_EXPNS 

TJSTAUGHT 

Q_VOLUME 

Q_VOLUME_VAR 

VTSCJDISSP 

Argument 

float or 
VARIABLE_PROP 

float or 
VARIABLE_PROP 

float or 
VARIABLE_PROP 

float or 
VARIABLE_PROP 

float 

float 

float 

fnjname 

Default 

1.0 

1.0 

1.0 

1.0 

0.0 

0.0 

Description 

A floating-point argument sets a constant density 
value; the VARIABLE_PROP flag tells MPSalsa to get 

the value from the function "user_density." 

A floating-point argument sets a constant viscosity 
value; the VARIABLE_PROP flag tells MPSalsa to 

get the value from the function "user_viscosity." 

A floating-point argument sets a constant heat 
capacity; the VARIABLE_PROP flag tells MPSalsa to 

get the value from the function "user_Cp." 

A floating-point argument sets a constant thermal 
conductivity; the VARIABLE_PROP flag tells 

MPSalsa to get the value from the function 
"user_cond." 

Volumetric expansion coefficient (units are inverse 
temperature); used only for BOUSSINESQ materials. 

Reference temperature for BOUSSINESQ 
approximations. 

Constant volumetric source added to the heat balance. 

A volumetric source computed by the function 
fnjname and added to the heat balance. 

Causes viscous dissipation terms to be added to the 
heat balance; this flag is not currently implemented. 

Table 3.9. Fluid and Thermal Properties: second of four tables listing and describing keywords recognized for the 
specification of material properties. 
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Keyword 

NUM_SPECIES 

SPECIES_NAME 

WTSPECIES 

DIFF_COEFF 

SPEC_SPECIES_EQN 

Y_VOLUME 

Y_VOLUME_VAR 

JACOBIAN_SRC_TERMS_VAR 

Argument 

integer 

integer, 
string 

string, float 

string, float 

{yes 1 no} 

float 

fn_name, 
{SINGLE 1 

MULTIPLE} 

fnjname 

Default 

0 

1.0 

yes for 
CHEMKIN 
materials; 

no, 
otherwise. 

Description 

Number of species for problems that include 
mass transfer. 

The integer ID of the species, between 1 and the 
entry for NUM_SPECIES, followed by the 

name of the species. 

The molecular weight of species string, where 
string is a SPECIES_NAME input above. 

WTSPECIES should be given for each species. 

The diffusion coefficient of species string, 
where string is a SPECIES_NAME input 

above. DIFF_COEFF should be given for each 
species. 

When this flag is y e s , the last species equation 
is replaced by the requirement that the sum of 

the mass fractions is one. For CHEMKIN 
material types, the default value of y e s may 

not be overridden. 

A constant volumetric source term that is the 
same for all species. 

Volumetric source term for each mass balance 
computed by the user-specified function 

fn_name. SINGLE or MULTIPLE indicates 
whether the function returns one equation's 
source term at a time or the entire vector of 

source terms at once. 

If this string is present, the function,/7t_wame is 
used to compute the Jacobian entries due to the 
source terms; otherwise, a numerical Jacobian 

is computed. 

Table 3.10. Mass Transfer Properties: third of four tables listing and describing keywords recognized for the 
specification of material properties. 

The recognized strings (or keywords) that can be used to specify material properties are 
listed and described in Table 3.8, Table 3.9, Table 3.10, and Table 3.11. The strings are organized 
into separate tables only for this document; there are no distinctions in the code. 

The ELEMENT_BLOCK_IDS line in Table 3.8 is required for each material type. All 
element blocks in the computational domain (see discussion in Section 2.1) must be specified in 
one and only one material-type section. 

For CHEMKIN material types, the number of species and their names are specified in the 
Chemkin linking files. Additionally, the molecular weights, diffusion coefficients, mixture 
viscosity, mixture heat capacity, mixture thermal conductivity, multicomponent diffusion 
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Keyword 

U_INIT 

V_INIT 

W_INIT 

P_INIT 

T_INIT 

XMF_0 

Argument 

float 

float 

float 

float 

float 

string,float 

Description 

The initial value for the x-component of all the velocity unknowns. 

The initial value for the y-component of all the velocity unknowns. 

The initial value for the z-component of all the velocity unknowns. 

The initial value for all of the pressure unknowns. 

The initial value for all of the temperature unknowns. 

The initial species mole fractions, which are translated to mass 
fractions and assigned to the mass-fraction unknowns. The string is 
the name of the species, which comes from the SPECIES_NAME 

line or the Chemkin data file. 

Table 3.11. Initial Value Specifications: fourth of four tables listing and describing keywords recognized for the 
specification of material properties. 

coefficients, mixture density, and volume expansion coefficient are all specified or calculated 
from Chemkin functions. It is an error to redefine them in for a CHEMKIN material. 

3.7. Boundary Condition Specifications 

Generalized surface vectors and boundary conditions for a problem are specified in the 
Boundary Condition section of the input file. This section is required by MPSalsa. An example for 
a WHOLE_ENCHILADA problem is given in Figure 3.7. 

3.7.1. Generalized Surfaces 

A generalized surface is a side set in the ExodusII file for which the outward normal and 
tangential vectors of the corresponding geometric surface are given in the input file. These vectors 
may be used to specify side-set boundary conditions in the surface's normal and tangential 
directions. The number of generalized surfaces included in the input file is listed first. 

Number of g e n e r a l i z e d s u r f a c e s = integer 
The format for specifying each generalized surface follows. 

GENERAL I ZED_SURFACE side_set_number number_of_vectors 
TANGENT {real real [real] j Junction_name} 
[TANGENT {real real [real] j function_name} ] 
[NORMAL {real real [real] \ function_name} ] 

where 

side_set_number = the side set ID number in ExodusII, and 
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Boundary Condition Specifications 

Number of Generalized Surfaces = 2 
GENERALIZED_SURFACE 4 2 

TANGENT 0.8 0.6 0. 
TANGENT -0.6 0.8 0. 

GENERALIZED_SURFACE 5 3 
NORMAL user_normal 
TANGENT user_tangentl 
TANGENT 0. 0. 1. 

Number of BC = 12 
BC = T_BC DIRICHLET SS 1 INDEPENDENT 300. 0 
BC = T_BC NEUMANN SS 5 INDEPENDENT f_xx_yy 1 

BC_DATA = 1.0 2.0 0.5 
BC = T_BC MIXED SS 4 DEPENDENT jbc_fn 0.5 0.1 0.2 f_fn 0 
BC = P_BC DIRICHLET NS 9 INDEPENDENT 1. 0 

BC = U_BC DIRICHLET SS 1 INDEPENDENT 0. 0 
BC = VEL_TAN1_BC DIRICHLET GS 1 INDEPENDENT f_xy_spin_disk 1 

BC_DATA = 100.0 0. 0. 

BC = V_BC DIRICHLET SS 1 INDEPENDENT 0. 0 
BC = VEL_TAN2_BC DIRICHLET GS 1 DEPENDENT f_xy_spin_disk 1 

BC_DATA = 100.0 0. 0. 

BC = W_BC DIRICHLET SS 1 INDEPENDENT -9. 0 
BC = VEL_NORM_BC DIRICHLET GS 1 DEPENDENT surface_chemkin_bc 0 

BC = Y_BC DIRICHLET SS 1 INDEPENDENT f_mole_fraction 1 
SPECIES_LIST = 2 1 4 3 
BC_DATA = 1.232900e-04 1.095458e-02 9.889221e-01 0.0 

BC = Y_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0 
SPECIES_LIST = ALL 

Figure 3.7. Example of the Boundary Condition Specification section of the input file. 

number_of_vectors = the number of vectors used to describe the surface. 

Two orthogonal unit tangent vectors should be given for 3-D problems; one unit tangent vector 
suffices for 2-D problems. The unit outward-normal vector is optional; for boundary conditions in 
the outward normal direction, MPSalsa uses a vector normal to the mesh geometry if a vector 
normal to the surface is not specified. 

The outward normal vector and tangent vectors on the surface are described on the 
following line(s). Either the coordinates of a vector or the name of a function returning the vector 
may be used to specify the vectors (see Section 4.3). The example in Figure 3.7 includes two 
generalized surfaces. The first consists of side set 4 with two unit tangent vectors; since a normal 
vector is not specified, outward normal vectors on the surface are computed within MPSalsa. The 

34 



second consists of side set 5 with the outward normal vector returned by u s e r _ n o r m a l , a 
tangent vector returned by u s e r _ t a n g e n t l , and a constant tangent vector. 

MPSalsa numbers the generalized surfaces (starting from one) in the order they appear in 
the input file. Boundary condition statements for generalized surfaces reference the generalized 
surface number assigned by MPSalsa as their setjd (see Section 3.7.2). Alternatively, the number 
of the side set for which the generalized surface is described can be specified; MPSalsa associates 
the appropriate generalized-surface definition with the side set. 

3.7.2. Boundary Conditions 

The number of boundary conditions included in the input file is specified before the 
boundary conditions are listed: 

Number of BC = integer 
Each boundary condition has the following format: 

BC = bc_name bcjype setjype setjd dependenceJlag bc_yalues num_datajines 
where 

bc_name = {U_BC I V_BC I W_BC I T_BC I P_BC ! Y_BC I VEL_NORM_BC I 

VEL_TAN1_BC I VEL_TAN2_BC}; 

bcjype = {DIRICHLET I NEUMANN I MIXED}; 

setjype = {NS I SS I GS} 

setjd = side set ID number, node set ID number, or generalized surface number; 

dependenceJlag, = {DEPENDENT I INDEPENDENT}; 

bc_values is described in Table 3.13; and 

num_datajines = integer. 

The bcjiame indicates the variable to which the boundary condition should be applied. 
Possible values for bcjiame are listed in Table 3.12. All velocity boundary conditions on a side 
set must be specified in the same coordinate system; normal and tangential velocity boundary 
conditions (VEL_NORM_BC, VEL_TAN1_BC, VEL_TAN2_BC) may not be used with U_BC, 
V_BC, or W_BC on the same side set. 
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bc_name 

U_BC 

V_BC 

W_BC 

T_BC 

P_BC 

Y_BC 

VEL_N0RM_BC 

VEL_TAN1_BC 

VEL_TAN2_BC 

Variable to which the boundary condition is applied. 

velocity in the ^-direction. 

velocity in the y-direction. 

velocity in the z-direction. 

temperature. 

pressure. 

mass fractions. 

velocity in the direction normal to the surface. Note: only Dirichlet BCs are 
valid for VEL_NORM_BC. 

velocity in the direction of the first tangent vector (given by a generalized 
surface) to the surface. Note: only Dirichlet BCs are valid for VEL_TAN1_BC. 

velocity in the direction of the second tangent vector (given by a generalized 
surface) to the surface. Note: only Dirichlet BCs are valid for VEL_TAN2_BC. 

Table 3.12. Boundary condition names and their corresponding variables. 

The bcjype indicates the type of boundary condition to apply. Three types of boundary 
conditions are implemented in MPSalsa: Dirichlet, Neumann, and Mixed (Robin). Dirichlet 
boundary conditions have the following forms: 

y = fit, x, u, P, T, Y) for U_BC, V_BC, W_BC, P_BC, T_BC or Y_BC, (3.2) 

n • u = f{t,x, u, P, T, Y) for VEL_NORM_BC, and (3.3) 

t • u = fit, x, u, P, T, Y) for VEL_TAN1_BC and VEL_TAN2_BC, (3.4) 

where y = ux,u2, u3, P, T, or Y is the unknown whose boundary condition is assigned, n and t 
are unit outward-normal and tangential vectors specified in a generalized-surface definition or 
computed by MPSalsa, and / is a function of time t, position x, and the solution variables u , P, 
T, and Y at x . 

Neumann boundary conditions take the form 

n • % = f(*>x'u> p> T> Y ) , qc = -XVT, for the temperature equation, (3.5) 

n • jjt = fiU x> u> P> T,Y),jk= p YkVk, for the k mass fraction equation, and (3.6) 

(Tn) l = fit, x, u, P, T, Y) for the f momentum equation, (3.7) 

where n is the unit outward normal vector, A is the mixture thermal conductivity, p is the 
mixture density, V. is the diffusion velocity of species k, and T is the shear stress tensor. 
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Mixed boundary conditions replace the function / on the right-hand side of (3.5)-(3.7) 
with 

h(y-y0)+aflt,x,u,P,T,Y), (3.8) 

where a is a floating-point constant, and h = h(t, x, u, P, T, Y) and y0 = y0(t, x, u, P, T, Y) are 
functions of time t, position x, and the solution vector at x. 

In MPSalsa, DIRICHLET boundary conditions replace the finite-element equation for an 
unknown. NEUMANN and MIXED boundary conditions add a surface integral contribution to the 
finite-element equation for an unknown. Only DIRICHLET boundary conditions are currently 
implemented for VEL_NORM_BC, VEL_TAN1_BC, and VEL_TAN2_BC. NEUMANN and MIXED 
types will be added for these boundary conditions in the future. Pressure boundary conditions 
(P_BC) may also be only of type DIRICHLET. All other boundary conditions may be of any 
type. 

The ExodusII side or node set to which the boundary condition is applied is specified by a 
setjype and the setjdjium. The setjype is SS for a side set, NS for a node set, or GS for a 
generalized surface side set. The setjdjium is the number of the side or node set in the ExodusII 
file, or the number'of the generalized surface defined in the input file. NEUMANN and MIXED 
boundary conditions may be applied only to side sets or generalized surfaces; DIRICHLET 
boundary conditions may be applied to node sets, side sets, or generalized surfaces. 

Boundary condition functions / , h, and y0 in (3.2) - (3.8) may depend on the solution. If 
terms resulting from this dependence are to be included in the Jacobian matrix, the 
dependence Jlag should be set to DEPENDENT; otherwise, the dependence Jlag should be set to 
INDEPENDENT. Mixed boundary conditions should be labeled DEPENDENT only if at least one 
of the functions / , h, or y0 depends on the solution. For INDEPENDENT mixed boundary 
conditions, the analytic Jacobian contribution 

^-(h(t,x)[y-y0(t,x)] +afit,x)) = h(t,x) 

is computed by MPSalsa and included in the Jacobian. 

The bcj>alues vary depending on bcjype and dependence Jlag; the correct combinations 
of arguments are listed in Table 3.13. The values off,h, and y0 in (3.2) - (3.8) may be given by 
a real number or a function. The value of a in (3.8) is a real number. Analytic Jacobian entries 
may be given for DEPENDENT boundary conditions through specification of a 
jacobian Junction jiame, a function that returns the partial derivative of the boundary condition 
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with respect to the solution unknowns. If no jacobian Junction_name is specified, a numerical 
Jacobian is used for DEPENDENT boundary conditions. Many functions for / , h, and yQ and their 
analytic Jacobian entries are included in MPSalsa; see Section 4.2 and Appendix A.l. 

bc_type 

DIRICHLET 

DIRICHLET 

NEUMANN 

NEUMANN 

MIXED 

MIXED 

dependence Jlag 

INDEPENDENT 

DEPENDENT 

INDEPENDENT 

DEPENDENT 

INDEPENDENT 

DEPENDENT 

bc_yalues 

\fJunction_name \f_real] 

\jacobianJunction_name] {fJunction_name \f_real} 

{fJunction_name \f_real] 

\jacobianJunctionjmme] {fjunctionjiame \f_real} 

{hJunction_name 1 hjreal} {yOJunction_name 1 yO_real] 
{a_real} {fJunction_name \fjreal} 

\jacobianJunction_name] {hJunction_name 1 hjreal} 
{yOJunction_name 1 yOjreal] {a_real} \fJunction_name 1 
f_real} 

Table 3.13. Boundary condition specification ofbc_yaluesfor various bc_types and dependence Jlags. 

Additional data may be passed to boundary condition functions through the use of 
BC_DATA lines. The number of these lines for a boundary condition is given as the last entry, 
num_datajines, on the BC line. BC_DATA lines are formatted as follows: 

BC_DATA = datajype datajalues 
where 

datajype = {FLOAT I INT I INTEGER I FUNCTION}; and 

data_values = a list of real numbers (for datajype FLOAT), integers (for datajypes INT 
and INTEGER), or function names (for datajype FUNCTION). These data values are stored in 
one-dimensional arrays associated with the boundary conditions and may be accessed by user-
defined functions. See Section 4.2.1 for examples of the use of these values. 

Examples of each type of boundary condition are included in Figure 3.7. A few examples 
are detailed below. 

BC = P_BC DIRICHLET NS 9 INDEPENDENT 1. 0 
A Dirichlet boundary condition value of 1 is applied to pressure unknowns in node set 9. 

BC = VEL_NORM_BC DIRICHLET GS 1 DEPENDENT surface_chemkin_bc 0 
A Dirichlet outward-normal velocity boundary condition is applied to velocity unknowns 

on the first generalized surface listed in the input file. The value of the boundary condition is 
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computed in function s u r f a c e _ c h e m k i n _ b c (see Appendix A.1.1). Since the boundary 
condition is DEPENDENT but no analytic Jacobian function is specified, numerical Jacobian 
entries for the boundary condition are computed. 

BC = T_BC NEUMANN SS 5 INDEPENDENT f_xx_yy 1 
BC_DATA = 1.0 2.0 0.5 
A Neumann boundary condition is applied to the temperature equations for nodes in side 

set 5. The value of the boundary condition is computed in function f_xx_yy. No Jacobian 
entries for the boundary condition are generated since the boundary condition is INDEPENDENT. 
BC_DATA values of 1.0, 2.0, and 0.5 are passed to function f_xx_yy for use in computing the 
boundary condition value. 

BC = T_BC MIXED SS 4 DEPENDENT j b c _ f n 0 . 5 0 . 1 0 .2 f_fn 0 

A Mixed boundary condition of the form 

n qc = 0.5 (7 / - 0.1) + 0.2 f_fn (t, x, u, P, T, Y) 

is applied to the temperature equations for nodes in side set 4. The boundary condition is 
DEPENDENT; function j bc_ f n(t, x, u, P, T, Y) is called to compute analytic Jacobian entries 
for the boundary condition terms. 

Default: If no boundary condition is specified for an unknown in a node- or side-set, a 
natural boundary condition with value 0 is applied to the equation for the unknown. Thus, the 
default boundary condition for temperature, mass fractions or velocities is effectively NEUMANN 
with f{t, x, u, P, T, Y) = 0 in (3.5), (3.6), or (3.7), respectively. 

3.7.2.1. Mass Fraction Boundary Conditions 

A mass fraction boundary condition (Y_BC) may be applied to one, some or all of the 
species unknowns in the node or side set. The SPECIES_LIST input line indicates to which 
species the boundary condition should be applied. This line must directly follow the BC 
statement. 

SPECIES_LIST = {ALL | list of species numbers \ list of species names} 
The keyword ALL states the boundary condition should be applied to all species in the problem. 
Individual species may be listed by number or name, where the name is given either in the 
Materials Specifications (see Section 3.6) or the Chemkin files. 
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All Y_BC boundary conditions are specified in terms of mass fractions rather than mole 
fractions. DIRICHLET boundary conditions may also be specified as mole fractions via the 
function f_mole_f r a c t i o n included in MPSalsa (see Section A. 1.4). 

3.7.2.2. Precedence of Boundary Conditions 

For unknowns at nodes where two or more side or node sets intersect, Dirichlet boundary 
conditions always have precedence over other types of boundary conditions. That is, if a node has 
unknowns upon which Dirichlet and, say, Neumann boundary conditions are specified, the 
Dirichlet boundary condition is the boundary condition imposed. Moreover, the first Dirichlet 
boundary condition in the input file for such an unknown is the one applied. If a node belongs to 
more than one node or side set, as Node A does in Figure 3.8, the first Dirichlet boundary 
condition for each unknown at that node is the one applied. In Figure 3.8, the Dirichlet boundary 
condition for node set 2 would be applied to Node A. 

^ ^ B ~ ~ " " " " \ Node Set 1 □ 
Node A —^—E£i \ \ Node Set 2 • 

BC = T_BC DIRICHLET NS 2 INDEPENDENT 300. 0 
BC = T_BC DIRICHLET NS 1 INDEPENDENT 100. 0 

Figure 3.8. Example demonstrating the precedence of Dirichlet boundary conditions. Node A belongs to 
both node set 1 and node set 2. Its temperature would be set to a value of 300 in this example. 

3.8. Initial Condition/Guess Specifications 

In the Initial Condition/Guess Specifications section of the input file, users can specify 
what type of initial guess or initial conditions to use. This section is required by MPSalsa. An 
example is shown in Figure 3.9. MPSalsa's initial guess for the solution vector is established in 
several steps. The first step involves preprocessing the solution vector by setting all solution 
components to a value of zero. Next the Set I n i t i a l Condi t ion/Guess line described 
below is processed. Then, if the solution is not being read from an ExodusII file, all solution 
variables are set to their "INIT" values specified in the Material Specifications section of the input 
file, if any are specified. (For example, this is where the condition that the sum of the mass 
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fractions must equal one is enforced for CHEMKIN material types.) Finally, an additional user-
supplied function may be invoked as the last step. The remainder of this section describes each of 
the lines in the Initial Condition/Guess Specifications section of MPSalsa's input file. 

Initial Condition/Guess Specifications 

Set Initial Condition/Guess = constant 0.0 
Apply Function = no 
Time Index to Restart From = 1 

Figure 3.9. Example of Initial Condition/Guess Specifications section of the input file. 

[ S e t I n i t i a l C o n d i t i o n / G u e s s = string [value] ] 
This line is used to specify how to initialize the solution vector after the initial default 

processing is carried out. Valid options for this line are listed below: 

= c o n s t a n t [value] 
This option initializes all components of the solution vector that do not have 
material defaults to the constant value value. Default: value = 0. 

= random 
This option randomly assigns initial solution vector values in the interval [0,1]. 

= e x o I I _ f i l e 

Previously stored solution values in the Output FEM file, named in the General 
Specification Section, are used as initial values. This option is used for restarts. 

Default = c o n s t a n t 0. 

[Apply f u n c t i o n = {functionname | no}] 

A user-written function can be specified on this line to process the initial guess. This 
function is executed after the S e t I n i t i a l C o n d i t i o n / G u e s s input line so the function can 
be dependent on a solution read in from an ExodusII file. See Section 4.4 for details on how to 
write this function. Default = no. 
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[Time Index t o R e s t a r t From = integer] 
This line specifies the index of the time step from which to perform restarts or take the 

initial guess. This parameter is only pertinent if the Set I n i t i a l Condi t ion /Guess value 
is exoII_f i l e . Restarts can be performed from any data on the same geometry for steady or 
time-varying problems. Default = 1 if I n i t i a l Guess = exoII_f i l e ; ignored otherwise. 

3.9. Output Specifications 

In the Output Specifications section, the user may specify how output is to be performed 
to the ExodusII results file. Items such as which variables to output, how often to output these 
variables, and whether or not a user-definable subroutine is called are specified in this section. An 
example of this section is given in Figure 3.10. This section is optional; if it is absent, no output 
will be performed. A detailed description of each of the lines in the Output Specifications section 
follows. 

Output Specifications 

User Defined Output = no 
Parallel Output = no 
Scalar Output = yes 
Time Index to Output To = 1 
Nodal variable output times: 

every 1 steps 
Number of nodal output variables= 1 
Nodal variable names: 

Temperature 
Number of global output variables= 1 
Global variable names: 

Delta_time 

Test Exact Solution Flag 
Name of Exact Solution Function 

= 0 
= f xx yy 

Figure 3.10. Example of Output Specifications section in the input file. 

[User Defined Output = {yes | no}] 
This flag indicates whether the standard user-defined function, use r_ou t , should be 

called to output information to stdout. This routine allows user-customized output to be added 
easily. The routine currently distributed in MPSalsa prints out the maximum, minimum, and 
average value of each unknown as well as the positions of the maximum and minimum. Default = 
yes . 
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[Parallel Output = {yes | no}] 
This option allows the user to specify whether or not parallel output should be performed. 

It can be used simultaneously with scalar output. See Section 2.5 and Section 3.10 for more 
information on parallel I/O. Default = no. 

[Scalar Output = {yes | no}] 
This option allows the user to specify whether or not output to a scalar ExodusII results 

file should be performed. The name of the file is specified in the General Problem Specifications 
section (see Section 3.1). Default = no. 

[Time I n d e x t o O u t p u t To = integer] 
This line is needed only when (1) the MPSalsa run is a restart, and (2) the user wishes to 

control where in the ExodusII output file (which was used as the restart input file) the output is 
written. If the line is absent and the run is a restart, new output is appended to the end of the 
ExodusII output/restart file. When this line included under these conditions, it specifies at what 
time index (in the restart file) the output should start. The restart file will be overwritten at the 
time index specified. Note that the initial guess, as read during restarts, is output first. It is 
therefore suggested that the value of Time Index t o O u t p u t To be set equal to the Time 
I n d e x t o R e s t a r t From (see Section 3.8) so as to preclude having the same set of values 
stored twice in the file. Default = output appended to the end of the ExodusII output file. 

[Nodal v a r i a b l e o u t p u t t i m e s ; ] 
string 
This line specifies how often during transient runs output of the variables is to be 

performed. Valid values for string are 

e v e r y n s t e p s -- where n is a positive integer 

or 

e v e r y x.xx { s econds | u n i t s j mins} — where x.xx is a real positive number. 

Several things should be noted about this line. (1) The units are currently ignored since there is no 
way to specify what these units are for time stepping; (2) the variables to be output are named in 
the Nodal v a r i a b l e names line in the Output Specifications section; and (3) outputting 
e v e r y x { s e c o n d s | u n i t s |mins} outputs when the time value is the first time value 
greater than n*x, for any integer n. Similarly, the next time step output will be the first to have a 
time value greater than (n+\)*x. Default = output every time step. 
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[Number of n o d a l o u t p u t v a r i a b l e s = integer] 
The number of nodal variables to output is specified here. Default = the total number of 

variables. 

[Nodal v a r i a b l e names : ] 
stringl 
string! 

stringN 
The names of the nodal variables to output are given here. The number of nodal variable 

names N is given in the Number of n o d a l o u t p u t v a r i a b l e s line. Valid variable names 
are 

Temperature 
Velocity 
Pressure 
Mass_Fraction 
Displacement 

where any combination of the above is valid. The keyword L i s t is supported for the variable 
name M a s s _ F r a c t i o n . If the name is followed, on the same line, by the word L i s t , a list of 
species names is expected to follow until the keyword e n d l i s t is found. For example: 

M a s s _ F r a c t i o n L i s t 
S IF4 , H2, H 
N2, N 
SIHF3 

endlist 
The case of the keywords is not significant. Default: all nodal variables are written in the default 
order. 

[Number of g l o b a l o u t p u t v a r i a b l e s = integer] 
This line is used to specify the number of global variables that are to be output to the 

ExodusII results file. Global variables are single-valued variables that only have the single 
dimension of time. They are used to store parameters, timing information, global solution 
information, etc. Default = 0. 
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[Global va r iab le names:] 
stringl 
string! 

stringN 
The names of the global variables to be output to the ExodusII results file is given here. 

The number of global variables N to output is specified in the line Number of g l o b a l 
output v a r i a b l e s . Examples of variable names are 

Time_index 
Delta_time 
Matrix_Fi1l_Time 
Matrix_Solve_Time 

This line is required only if the number of global variables to output is greater than zero. The 
variable names are case-insensitive. In the future, we hope to allow the user to define additional 
global variables on this line. The pre-processor "guacamole" will install space for them in the 
output file, and the routine use r_ou t will be used to output values for these variables during an 
MPSalsa run. Default = none. 

[Test Exact Solution Flag = {0 | 1} [SUMMARY]] 
This line specifies whether or not the computed solution should be tested against a known 

2 
analytic solution; 0 = off, 1 = on. This comparison includes L -norm and max-norm error 
computations. Additional information on the location of the maximum error and an estimate of 
the largest characteristic length of an element in the FE mesh is provided. The optional keyword 
SUMMARY will lead to a separate error analysis for each variable in addition to the entire 
solution vector. Default = 0. 

[Name of Exact So lu t i on Funct ion = string] 
This line gives the name of the function that will be called to evaluate the accuracy of the 

computed solution. The generic function user_bc_exac t may be used by programming the 
desired exact solution function in the file "rf_user_bc_exact_fn.c." Default = none. 

3.10. Parallel I/O Specifications 

The Parallel I/O Section is used to specify characteristics about parallel disk subsystems 
connected to specific machines. This section of the input file is optional; if it is absent, no parallel 
I/O will be performed. An example is given in Figure 3.11. This section of the input file also 
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contains subsections for different parallel architectures. These subsections can remain in the file 
with the user specifying which architecture to use at run time. In this manner the file can be set up 
for a number of architectures (currently nCUBE and Intel Paragon) without rewriting the section 
each time a run is performed on a different architecture. 

Parallel I/O section 

Machine = paragon 
Staged writes = yes 

ncube subsection 

Number of controllers= 8 
Disks per controllers 1 
Root location = //df 
Subdirectory = jns/fireset 
Offset numbering from zero= 0 

paragon subsection 

Number of RAID controllers= 48 
Root location = /raid/io_ 
Subdirectory = tmp/jns/fireset 
Offset numbering from zero= 1 

Figure 3.11. Example Parallel I/O section. 

[Machine = string] 
This line is used to specify the computer architecture. Currently supported architectures 

are paragon, and ncube. Default = paragon. 

[Staged writes =.{yes | no}] 
This lines specifies whether or not writes to parallel disks should be staged. With staging, 

only one processor writes to each disk at a time. Staging avoids problems with temporary file 
name conflicts and limits on the number of concurrent open files on a single disk. It is 
recommended that staging be set to yes . Default = yes . 

[Number of c o n t r o l l e r s = integer] 
This line is specific to the nCUBE subsection and indicates how many controllers should 

be used in performing the I/O. It must be less than or equal to the number of disk controllers that 
are actually attached to nCUBE. Default = none; error when not specified for parallel I/O on the 
nCUBE. 
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[Disks p e r c o n t r o l l e r = integer] 
This line is specific to the nCUBE subsection and indicates how many of the disks 

attached to each of the controllers should be used to perform the I/O. It should be less than or 
equal to the number of actual disks attached to each controller. Default = none; error when not 
specified for parallel I/O on the nCUBE. 

[Number of RAID c o n t r o l l e r s = integer] 
This line is specific to the Intel Paragon and indicates how many RAID controllers should 

be used to perform the I/O. It must be less than or equal to the actual number of controllers on the 
machine. The number of RAID disks is equal to the number of RAID controllers on an Intel 
Paragon system. Default = none; error when not specified for parallel 110 on the Paragon. 

[Root l o c a t i o n = string] 
The root location is the root directory where writes to the parallel disk subsystem are to be 

performed. Generally, parallel disk subsystems are in directories that begin with a string. 
Embedded in the last part of the string is an integer identifying a particular disk. On an nCUBE 
system, for example, //dfOO would be used to write to the first controller and first disk attached to 
that controller. Similarly, for an Intel Paragon, the user could access the first disk by writing to 
/pfs/io_01 and the second disk by writing to /pfs/io_02. The value to be specified on the Root 
Loca t ion line of the input file is the full pathname of the disk device excluding the identifying 
integer ID. Figure 3.11 shows examples of the value of Root Locat ion for each of these cases. 
Default = none; error when not specified for parallel I/O. 

[Subd i rec to ry = string] 
The S u b d i r e c t o r y line specifies the subdirectory on the parallel file system in which 

MPSalsa should look for parallel output and input files. It should not begin with a "/" character. 
Default = none; error when not specified for parallel I/O. 

[Offset numbering from zero = integer] 
The offset numbering specifies on which parallel disk I/O should begin. For example, if 

MPSalsa is to be run on an Intel Paragon using 16 RAIDs beginning with /raid/io_08 then the 
value of the offset should be set to 8. Default = 1. 
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3.11. Function Data Specifications 

Users may pass problem-specific data to functions using the Function Data Specification 
section of the input file. The Function Data section is optional; users need not include it in the 
input file if they do not need problem-specific data. An example of the Function Data section is 
included in Figure 3.12. The functions are used for boundary conditions, material properties, 
specialized solution output, volumetric source terms, and testing of the code against exact 
solutions. Four types of data may be passed to functions: integers, reals, strings, and tables. 

Data Specification for User 

Number of 

Function = 
FN_DATA = 
FN_DATA = 
FN_DATA = 
FN_DATA = 

Function = 
FNJDATA = 
FN_DATA = 

0 
20 
40 
60 
80 
100 

's Functions 

functions to pass data to = 2 

= user_bc_exact 4 
-100. -200. -300. -
FLOAT -500. -600. 

-400. 

STRING VELOCITY APPLICATIONS CZAR 
INT -1 -2 -3 -4 -5 

= lookup_table_l 2 
STRING TEMPERATURE 
TABLE 6 2 

32 
68 
104 
140 
176 
212 

Figure 3.12. An example of the Function Data Specification section of the input file. 

The number of functions that use function data is specified first, with default = 0. For each 
function, the function name and the number of FN_DATA lines to be passed to it are listed. 

[Number of f u n c t i o n s t o p a s s d a t a t o = number of functions] 
F u n c t i o n = function jiame num_datajines 

Each FN_DATA line consists of the type of data (INT, FLOAT, STRING, or TABLE). The default 
is FLOAT. For INT, FLOAT, and STRING data, the data then follows the type keyword. A FLOAT 
is stored as a double-precision number. Each STRING may be up to 32 characters long. 

FN_DATA = [FLOAT | INT | STRING] list of data 
TABLES allow the user to supply tabular data to a function. The dimensions of the table follow 
the TABLE keyword: 
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FN_DATA = TABLE #rowsJnJable#columnsJnjable 
The TABLE data are included on the lines following the FN_DATA = TABLE line. Only one table 
may be specified in each entry for a function. 

Several functions that require function data are included in MPSalsa. Examples are 
t i m e _ h i s t o r y _ l i n e , which writes to a file the solution along a line in the domain, 
t i m e _ h i s t o r y _ p o i n t s , which writes to a file the solution at a set of points in the domain, 
and look-up table functions lookup_tab le_ l and lookup_table_2, which interpolate 
data using a TABLE from the function data section of the input file. These and other functions that 
require user-defined function data are described in Section 4 and Appendix A. 
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4. User Functions 

Many features in MPSalsa can be adapted for specific applications through user functions. 
These functions provide the greatest flexibility for users to control their own simulations. User 
functions are already included in MPSalsa for quantities such as variable material properties, 
boundary conditions, and solution measures; users must change only the computations in these 
routines to calculate the properties for their problems. For some quantities, such as boundary 
conditions and source terms, users can also write their own functions and compile them into 
MPSalsa. This process, however, requires more effort and code modification than using the 
included user functions. This chapter describes the various user functions available and their 
usage in MPSalsa and the input file. For applicable properties, instructions for including new 
functions in MPSalsa are also given. For all functions, the units are arbitrary except for CHEMKIN 
materials for which cgs units are the default. 

MPSalsa is written in the "C" programming language. The following discussion of 
modifications to MPSalsa's user functions assumes the user has some knowledge of "C." 

4.1. Material Properties 

4.1.1. Heat Capacity 

The function user_Cp in "rf_user_Cp.c" computes a user-defined specific heat Cp of a 
non-CHEMKlN material. It is called when the following line is included in the Materials 
Properties section of the input file: 

CP = VARIABLE_PROP 

The value of the specific heat is returned by user_Cp in the argument *cp. Other arguments 
passed to user_Cp are listed in Table 4.1. 

Argument 

double temperature 

double X_k[] 

double Ptherm 

double x, y, z 

MATSTRUCT_PTR matID_ptr 

Description 

Temperature at position (x, y, z). 

Vector of mole fractions at position (x, y, z) indexed by the species 
number. 

Thermodynamic pressure. 

Coordinates of the current position. 

Pointer to the material property structure for the material. 

Table 4.1. Arguments passed to user-defined property functions user_Cp, user_cond, u s e r _ d e n s i t y and 
user_visc. 

50 



4.1.2. Thermal Conductivity 

The function u s e r _ c o n d in "rf_user_cond.c" computes a user-defined value of thermal 
conductivity X for a non-CHEMKIN material. It is called when the following line is included in 
the Materials Properties section of the input file: 

THERMAL_CONDUCT = VARIABLE_PROP 
The value of the thermal conductivity is returned by u s e r _ c o n d in the argument 
* c o n d u c t i v i t y . Other arguments passed to u s e r _ c o n d are listed in Table 4.1. 

4.1.3. Density 

The function u s e r _ d e n s i t y in "rf_user_density.c" computes a user-defined value of 
density p for a non-CHEMKIN material. It is called when the following line is included in the 
Materials Properties section of the input file: 

DENSITY = VARIABLE_PROP 
The value of the density is returned by u s e r _ d e n s i t y in the argument * d e n s i t y . Other 
arguments passed to u s e r _ d e n s i t y are listed in Table 4.1. 

4.1.4. Viscosity 

The function u s e r _ v i s c in "rf_user_visc.c" computes a user-defined value of the 
viscosity (i for a non-CHEMKIN material. It is called when the following line is included in the 
Materials Properties section of the input file: 

VISCOSITY = VARIABLE_PROP 
The value of the viscosity is returned by u s e r _ v i s c in the argument * v i s c o s i t y . Other 
arguments passed to u s e r _ v i s c are listed in Table 4.1. 

4.1.5. Volumetric Source Terms 

Variable volumetric source terms for temperatures and mass fractions are specified in the 
input file as 

0 VOLUME VAR = functionjiame 
and 

Y_VOLUME_VAR = functionjiame {SINGLE j MULTIPLE}. 
The related user functions included in MPSalsa are u s e r _ s o u r c e for temperatures and 
SINGLE mass fraction source terms and u s e r _ s o u r c e _ m u l t i for MULTIPLE mass fraction 
source terms. 
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The u s e r _ s o u r c e function returns the value of the source term for one equation. Its 
prototype is 

double u se r_sou rce (SNGLVAR_FUNCTION_ARGLIST) 
where SNGLVAR_FUNCTlON_ARGLIST, as defined in "rf_salsa.h," is described in Table 4.2. 
For SINGLE source term functions, the boundary condition pointer be is NULL. 

Argument 

double soln[] 

double x, y, z 

double t 

MATSTRUCT_PTR matID_ptr 

int var_num 

int sub_var_num 

int eqn_offset[] 

int num_dim 

BCSTRUCTPTRbc 

Description 

Solution vector at position (x, y, z). 

Coordinates of position (x, y, z). 

Time. 

Pointer to the material property structure for the material being processed 
(defined in "rf_matrl_const.h"). 

Equation for which to compute a value (e.g., TEMPERATURE, 
VELOCITYl, MASS_FRACTION) as defined in "rf_fem_const.h." 

Species for which to compute a value (applicable only when var_num = 
MASS_FRACTION). 

Offset into soln[] for each variable; e.g., the temperature at (x,y^z) is 
soln[eqn_offset[TEMPERATURE]]. 

Number of dimensions in the element. 

Pointer to the boundary condition structure (defined in "rf_bc_const.h") 
for the current boundary condition being processed. This pointer is NULL 
if the SNGLVAR_FUNCTION function is called for a calculation not 
involving a boundary condition. 

Table 4.2. Arguments included in SNGLVAR_FUNCTION_ARGLIST. 

An example of u se r_sou rce is included in Figure 4.1. This function is stored in 
"rf_user_source_fn.c." To add new user-defined source functions, users should write the functions 
in either "rf_source_fn.c" or "rf_user_source_fn.c," include prototypes for the new functions in 
"rf_source_fn_const.h," and add pointer assignments for the new functions to the routine 
a l i g n s i n g l e a p t r in "rf_source_fn.c." Users can look at prototypes and pointer 
assignments for u se r_sou rce as examples for their own functions. 

To reduce the number of function calls needed to compute source terms for mass fraction 
equations, u se r_sou rce_mul t i may be used. While u se r_source returns only a single 
source term value, u se r_sou rce_mul t i returns a vector of source terms for mass fraction 
equations. The prototype for u se r_sou rce_mul t i is 

vo id use r_source_mul t i (MULTIVAR_FUNCTION_ARGLIST) 
where MULTIVAR_FUNCTlON_ARGLIST is described in Table 4.3. 
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double user_source{SNGLVAR_FUNCTION_ARGLIST) 
{ 
/* Returns the source terms for the coupled linear diffusion equations: 

V2T-a = 0 

* v2y0+y,-y2 = o 

* v2y1-y0e"Jt = o 

v2y2-y0-a = o 

* where a = 2 in ID, a = 4 in 2D, and a = 6 in 3D. 

* USAGE: In Material Properties section... 
* Q_VOLUME_VAR = user_source 
* Y_V0LUME_VAR = user_source SINGLE 
*/ 

double return_value ,-
double spatial_coeff = 2 * num_dim; 

if (var_num == TEMPERATURE) 
retum_value = -spatial_coeff; 

else if <var_num == MASS_FRACTI0N && sub_var_num <= 2) 
switch (sub_var_num) { 

case 0: 
return_value = soln[eqn_offset[MASS_FRACTION + 1]] 

- soln[eqn_offset[MASS_FRACTION + 2]]; 
break; 

case 1: 
return_value = -soln[eqn_offset[MASS_FRACTION] * exp(-x); 
break; 

case 2: 
return_value = -spatial_coeff -soln[eqn_offset[MASS_FRACTION]]; 
break; 

} 
else { 

(void) fprintf(stderr, "ERROR in use of user_source.\n"); 
exit(-l); 

} 
return (return_value); 

} 

Figure 4.1. Example of function use r_source computing volumetric source terms for temperature and 
mass fraction equations. 

An example of user_source__multi is included in Figure 4.2. This function 
computes the same mass fraction source terms in one function call that function use r_source 
in Figure 4.1 would compute in three separate calls. 

The function use r_sou rce_mul t i is stored in "rf_user_source_fn.c." Users may add 
their own MULTIPLE source functions to either "rf_source_fn.c" or "rf_user_source_fn.c." 
Prototypes for the new functions should be included in "rf_source_fn_const.h," and pointer 
assignments must be added to the routine a l i g n m u l t i g p t r in "rf_source_fn.c." Users 
can look at prototypes and pointer assignments for use r_source_mul t i as examples for their 
own functions. 
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void user_SOurce_multi(MULTIVAR_FUNCTION_ARGLIST) 
{ 
/* Returns (in src_vec[]) the source terms for the coupled linear 

* d i f f u s i o n equa t ions : 

* v ^ + y . - y ^ o 

* v \ - Y0e'x = 0 

* v2y2-y0-a = o 

* where a = 2 i n ID, a = 4 in 2D, and a = 6 in 3D 

* USAGE: In Mater ia l P rope r t i e s s e c t i o n . . . 
* Y_VOLUME_VAR = user_source_mult i MULTIPLE 
*/ 

double spatial_coeff = 2 * num_dim; 
int eqnY_offset = eqn_offset[MASS_FRACTION]; 

src_vec[0] = soln[eqnY_offset+l] - soln[eqnY_offset+2]; 
src_vec[l] = -soln[eqnY_offset] * exp(-x); 
src_vec[2] = -spatial_coeff - soln[eqnY_offset]; 

Figure 4.2. Example of function user_source_mul t i computing volumetric source terms for mass 
fraction equations. 

Argument 

double src__vec[] 

double soln[] 

double x, y, z 

double t 

MATSTRUCT_PTR matID_ptr 

int eqn_offset[] 

int num_dim 

Description 

Returned vector of source term values at (x, y, z), with one value for each 
mass fraction equation. 

Solution vector at position (x, y, z). 

Coordinates of position (x, y, z). 

Time. 

Pointer to the material property structure (defined in "rf_matrl_const.h") 
for the material being processed. 

Offset into soln[] for each variable; e.g., the temperature at (x,y£) is 
soln[eqn_offset[TEMPERATURE]]. 

Number of dimensions in the element. 

Table 4.3. Arguments included in MULTIVAR_FUNCTION_ARGLIST. 

Analytic Jacobian entries for variable volumetric temperature and mass fraction source 
terms are specified in the Materials Specifications section of the input file as 

JACOBIAN_SRC_TERMS_VAR = functionjiame 
where functionjtame is a function computing a matrix of derivatives of the source terms with 
respect to temperature and mass fractions. The user function u s e r _ j a c _ s r c is provided for 
this purpose. The prototype for use r_ j ac_s rc is 

v o i d u s e r _ j a c _ s r c (JAC_SRC_FUNCTION_ARGLIST) 

54 



where JAC_SRC_FUNCTION_ARGLIST is described in Table 4.4. The derivatives of the source 
terms are returned in the matrix jac_vec, where jac_vec[i][/] is the derivative of the source 
term for the ;' equation with respect to the i variable. 

Argument 

double *jac_vec[] 

double soln[] 

double x, y, z 

double t 

MATSTRUCT_PTR matID_ptr 

int eqn_offset[] 

int num_dim 

Description 

Returned matrix of analytic Jacobian terms of source term values with 
respect to temperature and mass fractions; jac_vec[i][j] is the derivative 
of the source term for the j * equation with respect to the i* variable. 

Solution vector at position (x, y, z). 

Coordinates of position (x, y, z). 

Time. 

Pointer to the material property structure (defined in "rf_matrl_const.h") 
for the material being processed. 

Offset into soln[] for each variable; e.g., the temperature at (x,y£) is 
soln[eqn_offset[TEMPERATURE]]. 

Number of dimensions in the element. 

Table 4.4. Arguments included in JAC_SRC_FUNCTION_ARGLIST. 

Figure 4.3 includes an example of u s e r _ j a c _ s r c that computes the Jacobian entries 
for the source terms in function use r_source in Figure 4.1. This function is stored in 
"rf_user_jac_src_fn.c." To add new user-defined analytic Jacobian functions for source terms, 
users should write the functions in either "rf_jac_src_fn.c" or "rf_userjac_src_fn.c," include 
prototypes for the new functions in "rf_source_fn_const.h," and add pointer assignments for the 
new functions to the routine a l i g n _ j a c _ s r c _ p t r in "rfjac_src_fn.c." Users can look at 
prototypes and pointer assignments for user_ j ac_s rc as examples for their own functions. 

The following run-time error messages alert users to incorrect implementation of user 
source term and Jacobian entry functions. 

> ERROR: Unknown name for volumetric source function: function jiame 
> ERROR: Unknown name for analytic Jacobian of source vector function: 

function jiame 
The first message indicates an error with a function specified by Q_VOLUME_VAR or 
Y_VOLUME_VAR in the input file; the second indicates an error with a function specified by 
JACOBlAN_SRC_TERMS_VAR. In both cases, a function name is either misspelled in the input 
file or not added correctly to the pointer assignment routines. 
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void user_jac_src (JAC_SRC_FUNCTION_ARGLIST) 
{ 
/* Returns (in jac_vec[]) the analytic Jacobian entries of source terms 
* with respect to (w.r.t.) temperature and mass fractions 
* for the coupled linear diffusion equations: 

V2T-a = 0 

* V\+Y1-Y2 = O 

v 2 y j - y o e
_ j : = o 

* v2y2-y0-fl = o 

* where a = 2 in ID, a = 4 in 2D, and a = 6 in 3D 

* USAGE: In Material Properties section... 
* JACOBIAN_SRC_TERMS_VAR = user_jac_src 
*/ 
int indxT = eqn_offset[TEMPERATURE], indxY = eqn_offset[MASS_FRACTION]; 

/** Derivative of TEMPERATURE source term w.r.t. TEMPERATURE. **/ 
jac_vec[indxT][indxT] += 0.0; 

/** Derivatives of MASS_FRACTION src terms w.r.t. TEMPERATURE.**/ 
j ac_vec[indxT][indxY] += 0.0; 
jac_vec[indxT] tindxY+1] += 0.0; 
j ac_vec[indxT][indxY+2] += 1.0; 

/** Derivative of TEMPERATURE source term w.r.t. Y_0. **/ 
jac_vec[indxY][indxT] += 1.0; 

/** Derivatives of MASS_FRACTION source terms w.r.t. Y_0. **/ 
jac_vec[indxY][indxY] += 0.0; 
jac_vec[indxY][indxY+1] += -exp(-x); 
jac_vec[indxY][indxY+2] += -1.0; 

/** Derivative of TEMPERATURE source term w.r.t. Y_l. **/ 
jac_vec[indxY+1][indxT] += 1.0; 

/** Derivatives of MASS_FRACTI0N source terms w.r.t. Y_l. **/ 
j ac_vec[indxY+1][indxY] +=1.0; 
jac_vec[indxY+l][indxY+1] += 0.0; 
jac_vec[indxY+1][indxY+2] += -1.0; 

/** Derivative of TEMPERATURE source term w.r.t. Y_2. **/ 
jac_vec[indxY+2][indxT] += -1.0; 

/** Derivatives of MASS_FRACTION source terms w.r.t. Y_2. **/ 
jac_vec[indxY+2][indxY] += -1.0; 
jac_vec[indxY+2][indxY+1] += 0.0; 
jac_vec[indxY+2][indxY+2] += 0.0; 

Figure 4.3. Example of function use r_ j ac_s rc computing analytic Jacobian entries of source terms with 
respect to temperature and mass fractions for the source function in Figure 4.1. 
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4.2. Boundary Conditions 

User functions may be used for several parts of the Boundary Condition Specifications 
described in Section 3.7.2. The user function designed to compute boundary condition values is 
user_bc_exact . The prototype for user_bc_exac t is 

double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST) 
where SNGLVAR_FUNCTION_ARGLIST is described in Table 4.2. All arguments of 
SNGLVAR_FUNCTlON_ARGLlST are used for boundary condition functions. 

An example demonstrating the usage of user_bc_exac t is given in Figure 4.4. This 
function is stored in "rf_user_bc_exact_fn.c." To add new user-defined boundary condition 
functions, users should write the functions in either "rf_bc_exact_fh.c" or 
"rf_user_bc_exact_fn.c," include prototypes for the new functions in "rf_bc_exact_fn_const.h," 
and add pointer assignments for the new functions to the routine a l i g n _ f _ p t r in 
"rf_bc_exact_fn.c." Users can look at prototypes and pointer assignments for user_bc_exact 
as examples for their own functions. 

Jacobian entries associated with boundary conditions can be specified by the user function 
user_ j ac_bc. The prototype for u se r_ j ac_bc is 

double user_ jac_bc (JAC_BC_FUNCTION_ARGLIST) 
where JAC_BC_FUNCTION_ARGLIST is described in Table 4.5. 

Figure 4.5 contains an example of user_ jac_bc for the boundary conditions specified 
by user_bc_exact in Figure 4.4. This function is stored in "rf_user_jac_bc_fn.c." To add new 
user-defined functions for the derivatives of boundary condition functions, users should write the 
functions in either "rf_jac_bc_fn.c" or "rf_userjac_bc_fn.c," include prototypes for the new 
functions in "rf_bc_exact_fn_const.h," and add pointer assignments for the new functions to the 
routine a l i g n _ j b c _ p t r in "rf_jac_bc_fn.c." The prototypes and pointer assignments for 
user_ j ac_bc serve as examples for new user functions for boundary condition derivatives. 

The following run-time error messages alert users to incorrect implementation of user-
defined boundary condition functions. 

> ERROR: Unknown SNGLVAR_FUNCTION: function jiame 
> ERROR: Unknown JAC_BC_FUNCTION: function jiame 

The first message indicates an error in a boundary condition function name; the second indicates 
an error in the function name for Jacobian entries of a boundary condition. In both cases, a 
function name was either misspelled in the input file or not added correctly to the appropriate 
pointer alignment routine. 
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double USer_bc_exact (SNGLVAR_FUNCTION_ARGLIST) 
{ 
/* Returns the following Dirichlet boundary conditions for coupled 
* linear diffusion equations: 

* T = x2 + y2 + z2 

* Y0 = ae where a = 2 in ID, a = 4 in 2D, and a = 6 in 3D 

* y, = T 

* USAGE: In Boundary Conditions section... 
* BC = T_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0 
* BC = Y_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0 
* SPECIES_LIST = 1 
* BC = Y_BC DIRICHLET SS 1 DEPENDENT user_bc_exact 0 
* SPECIES_LIST = 2 3 
*/ 

double return_value, spatial_coeff; 
if (var_num == TEMPERATURE) { 

return_value = x*x; 
if (num_dim > 1) return_value += y*y; 
if (num_dim > 2) retum_value += z*z; 

} 
else if (var_num == MASS_FRACTI0N && sub_var_num <= 2) { 

switch (sub_var_num) { 
case 0: 

spatial_coeff = 2. * num_dim; 
return_value = spatial_coeff * exp(x); 
break; 

case 1: 
retura_value = soln[eqn_offset[TEMPERATURE]]; 
break; 

case 2: 
return_value = soln[egn_offset[MASS_FRACTION]] 

+ soln[eqn_offset[MASS_FRACTION + 1]]; 
break; 

} 
} 
else { 

(void) fprintf(stderr, "ERROR in use of user_bc_exact.\n") ; 
exit(-l) ; 

} 
return (return_value); 

} 

Figure 4.4. Example of function user_bc_exact used as a boundary condition function. 

4.2.1. Accessing BC_DATA in User Functions 

Each boundary condition in the input file has a Boundary_Condition structure 
(defined in "rf_bc_const.h") associated with it. This structure contains the constant values, 
pointers to boundary condition functions (such as user_bc_exact and those in Appendix 
A. 1), and BC_DATA associated with the boundary condition. Each type of BC_DATA is stored in 
a one-dimensional array of that type. Integer data, specified by BC_DATA=INT, are stored in the 
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double user_jac_bc(JAC_BC_FUNCTION_ARGLIST) 
{ 
/* Returns the derivatives of the following Dirichlet boundary 
* conditions for coupled linear diffusion equations: 

* T = x +y +z 

* Y0 = ae where a = 2 i n ID, a = 4 in 2D, and a = 6 i n 3D 

y, = T 

* Y2 = Y0 + Y1 

* USAGE: In Boundary Conditions section... 
* BC = T_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0 
* BC = Y_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0 
* SPECIES_LIST = 1 
* BC = Y_BC DIRICHLET SS 1 DEPENDENT user_jac_bc user_bc_exact 0 
* SPECIES_LIST = 2 3 
*/ 

double return_value = 0.0; 
/* TEMPERATURE BC does not depend on other variables. 
* Y_0 BC does not depend on other variables. 
* Y_l BC does not depend on other mass fractions. 
* Y_2 BC does not depend on temperature. 
* return_value is already set to zero for these entries. 
*/ 

if (var_num == MASS_FRACTION && sub_var_num <= 2) { 
switch (sub_var_num) { 

case 1: 
if (wrt_var_num == TEMPERATURE) 

/* Derivative of Y_l BC w.r.t. TEMPERATURE is 1.0. */ 
return_value = 1.0; 

break; 
case 2: 

if (wrt_var_num == MASS_FRACTION) 
if (wrt_sub_var_num == 0 || wrt_sub_var_num == 1) 

/* Derivative of Y_2 BC w.r.t. Y_0 or Y_l is 1.0. */ 
return_value = 1.0; 

break; 
} 

} 
else if (var_num != TEMPERATURE) { 

(void) fprintf(stderr, "ERROR in use of user_jac_bc.\n"); 
exit(-l); 

} 
return (return_value); 

} 
Figure 4.5. Example of user function u s e r _ j a c _ b c that computes derivatives of the boundary conditions 

in u s e r _ b c _ e x a c t in Figure 4.4. 

integer array BC_Data_Int in the Boundary_Condition structure; floating point data, 
specified by BC_DATA=FLOAT, are stored in the double array BC_Data_Float; and function 
pointer data, specified by BC_DATA=FUNCTION, are stored in the BC_Data_User_Fn_Ptr 
array. The data are stored in the order they appear in the input file, starting from array index 0 in 
each array. 
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Argument 

double solnfl 

double x, y, z 

double t 

MATSTRUCT_PTR matID_ptr 

int var_num 

int sub_var_num 

int wrt_var_num 

int wrt_sub_var_num 

int eqn_offset[] 

int num_dim 

BCSTRUCT_PTRbc 

Description 

Solution vector at position (x, y, z). 

Coordinates of position (x, y, z). 

Time. 

Pointer to the material property structure (defined in "rf_matrl_const.h") 
for the material being processed. 

Dependent variable of the partial derivative (e.g., TEMPERATURE, 
VELOCITYl, MASS_FRACTION) as defined in "rf_fem_const.h." 

Species number for the dependent variable of the partial derivative 
(applicable only when var_num = MASS_FRACTION). 

Independent variable of the partial derivative to be taken (e.g., 
TEMPERATURE, VELOCITYl, MASS_FRACTION) as defined in 
"rf_fem_const.h" 

Species number for the independent variable of the partial derivative 
(applicable only when wrt_var_num = MASS_FRACTION). 

Offset into soln[] for each variable; e.g., the temperature at (*,y,z) is 
soln[eqn_offset[TEMPERATURE]]. 

Number of dimensions in the element. 

Pointer to the boundary condition structure (defined in "rf_bc_const.h") 
corresponding to the current boundary condition being processed. 

Table 4.5. Arguments included in JAC_BC_FUNCTION_ARGLIST. 

The argument be in SNGLVAR_FUNCTION_ARGLIST and 
JAC_BC_FUNCTION_ARGLIST is a pointer to the B o u n d a r y _ C o n d i t i o n structure 
associated with the boundary condition. BC_DATA can be accessed by following this pointer. For 
example, the first BC_DATA=INT value entered in the input file would be accessed in boundary 
condition functions by bc->BC_Data_Int [ 0 ] . An example boundary condition function using 
BCJDATA is included in Figure 4.6. In this example, the rotation rate and center of rotation of a 
two-dimensional disk are given by BC_DATA=FLOAT values in the input file. 

Functions listed in BC_DATA=FUNCTION lines must also be boundary condition 
functions as described in Section 4.2. They must have the same prototypes as u s e r _ b c _ e x a c t 
and be called with the SNGLVAR_FUNCTION_ARGLlST argument list in Table 4.2. As with all 
user boundary condition functions, they must be included in the pointer assignment routine 
a l i g n _ f _ p t r and compiled into MPSalsa. The syntax for calling, say, the second 
BC_DATA=FUNCTION listed for a boundary condition is shown below: 

v a l = b c - > B C _ D a t a _ U s e r _ F n _ P t r [ 1 ] ( s o l n , x , y , z , t , 
m a t I D _ p t r , var_num, sub_var_num, e q n _ o f f s e t , 
num_dim, b e ) ; 
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double f_xy_spin_disk (SNGLVAR_FUNCTION_ARGLIST) 
{ 
/* Function to return value of the x,y velocity on a rotating disk. 
* This function takes 3 arguments: 
* BC_Data_Float[0] = rotation rate in rpm, counter clockwise 
* BC_Data_Float[l] = x_0 
* BC_Data_Float[2] = y_0 

* Usage: e.g. Disk spinning at 50rpm around x=0, y=0 
* U_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1 
* BC_DATA = 50.0 0.0 0.0 
* V_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1 
* BC_DATA = 50.0 0.0 0.0 
*/ 

double omega = 0.0, x_0 = 0.0, y_0 = 0.0; /* default values */ 
double x_offset, y_offset, result; 

/* Use BC_DATA values if any are specified in the input file. */ 

if (bc->BC_Data_Float != NULL) { 
/* Conversion from rpm to radians/sec done once in bc_input_pre_process */ 
/* omega = (bc->BC_Data_Float[0] * 2.0 * pi)/60.0; */ 
omega = bc->BC_Data_Float[0]j 

} 

X. 
y. 

x_0 
Y-0 

.offset 

.offset 

= 
= 

= 

bc-
bc-

(x -
(y -

->BC_Data_Float[1) 
->BC_Data_Float[2] 

x_0) ; 
Y_0); 

if (var_num == VELOCITYl) result = (-omega * y_offset); 
else if (var_num == VSLOCITY2) result = ( omega * x_offset); 
else if (var_num == TANGENT_VELOCITYl) 

/* Assumes tl = [0.8, 0.6, 0.0] */ 
result = 0.8 * (-omega * y_offset) + 0.6 * ( omega * x_offset); 

else if (var_num == TANGENT_VEL0CITY2) 
/* Assumes t2 = [-0.6, 0.8, 0.0] */ 
result = -0.6 * (-omega * y_offset) + 0.8 * ( omega * x_offset) 

return (result); 
} 

Figure 4.6. Example demonstrating the use o/BC_DATA in boundary condition functions. 

4.3. Generalized Surfaces 

User-defined outward normal and tangent vectors may be specified through the use of 
generalized surfaces as described in Section 3.7.1. The functions user_normal, 
u s e r _ t a n g e n t l , and use r_ tangen t2 are provided for this purpose. They return the 
appropriate surface vector as a function of position on the surface. The prototypes for these 
functions are 

void user_normal (SURF_VECTOR_FUNCTION_ARGLIST) 
void user_tangentl (SURF_VECTOR_FUNCTION_ARGLIST) 
void user_tangent2 (SURF_VECTOR_FUNCTION_ARGLIST) 
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where SURF_VECTOR_FUNCTION_ARGLIST is defined in "rf_bc_const.h" and described in 
Table 4.6. 

Argument 

double surf_vec[] 

double x, y, z 

Description 

Returned vector containing the x-, y-, and z-components of a surface 
vector. 

Coordinates of position (x, y, z). 

Table 4.6. Arguments included in SURF_VECTOR_FUNCTION_ARGLIST. 

Examples of the generalized surface functions are given in Figure 4.7. The functions are 
stored in "rf_user_tangent_fn.c." To add new user-defined functions for describing generalized 
surfaces, users should write the functions in either "rf_tangent_fn.c" or "rf_user_tangent_fn.c," 
include prototypes for the new functions in "rf_tangent_fn.c," and add pointer assignments for the 
new functions to the routine a l i g n _ s u r f _ v e c t o r _ p t r in "rf_tangent_fn.c." The prototypes 
and pointer assignments for u s e r _ n o r m a l serve as examples for newly written user functions 
for outward normal and tangent vectors. 

The following run-time error message alerts users to incorrect implementation of user-
defined normal and tangent functions: 

> ERROR - unknown surface vector function: functionjtame 
A function name was either misspelled in the input file or not added correctly to the 
a l i g n _ s u r f _ v e c t o r _ p t r routine. 

4.4. Initial Condition/Guess 

Initial guesses may be specified through the u s e r _ i n i t _ c o n d function. The prototype 
for u s e r _ i n i t _ c o n d is 

d o u b l e u s e r _ i n i t _ c o n d (SNGLVAR_FUNCTION_ARGLIST) 
where SNGLVAR_FUNCTION_ARGLIST is described in Table 4.2. The arguments matID_jotr 
and be in SNGLVAR_FUNCTION_ARGLIST are NULL when a function is used as an initial 
condition function. The function u s e r _ i n i t _ c o n d is in file "rf_user_init_cond_fn.c." New 
initial condition functions should be added to this file or to "rf_bc_exact_fn.c." Prototypes for 
new functions should be added to "rf_bc_exact_fn_const.h," and function pointers must be added 
to a l i g n _ f _ p t r in "rf_bc_exact_fn.c." 

62 



void user_normal(SURF_VECTOR_FUNCTI0N_ARGLIST) 
{ 
/* 
* Outward normal vector (along circle of radius one) of cylinder aligned 
* in z-direction. 

* USAGE: in Generalized Surfaces section ... 
* NORMAL = user_normal 
*/ 

surf_vec[0] = x; 
surf_vec[l] = y; 
surf_vec[2] = 0.0; 

} 

void user_tangentl(SURF_VECTOR_FUNCTION_ARGLIST) 
{ 
/* 
* Tangent vector (along circle of radius one) of cylinder aligned 
* in z-direction. 

* USAGE: in Generalized Surfaces section ... 
* TANGENT = user_tangentl 
*/ 

surf_vec[0] = -y; 
surf_vec[l] = x; 
surf_vec[2] = 0.0; 

} 
void user_tangent2 <SURF_VECT0R_FUNCTI0N_ARGLIST) 
{ 
/* 
* Tangent vector (along height of cylinder) of cylinder aligned in z-direction. 

* USAGE: in Generalized Surfaces section ... 
* TANGENT = user_tangent2 
*/ 

surf_vec[0] = 0.0; 
surf_vec[l] = 0.0; 
surf_vec[2] = 1.0; 

} 
Figure 4.7. Example of functions user_normal, u s e r _ t a n g e n t l , and use r_ tangent2 for 

generalized surfaces. 

4.5. Exact Solutions 

For problems having analytic solutions, MPSalsa can compare the computed solution with 
the analytic solution. The user function user_bc_exac t in "rf_user_bc_exact_fn.c" may be 
used to specify the exact solution function. The prototype for user_bc_exac t is 

double user_bc_exact (SNGLVAR_FUNCTION_ARGLIST) 
where SNGLVAR_FUNCTION_ARGLIST is described in Table 4.2. Since exact solutions depend 
only on position and time, the arguments matID_ptr, be, and eqn_offset[] in 
SNGLVAR_FUNCTION_ARGLIST are NULL when they are arguments to an exact solution 
function. An example of user_bc_exact used as an exact solution function is given in Figure 
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4.8. The procedures for adding new exact solution functions to MPSalsa are the same as those 
described in Section 4.2 for adding new boundary condition functions. 

double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST) 
{ 
/* Returns the exact solution values for the coupled linear diffusion equations: 

* T = x2 + y2 + z2 

* YQ = ae where a = 2 i n ID, a = 4 in 2D, and a = 6 in 3D 

v 2 2 2 
* Y^ = x +y +z 

* 2 2 2 
* Y2 = ae +x +y +z 
* USAGE: in Output Specification section... 
* Test Exact Solution Flag = 1 
* Name of Exact Solution Function = user_bc_exact 
*/ 

double return_value, spatial_coeff, sum; 

spatial_coeff = 2 * num_dim; 
sum = x*x; 
if (num_dim > 1) sum += y*y; 
if (num_dim > 2) sum += z*z; 

if (var_num == TEMPERATURE) { 
return_value = sum; 

} 
else if (var_num == MASS_FRACTI0N && sub_var_num <= 2) { 

switch (sub_var_num) { 
case 0: 

return_value = spatial_coeff * exp(x); 
break; 

case 1: 
return_value = sum; 
break; 

case 2: 
return_value = spatial_coeff * exp(x) + sum; 
break,-

} 
} 
else { 

(void) fprintf(stderr, "ERROR in use of user_bc_exact.\n"); 
exit(-l); 

} 
return (return_value); 

} 

Figure 4.8. Example of function user_bc_exact used as an exact solution function. 

4.6. Output 

Functions can be written to compute specific output from the solution. At the initial 
conditions, after every time step, and after calculating a steady-state solution, the function 
use r_ou t in the file "rf_user_out.c" is called. The default function use r_ou t computes the 
maximum, minimum, and average value of each variable as well as the position of the maximum 
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and minimum. (Little investment has been made in providing output options for MPSalsa since 
commercial visualization packages that read in the FE mesh and solutions from the ExodusII 
database have satisfied most of our post-processing needs.) 

Writing additional output routines should be done using the use r_ou t function, either 
by replacing it with an alternate function or by calling another function from within it. The second 
option was chosen for implementing routines such as t i m e _ h i s t o r y _ p o i n t s (See Section 
A.3.1). 

The s t a t u s integer flag passed to user_out contains information on whether the 
solution is an initial guess, an intermediate time step, a failed time step, or a final solution. The 
values of the flag are shown in Figure 4.9. 

* Values for status variable: 

* <0 = Some sort of error condition has occurred. 
* 0 = Initial conditions 
* 1 = Final conditions, i.e., a successful run has completed 
* 2 = A successful intermediate time step has occurred. 

Figure 4.9. Values of the s t a t u s flag as passed to u s e r _ o u t . 

To write new output functions, it is best to modify the default user__out or one of the 
output functions listed in Appendix A. Many quantities that might be useful in output routines -
such as the values of physical properties at the nodes and useful bookkeeping arrays — are 
unfortunately not readily available to the output routines. These quantities are stored in memory 
only during the matrix-fill section of the calculation; after the matrix-fill, their memory is freed to 
provide as much memory as possible for the matrix-solve. 

4.7. Continuation 

The function u s e r _ c o n t i n u a t i o n in the file "rf_user_continuation.c" is where the 
continuation parameter is defined. The continuation parameter can be equated to any boundary 
condition, physical property, or a combination of these quantities. The function takes as input the 
pointer to the continuation parameter, and updates the appropriate physical quantity or boundary 
condition. For instance, if the user would like to continue with respect to the viscosity of the first 
material, stored globally as MatID_Prop->viscosi ty, u s e r _ c o n t i n u a t i o n would 
simply contain the appropriate assignment statement as shown in Figure 4.10. 

Similarly, if the user would like to continue with respect to the value of the sixth boundary 
condition listed in the file, stored globally as BC_Types [5] .BC_Fn_Value, 
u s e r _ c o n t i n u a t i o n would contain just the following assignment statement: 
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function void 
/* 
/* 
{ 

} 

con_par is 
*con_par is 

MatID_Prop 

user_continuation(double 
a pointer to 
the value of 

->viscosity = 

*con_par); 
the continuation parameter */ 
the continuation parameter 

*con_par; 
*/ 

Figure 4.10. Example of the function us e r _ c o n t i n u a t i on. for assigning the continuation parameter 
to a physical quantity (in this case the fluid viscosity). 

BC_Types[5].BC_Fn_Value = *con_par; 
(Since "C" numbering begins with zero, the sixth boundary condition in the input file is stored in 
array entry five.) 

Another common continuation parameter with boundary conditions is an entry in the 
BC_DATA statement. To continue with respect to the third constant ("C" array entry 2) of the 
BC_DATA FLOAT array of the twenty-third boundary condition ("C" array entry 22), the 
assignment would be 

BC_Types[22].BC_Data_Float[2] = *con_par; 
All parts of the boundary condition structure, not only the BC_Fn_Value and 

BC_Data_Float [ ] examples shown here, can be referenced for use in continuation. The entire 
structure is listed in the file "rf_bc_const.h." Similarly, the entire materials structure of physical 
properties can be referenced in the same way the viscosity was above. The structure is defined in 
the file "rf_matrl_const.h." 

The continuation parameter can represent other quantities by more complicated 
assignment statements. For instance, to continue with respect to the Reynolds number, where the 
inlet velocity is entered as the fourth BC and the characteristic length is 2.0, the assignment 
statement would be 

BC_Types[33.BC_Fn_Value = *con_par * MatID_Prop->viscosity 
/ (2.0 * MatID_Prop->density); 

In this example, the inlet velocity is manipulated at constant viscosity and density so that the 
continuation parameter equals the Reynolds number, and other dimensionless numbers stay 
constant. 

4.8. Function Data 

User data specified in the Function Data section of the input file (see Section 3.11) may be 
accessed by any of the above user functions. The user function must first locate its particular 
function data. In the simplest case, the location is found by calling the function 
fn_data l o c a t i o n : 
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FNDATA_PTR fn_da t a_ loca t i on (char y o [ ] , i n t d a t a _ r e q u i r e d ) 
where yo[] is a character string containing the function name associated with the data in the input 
file, and d a t a _ r e q u i r e d indicates whether the function data is mandatory or optional. If 
d a t a _ r e q u i r e d is TRUE and no function data was included in the input file, MPSalsa will quit 
with an error condition. When d a t a _ r e q u i r e d is FALSE, either default values for the data 
should be supplied or the user function should return immediately without an error. 

The function f n _ d a t a _ l o c a t i o n returns a pointer to a Function_Data structure 
(defined in "rf_fn_data_const.h"). Within the Function_Data structure, Fn_Data_Int, 
Fn_Data_Float, and Fn_Data_Str ing are arrays of INT, STRING, and FLOAT function 
data, respectively, from the input file. The numbers of entries in each array are given by 
Num_Fn_Data_Int, Num_Fn_Data_String and Num_Fn_Data_Float. The arrays are 
used in a manner analogous to the BC_DATA arrays for boundary conditions (see Section 4.2.1). 
Data values are stored in the order they are read from the input file, starting from index 0 in the 
arrays. For example, the fifth string entered as function data would be addressed by 
cur ren t_fn->Fn_Data_St r ing[4] . An example of a boundary condition function that 
uses optional function data is given in Figure 4.11. 

double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST) 
{ 
/* 2 2 

* Function that returns (x-xQ) + (y-y0) where x0 and y0 may be 
* specified by the user in the function data section of the input file. 

* USAGE: in Function Data Specification section ... 
* Function Name = user_bc_exact 1 
* FN_DATA = FLOAT 3.0 2.0 
*/ 
FNDATA_PTR current_fn; 

/* Get the pointer to the function data for this function. */ 
/* This function is optional; if no function data is found, */ 
/* xQ and y0 are zero. */ 

current_fn = fn_data_location("user_bc_exact", FALSE); 

if (current_fn != NULL) 
if (current_fn->Num_Fn_Data_Float > 0) 

x = (x - current_fn->Fn_Data_Float[0]) ; 
if (current_fn->Num_Fn_Data_Float > 1) 

y = (y - current_fn->Fn_Data_Float[1]) ; 
} 
return (x * x + y * y); 

} 

Figure 4.11. Example usage of function data within a user function. 

A table supplied by the FN_DATA=TABLE mechanism is stored in the Function_Data 
structure as Fn_Data_Table, a two-dimensional array of double precision numbers. Each row 
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of the table in the input file is stored as a row of the array; that is, the j entry on the / row of 
the input table is stored in Fn_Data_Table[i][/]. The numbers of rows and columns in the table 
are stored in Fn_Data_Table_Dim[0] and Fn_Data_Table_Dim[l], respectively. The 
function lookup_ tab le_ l in "rf_fn_data.c" provides a good example of the usage of function 
data tables (see Appendix A.2). 

User functions that operate on several sets of function data are often useful. The function 
t i m e _ h i s t o r y _ l i n e , for example, prints the solution along a line that is described by a 
function data table. To print time histories along several lines, a function data entry is included in 
the input file for each line. Such user functions must loop over all the function data and operate on 
each instance of their function data. The function f n _ d a t a _ n e x t _ l o c a t i o n is provided to 
allow processing of two or more sets of function data by a single function. The prototype for 
f n_data_next_location is 

FNDATA_PTR fn_data_next_location(char yo [] , 
int data_required, int start_ifd, int *found_ifd) 

where yo[] is the function name specified in the input file, d a t a _ r e q u i r e d indicates whether 
the function data are required or optional, s t a r t _ i f d is the first function data entry to be 
checked for a match withyoO, and the index of the function data entry matching yo[] is returned 
in found_ifd. The value of found_ifd+l should be used as s t a r t _ i f d in subsequent 
searches for more function data for yo[]. A pointer to the function data indexed by f ound_if d 
is returned by fn_da ta_nex t_ loca t ion . An example demonstrating the usage of 
f n_da t a_nex t_ loca t i on in a loop over function data is given in Figure 4.12. 
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void function_name( ) 
{ 
/* 
* USAGE: in Function Data Specification section ... 
* Function Name = function_name 1 
* FN_DATA = STRING data set one 
* Function Name = function_name 1 
* FN_DATA = STRING data set two 
*/ 
char yo[] = "function_name"; 
FNDATA_PTR current_fn = NULL; 
int ifd = -1; 
extern int Num_Fn_Data; /* Number of function data entries in the input file */ 

while (ifd < Num_Fn_Data) { 

/* Get the pointer to the function data for this function */ 
current_fn = fn_data_next_location(yo, FALSE, ifd+1, &ifd); 

if (current_fn == NULL) { 
printfC'No additional Function Data found for %s\n", yo) ; 
break; 

} 
else { 

/* 
* Process the data pointed to by current_fn. 
*/ 

} 
} 

} 

Figure 4.12. Example usage off n_da ta_nex t_ loca t ion to process more than one set of function data 
within a function. 
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5. Solution Strategies 

5.1. Getting to a Steady State 

Sometimes a steady-state solution to a non-linear problem is desired but MPSalsa will not 
converge to it for a given input file and a simple initial guess. The following is a list of some input 
file options and techniques that can help. Some of the options are discussed in more detail later in 
this chapter. 

(1) Increase the maximum number of Newton iterations. (See Section 3.3.1.) 

(2) Choose a more robust preconditioner. such as no_over lap_b i lu or 
r e a l _ o v e r l a p _ i l u . If the program runs out of memory, use a larger number of processors. 
(See Section 3.3.2.) 

(3) Increase the number of Krylov subspace vectors for GMRES. If the program runs 
out of memory, use a larger number of processors. For problems of a few hundred thousand 
unknowns, a Krylov subspace size over 100 is desirable. (See Section 3.3.2.) 

(4) Switch the Enable b a c k t r a c k i n g for r e s i d u a l r e d u c t i o n flag 
from on to of f, or from of f to on. We have seen examples where the problem converges only 
with backtracking on, and we have seen cases that converge only with backtracking off. (See 
Section 3.3.1.) 

If none of the easy solutions above works, the following options may. 

(5) Use pseudo time-stepping as the S o l u t i o n Type to relax the system. If the 
initial time step is small and Time Step Con t ro l is on, pseudo time stepping increases the 
time step for any step that converges, regardless of integration error. After 5-20 successful time 
steps have been taken, one can often restart from the last time step and converge to the steady-
state. (See Section 3.2.) 

(6) Use the restart capability to step to the solution by first solving the problem at 
simpler conditions, such as at a reduced density or thermodynamic pressure, an elevated viscosity, 
or with reactions turned off using the Spec ies equa t ion source terms and Energy 
equa t i on source terms flags. Then, use this intermediate solution as an initial guess for 
the desired solution. (See Section 3.8.) 

(7) Use continuation to automatically step through a series of steady states as a single 
parameter is incremented until reaching the desired conditions. (See Section 5.4.) 
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(8) Do mesh sequencing to first solve the problem on a coarse mesh, and work toward 
a fine mesh. Convergence is often better on coarse meshes because the preconditioners span more 
of the domain. (See Section 5.3.) 

(9) Write an initial guess function with an educated guess of what the solution will 
look like as a function of x, y, and z. (See Section 3.8 and Section 4.4.) 

5.2. Picking a Linear Solver and Preconditioner 

The choices for the linear solver, the preconditioner, and the scaling method are listed in 
Table 3.3, Table 3.5, and Table 3.6, respectively, and lead to hundreds of possible combinations. 
In Table 5.1 below, we list the three combinations that we use most often. The most common 
combination is #1, which does well for getting to a steady-state (i.e., for steady, pseudo, or 
c o n t i n u a t i o n solution types as listed in Section 3.2). With the GMRES method, the Krylov 
subspace dimension can be increased to be as big as will fit on the machine without running out of 
memory (or causing excess swapping on some machines), up to a value of a few hundred. The 
total number of linear solver iterations should usually be two or three times the Krylov subspace 
size, since GMRES tends to make little progress after restarting three times. 

If a steady state is desired but the job runs out of memory at low values of the Krylov 
subspace, there are two options: (1) use a larger number of processors, and (2) switch to a 
different solver such as the tfqmr solver (combination #2). 

For t r a n s i e n t runs where speed is more important than robustness, the scheme #3 is 
often used. This scheme uses only about half the memory of scheme #1 and the calculation of the 
scaling matrix is much quicker than an ILU-type preconditioner. 

Scheme, in decreasing order of 
robustness and memory use 

1. Robust; good for Steady-State 

2. Robust; uses less Memory 

3. Fast; Good for Transient 

Linear 
Solver 

gmres 

tfqmr 

gmres 

Preconditioner 

no_overlap_ilu 

no_overlap_ilu 

none 

Scaling 

row_sum 

row_sum 

block_Jacobi 

Krylov 
subspace 

large (>100) 

moderate 
Table 5.1. Three common linear solution schemes. 

5.3. Mesh Sequencing 

Mesh sequencing is a strategy for more easily obtaining steady-state solutions on fine 
meshes. In mesh sequencing, a solution is first computed on a coarse mesh. This solution is 
interpolated to a finer mesh and used as the initial guess for the solution on the fine mesh. 
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Sequences of successively finer meshes can be used until a solution with the desired resolution is 
obtained. 

Using Merlinll [15] to interpolate the solution from coarse meshes to fine ones, we have 
run some experiments with mesh sequencing in MPSalsa. In Table 5.2, we show results for the 
Lid-Driven Cavity problem (see Appendix C.2) with an upper-wall velocity of u = 1500. 
Steady-state solutions were obtained with an initial guess of zero for all unknowns and with initial 
guesses interpolated from coarser meshes. The linear solver was GMRES with an ILU 
preconditioner. The number of Newton iterations and the solution times on the Intel Paragon are 
compared. 

Mesh Size 

16x16 

32x32 

64x64 

128x128 

Number of 
Processors 

1 

4 

16 

64 

Initial Guess 

0.0 

0.0 

Sol'n from 16x16 

0.0 

Sol'n from 16x16 

Sol'n from 32x32 

0.0 

Sol'n from 16x16 

Sol'n from 32x32 

Sol'n from 64x64 

Number of 
Newton 

Iterations 

13 

10 

6 

11 

8 

6 

39 

29 

23 

17 

Execution 
Time 

(seconds) 

59.2 

73.1 

46.3 

220.0 

165.5 

122.5 

1406.1 

1025.3 

820.3 

610.8 

MerlinH's 
Execution Time 

(seconds) 

1.0 

2.7 

5.2 

9.1 

17.6 

52.4 

Table 5.2. Performance of the non-linear solver for the Lid-Driven Cavity example using initial guesses of zero and 
initial guesses obtained from coarse-mesh solutions. 

Merlinll is included in the SEACAS distribution of utilities for ExodusII. If the SEACAS 
utilities are installed in directory $ACCESS, the path $ACCESS/etc must be included in the 
user's path. The command line for Merlinll to interpolate the solution from a coarse mesh to a fine 
mesh is shown below: 

> merlin2 -input merlin.inp -output merlin.out -plot coarse_soln.exoll -mesh 
fine_mesh.exoll -interpolate merlin.exoll 

where "coarse_soln.exon" is the ExodusII file containing the coarse-mesh solution, 
"fine_mesh.exoIT is the ExodusII file containing the fine mesh, "merlin.exon" is the resulting 
ExodusII file containing the fine-mesh solution interpolated from the coarse-mesh solution, 
"merlin.out" is a text file containing error messages, if any, and "merlin.inp" is an input file 
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containing processing instructions for Merlinll. The Merlinll input file for the Lid-Driven Cavity 
example above is shown in Figure 5.1; see [15] for more details. 

$ INPUT FILE FOR THE LID-DRIVEN CAVITY EXAMPLE 
$ Declare that the files to interpolate both from and to are EXODUS files. 
MESH-A, EXODUS 
MESH-B, EXODUS 
$ List the variables to be interpolated. 
VARIABLES 
VX 
VY 
Pres 
END 
$ List the time planes to be interpolated. 
TIMEPLANE 
ALL 
END 
$ Perform the interpolation and quit. 
EXECUTE 
STOP 

Figure 5.1. Merlinll input file for mesh sequencing in the Lid-Driven Cavity example. 

5.4. Continuation 

Continuation methods are used to solve for a series of steady-state solutions as a function 
of a parameter. These methods are commonly used for analysis to study trends in performance or 
behavior, as we have studied the effect of the disk spin rate on the CVD reactor performance in 
Section D.3. Continuation can also be an efficient way of reaching a steady-state solution at 
conditions where a trivial initial guess is not close enough for Newton's method to converge. For 
instance, a flow problem can be solved easily at low density, and then the density can be 
incremented over several steps until reaching the desired conditions. 

To implement continuation, the user must edit the function u s e r _ c o n t i n u a t i o n in 
the file "rf_user_continuation.c" to associate the continuation parameter with a specific boundary 
condition or a physical, transport, or kinetic property. This can usually be done by editing only 
one line of code. For details, see Section 4.7. 

Users control the continuation routine through the Solution Specifications section of the 
input file. An example of this section configured for a continuation run is shown in Figure 5.2. 
The seven lines in this section specify that (1) we are solving a continuation problem; (2) first-
order (a.k.a. Euler-Newton) continuation is to be used; (3) a constant step size is to be used as 
long as a steady-state solution is reached within the maximum number of Newton iterations; (4) 
the first solution is for a parameter value of 100.0; (5) the first parameter step is of size 100.0; 
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(6,7) the run will stop when either 20 continuation steps have been taken or when the parameter 
value exceeds 1300.0. 

Solution Specifications 

Solution Type 
Order of integration/continuation = 
Step Control 
Initial 
Initial 
Maximum 
Maximum 

Parameter 
Step Size 
Number of 

Value 

Steps 
Time or Parameter Value 

= 
= 
= 
= 

continuation 
1 
off 
100.0 
100.0 
20 
1300.0 

Figure 5.2. Sample Solution Specifications section for a continuation run. 

The Order of i n t e g r a t i o n / c o n t i n u a t i o n flag can have values of 0,1, or 2. A 
value of zero indicates zeroth order continuation, where the solution at step n is used as an initial 
guess for solution n+l at the next parameter value. This type of continuation is just an automation 
of doing a series of steady-state calculations where, for each calculation, the parameter is changed 
in the input file between each run and the initial solution value is taken from the previous solution. 

First-order continuation (when this flag equals one) requires one additional matrix solve to 
calculate the derivative of the solution with respect to the parameter at step n, and uses this 
tangent to predict an initial guess at the parameter value for step n+l. The resulting improvement 
in the initial guess using first-order continuation usually saves at least one Newton iteration in 
converging to the solution at step n+l, which makes up for the additional cost of the tangent 
calculation. 

A value of two for this flag indicates pseudo arc-length continuation, a capability that is 
not currently implemented. This method is a powerful tool in bifurcation analysis as it can track 
solutions around turning points in the solution branch. In pseudo arc-length continuation, the 
distance along the solution branch (not the change in the parameter) is chosen, so the parameter 
value is free to increase or decrease. With our block matrix storage format, we have decided not to 
implement pseudo arc-length continuation by augmenting the system of equations by one, as is 
commonly done [38], but to use the method described in the Ph.D. dissertation of Shadid [41]. In 
this method, the continuation step takes two matrix solves to form the initial guess for step n+l, 
although the same preconditioner can be used for both solves. 

The other input file choice that deserves additional mention is the Step Cont ro l flag. 
When Time Step Cont ro l is off, the step size is held constant for successful steps (where 
convergence of the nonlinear solver is reached within the maximum number of allowed Newton 
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iterations) and cut in half when a step is unsuccessful. When Time Step Cont ro l is on, the 
step size is increased after each successful step. The increase in step size is larger when the ratio 
of the number of Newton iterations needed for convergence to the total number of Newton 
iterations allowed is small. Failed steps cut the step size in half. 

75 



6. Future Development 

The following is a list of development work for the MPSalsa code that is already planned 
or underway. 

• Multicomponent Diffusion: A full multicomponent diffusion option will be added, which 
will be more accurate than the current mixture-average model, yet much more costly to 
compute. 

• Cylindrical coordinates: For 2D meshes, the capability to solve for axisymmetric solutions 
will be added, with the option of two or three components of the velocity for problems 
with fluid flow. 

• Multi-Physics: This work will add the ability to solve for different physics, and different 
numbers of unknowns, in distinct "realms" of the computational domain. For instance, 
heat transfer can be modeled in the solid walls of a reactor together with the reacting gas 
flows on the inside. 

• Turbulence: Implementation of a k-e model for time-averaged turbulence is underway, 
and an LES (Large Eddy Simulation) model for transient turbulence will follow. 

• Adaptive Mesh Refinement and Dynamic Load Balancing: The ability to automatically 
refine a mesh to reduce a measure of the discretization error below a given tolerance will 
be added. As elements are created and destroyed nonuniformly, the work load will be 
redistributed over the processors. 

• Stability Analysis: A pseudo arc-length continuation routine will be added to track steady-
state solution branches, even if they lose stability through a turning point. To check the 
stability of steady solutions, the ability to calculate eigenvalues of the Jacobian matrix will 
be added through ARPACK [47], which we will access through the Aztec library. 

• Radiation: The ability to include the radiant energy exchange due to enclosure radiation 
using the methods in COYOTE U [16] is mostly implemented in MPSalsa. Work is also 
underway to implement a participating media radiation model. 

• Porous Media: The ability to model multiphase flow in porous media has been 
implemented in a previous version of MPSalsa [32], and will be integrated into the current 
version in the future. The Brinkman equation, which just requires the addition of drag 
terms to the Navier-Stokes equations, will also be included. 

• Plasma Physics: The ability to model dense, partially ionized plasma/gas mixtures using 
self-consistent charged species transport models will be added. 
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Appendix A. Included Functions 

A.l. Boundary Conditions 

A.1.1. Surface Chemistry Boundary Conditions 

Effects due to surface reactions are included through the use of surface chemistry 
boundary conditions. The function surface_chemkin_bc computes the temperature and 
mass fraction NEUMANN boundary conditions, and Stefan flow DIRICHLET velocity boundary 
conditions below: 

N 

* = l 

n J* = - hwk - (n • pr^u), and (A.2) 

n-u = -l-^skWk, (A3) 
Ffc=i 

where sk = sk(P, T, Y, Z) is the production rate of gas- or surface-phase species k due to surface 
reaction, Z is the vector of surface site fractions, Wk is the molecular weight of species k, hk is 
the enthalpy of species k, N is the number of gas-phase species, and N is the total number of 
gas-, surface-, and bulk-phase species (see [5, 42] for more details of these surface reaction 
boundary conditions). Examples using the surface_chemkin_bc function for (A.1) - (A.3) 
are included in Figure A.l. The Stefan velocity boundary condition (A.3) may be implemented as 
either a VEL_NORM_BC or as a U_BC, V_BC, or W_BC when the normal vector is parallel to the 
x-, y-, or z-axis, respectively. In the latter case, the sign of the normal vector will be taken into 
account automatically. 

The initial surface site fractions and bulk species mass fractions may be specified in the 
input file by including SURF_SPECIES_LIST and BC_DATA lines with the 
sur f ace_chemkin_bc mass fraction boundary condition. The format for these lines follows: 

SURF_SPECIES_LIST = {ALL | list of species numbers \ list of species names} 
BC_DATA = FLOAT list of surface site fractions or mass fractions 

The arguments of SURF_SPECIES_LIST are analogous to those of the SPECIES_LIST 
described in Section 3.7.2.1, with the exception that the numbers or names must correspond to 
surface or bulk species. These two lines together count as one data line in the numjiatajines 
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# Temperature BC of equation (A.l). 
BC = T_BC NEUMANN SS 4 DEPENDENT surface_chemkin_bc 0 

# Mass fraction BC of equation (A.2). 
BC = Y_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 2 

SPECIES_LIST = ALL 
SURF_SPECIES_LIST = GaMe(S) Ga(S) GaH(S) AsH(S) AsMe(S) As(S) 
BC_DATA = 1.0e-6 0.5 1.0e-6 1.0e-6 1.0e-6 0.5 
SURF_SPECIES_LIST = Ga-GaAs(D) As-GaAs(D) 
BC_DATA = 1.0 1.0 

# Tangential velocity BC with value 0.0. . 
BC = U_BC DIRICHLET SS 4 INDEPENDENT 0. 0 
BC = V_BC DIRICHLET SS 4 INDEPENDENT 0. 0 

# Normal velocity BC of equation (A.3) (Stefan flow). 
BC = Z_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0 

Figure A. 1. Example usage of surface_chemkinj>c for surface reaction boundary conditions on temperature, 
mass fractions and velocity (where the normal to side set 4 is parallel to the z-axis). 

argument of the BC line (see Section 3.7.2). The example in Figure A.1 uses 
SURF_SPECIES_LIST to initialize both surface site fractions and bulk mass fractions. 

A.1.2. Danckwerts' Boundary Conditions 

Danckwerts' boundary condition can be applied using the included functions 
f _Danckwerts and f_Danckwerts_X0. Danckwerts' boundary condition is used as an inlet 
boundary condition when the user wants to specify the total flux of each species into the system, 
rather than the mole or mass fraction of species at the edge of the domain. This is particularly 
important in low pressure reacting systems, where the diffusive component of the inlet flux of a 
species i is significant compared to the convective contribution: 

i / A A\ 

*total ~ ^diffusive "convective \"-^) 

This boundary condition is also important for matching experimental results, where it is generally 
the total flux of a species i that is known, not the mole fractions at the edge of the computational 
domain. 

It is assumed that the user knows the total flux of each species into the system in terms of 
the upstream velocity uQ, the normal flow velocity into the domain v0 = -n • u0 , the upstream 
density p 0 , and the relative species mole fractions X0. The weak form of the FE discretization 
yields a surface integral of the diffusive flux over the inlet boundary. Using (A.4) to solve for the 
diffusive flux, we have 

n * ^diffusive = n*{*total-honvective) = "PoVo + P ^ ' <A - 5 ) 
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where Y*0 is the mass fraction of species i computed from the given mole fractions XQ, Y1 is the 
unknown mass fraction of species i at the inlet boundary, v = -n • u is the unknown normal 
velocity into the domain at the inlet boundary, and p and p0 are the densities calculated for Y 
and Y0. By conservation of mass, the total mass flux of species i at the inlet boundary must be 
equal to the given mass flux into the system, 

pv = p0v0, (A.6) 

which leads to a Dirichlet condition on the inlet velocity: 

v = p0v0 /p. (A.7) 

Using (A.7) to simplify (A.5), we get a MIXED boundary condition for each species, 

^ivfusive = P 0 v o ( r - r 0 ) . (A.8) 

With MPSalsa, (A.7) and (A.8) are applied with the following lines in the Boundary 
Condition section of the input file (assuming that the boundary is side set 1 and has a normal in 
the y-direction): 

BC = V_BC DIRICHLET SS 1 DEPENDENT f_Danckwerts_XO 1 
BC_DATA = FLOAT S_0 XI X2 X3 .. XN 

BC = Y_BC MIXED SS 1 INDEPENDENT f_Danckwerts f_Danckwerts_XO 0.0 0.0 1 
SPECIES_LIST = ALL 
BC_DATA = FLOAT S_0 XI X2 X3 .. XN 

The BC_DATA statements following the V_BC and Y_BC statements must be the same, and 
consist of an upstream velocity S_0 followed by the list of molar flux fractions. The expression 
for S_0 varies depending on the type of velocity boundary condition in which it is used. For 
Dirichlet boundary conditions on one component uk of the velocity u (i.e., U_BC, V_BC, or 
W_BC), 

S_0 = v0(-n»ek), (A.9) 

where ek is the unit vector in the k -coordinate direction. For Dirichlet boundary conditions on 
the normal velocity n • u (i.e., VEL_NORM_BC), 

S_0 = n»u 0 = -v0 . (A.10) 

In both of these cases, S_0 is the velocity value that would be used if regular Dirichlet boundary 
conditions on velocity were being imposed instead of Danckwerts' boundary condition. 
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The function f_Danckwerts_XO, when used as a velocity boundary condition, 
calculates the ratio of the densities in (A.7) and multiplies it by S_0. When used as a Y_BC, this 
function returns the appropriate mass fraction calculated from the mole fractions Xp X2, ...,XN. 
The function f_Danckwerts returns the quantity p0v0 = p0 |S_0|, which is analogous to the 
heat transfer coefficient in the typical MIXED boundary condition. It calculates p0 assuming that 
the temperature and pressure upstream of the boundary are equal to those values used at the 
boundary. Thus, only the mass fractions and the normal velocity are allowed to have a jump 
discontinuity between the upstream and the domain. This limits effective usage of this boundary 
condition to cases where there is a Dirichlet condition on the temperature on the same boundary. 

If the inlet fluxes are known in terms of mass fractions instead of mole fractions, the 
function f _Danckwerts_YO can be used in place of the f _Danckwerts_XO above, and the 
list of mass fractions must follow S_0 in the BC_DATA statements. 

A. 1.3. Spinning Disk Boundary Conditions 

A.l.3.1. Spinning Disk in the xy-Plane 

The boundary condition function f _xy_spin_disk is used to apply Dirichlet boundary 
conditions on velocities on a spinning disk in the xy-plane. This function returns non-zero values 
only for boundary condition types U_BC and V_BC. It should be called as an independent 
Dirichlet condition on either side sets or node sets, and requires a BC_DATA statement. The 
BC_DATA line must include three floating point numbers, the first being the disk rotation rate in 
rpms (revolutions per minute) in the counterclockwise direction. The next two entries are the 
coordinates of the rotation center. 

For example, boundary conditions for a disk rotating at 80 rpm that is centered at the point 
(x,y) = (2,-3) would be imposed using the following lines in the input file: 

U_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1 
BC_DATA = 80.0 2.0 -3.0 

V_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1 
BC_DATA = 80.0 2.0 -3.0 

The rotation rate is translated from rpm to radians/sec in a pre-processing step in the file 
"rf_input_bcc." 

A.l.3.2. Spinning Tilted Disk 

The boundary condition f _ x y _ s p i n _ t i l t 9 _ d i s k was written for the Tilted CVD 
reactor (see the example in Appendix D.3). In this reactor, the rotating substrate is on a tilted 
plane whose tangent vectors are (1,0,0) and (0, coscp, sincp) , with <p = 9 degrees. Since the 
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velocity normal to the disk can be non-zero due to the Stefan velocity, the rotation boundary 
conditions are imposed in the two tangential directions using the Generalized Surface 
functionality. 

As with the spinning disk boundary condition in Appendix A. 1.3.1, this independent 
Dirichlet condition requires a BC_DATA statement with the rotation rate, followed by the center 
of rotation. An example using this boundary condition, including the specification of the 
generahzed surface along side set 5, is shown in Figure A.2. This specification is for a disk 
centered at (0,0,1.5046) that is rotating at 80 rpm. 

Number of Generalized Surfaces = 1 
GENERALIZED_SURFACE 5 2 

TANGENT 1.0 0.0 0.0 
TANGENT 0.0 0.9876 0.1564 

Number of BC = 33 
BC = VEL_TAN1_BC DIRICHLET GS 1 INDEPENDENT f_xy_spin_tilt9_disk 1 

BC_DATA = FLOAT 80.0 0.0 0.0 1.5046 
BC = VEL_TAN2_BC DIRICHLET GS 1 INDEPENDENT f_xy_spin_tilt9_disk 1 

BC_DATA = FLOAT 80.0 0.0 0.0 1.5046 

Figure A.2. Example usage of f _xy_sp in_ t i l t 9_d i sk to specify Dirichlet boundary conditions for 
velocities on a spinning, tilted disk. 

AAA. Mass Fraction Dirichlet Boundary Conditions expressed as Mole Fractions 

In MPSalsa, the primitive variables for mass transfer are mass fractions, but for many 
applications, it is the mole fractions that are known. MPSalsa includes the function 
f _mole_f r a c t ion which allows the user to specify the mole fractions as a Dirichlet condition 
along a side set or node set. An example of this boundary condition is in Figure A.3. The mole 
fractions for all species are listed on the BC_DATA line in the order of the SPECIES_LIST 
arguments above it. For SPECIES_LIST = ALL, the mole fractions should be listed in order 
from the first species to the last species. The mole fractions can be spread across more than one 
BC_DATA statement, each preceded by a SPECIES_LIST statement. 

BC = Y_BC 
SPECIES. 
BC. .DATA 

DIRICHLET SS 
.LIST = 2 1 4 3 
— 1.232900e--04 

1 

1 

INDEPENDENT 

095458e--02 9 

f_mole_ 

.889221 

fraction 

e-01 0.0 

1 

Figure A.3. Example usage o/f_mole_f r a c t i o n to specify Dirichlet boundary conditions for mass 
fractions in terms of mole fractions. 
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The conversion from mole fractions to mass fractions is done once in a preprocessing step, 
with the resulting mass fractions being stored in the BC_Data_Float array where the mole 
fractions originally were. Error checking makes sure that each species is assigned a mole fraction 
and that the sum of mole fractions is near unity. 

A.1.5. Outflow Boundary Condition 

The included function f_pressure returns the hydrodynamic pressure unknown 
weighted by a constant. This value can be used as an outflow boundary condition by imposing this 
function as a Neumann condition on the normal component of the momentum equation. The 
usage of the function in the case of outflow from the computational domain on side set 3, with a 
normal in the y-direction, is 

BC = V_BC NEUMANN SS 3 DEPENDENT f_pressure 1 
BC_DATA = FLOAT 1.0 

The single floating point data statement required with the f_pressure boundary condition is a 
multiplicative factor, which will be discussed later. 

A reasonable outflow boundary condition on the normal component of the momentum 
balance is that the normal velocity is not changing as it leaves the domain, i.e. dun/dn = 0 
where n represents the direction normal to the boundary and un is the normal velocity. The weak 
form of the FE residual equation in the direction normal to the surface with respect to test function 
*?. renders the following surface integral for the normal component of the stress tensor: 

J 2 du„ 
VjdT. (A. 11) 

From the continuity equation, the middle term is identically zero for incompressible flows 
and is often negligible for variable-density flows. A natural condition that sets the entire integral 
to zero works for many cases as an outflow boundary condition and has the added feature of 
setting the pressure datum to near zero along the outflow surface. Thus, no boundary condition for 
pressure is needed for open flows while the pressure must be set at one node for closed flows. 

This natural condition does not work for cases where the pressure is not constant along the 
outflow surface, such as a vertical outflow plane in systems with gravity and swirling flows such 
as the Rotating Disk Reactor configuration in Appendix D.2. It is for these systems that we 
impose the simple f . p r e s s u r e Neumann boundary condition 
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kji-P^jdT. (A. 12) 
r 

In (A. 12), k is the multiplicative floating point number input in the BC_DATA statement. 
When k = 1.0 and the divergence of the velocity is negligible, this boundary condition weakly 
imposes the desired outflow boundary condition. However, this results in an arbitrary pressure 
datum again. We have found empirically that setting the multiplicative constant in the range of 
k e [0.9,0.99] gives smooth outflow profiles while still setting the average pressure on the 
outflow boundary to zero. 

The FTDAP package [13] also integrates the pressure as an outflow boundary condition, 
but does not include the derivatives of the boundary condition in the Jacobian matrix. The 
pressure from the previous Newton iteration sets the pressure at the current step, removing the 
need for a value of k other than unity to set the pressure datum. However, this omission can 
greatly degrade convergence of Newton's method. The user can try this method by changing the 
boundary condition to type INDEPENDENT so that no Jacobian entries are computed for this 
boundary condition. Other outflow boundary conditions are under development. 

A.2. Look-up Tables 

Values of properties and boundary conditions may be interpolated from tables of data 
specified in the Function Data section of the input file (see Section 3.11). Two of these look-up 
tables, l o o k u p _ t a b l e _ l and l o o k u p _ t a b l e _ 2 , are included in MPSalsa. Other look-up 
tables can be easily added by following the example of l o o k u p _ t a b l e _ l in "rf_fn_data.c" 
(actual code for the function), "rf_fill_const.h" (prototype for the function), and 
"rf_bc_exact_fn.c" and "rf_source_fn.c" (pointer assignment routines for the function). 

Look-up tables can be used anywhere a SNGLVAR_FUNCTlON can be used (see Table 
4.2). For example, to use a look-up table to compute the volumetric source term as a function of 
temperature for the mass fraction equations, a variable mass fraction source term is specified in 
the Material Properties section of the input file (see Section 3.6): 

Y_VOLUME_VAR = l o o k u p _ t a b l e _ l s i n g l e 
The data for l o o k u p _ t a b l e _ l is included as a TABLE in the Function Data section of the 
input file: 
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Function = lookup_table_l 2 
FN_DATA = STRING TEMPERATURE 
FN_DATA = TABLE n 2 

h ai 

fn °n 
where tp t2, • ••>*„ are the values of the temperatures (in increasing order) and qv q2,..., qn are 
corresponding mass fraction source term values. The FN_DATA STRING indicates the 
independent variable to use in the table. The look-up function uses linear interpolation to compute 
the source term using the values of the independent variable passed to l o o k u p _ t a b l e _ l . 

A.3. Output 

The following functions have been written to provide some useful output from MPSalsa 
for the analysis of solutions. Still, the majority of post-processing is left to graphics packages that 
can read ExodusII files. 

None of the following functions are called automatically from MPSalsa, but must be 
explicitly called from the function u s e r _ o u t in the file "rf_user_out.c." The function calls and 
argument lists are described in comments at the top of each function. 

The s t a t u s variable, described in Figure 4.9, can be used to restrict the output. For 
instance, the function call can be preceded by the following condition if output is not desired for 
failed time steps: 

i f ( s t a t u s > = 0 ) . 

A.3.1. Evolution of the Solution at a Point 

The evolution of the solution at a point (or points) in the domain can be output from 
MPSalsa using the t i m e _ h i s t o r y _ p o i n t s output function. Two things must be done to use 
this function. First, the function call 

t i m e _ h i s t o r y _ p o i n t s ( t i m e , t ime_s t ep_num, s o l n ) ; 
must be added to the function u s e r _ o u t in the file "rf_user_out.c" and the code must be 
recompiled. Second, data must be input for this function in the Function Data Specifications 
section of the input file (see Section 3.11). This function needs only a list of points at which the 
solution output is desired. For instance, the following section of input file 
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Function Name = time_history_points 1 
FN_DATA = TABLE 2 3 

0.0 0.01 0.5 
0.0 0.99 0.5 

would cause the entire solution at (0,0.01,0.5) to be printed at each time step to the file 
"time_his.0," and the solution (0,0.99,0.5) to be printed to the file "timejiis.l." The two 
integers following the TABLE keyword specify the dimensions of the table to be read, with the 
first number (2) representing the number of points at which to print data and the second number 
(3) specifying the dimension of the system. 

Each line of the output file contains the following information: time step number, time, x, 
y, z (for 3D problems), and the entire solution at the point (with mass fractions translated to mole 
fractions), in the following order: u, P, T, XVX2, ...,XN. This output format allows for easy 
plotting with a package such as "gnuplot," where plotting column 7 versus column 3 gives a plot 
of y -velocity u2 versus time. 

A.3.2. The Solution along a Line 

The t i m e _ h i s t o r y _ l i n e output function gives the ability to analyze the solution 
along a line through the computational domain. This function has been used to generate many of 
the plots in the example problems shown in subsequent appendices. 

The implementation of this function is almost identical to t i m e _ h i s t o r y _ p o i n t s . A 
call to the function 

t i m e _ h i s t o r y _ l i n e ( t i m e , time_step_num, soln) ; 
must be included in u se r_ou t and the code must be recompiled. The s t a t u s flag can be used 
to restrict some output, as described in Figure 4.9. 

In the Function Data Specifications section of the input file (see Section 3.11), data must 
be entered, for this function. Two data lines are required: an integer that tells how many points on 
the line are desired, and a table with two rows that gives the beginning and ending points of the 
line. Solutions along more than one line can be output by supplying more than one set of data to 
the function. The input lines in Figure A.4 show how this is done for a 2D problem. One line 
gives a slice through the domain as a function of JC, and the other is a slice in the y-direction. Each 
line is written to a separate file and, unlike the t i m e _ h i s t o r y _ p o i n t s function, the data at 
each time step is written to a separate file. For instance, with the input data in Figure A.4, the 
solution at the 80 points equally spaced on the line between (0,0) and (1,0) at the 14th time step 
will be in the file "time_his_line.0.14," and the 50 points equally spaced between (0.5,-10.0) and 
(0.5,10.0) at the 7th time step will be in the file "time_nis_line.l.7." 
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F u n c t i o n Name = t i m e _ h i s t o r y _ l i n e 2 
FN_DATA = INT 80 
FN_DATA = TABLE 2 2 

0 .0 0 . 0 
1.0 0 .0 

# Second l i n e f o r t i m e h i s t o r y o u t p u t : 
F u n c t i o n Name = t i m e _ h i s t o r y _ l i n e 2 
FN_DATA = INT 50 
FN_DATA = TABLE 2 2 

0 . 5 - 1 0 . 0 
0 . 5 10 .0 

Figure A.4. Example function data lines for t i m e _ h i s t o r y _ . l i n e . 

As with the t i m e _ h i s t o r y _ p o i n t s function, each line of the output file contains the 
following information: time step number, time, x, y, z (for 3D problems), and the entire solution at 
the point (with mass fractions translated to mole fractions), in the following order: u , P, T, 

1' 2' *'*' N' 

A.3.3. Information on a Side Set 

The function f_ s s_cen t ro id gives the user the ability to print many useful pieces of 
information along a side set. Information from this function can be used to get such information 
as the average temperature on a surface, the total heat flux into a wall, and the drag coefficient 
over a body. The function calculates positions, solution values, normal gradients, and other 
information at the centroid of the surface elements in one or more side sets. 

The implementation of this routine requires that the following function call be added as 
one of the first executable statements of function user_out : 

f _ s s _ c e n t r o i d ( t i m e , time_step_num, s o l n ) ; 
The code then must be recompiled. Also, data must be given to this function in the Function Data 
Specifications section of the input file (see Section 3.11). An example is given here. 

Function Name = f_ss_centroid 2 
FN_DATA = INT 1 2 3 
FN_DATA = STRING x T Area 

The required integer data is a list of side set IDs for which information is to be printed. In this 
case, information will be output for side sets 1,2, and 3 all to the same output file. If it is desired 
that the data be separated into different files for each side set, multiple sets of data can be supplied 
to this function (with repeated Funct ion Name lines), each with a single integer for the side set 
list. 
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The STRING data specifies the quantities to be output. In this example, the x-coordinate, 
the temperature, and the area (length) of the surface element are output. Table A.1 Usts the strings 
currently recognized by this function and the quantity that each string refers to. In the future, we 
hope to add physical quantities such as the local density or viscosity to the list of recognized 
strings. 

STRING 

t , t i m e 

X 

y 

z 

U 

V 

w 
p 

T 

Y 

A, Area 

n , no rma l 

t l , t a n g e n t 

t 2 , t a n g e n t 2 

Vn, Un 

n_grad_U 

n_grad_V 

n_grad_W 

n_grad_P 

n_grad_T 

n_grad_Y 

t a u _ n 

OUTPUT 

Time value 

^-coordinate of position 

v-coordinate of position 

z-coordinate of position 

Velocity in the x direction 

Velocity in the y direction 

Velocity in the z direction 

Hydrodynamic pressure 

Temperature 

Array of mass fractions 

Area (length) of the element 

Outward pointing normal vector 

Tangent vector 

Second tangent vector (for 3D problems) 

Velocity in the normal direction 

Normal component of the gradient of the x-component of velocity 

Normal component of the gradient of the v-component of velcocity 

Normal component of the gradient of the z-component of velocity 

Normal component of the gradient of P 

Normal component of the gradient of T 

Normal component of the gradient of Y;, for all i 

Traction vector / viscosity, no pressure contribution 

Table A.1. List of Strings currently recognized by the f_ss_cen t ro id output function. The bold strings lead to 
more than one column of output. 

The output from this function is written to files of the form "ss_data.n.m" where the 
integer n identifies the set of function data (n = 0 for the first occurrence of f_ss_cent ro id , 
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n = 1 for the second occurrence, etc.), and m is the time step number. Each file has one line for 
each element in the side set(s), and each line has at least one column for each quantity specified in 
the STRING data statement. 

Integrated quantities over the side set can be calculated using the element area 
information. For instance, the total conductive heat flux through the side set can be calculated by 
summing over all surfaces in the side set the products of the area (A) of each surface with the 
normal gradient of the temperature (n_grad_T) and the thermal conductivity. Averages can be 
computed by summing over all surfaces the product of a quantity with the surface's area, and 
dividing the sum by the total area. 

The tau_n string leads to an array of output that includes the components of the viscous 
traction vector along the surface: 

9 du„ 
t au n = -fV»u + 2-j-B. (A. 13) 

- 3 dn v 

Note that tau_n does not include the pressure term, which can be output independently, and does 
not include the multiplication by the viscosity. The total drag force over an object in the x-
direction is the sum of the first component of tau_n (tau_x) multiplied by the viscosity and the 
element area (A). 

A.4. Interprocessor Communication Utilities 

This section details some machine-independent communication functions callable within 
MPSalsa that are useful when programming new functions for parallel applications, especially 
when I/O is involved. The code for these functions is in "rf_comm.c." 

A.4.1. Synchronization 

Certain operations require that all processors are at the same part of the code at the same 
time. A call to the sync function causes each processor to wait until all processors have reached 
the statement. The syntax is 

sync (Proc , Num_Proc); 
where Num_Proc is the total number of processors running the problem, and Proc is the unique 
processor ID with a value between 0 and (Num_Proc - 1) of the current processor. Both 
Num_Proc and Proc are defined as global integer variables in MPSalsa and are initialized at the 
beginning of MPSalsa's execution. If any processor fails to reach the sync statement, the 
computation will idle indefinitely. 
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When each processor must write to a common output file, the print statement should be 
surrounded by the p r i n t _ s y n c _ s t a r t and pr in t_sync_end function calls. These 
functions synchronize the processors so that only one processor at a time executes the statements 
between the calls. There can be no communication calls between these statements; such calls 
would cause the program to reach a deadlocked state. 

The code fragment in Figure A.5 demonstrates the use of p r i n t _ s y n c _ s t a r t and 
p r int_sync_end. The resulting output file would contain the processor ID numbers printed in 
order from 0 to Num Proc - 1 . 

print_sync_start(Proc, 
if (Proc==0) ifp = 
else ifp = fopen("f 
fprintf(ifp,"%d \n" 
fclose(ifp); 

Num_Proc 
fopen("fi 
"ilename", 
,Proc); 

print_sync_end(Proc, Num_Proc); 

f i ­
lename" ,"w"); 
"a") ; 

Figure A.5. Code fragment demonstrating the use o / p r i n t _ s y n c _ s t a r t and p r i n t _ s y n c _ e n d . 

A.4.2. Broadcast 

A machine-independent broadcast routine called b r d c s t has been written for use in 
MPSalsa. Information on one processor (usually processor zero) is sent to all other processors 
using this routine. There are five arguments for this function; the first two are Proc and 
Num_Proc; the third is the pointer to the memory location where the information is stored or to 
be stored; the fourth is the message size; and the last is the number of the processor that is 
initiating the broadcast (usually processor zero). 

The code fragment in Figure A. 6 illustrates the use of this routine, by broadcasting an 
array of length two from processor zero to all other processors. The message size is the array 
length (two) times the size of a double variable (computed using the s i zeo f function). 

double x[2]; 

if (Proc==0) { 
x[0] = 10.5; 
x[l] = 0.123; 

} 
brdcst(Proc, Num_Proc, (char *) x, 2*sizeof(double), 0); 

Figure A.6. Code fragment demonstrating the use o / b r d c s t . Upon return from b r d c s t , x=[10.5, 0.123] 
on all processors. 
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A.4.3. Global Sum, Maximum, and Minimum 

Several functions that compute the sum, maximum or minimum of some value over all 
processors are included in MPSalsa. Several of these functions are listed in Figure A.7. The 
functions gsum_int, gmax_int, and gmin_int compute the sum, maximum and minimum, 
respectively, of an integer value. The functions gsum_double, gmax_double, and 
gmin_double, perform the same operations on double precision variables. In all cases, the first 
argument is the quantity that is to be summed or compared. 

int i,j; 
double x,y; 

j = gsum_int 
j = gmax_int 
j = gmin_int 
y = gsum_do'uble 
y = gmax_double 
y = gmin_double 

(i, Proc, Num_Proc) 
(i, Proc, Num_Proc) 
(i, Proc, Num_Proc) 
(x, Proc, Num_Proc) 
{x, Proc, Num_Proc) 
(x, Proc, Num_Proc) 

Figure A.7. Functions for computing the sum, maximum and minimum of a value over all processors. The 
functions g sum_in t , gmax_ in t and g m i n _ i n t operate on integers; the functions gsum_double , 

gmax_double, and gmin_double operate on double precision variables. 
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Appendix B. Mass Transfer Examples 

B.l. Diffusion in an Annulus 

This simple example problem consists of a single species diffusing in an annular region, 
and is designed to illustrate the use of the three different boundary condition types: Dirichlet, 
Neumann, and Mixed. The domain has inner radius of Rt = 1 and an outer radius of R0 = 2. 
The domain is discretized with the 2048 element mesh shown Figure B.l, with the inner circle 
designated Side Set 1 and the outer circle designated Side Set 2. 

Figure B.l. Finite element mesh for the Diffusion in an Annulus example problem. The mesh contains 2048 
elements and 2112 nodes and is stored in the file washer.exoII. 

A volumetric mass source of magnitude one generates mass uniformly over the domain, 
and the diffusion coefficient is also set equal to unity, leading to the following governing 
equation: 

V 2 C + 1 = 0 , (B.l) 

where C is a dimensionless concentration. At the inner circle of the annulus, we set a Dirichlet 
condition of 
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C = 1 for r = Jx2 + y2 = R(. (B.2) 

To illustrate the three different standard boundary condition types available in MPSalsa, we pose 
three options for the boundary condition at the outer circle (Side Set 2): 

either Dirichlet: 

C = 1/4 forr = R0; (B.3) 

or Neumann: 

n-VC= 1 forr = R0; (B.4) 

or Mixed (Robin): 

n-VC = 4 ( C - 0 ) forr = R0. (B.5) 

Any of these three boundary conditions leads to the same analytic solution: 

s_ 2 _ 2 

C = x y . (B.6) 

This function has been programmed into a function called f_annulus_exact to test the 
computed solution. 

The MPSalsa input file for solving this problem is given in Figure B.2. It shows that we 
are solving a diffusion-only problem to a steady-state solution using the GMRES method with 
preconditioning. The number of species and the volumetric source term are set in the Materials 
Specifications section. At the end of the Output Specifications section, it is specified that the final 
solution be tested against the analytic solution programmed in f_annulus_exact . As can be 
seen in the Boundary Conditions section, this file applies the Dirichlet condition (B.3) on Side Set 
2. The options of applying the Neumann condition (B.4) or Mixed condition (B.5) are commented 
out by the pound sign (#). 

Table B.l compares the solutions for the three boundary condition types, by showing the 
2 

L -error of the computed solution with respect to the analytic solution, the CPU time on an SGI 
workstation needed to reach the solution, and the number of GMRES linear solve iterations 
needed to reach the solution. Since the problem is linear, each solution required only one Newton 
iteration. There is no significant difference between the three solutions, except the Neumann case 
required a few more linear iterations. 
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General Problem Specifications Boundary Condition Specifications 

Problem type 
Input FEM file 
LB file 
Output FEM file 
Number of processors 
Cartesian or Cylindrical when 2D 
Interpolation Order 
Stabilization 

= mass_diff 
= Meshes/washer exoll 

* run_out exoll 
= 1 
= Cartesian 

= default 
= 2 

Solution Specifications 

Solution Type = steady 
Order of integration/continuation « 1 
Step Control = off 
Relative Time Integration Error = 1 Oe-3 
Initial Parameter Value = 300 0 
Initial Step Size = 2 Oe-1 
Maximum Number of Steps = 1000 
Maximum Time or Parameter Value = 250 

Solver Specifications 

Override Default Linearity Choice 

— nonlinear solver subsection 

Number of Newton Iterations 
Use Modified Newton Iteration 
Enable backtracking for residual reduction 
Choice for Inexact Newton Forcing Term 
Calculate the Jacobian Numerically 
Solution Relative Error Tolerance 
Solution Absolute Error Tolerance 
— linear solver subsection 

15 

1 0e-3 
1 0e-8 

Number of Generalized Surfaces = 0 
Number of BC = 2 
# BC on inner radius, r«l 
BC = Y_BC DIRICHLET SS 1 INDEPENDENT 1 0 0 

SPECIESJCIST = ALL 
# 
# BC on outer radius, r=2 
tDirichlet 
BC = Y_BC DIRICHLET SS 2 INDEPENDENT 0 25 0 
#Neumann 
#BC ■ V_BC NEUMANN SS 2 INDEPENDENT 1 0 0 
#Mixed 
#BC = Y_BC MIXED SS 2 INDEPENDENT 4 0 0 0 0 0 0 . 0 0 

SPECIES_LIST = ALL 

Initial Guess/Condition Specifications 

Set Initial Condition/Guess 
Apply function 
Time Index to Restart From 

= constant 0 0 

= 1 

Output Specifications 

User Defined Output 
Parallel Output 
Scalar Output 
Time Index to Output To 
Nodal variable output times 

every 1 steps 

Number of nodal output variables 
Nodal variable names 

Mas s_frac tion 

Number of global output variables 
Global variable names 

■■ 1 

Solution Algorithm 
Convergence Norm 
Preconditioner 
Polynomial 
Scaling 
Orthogonalization 
Size of Krylov subspace 
Maximum Linear Solve Iterations 
Linear Solver Normalized Residual Tolerance 

= 1 
= no__overlap_ilu 
= LS,1 
= row_sum 
= classical 
= 25 
= 50 
= 1 Oe-6 

Test Exact Solution Flag 
Name of Exact Solution Function 

Chemistry Specifications 

Energy equation source terms 
Species equation source terms 
Pressure (atmospheres) 
Thermal Diffusion 
Multicomponent Transport 
Chemkin file 
Surface chemkin file 
Transport chemkin file 

= off 
= off 
= 1 0 
= off 
= stefan_maxwell 
= chem bin 
= surf bin 
= tran bin 

Enclosure Radiation Specifications 

Enclosure Radiation source terms - off 

Material ID Specifications 

Number of Materials 
SOLID = 0 

ELEM_BLOCK_IDS 
NUM_SPECIES 
SPECIES_NAME 1 
DIPF_COEFP VK_1 1 0 
WTSPECIES YK_1 1 0 
XHF_0 YK_1 1 0 

# Source Term 
Y_VOLUKE = 1 0 

END Material ID Specifications 

= 1 
*Graphite 
= 1 
= 1 
XKJ. 

- f_annulus_exact 

Parallel I/O section 

Machine 
Staged writes 

ncube subsection 

Number of controllers 
Disks per controller 
Root location 
Subdirectory 
Offset numbering from zero 

paragon subsection 

Number of RAID controllers 
Root location 
Subdirectory 
Offset numbering from zero 

= paragon 

8 
1 
//df 
jns/testa 
0 

26 
/pfs/xo_ 
tmp/kdd/ti43 
23 

Data Specification for User's Functions 

Number of functions to pass data to = 0 

Figure B.2. Input file for the Diffusion in an Annulus example problem. 
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BC Type on Side Set 2 

Dirichlet 

Neumann 

Mixed 

L2 -Error 

2.20e-4 

1.75e-4 

2.12e-4 

CPU Time (seconds) 

1.16 

1.34 

1.19 

Number of GMRES Iterations 

16 

23 

17 

Table B.l. Comparison of the three boundary condition types for the Diffusion in an Annulus example problem. 

B.2. The Soret Effect 

This simple example of thermal diffusion (the Soret effect) illustrates the use of a 
CHEMKIN material type. The problem is solved on a 2D mesh but is essentially ID. Hydrogen 
(H2 — molecular weight 2.016) and Trimethylgallium (GaMe3 — molecular weight 114.83) are 
allowed to interdiffuse along a steep thermal gradient. The 100-element mesh and boundary 
conditions are shown in Figure B.3. 

T=300 

Y GaMe3 = - 0 1 

YH 2=.99 

T=1000 

FtaxQaMe3=0 

FluxH2=0 

x-axis 
Figure B.3. 100 element mesh and boundary conditions for the Soret Effect example problem. 

The input file for this example problem is shown in Figure B.4, and shows that this is an 
energy and mass transfer problem, being solved directly to the steady-state using GMRES and a 
preconditioner. Because the material is a CHEMKIN material, the number of species, species 
names, molecular weights, and transport properties are not specified in the Materials 
Specifications section. This information is read into MPSalsa from the file "chem.bin," which is 
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General Problem Specifications Boundary Condition Specifications 
Problem type 
Input FEM file 
LB file 
Output FEM file 
Number of processors 
Cartesian or Cylindrical when 2D 
Interpolation Order 
Stabi1ization 
Debug 

- energyjmass_diff 
= Meshes/boxlOO exoll 
= run-out exoll 
= 1 
- Cartesian 
= default 
= 2 

Solution Specifications 
Solution Type = steady 
Order of integration/continuation = 1 
Step Control = on 
Relative Time Integration Error = 4 Oe-3 
Initial Parameter Value = 300 0 
Initial Step Size = 1 Oe-3 
Maximum Number of Steps = 10 
Maximum Time or Parameter value = 1 Oe+9 

Solver Specifications 
Override Default Linearity Choice default 

nonlinear solver subsection 
Number of Newton Iterations 
Use Modified Newton Iteration 
Enable backtracking for residual reduction 
Choice for Inexact Newton Forcing Term 
Calculate the Jacobian Numerically 
Solution Relative Error Tolerance 
Solution Absolute Error Tolerance 

25 

1 0e-3 
1 0e-8 

linear solver subsection 
Solution Algorithm 
Convergence Norm 
Preconditioner 
Polynomial 
Scaling 
Orthogonalization 
Size of Krylov subspace 
Maximum Linear Solve Iterations 
Linear Solver Normalized Residual Tolerance 

1 
no_overlap_ilu 
LS,1 
row_sum 
classical 
100 
200 
1 0e-6 

Chemistry Specifications 
Energy equation source terms 
Species equation source terms 
Pressure (atmospheres) 
Thermal Diffusion 
Multicomponent Transport 
Chemkin file 
Surface chemkin file 
Transport chemkin file 

: off 
off 
0 I 

stefan_jnaxwell 
chem bin 
surf bin 
tran bin 

Enclosure Radiation Specifications 
Enclosure Radiation source terms = off 

Material ID Specifications 
Number of Materials 
CHEMKIN 

ELEM_BLOCK_IDS * 1 
T_INIT =500 

= 1 
- 0 *gaas_block* 

Number of Generalized Surfaces - 0 
Number of BC = 3 
BC = T_BC DIRICHLET SS 4 INDEPENDENT 300 0 0 
BC = TJ3C DIRICHLET SS 2 INDEPENDENT 1000 0 0 
BC = Y_BC DIRICHLET SS 4 INDEPENDENT f_mole_fractlon 1 

SPECIES_LIST = H2 GaMe3 AsH3 CH4 
BC_DATA = FLOAT 0 99 0 01 0 0 0 0 
Initial Guess/Condition Specifications 

Set Initial Condition/Guess 
Apply function 
Time Index to Restart From 

= constant 0 0 

Output Specifications 
User Defined Output 
Parallel Output 
Scalar Output 
Time Index to Output To 
Nodal variable output times 

every 2 steps 
Number of nodal output variables 
Nodal variable names 

Temperature 
Mass_fraction 

Number of global output variables 
Global variable names 
Test Exact Solution Flag 
Name of Exact Solution Function 

yes 

: 1 

= 0 

Parallel I/O section 
Machine 
Staged writes 

ncube subsection 

Number of controllers 
Disks per controller 
Root location 
Subdirectory 
Offset numbering from zero 

paragon subsection 

Number of RAID controllers 
Root location 
Subdirectory 
Offset numbering from zero 

paragon 

= 8 
= 1 
= //df 
= 3ns/testa 
m 0 

= 19 
= /pfs/io_ 
= tmp/ags/em 
= 2 

Data Specification for User's Functions 
Number of functions to pass data to - 1 
Function Name = txme_history_lme 2 # 
FN_DATA = INT 25 
FN_DATA = TABLE 2 2 

0 0 0 5 
1 0 0 5 

XMF_0 GaMe3 0 01 
XKF_0 H2 0 99 

END Material ID Specifications 

Figure B.4. Input file for the Soret Effect example problem. 
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generated using the "interp" utility acting on the Chemkin input file for gas-phase species and 
reactions, "gaas_b.gas" (Figure B.5). This file contains four species used in the deposition of 
Gallium Arsenide crystals: AsH3, GaMe3, CH4, and H2; the first and third have zero mole 
fractions in this problem. 

ELEMENTS 
Ga AS H C 
END 

SPECIES 
ASH3 
GaMe3 
CH4 
H2 

END 

THERMO ALL 
300. 1000. 3000. 
! Default temperature ranges for thermo files: 
300. 1000. 3000. 

CH4 121286C 1H 4 G 0300.00 5000.00 1000.00 
1.68347883E+00 1.02372356E-02-3.87512864E-06 6.78558487E-10-4.50342312E-14 

-1.00807871E+04 9.62339497E+00 7.78741479E-01 1.74766835E-02-2.78340904E-05 
3.04970804E-08-1.22393068E-11-9.82522852E+03 1.37221947E+01 

H2 121286H 2 G 0300.00 5000.00 1000.00 
2.99142337E+00 7.00064411E-04-S.633828S9E-08-9.23157818E-12 1.58275179E-15 

-8.35033997E+02-1.35511017E+00 3.29812431E+00 8.24944174E-04-8.14301529E-07 
-9.47543433E-11 4.13487224E-13-1.01252087E+03-3.29409409E+00 
AsH3 92090AS 1H 3 0 OS 300.000 3000.000 1000.00 
0.48852077E+01 0.38298892E-02-0.36824741E-06-0.38365741E-09 0.87018486E-13 
0.81936514E+04-0.28651702E+01 0.27935255E+01 0.63927420E-02 0.77386630E-06 

-0.19897164E-08 0.79792984E-13 0.90261641E+04 0.89869089E+01 
GaMe3 92090Ga 1C 3H 9 0G 300.000 3000.000 1000.00 
0.12968908E+02 0.15346088E-01-0.12010402E-05-0.15080676E-08 0.32630482E-12 

-0.87401934E+04-0.36943115E+02 0.47962584E+01 0.30363396E-01-0.34483364E-06 
-0.15581833E-07 0.66991998E-11-0.61177363E+04 0.71641846E+01 
END 

1 
2 
3 
4 
1 
2 
3 
4 

0 1 
2 
3 
4 

0 1 
2 
3 
4 

Figure B.5. Chemkin input file gaas_b. gas, which contains the four species and their thermodynamic 
data. No reactions are included. 

The solution of this problem requires only 2.16 seconds on an SGI workstation, 5 Newton 
iterations, and a total of 68 linear solve iterations. The solution across the domain at y = 0.5 is 
output using the t i m e _ h i s t o r y _ l i n e included function, as can be seen on the last lines of 
the input file. By plotting the output with "gnuplot," the temperature and mole fraction of GaMe3 
across the width of the domain can analyzed, as in Figure B.6. 

B.3. Si3N4 Equilibrium 

This example differs from the previous examples in that it is run on multiple processors, 
there are chemical reactions, and the steady-state solution is reached through time integration. 
The example uses a large gas-phase reaction mechanism for the formation of Silicon Nitride 
involving 17 species and 33 reactions. The species list and reaction mechanism are contained in 
the Chemkin input file "si3n4.gas," which is not shown here. An initial mixture of three reactants 
is set in a 2D domain at a high temperature and allowed to react until equilibrium. No spatial 
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Figure B.6. Profiles of temperature and GaMe3 mole fraction in the Soret Effect example problem. The 
temperature is fixed at both ends, and the mole fraction is fixed at the left side. The drop in the mole fraction as 

x increases is due solely to thermal diffusion. 

gradients are given in the problem, either as initial conditions or boundary conditions, so the 
solution is essentially 0D. 

The input file for this problem can be seen in Figure B.7. An accurate transient solution of 
the problem is not desired; rather, only the solution at the final equihbrium state is of interest. 
Thus, the pseudo time integration option is used with a stopping point of 100 seconds. The use 
of only block-Jacobi scaling for preconditioning the matrix is adequate for many time-dependent 
problems, since the matrix is better conditioned than with the steady-state formulation. 

The input file is set up for running on 8 processors, and requires that a load balance file 
"Meshes/testa-8-bKL.exoH" has been created. To run this problem in parallel on the Intel 
Paragon, the file "chem.bin" must first be created on this machine from the Chemkin input file by 
the following command: 

> interp si3n4 
To then solve the problem with MPSalsa, with an executable "salsa-smos" and the input file 
"input-si3n4," the user must type: 

> yod -sz 8 saisa-smos input-si3n4 
This run took 23 time steps to reach 100 seconds, and required 376 seconds. 

Figure B.8 shows how the mole fractions of many species evolve with time. The data for 
these plots was output using the t ime_h i s to ry_po in t s function, which is called within 
function use r_ou t and has data supplied to it at the bottom of the input file. The plots were 
made directly from this output using "gnuplot." 

J I L 
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General Problem Specifications Boundary Condition Specifications 

Problem type 
Input FEM file 
LB file 
Output FEM file 
Number of processors 
Cartesian or Cylindrical when 2D 
Interpolation Order 
Stabilization 

mass_diff 
Meshes/testa exoll 
Meshes/testa-S-bKL exoll 
run-out exoll 
8 

: Cartesian 

■■ default 
2 

Solution Specifications 

Solution Type = pseudo 
Order of integration/continuation s 1 
Step Control = on 
Relative Time Integration Error = 4 Oe-3 
Initial Parameter Value =* 300 0 
Initial Step Size = 1 Oe-5 
Maximum Number of Steps = 75 
Maximum Time or Parameter Value = 100 0 

Solver Specifications 

Override Default Linearity Choice = nonlinear 

nonlinear solver subsection 

Number of Newton Iterations 
Use Modified Newton Iteration 
Enable backtracking for residual reduction 
Choice for Inexact Newton Forcing Term 
Calculate the Jacobian Numerically 
Solution Relative Error Tolerance 
Solution Absolute Error Tolerance 

linear solver subsection 

= 

10 

defaul t 
4 

1 Oe-3 
1 Oe-8 

Number of Generalized Surfaces = 0 
Number of BC = 0 
# 

Initial Guess/Condition Specifications 

Set Initial Condition/Guess 
Apply function 
Time Index to Restart From 

= constant 0.0 

= 1 

Output Specifications 

User Defined Output 
Parallel Output 
Scalar Output 
Time Index to Output To 
Nodal variable output times 

every 2 steps 

Number of nodal output variables 
Nodal variable names 

Mass_fraction 

Number of global output variables 
Global variable names 

Delta_time 
Time_in<2ex 

Test Exact Solution Flag 
Name of Exact Solution Function 

2 

0 
f_=oc_jvy 

Parallel I/O section 

Machine 
Staged writes 

paragon 
yes 

Solution Algorithm 
Convergence Norm 
Preconditloner 
Polynomial 
Scaling 
Orthogonalization 
Size of Krylov subspace 
Maximum Linear Solve Iterations 

= 1 

= LS,1 
= block_jjacobi 
= classical 
= 100 
= 300 

Linear Solver Normalized Residual Tolerance = 1 0e-4 

Chemistry Specifications 

ncube subsection 

Number of controllers 
Disks per controller 
Root location 
Subdirectory 
Offset numbering from zero 

« 1 
= //df 
= 3ns/testa 
= o 

paragon subsection 

Energy equation source terms 
Species equation source terms 
Pressure (atmospheres) 
Thermal Diffusion 
Multicomponent Transport 
Chemkin file 
Surface chemkin file 
Transport chemkin file 

= 1 0 
= off 
= stefanjmaxwell 
= chem bin 
= surf bin 
- tran bin 

Enclosure Radiation Specifications 

Enclosure Radiation source terms - off 

Material ID Specifications 

Number of Materials 
CHEMKIN 

ELEM_BLOCK_IDS 

= 1 
= 0 
= 1 

"Graphite
-

2 

Number of RAID controllers 
Root location 
Subdirectory 
Offset numbering from zero 

= 8 
= /pfs/io_ 
= tmp/ags 
= 1 

Data Specification for User's Functions 

Number of functions to pass data to = 1 

Function Name 
# 
FN_DATA = TABLE 1 2 

11 11 
@ 

time_history_jooints 1 

XMF_0 H2 
XMF_0 NH3 
XMF_0 SIF4 

0 5 
0 3 
0 2 

T_INIT 
END Material ID Specifications 

Figure B. 7. Input file for the Si3N4 Equilibrium example problem. 
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Figure B.8. Evolution in time of mole fractions of major species in the Si3N4 Equilibrium problem. The first 
plot shows the three reactants, while the second shows the major products of the reactions. Since the pseudo 

time integration scheme was used, these histories are not time accurate. 

B.4. Surface Reaction 

This simple reaction-diffusion problem illustrates the use of su r f ace_chemkin_bc, 
the function used to impose surface reactions as boundary conditions by interfacing with the 
Surface Chemkin library (see Appendix A.l.l). Just as Chemkin is used for information on gas-
phase species, reactions, and properties, Surface Chemkin is used to access this information about 
the surface and underlying bulk solid. 

The problem is defined in a 2D box and uses the mechanism for the deposition of Gallium 
Arsenide semiconductor crystals. This mechanism contains 17 gas-phase species, 24 gas-phase 
reactions, 6 surface species, 38 surface reactions, and 2 bulk species. The surface reactions occur 
on the left side of the box, and Dirichlet conditions for the main reactants and carrier gas are set 
on the right side, as shown in Figure B.9. The system is assumed isothermal (at 913K); no-slip 
velocities are imposed on all walls and no penetration is assumed on the top and bottom. At the 
reacting surface, the normal velocity is not zero, but is set equal to the total mass flux per unit area 
into the surface, divided by the density. This term is often called the Stefan velocity (see equation 
(A.3)). At the right side, the normal momentum balance has a natural condition applied that sets 
the normal component of the normal stress to zero. This boundary condition allows for a non-zero 
velocity at this surface. 

The surface site fractions of surface species and the bulk fractions are also unknowns in 
this problem. To specify their values, we use a quasi-steady state assumption that these species are 
always in equilibrium with the gas phase. This approximation adds no error for a steady-state 

99 



Fluxk=0 U=0 V=0 

YAsH3='0 1 

YGaMe3=«WW1 

YH2=.9899 

Stress^ = 0 

V=0 

Fluxk=0 U=0 V=0 

Figure B.9. 200-element mesh and boundary conditions for the Surface Reaction example problem, sjj is the 
molar production rate of species k due to the surface reaction, Wjj is the molecular weight os species k, and p 

is the density. The nonzero velocity due to surface reaction is called the Stefan velocity. 

solution and is a good approximation in transient problems because of the relative speed of 
surface reactions. Using the requirement that the generation rate of any surface species is equal to 
its consumption rate, and given the gas-phase species mole fractions, these unknowns can be 
solved for implicitly and removed from the problem. 

The input file for this problem is shown in Figure B.10. There are 20 unknowns per node 
in this problem: 2 velocities, 1 pressure, and 17 species. The steady solution is solved for directly 
using a preconditioned GMRES method, starting from an initial guess where 3 species have 
nonzero mole fractions (see the XMF_0 lines in the Materials Specifications section). The 
sur f ace_chemkin_bc boundary condition function is used for reacting surfaces. The Stefan 
velocity is set as a dependent Dirichlet condition where the value comes from the 
surface_chemkin_bc function. (The DEPENDENT keyword in this boundary condition 
specifies that Jacobian entries are included for this term.) The same function is used for the 
species balance equations, though in this case it is a Neumann boundary condition since it is a 
specification on the flux. 

There is an option with the sur f ace_chemkin_bc to input initial guesses for the 
surface site and bulk fractions. Since the equations for these species can be highly nonlinear, there 

Fluxk=skWk 

U=(2skWk)/p 

v=o 
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General Problem Specifications Boundary Condition Specifications 

Problem type 
Input FEM file 
LB file 
Output FEM file 
Number of processors 
Cartesian or Cylindrical when 2D 
Interpolation Order 
Stabilization 

= fluid_flow_mass 
= Meshes/box200 exoll 
= bKL exoll 
5= run_out exoll 
= 1 
= Cartesian 

= default 
= 2 

Number of Generalized Surfaces 

Solution Specifications 

Solution Type = steady 
Order of integration/continuation = 1 
Step Control = on 
Relative Tune Integration Error = 5 Oe-3 
Initial Parameter Value = 300 0 
Initial Step Size = 1 Oe-7 
Maximum Number of Steps = 4 
Maximum Time or Parameter Value = 10 

Solver Specifications 

Override Default Linearity Choice 

— nonlinear solver subsection 

Number of Newton Iterations 
Use Modified Newton Iteration 
Enable backtracking for residual reduction 
Choice for Inexact Newton Forcing Term 
Calculate the Jacobian Numerically 
Solution Relative Error Tolerance 
Solution Absolute Error Tolerance 
— linear solver subsection 

Solution Algorithm 
Convergence Norm 
Preconditloner 
Polynomial 
Scaling 
Orthogonalization 
Size of Krylov subspace 
Maximum Linear Solve Iterations 
Linear Solver Normalized Residual Tolerance 

no 
4 

1 Oe-3 
1 Oe-8 

0 
no_overlap_ilu 
LS,1 
row_sum 
classical 
50 
100 
3 0e-3 

Chemistry Specifications 

Energy equation source terms 
Species equation source terms 
Pressure (atmospheres) 
Thermal Diffusion 
Multicomponent Transport 
Chemkin file 
Surface chemkin file 
Transport chemkin file 

= 0 1 
= off 
= stefan_maxwell 
= chem bin 
= surf bin 
- tran bin 

Enclosure Radiation Specifications 

Enclosure Radiation source terms = off 

Material ID Specifications 

Number of Materials 
CHEMKIN 

ELEM_BLOCK__IDS 

= 1 
= 0 
= 1 

*gaas" 

Number 
# 
BC 
BC 
BC 
# 
BC 
BC 
BC 
BC 
# 
BC 

of BC = 9 

0 0 
BC 

A3 (SI 

' U_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0 
' U_BC DIRICHLET SS 1 INDEPENDENT 0 0 
: U_BC DIRICHLET SS 3 INDEPENDENT 0 0 

: V_BC DIRICHLET SS 1 INDEPENDENT 0 0 
■ V_BC DIRICHLET SS 2 INDEPENDENT 0 0 
■ V_BC DIRICHLET SS 3 INDEPENDENT 0 0 
■ V_BC DIRICHLET SS 4 INDEPENDENT 0 0 

■■ Y_BC DIRICHLET SS 2 INDEPENDENT f_mole_fraction 1 
SPECIES_LIST = ALL 

BC_DATA = 0 0 1 0 0 0 0 0 0 0 0 0001 0 0 0 0 
9989 

■■ Y_BC NEUMANN SS 4 DEPENDENT surface_ChemkinjDC 2 
SPECIES_LIST * ALL 
SURF_SPECIES_LIST = GaMe(S) Ga(S) GaH(S> AsH(S) AsMe{S) 

BC_DATA = FLOAT 1 0e-5 0 5 1 Oe-5 1 0e-5 1 Oe-5 0 5 
SURF_SPECIES_LIST = Ga-GaAs(D) As-GaAs(D) 
BC_DATA • FLOAT 1 0 1 0 

Initial Guess/Condition Specifications 

Set Initial Condition /Guess 
Apply function 
Time Index to Restart From 

constant 0 0 

1 

Output Specifications 

User Defined Output 
Parallel Output 
Scalar Output 
Time Index to Output To 
Nodal variable output times 

every 1 steps 

Number of nodal output variables 
Nodal variable names 

Velocity 
Pressure 
Mass_Fraction 

Number of global output variables 
Global variable names 

Test Exact Solution Flag 
Name of Exact Solution Function 

1 

= f_xx_yy 

Parallel I/O section 

Machine 
Staged writes 

paragon subsection 

Number of RAID controllers 
Root location 
Subdirectory 
Offset numbering from zero 

: paragon 

= 8 
= /pfs/io_ 
= tmp/kdd/ti3 
= 23 

# T_INIT set the Temperature for this isothermal problem 
T_INIT = 913 0 

Data Specification for User's Functions 

Number of functions to pass data to = 0 

U_IHIT 
V_INIT 
P_INIT 
XMF_0 ASH3 
XMF_0 GaMe3 
XMF_0 H2 

= 0 0 
= 00 
= 0 0 
0 001 
0 0001 
0 9989 

ENE Materxal ID Specifxcatxons 

Figure B.10. Input file for the Surface Reaction example problem 
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are initial guesses that do not lead to a converged solution, and sometimes there are multiple 
solutions. The initial guesses are input using the SURF_SPECIES_LIST keyword, as can be 
seen in the input file. The default initial guess is equal fractions of all species within a given 
surface or bulk phase. For the mechanism in this example, the surface reaction calculations fail 
with the default initial guess. The initial guess is used only the first time the surface reaction 
calculations are computed; for subsequent Newton iterations and time steps, the previous 
calculation of surface site and bulk fractions are used as the initial guess. 

The steady-state solution for the 4620 unknowns in this problem required 4 Newton 
iterations and 89 seconds on an SGI workstation. A visualization of the solution is presented in 
Figure B.ll. The weak flow driven by the Stefan velocity is shown with velocity vectors, as are 
contours of one of the species generated by the surface reactions and consumed in gas-phase 
reactions. The vertical contours show that the flow is too weak for convection to distort the ID 
diffusion-reaction problem. 

IEST rest 
I 1 , 1 l l f f f ',* p' ' ,» ' 

0.00 0 .15 0.30 0.45 0.60 0.75 0.90 0.00 0.15 0.30 0.4S 0.60 0.7S 0.90 
X X 

Figure B.ll. Visualization of the solution for the Surface Reaction example problem. The deposition on the 
left wall drives a velocity to the left, as shown in the plot on the left. The velocity is nearly uniform near the 
wall, but is more parabolic at the source on the right side. Shown on the right are mole fraction contours of 

the H atom, which is produced at the surface. 
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Appendix C. Fluid Mechanics and Heat Transfer Examples 

The example problems in Section C.3 through Section C.5 were developed, run, and 
written up by Professor Michael Jensen of the Mechanical Engineering Department of Rensselaer 
Polytechnic Institute during a sabbatical at Sandia National Laboratories in Spring 1996. 
Exhaustive mesh independence studies were not done for any of the examples in Section C.3 
through Section C.5, but the meshes were refined to adequately show agreement with data from 
the literature. For these examples, the mks unit system was used; that is, the units used on all the 
quantities are length (m); velocity (m/s); temperature (K); pressure (N/mA2); heat flux (W/mA2); 
density (kg/mA3); specific heat (J/kgK); thermal conductivity (W/mK); and dynamic viscosity 
(Ns/mA2). 

C I . Navier-Stokes 3D Exact Solution 

An analytic solution to the Navier-Stokes equations for a three-dimensional time-
dependent problem is known for a generalized Beltrami-type flow [11]. We use this problem to 
demonstrate the solution of a transient fluid mechanics system and to document the convergence 
properties of our implementation of the finite element method. 

In MPSalsa, the function f_3d_navier_stokes provides the exact solution for this 
flow in a cube of unit length when these same functions, evaluated at all boundaries, are imposed 
as boundary conditions: 

-a t\ ax . . , . az , , . 
u = -ae \e sm (ay+ dz) +e cos (ax + dy) 

-at\ ay . , , . ax , , . 
v = -ae \e sm (az + dx) +e cos (ax + dz) 

—at\ az . , , v ay , , . 
w = -ae I e sm (ax + dy) + e cos (az + dx) 

1 2 -2d2t( lax lay 2az 
p = --a e \e +e +e + (CI) 

2 sin (ax + dy) cos (az + dx) ea y z + 

2sin (ay + dz) cos (ax + dy) ea + 

2 sin (az + dx) cos (ay + dz) e° x + 

a = 0.25 n 
d = 0.5it 

The MPSalsa input file for this test problem is shown in Figure CI . The first line specifies 
that a fluid mechanics problem is to be solved. A linear spatial approximation is to be used. A 
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time-accurate transient solution method with a second-order time integration scheme and variable 
time step is selected. The run is set to terminate at a time of 0.1 seconds. As can be seen in the 
Boundary Condition Specifications section, Dirichlet boundary conditions computed by the 
function f_3d_navier_s tokes are prescribed for all velocity and pressure unknowns on all 
domain boundaries. This same function used to specify the initial conditions. In addition, the 
exact solution is compared with the computed solution for convergence analyses by setting 
f_3d_navier_stokes in the input file as the exact solution. 

The input ExodusII mesh is an 8x8x8-element mesh with 729 nodes and 2916 total 
unknowns. The same problem was solved using discretizations of 4x4x4, 16x16x16, and 
32x32x32 elements. Details of the four runs are show in Table C1. All runs required 27 time steps 
to reach 0.1 seconds. 

Number of 
elements in 

ID 

4 

8 

16 

32 

Total 
Number of 
Elements 

64 

512 

4096 

32,768 

# of Intel 
Paragon 

Processors 

1 

16 

64 

128 

CPU seconds 

305 

308 

452 

1543 

L2-error 
of Velocity in the x-
direction at 0.1 sec. 

1.008e-03 

2.781e-04 

6.512e-05 

1.381e-05 

L2 -error of 
Pressure at 0.1 sec 

1.904e-02 

1.183e-02 

1.643e-03 

5.090e-04 

Table C.l. Details of the mesh convergence calculations for the Navier-Stokes 3D Exact Solution problem. 

The error in the computed solution as compared to the exact solution is presented in Table 
C.l and shown graphically in Figure C.2. The L2-norms of the error in the x-component of the 
velocity and in the pressure unknown are plotted versus the element size. The slopes of the lines 
connecting the results for the coarsest mesh and the finest mesh on the log-log plot are near 2, the 
expected value for the linear discretization scheme. 

C2. Lid-Driven Cavity Problem 

The lid-driven cavity problem is a two-dimensional fluid mechanics problem on a square 
domain that has often been used as a benchmark problem [19]. The fluid is confined in the square, 
but the top surface is pulled horizontally, driving clockwise flow. The geometry, boundary 
conditions, and 64x64-element mesh are shown in Figure C3. 

The input file for this example is shown in Figure C.4. The viscosity and density are set to 
one, so that the velocity is equal to the Reynolds number. This problem is increasingly difficult to 
solve as the Reynolds number is increased. SUPG stabilization is turned on (in the General 
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General Problem Specifications Boundary Condition Specifications 

= fluid_flow 
= /Meshes/box_3d__8 exoll 
= /Meshes/box_3d_8-ml6-

Problem type 
Input FEM file 
LB file 
bKL neml 
Output FEM file = box_3d_out exoll 
Number of processors = 16 
Cartesian or Cylindrical when 2D - Cartesian 
Interpolation Order = linear 
Stabilization = default 
Debug = 1 

Solution Specifications 

Solution Type = transient 
Order of integration/continuation = 2 
Step Control = on 
Relative Time Integration Error = 1 Oe-5 
Initial Parameter Value = 10 0 
Initial Step Size = 1 Oe-5 
Maximum Number of Steps = 2000 
Maximum Time or Parameter Value = 0 1 

Solver Specifications 

Override Default Linearity Choice * defi 

nonlinear solver subsection 

Number of Newton Iterations 
Use Modified Newton Iteration 
Enable backtracking for residual reduction 
Choice for Inexact Newton Forcing Term 
Calculate the Jacobian Numerically 
Solution Relative Error Tolerance 
Solution Absolute Error Tolerance 

default 
0 

1 0e-6 
1 0e-8 

linear solver subsection 

Solution Algorithm 
Convergence Norm 
Preconditioner 
Polynomial 
Scaling 
Orthogonalization 
Size of Krylov subspace 
Maximum Linear Solve Iterations 
Linear Solver Normalized Residual Tolerance 

0 

LS,1 
b l o c k j a c o b i 
classical 
64 
200 
1 Oe-8 

Chemistry Specifications 

Energy equation source terms 
Species equation source terms 
Pressure {atmospheres) 
Thermal Diffusion 
Multicomponent Transport 
Chemkin file 
Surface chemkin file 
Transport chemkin file 

= off 
= off 
= 0 09210526 

= stefan_maxwell 
= chest bin 
= surf bin 
- tran bin 

Enclosure Radiation Specifications 

Enclosure Radiation source terms = off 

Material ID Specifications 

Number of Materials 
NEWTONIAN 

ELEH_BLOCK_IDS 
VISCOSITY = 1 0 
DENSITY = 1 0 

= 1 
= 0 
- 1 

Number of Generalized Surfaces = 0 
Number of BC = 24 
# Prescribed Dirichlet conditions on all boundaries 
BC = U_BC DIRICHLET SS 
BC « V_BC DIRICHLET SS 
BC = W_BC DIRICHLET SS 
BC = P_BC DIRICHLET SS # 
BC - U_BC DIRICHLET SS 
BC = V_BC DIRICHLET SS 
BC = WJBC DIRICHLET SS 

P_BC DIRICHLET SS 

U_BC DIRICHLET SS 
V_BC DIRICHLET SS 
W_BC DIRICHLET SS 
P_BC DIRICHLET SS 

U_BC DIRICHLET SS 
V_BC DIRICHLET SS 
W_BC DIRICHLET SS 
P_BC DIRICHLET SS 

U_BC DIRICHLET SS 
V_BC DIRICHLET SS 
WJ3C DIRICHLET SS 
P_BC DIRICHLET SS 

U_BC DIRICHLET SS 
V_BC DIRICHLET SS 
W_BC DIRICHLET SS 
P_BC DIRICHLET SS 

f_3 d_navier_s tokes 
INDEPENDENT f_3d_navier_s tokes 
INDEPENDENT f_3d_navier_stokes 
INDEPENDENT f_3d_navier_stokes 

INDEPENDENT 
INDEPENDENT 
INDEPENDENT 
INDEPENDENT 

f _3 d_jnavier_s tokes 
f_3d_navier_stokes 
f_3 d_jnavier_s tokes 
f_3djnavier_stokes 

f_3 d_navier_s tokes 
INDEPENDENT f_3d_jnavier_s tokes 
INDEPENDENT f_3d_navier__s tokes 
INDEPENDENT f_3d_navier_stokes 

INDEPENDENT 
INDEPENDENT 
INDEPENDENT 
INDEPENDENT 

INDEPENDENT 
INDEPENDENT 
INDEPENDENT 
INDEPENDENT 

INDEPENDENT 
INDEPENDENT 
INDEPENDENT 

f_3 d_navier_stokes 
f_3 d_navier_s tokes 
f_3 d_navier_s tokes 
f_3 d_navier_s tokes 

f_3 d_navier_stokes 
f_3 d_navier_s tokes 
f_3d_navier_stokes 
f_3 djiavier_stokes 

f_3 d_navier_stokes 
f_3 d_navier_s tokes 
f__3 d_navier_s tokes 

INDEPENDENT f_3d_navier«.stokes 

Initial Guess/Condition Specifications 

Set Initial Condition/Guess 
Apply function 
Time Index to Restart From 

a constant 0 0 
= f_3d__navier_s tokes 

Output Specifications 

User Defined Output = yes 
Parallel Output = no 
Scalar Output = no 
Time Index to Output To = 0 
Nodal variable output times 

every 2 steps 

Number of nodal output variables = 2 
Nodal variable names 

Velocity 
Pressure 

Number of global output variables = 0 
Global variable names 

Test Exact Solution Flag = 1 SUMMARY 
Name of Exact Solution Function = f_3d_navier_stokes 

Parallel I/O section 

END Material ID Specifications 

Machine 
Staged writes 

ncube subsection 

Number of controllers 
Disks per controller 
Root location 
Subdirectory 
Offset numbering from zero 

= paragon 

8 
1 
//df 
jns/testa 
0 

paragon subsection 

Number of RAID controllers 
Root location 
Subdirectory 
Offset numbering from zero 

26 
/pfs/io_ 
tmp/ags/ti43 
23 

Data Specification for User's Functions 

Number of functions to pass data to = 0 

Figure C.I. Input file for the Navier-Stokes 3D Exact Solution example problem. 
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£ 0.001 

-J 

0.0001 

0.00001 
0.1 

E l e m e n t w i d t h 
Figure C.2. Log-log plot of the L2-error in the solution versus the element width for the Navier-Stokes 3D 

Exact Solution problem. Second-order convergence with respect to the mesh spacing is observed. 

Problem Specifications section of the input file), which reduces the oscillations in highly-
convective flows and greatly improves convergence. 

The backtracking algorithm in the nonlinear solver is also turned on. For this calculation, 
which starts from a trivial initial guess and attempts to reach a steady state at a Reynolds number 
of 1500, Newton's method without backtracking diverges. With backtracking, this calculation 
converged to a steady state in 11 Newton iterations, which took 229 seconds on 16 processors of 
the Intel Paragon. 

In. Section 5.3, this example problem was used to demonstrate the method of mesh 
sequencing for obtaining a converged solution to a difficult problem. For large problems that are 
spread across many processors, the ILU (domain decomposition) preconditioners are not as 
robust. In many cases, the same problem on a coarser mesh and spread across fewer processors 
will converge more readily. Mesh sequencing is a method to capitalize on this phenomena by first 
solving the problem on a coarse mesh, interpolating the converged solution to a finer mesh, and 
then using this solution as an initial guess on the fine, accurate mesh. See Table 5.2 in Section 5.3 
for an example of the benefit of this approach. 

-i 1 1 1 1—r-

'** ,*¥> 
o 
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U=1500 V=0 

U=0 

V=0 
u=o 
v=o 

P=0 u=o v=o 
Figure C.3. 4096-element mesh and boundary conditions for the Lid-Driven Cavity example problem. 

C.3. Hydrodynamically Developing Flow in an Infinite Parallel Plate Channel 

Developing steady laminar flow in the entrance region of a straight parallel plate channel 
is demonstrated in this example. To resolve the flow near the inlet, a mesh that was finer near the 
inlet than at the outlet was used. The mesh was also refined near the lower wall boundary. The 
entire mesh had 500x60 elements. A small section of the domain in the entrance region is shown 
in Figure C.5 to show the expanding mesh. Advantage is taken of the line of symmetry through 
the channel centerline. An expanding grid is used from the wall to the centerline and from the 
entrance along the channel. The upper plate is located 0.5 units from the channel centerline, and 
the channel has a length of 10. The upper plate is designated Side Set 1; the outflow boundary is 
Side Set 2; the channel centerline is Side Set 3; and the inlet boundary is Side Set 4. 
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General Problem Spec i f i ca t ions Boundary Condition Specif icat ions 

Problem type 
Input FEM f i l e 
LB f i l e 
Output FEM file 
Number of processors 
Cartesian or Cylindrical when 2D 
Interpolation Order 
Stabilization 

s fluid_flow 
= Meshes/box_0064 exoll 
- Meshes/box_0064-ml6-bKL neml 
= run_out.exoll 
= 16 
= Cartesian 
= linear 

■ 2 

Solution Specifications 

Solution Type = steady 
Order of integration/continuation = 1 
Step Control = on 
Relative Time Integration Error = 1.0e-3 
Initial Parameter Value = 10.0 
Initial Step Size = 1.0e-2 
Maximum Number of Steps = 80 
Maximum Time or Parameter Value = 1.0e+2 

Solver Specifications 

Override Default Linearity Choice - default 

nonlinear solver subsection: 

Number of Newton Iterations 
Use Modified Newton Iteration 
Enable backtracking for residual reduction 
Choice for Inexact Newton Forcing Term 
Calculate the Jacobian Numerically 
Solution Relative Error Tolerance 
Solution Absolute Error Tolerance 

50 

4 

1.0e-2 
1.0e-5 

linear solver subsection* 

Solution Algorithm 
Convergence Norm 
Preconditioner 
Polynomial 
Scaling 
Orthogonalization 
Size of Krylov subspace 
Maximum Linear Solve Iterations 
Linear Solver Normalized Residual Tolerance = 1.0e-4 

Chemistry Specifications 

= 0 
= no_overlap_ilu 
= LS,1 
= row_sura 
= classical 
= 200 
= 500 

Energy equation source terms 
Species equation source terms 
Pressure < atmospheres) 
Thermal Diffusion 
Multicomponent Transport 
Chemkin file 
Surface chemkin file 
Transport chemkin file 

= off 
= off 
= 0 09210526 

= stefan_maxwell 
= chem.bin 
= surf.bin 
= tran.bin 

Enclosure Radiation Specifications 

Enclosure Radiation source terms = off 

Material ID Specifications 

Number of Materials 
SOLID 

ELEM_BLOCK_IDS 
VISCOSITY = 1 0 
DENSITY =1.0 

END Material ID Specifications 

Number of Generalized Surfaces = 0 
Number of BC - 9 
# Upper moving wall 
BC = U_BC DIRICHLET NS 3 INDEPENDENT 1500 0 0 
BC = V_BC DIRICHLET NS 3 INDEPENDENT 0 0 0 

# No slip boundary conditions on all surfaces 
BC = U_BC DIRICHLET NS 1 INDEPENDENT 0 0 0 
BC = V_BC DIRICHLET NS 1 INDEPENDENT 0.0 0 
BC = U_BC DIRICHLET NS 2 INDEPENDENT 0 0 0 
BC = V_BC DIRICHLET NS 2 INDEPENDENT 0.0 0 
BC s= U_BC DIRICHLET NS 4 INDEPENDENT 0.0 0 
BC = VJBC DIRICHLET NS 4 INDEPENDENT 0 0 0 

# PRESSURE DATUM SET AT A SINGLE NODE FOR PROBLEM WITH 
# NO NATURAL OR SPECIFIED STRESS BOUDNARY 
BC = P__BC DIRICHLET NS 5 INDEPENDENT 0 0 0 

Initial Guess/Condition Specifications 

Set Initial Condition/Guess 
Apply function 
Time Index to Restart From 

constant 

1 

Output Specifications 

User Defined Output 
Parallel Output 
Scalar Output 
Time Index to Output To 
Nodal variable output tunes 

every 2 steps 

Number of nodal output variables 
Nodal variable names-

Velocity 
Pressure 

Number of global output variables 
Global variable names 

Test Exact Solution Flag 
Name of Exact Solution Function 

1 

= f_xx_yy 

Parallel I/O section 

Machine 
Staged writes 

ncube subsection 

Number of controllers 
Disks per controller 
Root location 
Subdirectory 
Offset numbering from zero 

paragon subsection 

Number of RAID controllers 
Root location 
Subdirectory 
Offset numbering from zero 

paragon 

1 
//df 
3ns/testa 
0 

26 
/pfs/io_ 
tmp/ags/ti43 
23 

Data Specification for User's Functions 

Number of functions to pass data to = 0 

Figure C.4. Input file for the Lid-Driven Cavity example problem. 
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X- t * 1 0 A - 3 - ) 
Figure C.5. Expanding mesh of the entrance region for developing flow between parallel plates. 

A uniform velocity profile is provided at the entrance to the channel. No slip is imposed at 
the solid wall, and no shear is set at both the channel centerline and the outflow boundary; 
transverse velocities are set to zero on all side sets. The MPSalsa input file is listed in Figure C.6. 

Shown in Figure C.7 is the developing velocity profile along the channel; comparison is 
made against results from a similar calculation using the finite difference algorithm SIMPLER 
[36] on a coarser grid. (The characteristic overshoot in velocity at locations near the entrance is 
physically possible and can be obtained numerically using the appropriate entrance and boundary 
conditions, as discussed in Shah and London [45].) The analytic solution for fully-developed flow 
in a channel predicts that the product of the friction factor and the Reynolds number is 24.0. The 
value of 23.97 calculated by MPSalsa at the exit of the channel compares well with the analytic 
result. 

C.4. Thermally Developing Flow in an Infinite Parallel Plate Channel 

A variation of the example in Appendix C.3 is to impose a hydrodynamically fully-
developed flow (paraboHc velocity profile) at the entrance of the channel and to heat the wall at a 
constant heat flux. The mesh used in Appendix C.3 is also used for this example (Figure C.5). The 

109 

7 5 

60 

to 
i 
< 45 o 
* 

>-
30 

15 

0 



General Problem Specifications Boundary Condition Specifications 

Problem type 
Input FEM file 
LB file 
Output FEM file 
Number of processors 

= fluid_flow 
= rect exoll 
= rect-32-bKL.exoIl 
= rectFM-out exoll 
= 32 

Cartesian or Cylindrical when 2D = Cartesian 
Interpolation Order = linear 
Stabilization = supg 
Debug = 2 

Solution Specifications 

Solution Type = steady 
Order of integration/continuation = 1 
Step Control = on 
Relative Time Integration Error = 1 0e-3 
Initial Parameter Value = 10 0 
Initial Step Size = 30 0 
Maximum Number of Steps = 8 
Maximum Time or Parameter Value = 1 0e+2 

Solver Specifications 

Override Default Linearity Choice 

nonlinear solver subsection 

Number of Newton Iterations = 80 
Use Modified Newton Iteration = no 
Enable backtracking for residual reduction = default 
Choice for Inexact Newton Forcing Term = 0 
Calculate the Jacobian Numerically = no 
Solution Relative Error Tolerance = 1.0e-3 
Solution Absolute Error Tolerance = 1.0e-8 

Number of Generalized Surfaces 
Number of BC 

#Inlet boundary condition - uniform velocity 
BC = U_BC DIRICHLET SS 4 INDEPENDENT 50 0 
BC = V__BC DIRICHLET SS 4 INDEPENDENT 0 0 0 

# Upper solid plate - No slip 
BC = U_BC DIRICHLET SS 1 
BC = V_BC DIRICHLET SS 1 

0.0 0 
0 0 0 

# Outflow boundary condition (no normal stress on x 
# component of the momentum equation) 
BC = V_BC DIRICHLET SS 2 INDEPENDENT 0.0 0 

# Lower boundary is on the channel centerline 
# Set zero V velocity, no shear stress for U velo 
BC = V_BC DIRICHLET SS 3 INDEPENDENT 0.0 0 

Initial Guess/Condition Specifications 

Set Initial Condition/Guess 
Apply function 
Time Index to Restart From 

= EXOII_FILE 

= 1 

Output Specifications 

User Defined Output 
Parallel Output 
Scalar Output 
Time Index to Output To 
Nodal variable output times 

every 2 steps 

1 

linear solver subsection 

Solution Algorithm 
Convergence Norm 
Preconditloner 
Polynomial 
Scaling 
Orthogonalization 
Size of Krylov subspace 
Maximum Linear Solve Iterations 
Linear Solver Normalized Residual Tolerance 

0 
no_overlap_ilu 
LS,1 
row_sum 
classical 
92 
500 
1.0e-6 

Chemistry Specifications 

Energy equation source terms 
Species equation source terms 
Pressure (atmospheres) 
Thermal Diffusion 
Multicomponent Transport 
Chemkin file 
Surface chemkin file 
Transport chemkin file 

= off 
= off 
= 0 09210526 

= stefan_maxwell 
= chem bin 
= surf bin 
= tran.bin 

Enclosure Radiation Specifications 

Enclosure Radiation source terms - off 

Material ID Specifications 

Number of Materials 
NEWTONIAN 

ELEM_BLOCK_IDS 
VISCOSITY - 1 0 
DENSITY =1.0 

U_INIT =50.0 

END Material ID Specifications 

= 1 
= 0 
= 1 

Number of nodal output variables 
Nodal variable names 

Velocity 
Pressure 

Number of global output variables 
Global variable names 

Test Exact Solution Flag 
Name of Exact Solution Function 

0 
f_xx_yy 

Parallel I/O section 

Data Specification for User's Functions 

Number of functions to pass data to = 8 

#Call to output data along the wall (note. tau_jn is printed out 
as tau_x tau_yj 
Function Name = f_ss_centroid 2 
EN_DATA = INT 1 
FN_DATA = STRING x Area P n_jgrad_U tau_n 

#Call for time history output at channel inlet 
#The data output are* time step, time, x, y, U, V, P 
Function Name s time_history_line 2 
FN_DATA = INT 10 
FN_DATA = TABLE 2 2 

0 0 0 0 
0 0 0 5 

#Call for time history output at various locations along the 
channel 
Function Name = time_history_line 2 
FN_DATA = TNT 60 
FN_DATA » TABLE 2 2 

0 025 0.0 
0 025 0.5 

Function Name - time_history_line 2 
FN_DATA = INT 60 
FN_DATA = TABLE 2 2 

0.1 0.0 
0 1 0.5 

« 4 more time_hzstory_lme data statements follow for 
increasing- values of x » 

Figure C.6. Input file for the Hydrodynamically Developing Flow in an Infinite Parallel Plate Channel 
example problem. 
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Figure C. 7. Developing velocity profiles for flow entering parallel plates for a variety of non-dimensional 
lengths down the channel, as the flow transitions from plug flow to a parabolic profile. 

MPSalsa input file is given in Figure C.8. The hydrodynamic boundary conditions are the same as 
in Appendix C.3 except for the inlet velocity boundary condition. For this condition, the function 
user_bc_exac t is called. The user must program an expression for a parabolic velocity profile 
and place it in "rf_user_bc_exact_fn.c." For this example, the profile for the ^-component of 

2 

velocity was 6v - 6v at the inlet. For the energy equation, the Neumann boundary condition is 
used to set the heat flux on the solid plate; a Dirichlet boundary condition is used to set the inlet 
temperature level. 

Reducing the temperature field data to calculate the local Nusselt numbers, the data are 
shown on Figure C.9 where Nu = hDh/k and x = x/DhRePr for heat transfer coefficient h, 
thermal conductivity k, and half-distance between the plates Dh. Comparison with the three part 
correlation of Shah and Bhatti [46] generally were within 2% over the entire range, except where 
their correlation is discontinuous. 

C.5. Vortex Shedding from a Circular Cylinder 

Slow flow over a cylinder yields steady solutions; however, as the Reynolds number is 
increased above 60, the character of laminar flow across a cylinder changes. A steady flow can no 
longer be maintained; rather, the flow takes on a time varying behavior with a periodic shedding 
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General Problem Specifications Boundary Condition Specifications 

Problem type 
Input FEM file 
LB file 
Output FEM file 
Number of processors 

= fluid_flow_energy 
= rect exoll 
= rect-32-bKL exoll 
= rectHT-out exoll 
= 32 

Cartesian or Cylindrical when 2D = Cartesian 
Interpolation Order = linear 
Stabilization = supg 
Debug = 2 

Solution Specifications 

Solution Type = steady 
Order of integration/continuation = 1 
Step Control = on 
Relative Time Integration Error * 1 0e-3 
Initial Parameter Value = 10 0 
Initial Step Size = 30 0 
Maximum Number of Steps = 8 
Maximum Time or Parameter Value = 1 0e+2 

Solver Specifications 

Override Default Linearity Choice 

nonlinear solver subsection 

Number of Generalized Surfaces * 0 
Number of BC = 8 

# Lower solid plate - No slip heat flux set at -10 0 
BC = U_BC DIRICHLET SS 1 INDEPENDENT 0 0 0 
BC = V_BC DIRICHLET SS 1 INDEPENDENT 0 0 0 
BC = T_BC NEUMANN SS 1 INDEPENDENT -10 0 0 

#Inlet boundary condition - uniform velocity 
#Note average velocity set in rf_user_bc_exact_fn c i 
with parabolic velocity profile 
BC = U_BC DIRICHLET SS 4 INDEPENDENT user_bc_exact 0 
BC » V_BC DIRICHLET SS 4 INDEPENDENT 0 0 0 

# Inlet boundary condition - temperature 
BC * T_BC DIRICHLET SS 4 INDEPENDENT 0 0 0 

# Outflow boundary condition (no normal stress on x 
# component of the momentum equation) 
BC = V_BC DIRICHLET SS 2 INDEPENDENT 0 0 0 

# Upper boundary is on the channel centerline 
# Set zero V velocity, no shear stress for U velo, 
# and no heat flux for temp 
BC = V_BC DIRICHLET SS 3 INDEPENDENT 0 0 0 

Number of Newton Iterations 
Use Modified Newton Iteration 
Enable backtracking for residual reduction 
Choice for Inexact Newton Forcing Term 
Calculate the Jacobian Numerically 
Solution Relative Error Tolerance 
Solution Absolute Error Tolerance 

80 

default 
0 

1 0e-3 
1 0e-8 

Initial Guess/Condition Specifications 

linear solver subsection 

Solution Algorithm 
Convergence Norm 
Preconditloner 
Polynomial 
Scaling 
Orthogonalization 
Size of Krylov subspace 
Maximum Linear Solve Iterations 
Linear Solver Normalized Residual Tolerance 

= 0 
= no_overlap_ilu 
= LS,1 
- row_sum 
= classical 
m 92 
= 500 
= 1 0e-6 

Chemistry Specifications 

Energy equation source terms 
Species equation source terms 
Pressure (atmospheres) 
Thermal Diffusion 
Multicomponent Transport 
Chemkin file 
Surface chemkin file 
Transport chemkin file 

off 
off 
0 09210526 

stefan_maxwell 
chem bin 
surf bin 
tran bin 

Enclosure Radiation Specifications 

Enclosure Radiation source terms = off 

Material ID Specifications 

Number of Mater ia ls 
NEWTONIAN 

ELEM_BLOCK_IDS 
VISCOSITY = 0 02 
DENSITY = 1 0 
THERMAL_CONITC7CT ■ 0 02 
CP = 10 0 
T_INIT = 0 0 

= 1 
= 0 
» 1 

Set Initial Condition/Guess 
Apply function 
Time Index to Restart From 

= constant 

* 1 

Output Specifications 

User Defined Output 
Parallel Output 
Scalar Output 
Time Index to Output To 
Nodal variable output times 

every 2 steps 

Number of nodal output variables 
Nodal variable names 

Velocity 
Pressure 
Temperature 

Number of global output variables 
Global variable names 

Test Exact Solution Flag 
Name of Exact Solution Function 

1 

0 
f_joe_jry 

Parallel I/O section 

Machine 
Staged writes 

paragon subsection 

Number of RAID controllers 
Root location 
Subdirectory 
Offset numbering from zero 

= paragon 

= 26 
- /pfs/io_ 
= tmp/ags/ti43 
= 23 

Data Specification for User s Functions 

Number of functions to pass data to = 2 

END Material ID Specifications 

#CaIl to output data along the wall 
Function Name = f_ss_centroid 2 
FN_DATA = INT 1 
FN_DATA ss STRING x Area T n_jgrad_T n_grad_U 

tCall for time history output at channel inlet 
#The data output are time step time x y U, V 
Function Name = time_history_line 2 
FN_DATA = INT 10 
FN_DATA * TABLE 2 2 

0 0 0 0 
0 0 0 5 

Figure C.8. Input file for the Thermally Developing Flow in an Infinite Parallel Plate Channel example 
problem. 
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Local Nusselt Number for Thermally Developing Flow in Infinite Parallel Plate Channel 

MPSalsa 

3 
2 

o 

0.0001 0.001 
Non-dimensional Length (x/DhRePr) 

0.01 

Figure C.9. Comparison of the MPSalsa calculation and an established correlation for the Nusselt number 
for thermally-developing flow in a parallel plate channel 

of vortices [19]. This transient behavior is illustrated in this example. The 2D mesh consists of 
4300 elements — 80 elements around the circumference and 50 expanding away from the 
cylinder. The domain is shown in Figure CIO, with a channel width of 30 diameters. The 
circumference of the cylinder is designated Side Set 1; the two channel walls are Side Set 2; the 
inlet is Side Set 3; and the outflow boundary is Side Set 4. 

A uniform velocity profile is provided at the inlet to the channel. The channel walls' 
boundary conditions are.no shear and impervious. The cylinder's boundary conditions are no slip 
and impervious. No shear is set at the outflow boundary. Experiments with Reynolds numbers 
Re = 60, 100, 200, and 600 were done. The input file for Re = 600 is given in Figure C.ll. 

To indicate the transient nature of the flow, the time varying variables were recorded at a 
location a distance 4.0 downstream from the cylinder and 0.5 from the line of symmetry using the 
t i m e _ h i s t o r y _ p o i n t function. The calculation for Re = 60 was started from an initial 
guess of zero. For higher Reynolds numbers, the calculations were started using the restart option; 
the solution for the next lower Reynolds number was used as the starting point. At all times, the 
automatic time step control was set to on. Care must be used in setting the initial time step size, 
R e l a t i v e Time I n t e g r a t i o n Error , and So lu t i on R e l a t i v e E r ro r Tolerance; 
values that are too large can result in the transient being missed. 
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Figure CIO. The finite element mesh of 4300 elements for the Vortex Shedding from a Circular Cylinder 
example problem. 

Shown in Figure C. 12(b) is the y-component of velocity as a function of time for the flow 
with Re = 600. (Density was set to 1.0 and viscosity was set to 0.1 in this example, so for 
Re = 600, the average ^-component of velocity was 60.) Figure C.l2(a) shows a similar trace 
for Re = 60. The von Karman vortex street behind the cylinder with Re = 600 is shown in 
Figure C.13. In Figure C.12(a) and (b), the transient behavior before the steady periodic nature of 
the flow is fully established depends upon the grid geometry, convergence criteria, and initial 
condition. For the fully-developed, steady, periodic flow, the frequency of vortex shedding can be 
characterized by the non-dimensional Strouhal number, St = fD/V, where / is the frequency of 
shedding, D is the cylinder diameter, and V is the fluid approach velocity. St is a function of 
Reynolds number. For the flows calculated with MPSalsa, the results are shown in Table C.2. 
Comparison is made against experimental data presented in Schlichting [39]. 
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General Problem Specifications Boundary Condition Specifications 
Problem type = fluid_flow 
Input FEM file = cyl exoll 
LB file = cyl-8-bKL exoll 
Output FEM file = cyl-Re600-out exoll 
Number of processors - 8 
Cartesian or Cylindrical when 2D = Cartesian 
Interpolation Order = linear 
Stabilization = supg 
Debug = 2 

Solution Specifications 
Solution Type = transient 
Order of integration/continuation = 2 
Step Control = on 
Relative Time Integration Error = 1 Oe-4 
Initial Parameter Value = 10 0 
Initial Step Size = 0 05 
Maximum Number of Steps = 1000 
Maximum Time or Parameter Value = 500 0 

Solver Specifications 
Override Default Linearity Choice = default 

_ — nonlinear solver subsection 

Number of Newton Iterations 
Use Modified Newton Iteration 
Enable backtracking for residual reduction 
Choice for Inexact Newton Forcing Term 
Calculate the Jacobian Numerically 
Solution Relative Error Tolerance 
Solution Absolute Error Tolerance 

= 15 
= no 
= 4 
= no 
- 1 Oe-4 
= 1 Oe-8 

linear solver subsection 
Solution Algorithm 
Convergence Norm 
Preconditioner 
Polynomial 
Scaling 
Orthogonalization 
Size of Krylov subspace 
Maximum Linear Solve Iterations 
Linear Solver Normalized Residual Tolerance - 5 Oe-4 

Chemistry Specifications 

= 0 
= no_overlap_ilu 
= LS,7 
= row_sum 
- classical 
* 80 
= 200 

Energy equation source terms 
Species equation source terms 
Pressure (atmospheres} 
Thermal Diffusion 
Multicomponent Transport 
Chemkin file 
Surface chemkin file 
Transport chemkin file 

= off 
= off 
= 0 09210526 

= stefan_maxwell 
= chem bin 
= surf bin 
= tran bin 

Enclosure Radiation specifications 
Enclosure Radiation source terms = off 

Material ID Specifications 
Number of Materials = 1 
NEWTONIAN = 0 

ELEM_BLOCK_IDS * 1 
VISCOSITY = 0 1 
DENSITY = 1 0 

Number of Generalized Surfaces = 0 
Number of BC = 5 
# Inlet boundary condition - uniform velocity 
BC = U_BC DIRICHLET NS 3 INDEPENDENT 60 0 0 
BC = V_BC DIRICHLET NS 3 INDEPENDENT 0 0 0 
# Cylinder - No slip 
BC = U_BC DIRICHLET NS 1 INDEPENDENT 0 0 0 
BC - V_BC DIRICHLET NS 1 INDEPENDENT 0 0 0 
# Outflow boundary condition (no normal stress on x 
# component of the momentum equation) 
# Solid plates - No shear 
BC = V_BC DIRICHLET NS 2 INDEPENDENT 0 0 0 

Initial Guess/Condition Specifications 
Set Initial Condition/Guess 
Apply function 
Time Index to Restart From 

= EXOII_FILE 
= 805 

Output Specifications 
User Defined Output 
Parallel Output 
Scalar Output 
Time Index to Output To 
Nodal variable output times 

every 1 steps 
Number of nodal output variables 
Nodal variable names 

Velocity 
Pressure 

Number of global output variables 
Global variable names 
Test Exact Solution Flag 
Name of Exact Solution Function 

1 

Parallel I/O section 
Machine 
Staged writes 
ncube subsection 
Number of controllers 
Disks per controller 
Root location 
Subdirectory 
Offset numbering from zero 
paragon subsection 

3 
Number of RAID controllers 
Root location 
Subdirectory 
Offset numbering from zero 

paragon 

8 
1 
//df 
3ns/testa 
0 

26 
tmp/ags/ti43 
23 

Data Specification for User's Functions 
Number of functions to pass data to = 1 

U_INIT 
P_INTT 

= 60 0 
= 0 0 

Function Name = time_history.jpoints 1 # 
FNJDATA = TABLE 1 2 
4 0 0 5 

END Material ID Specifications 

Figure C.ll. Input file for the Vortex Shedding from a Circular Cylinder example problem, Re=600. 
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Steady Periodic Velocity in the y-Direction Due to Vortex Shedding Downstream of Cylinder with Re=60 

i 
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Steady Periodic Velocity in the y-Direction Due to Vortex Shedding Downstream of Cylinder with Re=600 
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Figure C.l 2. Time history plots for vortex shedding behind a cylinder: (a) Re=60, (b) Re=600. 
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Figure C. 13. Contour plot showing the shedding vortices behind a cylinder at Re=600. 

Re 

60 

100 

200 

600 

St 
(MPSalsa) 

0.132 

0.163 

0.189 

0.218 

St 
(Schlichting) 

0.133 

0.166 

0.190 

0.210 

Table C.2. Comparison of Strouhal numbers as a function of Reynolds number for MPSalsa and the experimental 
data ofSchlichting [39]. 
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Appendix D. CVD Reactor Examples 

D.l. SPIN Comparison 

This example problem was used to benchmark many of the capabilities of MPSalsa by 
comparing results with another code, SPIN [6]. SPIN solves for reacting flows in the idealized 
geometry of uniform flow impinging on a rotating disk of infinite radius, by using the von 
Karman similarity solution that reduces the 3D problem to ID. We solve a full 3D problem using 
MPSalsa of flow impinging on a rotating disk with large radius, and compare the solutions near 
the center of the disk with SPIN. The excellent agreement between the two solutions verifies our 
implementation of the fluid mechanics, heat and mass transfer, gas-phase reactions, surface 
reactions, and the Danckwerts' boundary conditions. 

Our computational domain for the MPSalsa calculation is cylindrical, with an inlet at 
10cm above a reactive rotating disk with a radius of 7cm. The surface of the 12,660-element mesh 
used in this calculation, generated using CUBIT [24], is shown in Figure D.l. 

Figure D.l. Surface of 12,660-element mesh for SPIN Comparison example problem. 

The reaction mechanism used in this calculation is for the deposition of Silicon, and has 8 
gas-phase species, 10 gas-phase reactions, 2 surface species, 8 surface reactions, and 1 bulk 
component (solid silicon). A schematic diagram of the system is shown in Figure D.2. 
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10cm 

Figure D.2. Schematic diagram o/SPIN Comparison example problem. Plug flow enters the low 
pressure reactor 10 cm above a heated disk with radius 7cm that is rotating at 10 rpm. Gas-

phase reactions and surface reactions proceed as a function of concentrations and temperature. 

Since the system is operating at a low pressure of 0.002 atmospheres, the diffusive flux of 
species at the inlet boundary of the computational domain is non-negligible. In experiments, it is 
the total flux of each species into the domain that is known, but setting Dirichlet conditions for the 
species mole fractions and inlet velocity sets only the convective flux while ignoring the diffusive 
contribution. Danckwerts' boundary condition allows for the specification of the total flux at the 
inlet boundary of the computational domain, and functions are included in MPSalsa to implement 
this condition (see Section A. 1.2). 

The input file for this example problem is shown in Figure D.3. The problem is run on 256 
processors, and can reach the steady-state directly using the tfgmr linear solver with 
no_over l ap_b i lu preconditioning. Danckwerts' boundary condition on the velocity and 
species mole fractions is specified at the inlet (side set 1), and surface reactions and spinning 
conditions are specified on the disk surface (side set 2). The output function 
t ime_r i i s t o ry_ l ine is used to print information along a vertical line at radius 1cm, as 
specified at the bottom of the input file. 

The 3D steady state was reached in 10 minutes on 256 Processors of the Intel Paragon, 
and required 7 Newton iterations and 1149 total iterations of the linear solver. Solving the 
analogous infinite disk problem with SPIN required only 20 seconds on a workstation. The 
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General Problem Specifications Boundary Condition Specifications 

Problem type 
Input FEM file 
LB file 
Output FEM file 
Number of processors 

whol e_enchilada 
Mesb.es/si_13k exoll 
Meshes /si_13k-256-bKL exoll 
run_out exoll 
256 

Number of Generalized Surfaces 

Cartesian or Cylindrical when 2D = Cartesian 
Interpolation Order * linear 
Stabilization = default 
Debug - 2 

Solution Specifications 

Solution Type = steady 
Order of integration/continuation = 1 
Step Control = off 
Relative Time Integration Error = 4 Oe-3 
Initial Parameter Value = 10 0 
Initial Step Size = 30 0 
Maximum Number of Steps = 8 
Maximum Time or Parameter Value = 1 Oe+2 

Solver Specifications 

Override Default Linearity Choice = default 

nonlinear solver subsection 

Number of Newton Iterations 
Use Modified Newton Iteration 
Enable backtracking for residual reduction 
Choice for Inexact Newton Forcing Term 
Calculate the Jacobian Numerically 
Solution Relative Error Tolerance 
Solution Absolute Error Tolerance 

= 15 

= 4 

= 1 Oe-3 
= 1 Oe-8 

linear solver subsection 

Solution Algorithm 
Convergence Norm 
Preconditioner 
Polynomial 
Scaling 
Orthogonalization 
Size of Krylov subspace 
Maximum Linear Solve Iterations 
Linear Solver Normalized Residual Tolerance = 1 Oe-4 

Chemistry Specifications 

* 1 
= no_overlap_bilu 
= LS 1 
= row_sum 
= classical 
■ 200 
= 600 

Energy equation source terms 
Species equation source terms 
Pressure (atmospheres) 
Thermal Diffusion 
Multicomponent Transport 
Chemkin file 
Surface chemkin file 
Transport chemkin file 

= 0 002 

= stefar_maxwell 
= chera bin 
= surf bin 
= tran bin 

Enclosure Radiation Specifications 

Enclosure Radiation source terms = off 

Material ID Specifications 

tmber of M a t e r i a l s 

ELEM_BLOCK_IDS 
T_INIT 

Change from Ul U2 TO 
U_INIT 
V_HtIT 
W_INIT 

» 1 
= 0 
= 7 9 
= 600 

= 0 0 
= 0 0 
= -2 1 

XMF_0 H2 0 9995 
XHF_0 SIH4 0 0005 

END Material ID Specifications 

Number of BC 
T_BC DIRICHLET SS 1 
T_BC DIRICHLET SS 2 

= 10 
INDEPENDENT 600 
INDEPENDENT 1700 

U_BC DIRICHLET SS 1 
U_BC DIRICHLET SS 2 
BC_DATA = 10 0 0 0 0 0 

INDEPENDENT 0 0 
INDEPENDENT f_xy_spm_disk 1 

V_BC DIRICHLET SS 1 INDEPENDENT 0 0 0 
V_BC DIRICHLET SS 2 INDEPENDENT f_xy_spin_disk 1 
BC_DATA = 10 0 0 0 0 0 

W_BC DIRICHLET SS 1 DEPENDENT f_DanckwertS_X0 1 

BC 
BC 
* 
BC 
BC 

* 
BC 
BC 

# 
BC 

BC 
# 
BC = Y_BC MIXED SS 
f_Danckwerts_X0 0 0 1 

SPECIES_LIST = ALL 
BC_DATA - - 3 0 0 01545 0 0 0 0 0 0 0 0 0 0 0 0 0 98455 
Y_BC NEUMANN SS 2 DEPENDENT surface_chemkin_bc 0 
SPECIES_LIST = ALL 

Initial Guess/Condition Specifications 

BC_DATA = -3 0 0 
W_BC DIRICHLET SS 

01545 0 0 0 0 0 0 0 0 0 0 0 0 0 98455 
2 DEPENDENT s u r f a c e _ c h e m k i n _ b c 0 

INDEPENDENT f_Danckwerts 

BC 

Set Initial Condition/Guess 
Apply function 
Time Index to Restart From 

constant 

1 

Output Specifications 

User Defined Output 
Parallel Output 
Scalar Output 
Time Index to Output To 
Nodal variable output times 

every 2 steps 

Number of nodal output variables 
Nodal variable names 

Temperature 
Velocity 
Pressure 
Mass_fraction 

Number of global output variables 
Global variable names 

Test Exact Solution Flag 
Name of Exact Solution Function 

yes 
1 

= 0 
" f_xx_yy 

Parallel I/O section 

Machine 
Staged writes 

paragon subsection 

Number of RAID controllers 
Root location 
Subdirectory 
Offset numbering from zero 

paragon 

26 

tmp/ags/ti43 
23 

Data Specification for User's Functions 

Number of functions to pass data to = 1 

= time.^history^line 2 Function Name = 
# 
FN_DATA = INT 100 
FN_DATA = TABLE 2 3 

0 6 0 8 10 0 
0 6 0 8 0 0 

Figure D.3. Input file for the SPIN Comparison example problem. 
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adaptive gridding strategy placed 171 nodes in the ID mesh, as compared to the 30 elements in 
the axial direction of the 3D MPSalsa mesh. 

Comparisons between MPSalsa and SPIN can be seen in Figure D.4. Excellent agreement 
can be seen for all quantities except the axial velocity, for which the differences reflect the fact 
that SPIN is solving the problem on an infinite domain while MPSalsa uses a finite domain. The 
axial velocity in the MPSalsa calculation is strongly effected by the boundaries of the 
computational domain at finite radius. The discrepancy diminishes at higher flow rates. The 
Stefan velocity into the disk does agree between the calculations, and is uncommonly large 
because of the huge difference in molecular weights between Si and H2 and the low operating 
pressure. 

D.2. Rotating Disk Reactor 

A real reactor used for the growth of Gallium Arsenide single crystals is the rotating disk 
reactor [2,12]. The reactor is designed to capitalize on the perfect uniformity of deposition of the 
infinite disk configuration, with the plug flow of reactants impinging on a rotating disk. The 
reactor geometry, shown in Figure D.5, consists of a vertical cylinder sitting concentrically inside 
a larger cylindrical reaction vessel. Flow enters uniformly through the circular cross-section of the 
reactor and the inner cylinder is rotated, with the reaction occurring on the top heated surface. 
Flow exits through the annular region between the cylinders. Very uniform growth has been 
observed in this reactor over a large central section of the disk where the effects of a finite radius 
system are small. 

The reaction mechanism used in this system for chemical vapor deposition of Gallium 
Arsenide (from Moffat et al. [35]) consists of 4 gas-phase species, 3 surface species, and 2 bulk 
species, and can be found in the Chemkin input files "gaas_block.gas" and "gaas_block.sur." 
There are no gas-phase reactions, and 3 surface reactions. 

In this example problem, we demonstrate the restarting capability in MPSalsa by solving 
for three different steady states of the reactor at three different sets of operating parameters, as 
presented in Table D.l. The solution at the first set of conditions is used as the initial guess for 
finding the steady state at the second set, since it is closer to the solution than a trivial initial 
guess. Similarly, the third solution uses the second solution as an initial guess. Being able to 
restart from a previous solution is necessary for reactor analysis, where many sets of operating 
conditions need to be explored. Also, using a series of steady-state jumps can be an efficient way 
of reaching a solution at conditions that are too complicated to allow convergence from a trivial 
initial guess. 
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Figure D.4. Comparisons between MPSalsa and SPIN for reacting flow impinging on an infinite rotating 
disk. Axial profiles of several quantities are plotted: Temperature, Axial Velocity, and Mole Fractions of 

SiH* SiH2, H2SiSiH2, and H^iSiH. 

The input file used to solve for the steady-state at the second set of conditions in Table D. 1 
(using the solution at the first set of conditions in as the initial guess) can be seen in Figure D.6. In 
the Initial Guess/Condition Specifications section, the lines 
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Figure D.5. A cross section and top view of the geometry for the Rotating Disk Reactor example problem, 
showing a refined mesh. The design consists of one cylinder inside a larger one, with the reacting surface 
on the top of the inner cylinder, which is usually rotating. The flow enters uniformly within the entire top 

circle, flows over the disk, and flows out through an annular region. 

Solution 
Number 

1 

2 

3 

Disk Spin Rate 
(rpm) 

50 

100 

100 

Inlet Flow 
Velocity (cm/sec) 

5 

15 

15 

Inlet Mole Fraction 
ofGaMe3 

0.00013 

0.00013 

0.00065 

Table D.l. Three sets of conditions for three runs of the Rotating Disk Reactor example problem. 

Set Initial Condition/Guess 
Time Index to Restart From 

= EXOII_FILE 
= 1 

control the restarting. The keyword EX0II_FILE tells MPSalsa to get the initial guess from the 

output file, which in this case is named "run-out.exoII." Since this file can store many solutions 
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for this mesh, the second line tells MPSalsa to use the first solution. The input lines Time I n d e x 
t o Ou tpu t To and Nodal v a r i a b l e o u t p u t t i m e s control the solution output to the 
ExodusII file. When a solution is being written, the time index is echoed to the standard output so 
the user can keep track of which solution is stored in which location of the output file. 

The boundary conditions in the input file are imposed over 6 different side sets, with SS#1 
being the top circular inlet, SS#2 the annular outlet region, SS#3 being the cooled outer walls, 
SS#4 the heated, reactive, rotating disk, and SS#5 and SS#6 being the outside of the inner, 
rotating cylinder. The f _ x y _ s p i n _ d i s k function is used to specify velocity boundary 
conditions for the rotation of the inner cylinder, with the BC_DATA statement following it 
supplying the rotation rate (in rpm) and the (x, y) center of rotation. The 
s u r f a c e _ c h e m k i n _ b c boundary condition uses the surface reaction information to specify 
the mass flux of each species to the surface as well as the velocity into it (see Appendix A. 1.1). 
The f_mole_f r a c t i o n boundary condition is used to specify the mole fractions of species at 
the inlet, as opposed to the mass fractions that are the primitive variables (see Appendix A. 1.4). 
The SPECIES_LIST information is used to match up the input with the order that the species 
are in the Chemkin input file. (Since the SPECIES_LIST has " 1 " as the first entry, 0.0044 is the 
specified mole fraction for the first species in the Chemkin input file, which is AsH3 in this case. 
The SPECIES_LIST can be listed as species names instead of integers to reduce possible 
confusion.) The f _ p r e s s u r e boundary condition is an outflow boundary condition that 
matches the normal component of the normal stress with the local pressure (see Appendix A. 1.5). 

With fluid mechanics and heat transfer, there are a total of 9 unknowns per node. For the 
coarse mesh of 7472 elements and 8499 nodes used in this example problem, this corresponds to 
76,491 total unknowns. (Published results for this reactor use a much finer mesh of around 40,000 
elements [2,12].) The problem is solved on 64 processors of the Intel Paragon. 

Table D.2 shows some solution statistics for the three solutions. The number of Newton 
iterations and the solution time for the second and third solutions were less than those of the first 
solution — even though they were at more difficult parameter values — because the initial guess 
from a previous solution was used. 

Solution 
Number 

1 

2 

3 

Initial Guess 

Trivial 

Solution 1 

Solution 2 

# of Newton 
Iterations 

10 

8 

6 

# of GMRES 
Iterations 

863 

904 

637 

Execution Time on 
64 Processors 

510 sec 

459 sec 

336 sec 

Table D.2. Solution statistics for the three solutions for the Rotating Disk Reactor example problem. The parameter 
values are shown in Table D.l. Restarting from the previous solution decreased the execution time. 
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General Problem Specifications Boundary Condition Specifications 

Problem type 
Input FEM file 
LB file 
Output FEM file 
Number of processors 
Cartesian or Cylindrical when 2D 
Interpolation Order 
Stabilization 
Debug 

= whole_enchilada 
c run-out.exoll 
= Mesh.es/em_7k-64-bKL. exoll 
- run-out.exoll 
= 64 
= Cartesian 
= linear 
= default 
= 2 

Solution Specifications 

Solution Type = steady 
Order of integration/continuation = 1 
Step Control 
Relative Time Integration Error 
Initial Parameter Value 
Initial Step Size 
Maximum Number of Steps 
Maximum Time or Parameter Value 

= off 
= 4.Oe-3 
= 10.0 
= 30 0 
= 4 
= 1 0e+2 

Solver Specifications 

Override Default Linearity Choice - default 

___ —. „ — nonlinear solver subsection 

Number of Newton Iterations 
Use Modified Newton Iteration 
Enable backtracking for residual reduction 
Choice for Inexact Newton Forcing Term 
Calculate the Jacobian Numerically 
Solution Relative Error Tolerance 
Solution Absolute Error Tolerance 

* 15 

= 4 

= 1.0e-3 
= 1.0e-8 

linear solver subsection. 

Solution Algorithm 
Convergence Norm 
Preconditioner 
Polynomial 
Scaling 
Orthogonalization 
Size of Krylov subspace 
Maximum Linear Solve Iterations 
Linear Solver Normalized Residual Tolerance 

1 
no_overlap_ilu 
LS,1 
row_sum 
classical 
150 
300 
1.0e-5 

Chemistry Specifications 

Energy epilation source terms 
Species equation source terms 
Pressure (atmospheres) 
Thermal Diffusion 
Multicomponent Transport 
Chemkin file 
Surface chemkin file 
Transport chemkin file 

= 0.09210526 

= stefan_maxwell 
= chem.bin 
= surf.bin 
= tran.bin 

Enclosure Radiation Specifications 

Enclosure Radiation source terms = off 

Material ID Specifications 

Number of Materials 
CHEMKIN 

ELKM_BLOCK_IDS 
T_INIT 

# Change from Ul, U2, U3 
W_INXT 

XMF_0 AsH3 
XMF_0 GaMe3 
XMF_0 H2 

0 
0 
0 

= 1 
= 0 *gaas_new 
» 1 
= 500 

=-5 0 
0044 
00013 
99547 

G_VECTOR 0 0 0.0 -980 0 
END Material ID Specifications 

Number 
Number 
BC 
BC « 
BC » 
BC » 
# 
BC 
BC 
BC 

of Generalized Surfaces = 0 
of BC - 23 
T_BC DIRICHLET SS 1 INDEPENDENT 303.15 0 
T_BC DIRICHLET SS 3 INDEPENDENT 293 15 0 
T_BC DIRICHLET SS 4 INDEPENDENT 913.15 0 
T_BC DIRICHLET SS 5 INDEPENDENT 913.15 0 

■ U_BC DIRICHLET SS 
' U_BC DIRICHLET SS 
U_BC DIRICHLET SS 
BC_DATA » 100 0 0 
U_BC DIRICHLET SS 
BC_DATA = 100.0 0. 
U_BC DIRICHLET SS 
BC_DATA = 100.0 0. 0. 

1 INDEPENDENT 0 0 
3 INDEPENDENT 0 0 
4 INDEPENDENT f_xy_spin_disk 1 
0. 

5 INDEPENDENT f_xy_spin_disk 1 
0. 

6 INDEPENDENT f_xy_spin_disk 1 

* 
BC 
BC 
BC 

# 
BC 
BC 
BC 
BC 
BC 
BC 

## 
BC 

BC 

BC 

1 INDEPENDENT 0 0 
3 INDEPENDENT 0. 0 
4 INDEPENDENT f_xy_spin_disk 

V_BC DIRICHLET SS 
V_BC DIRICHLET SS 
V_BC DIRICHLET SS 
BC_DATA = 100.0 0. 0 
V_BC DIRICHLET SS 5 INDEPENDENT f_xy_spin_disk 
BC_DATA ■ 100 0 0 0. 

6 INDEPENDENT f_xy_spin_disk V_BC DIRICHLET SS 
BC_DATA = 100.0 0. 1 

W_BC DIRICHLET SS 1 
W_BC DIRICHLET SS 3 
W_BC DIRICHLET SS 4 
W_BC DIRICHLET SS 5 
W_BC DIRICHLET SS 6 
W_BC NEUMANN SS 2 
BC_DATA = FLOAT -.95 

INDEPENDENT -15.0 0 
INDEPENDENT 0. 0 
DEPENDENT surface_chemkin_bc 0 
INDEPENDENT 0 0 
INDEPENDENT 0. 0 
DEPENDENT f_pressure 1 

Y_BC DIRICHLET SS 1 INDEPENDENT f_mOle_fraCtlon 1 
SPECIES_LIST = 1 2 3 4 
BC_DATA - 0.0044 0 00013 0.0 0 99547 
Y_BC NEUMANN SS 4 DEPENDENT surface_chemkin_bc 0 
SPECIES_LIST = ALL 
V_BC NEOMANN SS 5 DEPENDENT surface_chemkin_bc 0 
SPECIES_LIST ■ ALL 

Initial Guess/Condition Specifications 

Set Initial Condition/Guess 
Apply function 
Time Index to Restart Prom 

= EXOII_FILE 

» 1 

Output Specifications 

User Defined Output 
Parallel Output 
Scalar Output 
Time Index to Output To 
Nodal variable output times: 

every 2 steps 

Number of nodal output variables 
Nodal variable names * 

Temperature 
Velocity 
Pressure 
Mass_f raction 

Number of global output variables 
Global variable names. 

Test Exact Solution Flag 
Name of Exact Solution Function 

2 

0 
f_xx_yy 

Parallel I/O section 

Machine 
Staged writes 

paragon subsection 

Number of RAID controllers 
Root location 
Subdirectory 
Offset numbering from zero 

= paragon 

= 26 
= /pfs/io_ 
= tmp/ags/ti43 
« 23 

Data Specification for User's Functions 

Number of functions to pass data to = 0 

Figure D.6. MPSalsa input file for the Rotating Disk Reactor example problem. 
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The three steady-state solutions computed here are axisymmetric. The deposition rate of 
Gallium Arsenide on the reacting surface as a function of the radial position is shown in Figure 
D.7. An increase in velocity increases the deposition rate between solutions 1 and 2, and the 
increase in the reactant concentration increases the deposition rate between solutions 2 and 3. The 
large deposition rate at large radii is due to the rapid flow rate passing by the corner of the disk on 
its way out the annular exit region. Crystal is harvested only in the center 2.5 cm region where the 
deposition rate is more uniform. 

50 

CD 
w 40 

ti 
£ 30 
(0 

g 20 
•■—i 

' f t 
W 

CD 
Q 

0 
0 1 2 3 4 

Radius [cm] 
Figure D.7. Deposition profiles ofGaAs crystal in the Rotating Disk Reactor for three 

different sets of conditions (see Table D.l) as a function of the radial position on the disk. 

D.3. Tilted Reactor 

The horizontal CVD reactor with tilted susceptor and rotating substrate admits only three-

dimensional solutions. This configuration is an alternative to the rotating disk reactor for growing 
Gallium Arsenide semiconductor crystals. We have used the same mechanism as in Appendix 
D.2, which includes four gas-phase species. 

The reactor configuration is shown in Figure D.8. Surface reaction (deposition) occurs 
over the entire rectangular susceptor region, though the crystal is harvested only from the inset 
rotating disk. The tilted bottom of the reactor causes the flow to accelerate down the reactor 

Sol. #3 

Sol. »2 
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length which decreases the boundary layer thickness. The increase in mass transfer to the surface 
due to the thinning boundary layer is in part counterbalanced by the decrease in available reactant. 

Figure D.8. Surface mesh for the Tilted Reactor example problem. The hexahedral mesh consists of 43,568 
elements, 48,025 nodes, and 432,225 total unknowns. A steady-state solution requires 20 minutes on 256 

processors of the Intel Paragon. 

In this example problem, the continuation solution type is demonstrated. The details can 
be seen in the Solution Specifications section of the input file (Figure D.9), which is reproduced 
here. 

Solution Type 
Order of integration/continuation 
Step Control 
Initial Parameter Value 
Initial Step Size 
Maximum Number of Steps 

= continuation 
= 1 
= off 
= 0.0 
= 100.0 
= 3 

The above six lines tell the program, respectively, that a continuation run is to take place, that 
first-order continuation is to be used, that the parameter step size between solutions is to remain 
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constant, that the initial parameter value is 0.0, that the step size is 100, and that the run will stop 
after three steps. 

The continuation parameter itself is assigned in the file "rf_user_continuation.c," and in 
this case is assigned to the disk spin rate. Since the disk spin rate is supplied in the first two 
boundary conditions (numbered 0 and 1), and is entered as the first component (indexed 0) of the 
BC_DATA = FLOAT data array, the assignment of the continuation parameter to the disk spin rate 
requires only this line: 

BC_Types[o].BC_Data_Float[0] = BC_Types[i].BC_Data_Float[0] = *con_par; 
Also of note in the input file are the use of generalized surfaces and boundary condition 

functions. Since the disk has both velocity boundary conditions due to disk rotation in each of the 
tangential directions and reaction-induced flow (the Stefan velocity) in the normal direction, and 
since these directions do not line up with the Cartesian coordinates, generalized surfaces are 
needed. The function f _ x y _ s p i n _ t i l t 9 _ d i s k (see Appendix A.l.3.2) is a special function 
to calculate the tangential velocities of the rotating disk as a function of the position. This 
function requires four arguments: the disk rotation rate (in rpm) and the coordinates of the center 
of the disk. The Stefan velocity is imposed using the su r f ace_chemkin_bc as a Dirichlet 
condition on the normal velocity (see Appendix A. 1.1). 

At the end of the boundary condition section, the surface_chemkin_bc is also used 
to capture the effects of the surface reactions on the mass balances. In this case, we have exercised 
the option of providing initial guesses for the surface site and bulk fractions by use of the 
SURFACE_SPECIES_LIST and associated BC_DATA statements. 

The GMRES linear solver was used with a Krylov subspace size of 140, which, for this 
problem, is the largest subspace that fits on 256 processors of the Intel Paragon at Sandia National 
Laboratories. The no_over lap_b i lu preconditioner (incomplete block-LU decomposition 
without overlap between processors) was used along with row_sum scaling. A standard 
Newton's method was used, with backtracking turned off and a forcing term flag value of 4 to turn 
off the inexact Newton algorithms. 

The problem was run on 256 processors of the Intel paragon. MPSalsa required 62 
minutes to complete the continuation run on a mesh with 43,568 elements, 48,025 nodes, and 
432,225 total unknowns. The four solutions at disk spin rates of 0, 100, 200, and 300 rpms 
required 12,9, 8, and 9 Newton iterations, respectively. The first solution required more iterations 
because it used a trivial initial guess. The first-order continuation algorithm requires one 
additional matrix fill and solve after each step to calculate the tangent to the solution branch, 
which is used to predict an initial guess for the next step. 
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General Problem Specifications 

Problem type 
Input FEM file 
LB file 
Output FEM file 
Number of processors 
Cartesian or Cylindrical when 2D 
Interpolation Order 
Stabilization 

= whole_enchilada 
= Mesb.es/ti_43k. exoll 
= Mesbes/ti_43k-256-bKL.exoll 
= run-out.exoll 
= 256 
= Cartesian 

- default 
= 2 

Solution Specifications 

Solution Type = continuation 
Order of integration/continuation. = 1 
Step Control = off 
Relative Time Integration Error * 0 0 
Initial Parameter Value =0.0 
Initial Step Size = 100 0 
Maximum Number of Steps = 3 
Maximum Time or Parameter Value = 1 Oe+5 

Solver Specifications 

Override Default Linearity Choice ~ def 

--—,-.™—_— nonlinear solver subsection: 

Number of Newton iterations 
Use Modified Newton Iteration 
Enable backtracking for residual reduction 
Choice for Inexact Newton Forcing Term 
Calculate the Jacobian Numerically 
Solution Relative Error Tolerance 
Solution Absolute Error Tolerance 

= 15 

= 4 

« 1.0e-3 
= 1.0e-8 

linear solver subsection 

Solution Algorithm 
Convergence Norm 
Preconditioner 
Polynomial 
Scaling 
Orthogonalization 
Size of Krylov subspace 
Maximum Linear Solve Iterations 
Linear Solver Normalized Residual Tolerance 

= 1 
= no_overlap_bilu 
= LS,1 
= row_sum 
= classical 
= 140 
= 280 
= 1.0e-3 

Chemistry Specifications 

Energy equation source terms 
Species equation source terms 
Pressure (atmospheres) 
Thermal Diffusion 
Multicomponent Transport 
Chemkin file 
Surface chemkin file 
Transport chemkin file 

= 0.09210526 

= stefan_maxwell 
= chem.bin 
= surf.bin 
= tran.bin 

Material ID Specifications 

Number of Materials 
CHEMKIN 

ELEM_BLOCK_IDS 
T_INIT 
U_INIT 
V_INIT 
W_INIT 

XMP_0 AsH3 0 
XMF_0 GaMe3 0 
XMF_0 H2 0 

= 

= 
0044 
00013 
99547 

G_VECT0R 0.0 0.0 -980.0 
END Material ID Specifications 

1 
0 "gaas_new* 
1 
500. 
0.0 
30 0 
0.0 

Boundary Condition Specifications 

Number of Generalized Surfaces = 2 
GENERALIZED_SURFACE 5 3 
NORMAL 0.0 0 15643447 -0 98768834 
TANGENT 1.0 0.0 0 0 
TANGENT 0.0 0.98768834 0 15643447 
GENERALIZED_SORFACE 4 3 
NORMAL 0 0 0.15643447 -0 98768834 
TANGENT 1.0 0.0 0.0 
TANGENT 0 0 0 98768834 0.15643447 # 
Number of BC = 

# Continuation routine will overwrite the disk spin rate on the 
# next 2 lines, which is currently set at 00 rpm 
BC » VEL_TAN1_BC DIRICHLET GS 1 INDEPENDENT 
f_xy_spin_tllt9_disk 1 

BC_DATA = 00 0 0. 0 1.504652 
BC = VEL_TAN2JBC DIRICHLET GS 1 INDEPENDENT 
f_xy_spin_tilt9_disk 1 

BC_DATA = 00.0 0. 0. 1.504652 
VEL_NORM_BC DIRICHLET GS 1 DEPENDENT surface_chemkin_bc 0 
VEL_TAN1_BC DIRICHLET GS 2 INDEPENDENT 0.0 0 
VEL_TAN2_BC DIRICHLET GS 2 
VEL_NORM_BC DIRICHLET GS 2 

INDEPENDENT 0.0 0 
DEPENDENT surface_chemkin_bc 

= T_BC DIRICHLET SS 1 
= T_BC DIRICHLET SS 4 
= T_BC DIRICHLET SS 5 
= T_BC DIRICHLET SS 7 

= U_BC DIRICHLET SS 1 
= U_BC DIRICHLET SS 2 
= U_BC DIRICHLET SS 3 
= U_BC DIRICHLET SS 6 
- U_BC DIRICHLET SS 7 
« U_BC DIRICHLET SS 8 

INDEPENDENT 298. 
INDEPENDENT 913 
INDEPENDENT 913. 
INDEPENDENT 675. 

INDEPENDENT 0. 
INDEPENDENT 0. 
INDEPENDENT 0 
INDEPENDENT 0. 
INDEPENDENT 0. 
INDEPENDENT 0. 

= U_BC DIRICHLET SS 9 INDEPENDENT 0. 

= V_BC DIRICHLET SS 3 INDEPENDENT 0 
= V_BC DIRICHLET SS 6 INDEPENDENT 0. 
« V_BC DIRICHLET SS 7 INDEPENDENT 0 
= V_BC DIRICHLET SS 8 INDEPENDENT 0 
= V_BC DIRICHLET SS 9 INDEPENDENT 0 

#Set inlet flow rate here 
BC * 
BC 
BC 
BC 
BC 
BC 
BC 
BC # 
BC 

V_BC DIRICHLET SS 1 INDEPENDENT 30 0 0 

W_BC DIRICHLET SS 1 INDEPENDENT 0 0 
W_BC DIRICHLET SS 2 INDEPENDENT 0. 0 
W_BC DIRICHLET SS 3 INDEPENDENT 0 0 
W_BC DIRICHLET SS 6 INDEPENDENT 0 0 
W_BC DIRICHLET SS 7 INDEPENDENT 0. 0 
W_BC DIRICHLET SS 8 INDEPENDENT 0 0 
W_BC DIRICHLET SS 9 INDEPENDENT 0 0 

Y_BC DIRICHLET SS 1 INDEPENDENT f_mole_fraetlon 1 
SPECIES_LIST = 1 2 3 4 
BC_DATA = 0 0044 0 
Y_BC NEOMANN SS 5 
SPECIES_LIST » ALL 
SURF_SPECIES_LIST « 

00013 0.0 0.99547 
DEPENDENT surface_chemkin_bc 

GaMe(S) AsH2(S) BLOCK Ga-GaAs(D) As-

BC_DATA = FLOAT 0.2 0.4 0.4 1.0 1.0 
Y_BC NEOMANN SS 4 DEPENDENT surface_chemkin_bc 3 
SPECIES_LIST » ALL 
SORF_SPECIES_LIST = GaMe(S) AsH2(S) BLOCK 
BC_DATA » FLOAT 0.2 0.4 0.4 

Ga-GaAs <DJ SORF_SPECTES_LIST = 
BC_DATA = FLOAT 1.0 
SDRF_SPECIES_LIST = 
BC_DATA = FLOAT 1.0 

As-GaAs (D) 

Initial Guess/Condition Specifications 

Set Initial Condition/Guess 
Apply function 
Time Index to Restart Prom 

= constant 0.0 

Output Specifications 

User Defined Output 
Parallel Output 
Scalar Output 
Time Index to Output To 
Nodal variable output times 

= 1 

Number of nodal output variables 
Nodal variable names * 

Temperature 
Velocity 
Pressure 
Mass_fraction 

Data Specification for User's Functions 

Number of functions to pass data to = 1 
Function Name = fwxy_spin_average 2 # 
PN_DATA = INT 5 5 
FN_DATA = FLOAT 0 0 1.504652 

Figure D.9. MPSalsa input file for the Tilted Reactor example problem. 
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A typical solution is shown in Figure D.10, which includes the streamlines through the 
domain and the contours of the reactant (GaMe3) on the surface. The effect of the counter­
clockwise rotating disk on the flow and surface concentrations can be seen. 

Figure D.10. Streamlines and surface concentrations for a solution to the Tilted Reactor example problem. 

Figure D.ll shows the time-averaged (spin-averaged) deposition profiles over the disk for 
the four different spin rates calculated in the one continuation run. (The profiles are calculated 
using a non-standard post-processing routine, f _xy_spin_average, which expands the radial 
variation in the deposition as a series of orthonormal polynomials.) The disk rotation rate is seen 
to be a minor factor in the non-uniformity of the deposition, but it can be seen that rotation 
degrades uniformity. 
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Index CUBIT mesh generator 
cylindrical coordinates 

5, 118 
16,76 

adaptive mesh refinement 76 
axisymmetry 16, 76 
Aztec 2, 12 

backtracking 22, 70, 106 
bifurcation analysis 74 
BIAS 13 
block Jacobi 71 
boundary conditions 

BC_DATA 38, 58 
Danckwerts' 78, 119 
default 39 
dependence 37, 39 
Dirichlet 5, 36, 37, 38, 91, 93 
input file 33, 35, 38 
Jacobian entries 37 
mass fractions 39 
Mixed 5, 37, 39, 91, 93 
mole fractions 81 
names 36 
Neumann 5, 36, 37, 39, 91, 93 
normal and tangential velocity 35, 37 
on generalized surfaces 37 
on node sets 37 
on side sets 37 
outflow 82 
precedence 40 
Robin. See mixed. 
spinning disk 80 
spinning tilted disk 80 
surface reactions 77, 99 
user-defined functions 57 

broadcast 89 

Chaco 6, 7, 12 
chem.bin 8 
Chemistry Specifications. See input file, chemistry spec­

ifications. 
Chemkin 7, 12, 32 

Chemkin UJ 8 
Chemkin interpreter. Also see interp. . . . . . . . . . 7 
input file . 9 6 

coarse mesh 71 
communication utilities 88 
compiling 11 
continuation 18, 19, 20, 65, 70, 73, 127 

arc-length 74, 76 
first order 74, 128 
zero order 74 

convergence criteria 23, 24 

Danckwerts' BC 78, 119 
deposition rate 126, 130 
drag force 88 
dynamic load balancing 76 

element blocks 5, 29, 31, 32 
ex2pex 10 
exact solutions 45, 63 
example problems 

Diffusion in an Annulus 91 
Flow in a Channel 107 
Lid-Driven Cavity Problem 104 
Navier-Stokes 3D Exact Solution 103 
Rotating Disk Reactor 121 
Si3N4 Equilibrium 96 
SPIN Comparison 118 
Surface Reaction 99 
The Soret Effect 94 
Thermally Developing Flow in a Channel 109 
Tilted Reactor 126 
Vortex Shedding from a Cylinder I l l 

ExodusII 5, 8, 10, 12, 15, 16,42, 72 
exoHib load balancing utility 6 

f_3d_navier_stokes 103, 104 
f_annulus_exact 92 
f_Danckwerts 78, 79, 80 
f_Danckwerts_X0 78, 79, 80 
f_Danckwerts_Y0 80 
f_mole_fraction 81, 95, 124 
f_pressure 82, 124 
f_ss_centroid 86, 110 
f_xy_spin_disk 80, 124 
f_xy_spin_tilt9_disk 80, 128 
FASTQ mesh generator 5 
fn_data_location 66, 67 
fn_data_next_location 68 
function data 48, 66 

accessing function data 66, 67, 68 
FLOAT 48 
FNJDATA 48 
input file 48 
INT 48 
look-up tables. Also see look-up tables 49 
STRING 48 
TABLE 48, 49 
time_history_line. See time_history_line. 
time_history_points. See time_history_points. 

GEN3D 5 
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General Specifications. See input file, general specifica­
tions. 

generalized surfaces 33, 35, 61 
NORMAL 33 
TANGENT 33 

global sum, max, and min 90 
gmake 11, 12 
GMRES 24, 26, 27, 70, 71 
governing equations 15 
gravity 31 
guacamole pre-processor 5, 8, 9, 10, 16 

horizontal CVD reactor 126 

inexact Newton's method 22, 23 
initial conditions. Also see initial guess 40 
initial guess 40, 62 

function 41, 62, 71 
restarting 122 
variable specific 33 

input file 
boundary condition specifications. See boundary 

conditions. 
chemistry specifications 27 

Chemkin file 28 
Energy equation source terms 27 
Multicomponent Transport 28 
Pressure (atmospheres) 28 
Species equation source terms 28 
Surface chemkin file 28 
Thermal Diffusion 28 
Transport chemkin file 28 

function data specification. See function data. 
general specifications 14 

Cartesian or Cylindrical when 2D 16 
Debug 17 
InputFEMfile 15 
Interpolation order 16 
LB file 16 
Number of processors 16 
Output FEM file 16 
Problem type 15 
Stabilization 16 

initial condition/guess specifications 40 
Apply function 41 
Set Initial Condition/Guess 41 
Time Index to Restart From 42 

material ID specifications. See material properties 
output specifications 42 

Global variable names 45 
Name of Exact Solution Function 45 
Nodal variable names 44 
Nodal variable output times 43 

Number of global output variables 44, 45 
Number of nodal output variables 44 
Parallel Output 43 
Scalar Output 43 
Test Exact Solution Flag 45 
Time Index to Output To 43 
User Defined Output 42 

parallel I/O specification 45 
Disks per controller 47 
Machine 46 
Number of controllers 46 
Number of RAID controllers 47 
Offset numbering from zero 47 
Root location 47 
Staged writes 46 
Subdirectory 47 

solution specifications 17, 18 
Initial Parameter Value 20 
Initial Step Size 20 
Maximum Number of Steps 20 
Maximum Time or Parameter Value 20 
Order of integration/continuation 19 
Relative Time Integration Error 20 
Solution Type 18 
Step Control 19 

solver specifications 21 
Calculate the Jacobian Numerically 23 
Choice for Inexact Newton Forcing Term . 22 
Convergence Norm 24 
Enable backtracking for residual reduction . 22 
Linear Solver Normalized Residual Tol . . . 27 
Maximum Linear Solve Iterations 27 
Number of Newton Iterations 22 
Orthogonalization 26 
Override Default Linearity Choice 21 
Preconditioner 24 
Scaling 26 
Size of Krylov subspace 26 
Solution Absolute Error Tolerance 23 
Solution Algorithm 24 
Solution Relative Error Tolerance 23 
Use Modified Newton Iteration 22 

input-ldbl 6 
input-salsa 8, 13, 14 
interp 7, 8, 97 

JAC_BC_FUNCTION_ARGLIST 57 
JAC_SRC_FUNCnON_ARGLIST 55 
Jacobian 

analytic 2, 23 
analytic entries for source terms 55 
entries for boundary conditions 37 
numerical 2, 23 
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Krylov subspace 26, 27, 70, 71 

LAPACK 13 
linear solver 24, 71 

convergence norms 25 
table of choices 24 

load balancing 6 
look-up tables 49, 83 

makefile 11, 12 
material properties 29 

density 31,51 
diffusion coefficients 32 
gravity 31 
heat capacity 31, 50 
heat source term 31,51 
mass source term 32, 51 
material types 31 
molecular weight 32 
multiple materials 29 
number of species 32 
reference temperature 31 
source term Jacobian entries 32, 54 
special species equation 32 
species names 30, 32 
table of keywords 31, 32, 33 
table of material types 31 
thermal conductivity 31,51 
viscosity 31, 51 
volume expansion coefficient 31 
volumetric source 51 

Material Specifications. See material properties. 
memory 70, 71 
Merlin 72 

input file 72 
mesh generation 5 
mesh partitioning 6 
mesh sequencing 71, 106 
MPSALSA_HOME 7, 12 
multicomponent diffusion 28, 76 
multi-physics 76 
MULTTVAR_FUNCTION_ARGLIST 54 

Navier-Stokes exact solution 103 
NemesisI 6, 7, 9, 10, 12, 16 
NetCDF 12 
Newton iterations 22, 70 
node set 5, 37, 40 
normal vector 33, 61 
Num_Proc 88 
Nusselt number I l l 

optimization 18, 19 
output file 8 
output functions 64, 84 

info on a side set 86 
solution along a line 85 
time history 84 

Output Specification. See input file, output specifica­
tions. 

Paragon 12, 13, 46, 97, 119 
parallell/O 9, 10, 11, 12, 43, 45 

Also see input file, parallel I/O specifications. 
partitioning 6 
physical properties. See material properties. 
plasma 76 
porous media 76 
preconditioner 70, 71 

table of choices 25 
print_sync_end 89 
print_sync_start 89 
Proc 88 
pseudo 18, 19, 20, 70, 97 

radiation 29, 76 
restarting 11, 16, 41, 43, 70, 121, 123, 124 

time index 42 
rf_user_continuation.c 18, 73, 128 
robustness 71 
rotating disk reactor 121 
running MPSalsa 13 

salsa executable 12, 13 
scalar I/O 9, 10, 16, 43 
Scaling 71 

table of choices 26 
side set 5, 33, 35, 37, 40 
SIMPLER 109 
smos 7, 8, 12 
SNGLVAR_FUNCTION_ARGLIST 52, 57, 63 
Solution Specifications. See input file, solution specifi­

cations. 
Solver Specifications. See input file, solver specifica­

tions. 
Soret effect 28, 94 
source code 12 
SPECIES_LIST 39, 77, 124 
SPIN 118, 119, 121 
stability analysis 76 
stabilization 16 
status flag 84 
steady-state 18, 70 
Stefan velocity 77, 99, 100, 101, 102, 121, 128 
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Step Control 74 
step size 74 
Strouhal number 114, 117 
SUNMOS 7, 12, 13 
surf.bin 8 
SURF_SPECIES_LIST 77, 78, 101, 102 
SURF_VECTOR_FUNCTION_ARGLIST 62 
surface chemistry 77 
Surface Chemkin 7, 99 
surface_chemkin_bc 77, 99, 100, 101, 124, 128 
SURFACE_SPECIES_LIST 128 
synchronization 88 

tangent vector 33, 61 
tfqmr 24, 71 
time dependent 17, 18, 19, 20, 96 
nme_history_line 49, 68, 85, 86, 110, 119 
time_history_points 49, 65, 84, 85, 97, 115 
tran.bin 8 
turbulence 76 

units 31, 50, 103 
user functions 50 

boundary conditions 57 
continuation 65 
density . 5 1 
exact solutions 63 
function data 66 
heat capacity 50 
initial condition/guess 62 
normat and tangent vectors 61 
output 64 
source terms 51 
thermal conductivity 51 
viscosity 51 

user_bc_exact 45, 57, 58, 63, 64, 111 
user_continuation 65, 73 
user_out 42, 45, 64, 84 

variable properties 50 
Also see material properties. 

visualization 10 
von Karman vortex street 114 

Y12 13 
yod 13,97 
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