
OCT 1 5 1996

SANDIA REPORT
SAND96-2344 • UC-705
Unlimited Release
Printed September 1996

RECEIVED
OCT 2 3 1996

OSTl

Information Integrity and Privacy for
Computerized Medical Patient Records

Joselyne Gallegos, Victoria Hamilton, Timothy Gaylor, Kevin McCuriey, Timothy Meeks

Prepared by "•"*
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-94AL85000

Approved for public release; distribution is

Mm0 MP*

?.."*[T I T

'■nmmummummw t

i i h j *

* ^ j * "V™T- ^©ct cs^^s. flr'a&C " „

• ̂ «<-. ;..".i«>!»li»i'ifl(:p,5jpM, (' 5 * /

',. ^liiisgiiiiif
fiijfp!'

SF2900QI8-81)

Mff lWmOM OF THIS DOCUMENT
IS UNLIMITED

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern­
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod­
uct, or process disclosed, or represents that its use would not infringe pri­
vately owned rights. Eeference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern­
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A05
Microfiche copy: A01

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document

SAND96-2344 Distribution
Unlimited Release Category UC-705

Printed September 1996

Information Integrity and Privacy for
Computerized Medical Patient Records

Joselyne Gallegos and Victoria Hamilton
Data Systems Security Department

Timothy Gaylor
Data Transport and Network Design Department

Kevin McCurley
Parallel Computing Sciences Department

Timothy Meeks
Software Integration, Technology, and Standards Department

Sandia National Laboratories
Albuquerque, NM 87185

Abstract
Sandia National Laboratories and Oceania, Inc. entered into a Cooperative Research and
Development Agreement (CRADA) in November 1993 to provide "Information Integrity
and Privacy for Computerized Medical Patient Records" (CRADA No. SC93/01183).
The main objective of the project was to develop information protection methods that
are appropriate for databases of patient records in health information systems. This docu­
ment describes the findings and alternative solutions that resulted from this CRADA.

G/5fi/L —5^30//* 3

Contents

Contents
Figures Figures -1
Tables Tables -1
Chapter 1 - Introduction 1-1

1. Purpose 1-1
2. Overview 1-1

Chapter 2 - Basics of Information Surety 2 - 1
3. Threat Analysis 2 - 1
4. Encryption 2 - 2
5. User Authentication and Network Authentication 2 - 2
6. Access Control 2 - 3
7. Digital Signatures 2 - 3
8. Smart Cards 2 - 3
9. Audit Trails 2 - 3
10. Secure Timestamping 2 -4
11. Key Management 2 -4
12. Policies 2 - 5

Chapter 3 - Securing a UNIX Database Server 3 -1
1. Overview and Goals 3 -1
2. Who Has a Legitimate Need For Access? 3 -1
3. Use a Firewall or Secure the Server? 3-2
4. Tools for Securing Machines 3-4
5. Network Authentication 3-5

5.1 Which Kerberos? 3-5
6. UNIX Can Be Made Secure 3 -6

6.1 Turn Off Everything You Don't Need 3-6
6.2 Services Started at Boot Time 3-7
6.3 Services Typically Started in /etc/inetd.conf 3-8
6.4 Other services 3-9

Chapter 4 - Database Specifics 4 - 1
1. Database User Authentication 4 - 1

1.1 Sybase Logins 4 - 1
1.1.1 How Logins Work 4 - 1
1.1.2 System Administrators 4 - 1

1.2 Sybase Passwords 4 -2
2. Database User Authorization 4 - 2

2.1 Object Privileges 4 -2
2.2 Table Definitions 4 - 3
2.3 All Privileges 4 -4
2.4 Granting Specific Table Privileges to Users and Groups 4 -5
2.5 Basic Stored Procedures 4 - 6

Contents -1

Contents

2.5.1 INSERT Stored Procedure 4 -7
2.5.2 UPDATE Stored Procedure 4 - 8
2.5.3 DELETE Stored Procedure 4 - 9
2.5.4 Basic Stored Procedures Privileges 4 -9

2.6 Extended Basic Stored Procedures 4-11
2.6.1 Extended UPDATE Stored Procedure 4-11
2.6.2 Extended DELETE Stored Procedure 4-12
2.6.3 Extended INSERT Stored Procedure 4-13
2.6.4 Extended Stored Procedures Summary 4-15

2.7 Using Views 4-15
2.8 Labeling of Subjects and Objects 4-18

3. Database Audit Trails 4-19
3.1 The Audit System 4-19
3.2 Establishing Auditing 4-19

3.2.1 System-Level Audit Requirements 4-19
3.2.2 Auditing Users 4-20
3.2.3 Auditing Databases 4-20
3.2.4 Auditing Tables and Views 4-20
3.2.5 Auditing Stored Procedures 4-20
3.2.6 Adding User-Specified Records to the Audit Trail 4-20

3.3 Audit Trail Operations 4-21
3.4 Archiving Audit Data 4-21

4. Summary 4-21
Chapter 5 - Smart Cards 5 -1

1. Standards 5 -1
2. Current Uses 5-2
3. Common Features 5 -2

3.1 File Structure 5-2
3.2 Security 5-2
3.3 Communication 5-3
3.4 Instruction Set 5-3

4. Cryptographic Uses of Smart Cards 5-4
5. Functional Requirements 5-4

Chapter 6 - Architecture Alternatives 6 -1
1.Introduction 6 -1 •
2. Specific Architecture Alternatives 6 -1

2.1 Architecture Alternative A 6-2 ,
2.2 Architecture Alternative B 6-3
2.3 Architecture Alternative C 6-4
2.4 Architecture Alternative D 6-5

Contents - 2

Contents

Appendix A - Multi-tiered Architecture A - 1
1.Introduction A - 1
2. Two-tiered Model A - 1
3. Three-tiered Model A - 1
4. Choice of Tools A - 2

Appendix B - Distributed Computing Environment B-1
1. Introduction to DCE B - 1

1.1 UUIDs B - 2
1.2 DCE Cells B - 2
1.3 Remote Procedure Calls B - 2
1.4 DCE Servers and Application Servers B - 2
1.5 RPC Interfaces B - 3
1.6 The DCE Control Program (dcecp) B - 3

2. Directory Service B - 3
2.1 Cell Directory Service B - 4
2.2 Global Directory Agent B - 4
2.3 Endpoints B - 4
2.4 Putting It All Together B - 4
2.5 Access Control B - 5
2.6 CDS Replication B - 5

2.6.1 Multiple Clearinghouses B - 6
2.6.2 Multiple cdsd Processes B - 6

3. Security Service B - 6
3.1 Registry Service B - 6

3.1.1 Security Assumptions B - 7
3.1.2 Principals B - 7
3.1.3 Accounts B - 7
3.1.4 Security Groups B - 7
3.1.5 Organizations B - 8
3.1.6 Policies B - 8
3.1.7 Aliases B - 8

3.2 Authentication Service B - 8
3.2.1 Session Keys B - 8
3.2.2 Tickets B - 8
3.2.3 TGT andPTGT B - 9
3.2.4 Server Tickets B - 9
3.2.5 Mutual Authentication B - 9

3.3 Privilege Service and ACLs B - 9
3.3.1 Access Control Lists (ACLs) B - 9

Contents - 3

Contents

3.3.2 ACL Managers B - 10
3.3.3 ACL Inheritance B -10
3.3.4 Keytab Files B -10

4. Time Service B -10
4.1 DTS Servers B -11
4.2 DTS Clerks B -11
4.3 Access Control B -11

5. Host Services B -11
6. Audit Service B -11

Appendix C- Open Horizon's Connection C-1
1. Application Broker C - 1
2. Architecture C - 1
3. DCE Compliant C - 2
4. Remote Procedure Calls C - 2
5. ODBC Compliant C - 2
6. Database Vendor API Support C - 2
7. Three-Tiered Support C - 2

References References -1
Glossary Glossary -1
Index Index -1
Distribution Distribution -1

Contents - 4

Figures

Figures
Firewalls 3-4
Smart Card File Structure 5 - 2
Generic Architecture 6 -1
Architecture Alternative A 6-2
Architecture Alternative B 6-4
Architecture Alternative C 6-5
Architecture Alternative D 6 - 6

Figures -1

Figures

Figures - 2

Tables

Tables
LdbAccess 4 - 3
LdbPatient 4 - 3
LdbProvider 4 -4
LdbPPatientList 4 -4
All Privileges 4 - 5
Specific Table Privileges 4 - 6
Basic Procedure Privileges 4 - 9
View Definitions 4-15
View Privileges 4-16

Tables -1

Tables

»

Tables - 2

Introduction

Chapter 1 - Introduction
Sandia National Laboratories and Oceania, Inc. entered into a Cooperative Research and
Development Agreement (CRADA) in November 1993 to provide "Information Integrity
and Privacy for Computerized Medical Patient Records" (CRADA No. SC93/01183).
The main objective of the project was to develop information protection methods that
are appropriate for databases of patient records in health information systems.

1. Purpose
The purpose of this document is to describe the findings and alternative solutions that re­
sulted from this CRADA. This paper documents products and technologies which may
be useful to Oceania's development effort. However, the authors should not be assumed
to endorsing particular products. Any product information is purely informational. Oth­
er products may be equally satisfactory.
It should also be noted that the versions of Oceania software, including database defini­
tions and application software, possessed by the authors were obtained approximately
one year prior to the publishing of this report. The findings and alternative solutions pre­
sented are based on these versions. Oceania has since proceeded on an aggressive devel­
opment schedule leading to similar findings and solutions.

2. Overview
Chapter 2 includes a description of the basic techniques and technologies used to pro­
vide information surety. Chapter 3 details mechanisms for securing a UNIX database
server including specifying UNIX functionality which should, if possible, be avoided.
Chapter 4 provides information useful in securing the database itself. It includes several
detailed examples discussing database audit trail services. Chapter 5 describes the re­
sults of investigation into the current capabilities of smart cards. Chapter 6 summarizes
the previous chapters by detailing system architecture options and their associated infor­
mation surety features. The document includes several appendices. Appendix A is a tu­
torial on multi-tiered architectures. Appendix B and C describe the Distributed Comput­
ing Environment and the Open Horizons Connection products respectively. A complete
list of references, including web pages follows. Finally, the definitions of technical
terms and phrases used in this specification are given in the Glossary. Acronyms and ab­
breviations also appear in the Glossary.

l - l

Introduction

1-2

Basics of Information Surety

Chapter 2 - Basics of Information Surety
Sandia National Laboratories uses the term information surety to refer to balancing con­
fidentiality (or privacy), integrity, and availability of data. The term information surety
refers to a balance between protection against unauthorized use of information and assur­
ance of authorized use. By contrast, the term information security connotes an empha­
sis on protection against unauthorized use of information.
The information surety issues that were addressed in this project were to:

• determine whether the user of a system is who he claims to be;
• ensure that data maintains its privacy;
• ensure that data is not changed or accessed by an unauthorized action or user;
• ensure that data is not changed by accidental means;
• ensure that data cannot be refuted;
• determine when data was created or modified;
• determine who created or modified data;
• determine when data was accessed;
• determine who was granted what access by the system; and
• ensure that data will be available and useable when needed.

The following techniques and technologies were assessed and integrated into the design
of several security infrastructures, to address the information surety issues listed above.

• Encryption
• Strong Authentication
• Access Control
• Digital Signatures
• Smart Cards
• Secure Timestamps
• Audit Trails
• Key Management

3. Threat Analysis
Before designing surety into any system, it is important to know about the potential
threats so that the appropriate counter-measures can be taken. It is impossible to predict
every threat to a system, and it is very expensive to protect against all threats. Threats
must be prioritized and weighted according to their seriousness and consequences. A
balance must be struck between the cost of surety and the value of the assets being pro­
tected. In essence, providing surety is a matter of risk management.
In addition to malicious threats against the surety of a system, the threats resulting from
hardware, software, and network failures must also be considered. This makes the case
for formal analysis, design, implementation, testing, and verification of systems even
more compelling. Human errors often stemming from ignorance are also threats to the
surety of a system. Users must be educated about information surety. Usage policies

2 - 1

Basics of Information Surety

and security policies help prevent security incidents and provide guidance for when inci­
dents do occur. The policies must include guidelines for violations and they must be en­
forced. Users must be made aware as to the appropriate uses of resources.

4. Encryption
Encryption is a method of making information indecipherable [Schneier, 1996] to author­
ized users. The purpose of encryption is to protect data from unauthorized viewing or
use during transmission and storage. Encryption algorithms generally require at least
one key and may require more than one key. A good encryption algorithm is one that
has the property that even if the algorithm is known, data may not be deciphered without
the key(s). The length of the key(s) also affects the strength of the algorithm. Symmet­
ric key encryption requires that both the originator and intended recipient use a shared
key. Asymmetric key or public-key encryption requires that the originator use the publi­
cized key of the intended recipient to encrypt and the intended recipients use his/her pri­
vate key to decrypt. Data Encryption Standard (DES) is an example of a widely availa­
ble symmetric key algorithm [NISTa, 1993]. The Rivest, Shamir, Adleman (RSA) algo­
rithm is an example of a widely available asymmetric key algorithm [Rivest, 1978].
There are several issues associated with the use of encryption technology. Since encryp­
tion generally requires the use of keys, key management must be addressed (see the Key
Management section for further discussion of these issues). In addition, the export of en­
cryption software and hardware is closely controlled by the United States government.
Encryption methods that use keys greater than a given length (generally 40 bits for most
symmetric algorithms) are subject to scrutiny and fairly rigorous export control [DOS,
1989, 1992].

5. User Authentication and Network Authentication
Identification of legitimate users is a prerequisite to any sort of security. In a networked
system in which data is passed between machines, identification is also required between
different computers on a network.
It is generally acknowledged that user authentication can be accomplished by using
some combination of something known by the user (e.g., a password or PIN), something
possessed by the user (e.g., a badge or token), and something unique to the user (e.g., a
fingerprint). Two-factor authentication is built by a combination of at least two of these,
such as a password and a token. In this case, an adversary must have both the password
and the token to impersonate a user. Strong user authentication is the establishment of
validity of a claimed identity using cryptographic techniques.
In today's client/server systems, communication will need to take place between a client
workstation and the server system where the data actually resides. Users will need to au­
thenticate themselves not only to the server system but also to the client system. The
major problem in this scenario is how to transmit the authenticator (most commonly a
password or passphrase) over open networks from the client to the server. One system
to designed to address this problem is Kerberos, which was developed at M.I.T. [Neu-
man, 1993].

2-2

Basics of Information Surety

6. Access Control
Access Control refers to the ability of the system to grant, revoke, determine, and en­
force different privileges granted to users within the system. Access control and user au­
thorization mechanisms are required to permit or deny users the abilities to read from,
write to, and execute particular system resources. For instance, access to computer sys­
tems in general is usually provided through the use of unique user identifiers, passwords,
group memberships, etc. Access to computer files is provided through privileges granted
to individual user identifiers and groups of users. Access to database objects, tables, etc.,
is also controlled through the use of privileges granted to simihar subjects (i.e., user iden­
tifiers and group of users).

7. Digital Signatures
A digital signature algorithm is a public-key cryptographic method used by the data's re­
cipient and any third party to verify the identity of the originator of the data. It can also
be used to verify the authenticity of the data. An originator of data creates a digital sig­
nature by uniquely transforming the data with his or her private key. A recipient, using
the originator's public key, verifies the digital signature by applying a corresponding
transformation to the data and the signature [Schneier, 1996]. Digital signatures may
also be used to support non-repudiation. Non-repudiation means that the originator can­
not at a later date deny data origination, modification, or deletion. The Digital Signature
Algorithm (DSA) [NIST, 1993b, 1994] and RSA [Rivest, 1978] are two of the most com­
mon digital signature algorithms.
Since digital signature algorithms require the use of keys, key management must be ad­
dressed (see the Key Management section below). Unless a digital signature algorithm
can be used for encryption as is the case with RSA, its export is not controlled by the
United States government. However, developers should verify this before attempting ex­
port.

8. Smart Cards
ISO-standard smart cards are similar in form factor to standard credit cards, but they
have an embedded microprocessor and I/O channel. There are different types of smart
cards with different capabilities. See the chapter on Smart Cards for a more detailed dis­
cussion. For this project, the smart cards considered are those with cryptographic capabil­
ities. Such smart cards can be used in key management, strong user authentication, en­
cryption, and digital signature generation.

9. Audit Trails
Audit trails are one of the most important security mechanisms. When implemented
properly and securely, these mechanisms allow the tracking of who accessed what infor­
mation in the system and when. They are often instrumental in implementing non-repu­
diation requirements. Note that access to information includes reading, appending, gener­
ating, modifying, or deleting information. This mechanism could be used in court, if re­
liable enough, as evidence of proper (or improper) handling of health information. In
fact, the very existence of audit trails often serves as a deterrent for the mishandling of
information. The audit trail is an appealing technology since it minimizes reliance on

2-3

Basics of Information Surety

trusted users. Today's systems require that audit trail data be accessible to system ad­
ministrators and system security administrators, who are generally considered trusted us­
ers. Mechanisms must still be developed to protect the audit trail from abuse by these
users. Legal may determine how long audit data must be kept. Audit tools may be neces­
sary for convenient viewing of audit data.
Access logs can be constructed from audit trails. Whenever a part of a system or re­
source is accessed, what information was accessed, who accessed it, and for what pur­
pose can be logged. If this is the case, then protection from unauthorized access to these
logs must be deemed important. Access patterns could themselves convey sensitive in­
formation.

10. Secure Timestamping
In addition to protecting the content of information in electronic records, it is also neces­
sary to record the time at which an entry was made in the record so that records cannot
be changed later. If the date of an action is simply entered into the record, then this
date can later be changed like any other piece of information, unless proper cryptograph­
ic techniques are applied to timestamps to prevent such changes. This is particularly im­
portant for the use of electronic records in legal environments (for example, to satisfy
non-repudiation requirements).
Other applications for cryptographically secure timestamps are audit trails and digital sig­
natures. In audit trails, it is necessary to record the time at which an entry was made in
the audit trail so that the audit trail itself cannot be changed later. For digital signatures
to truly provide non-repudiation, timestamp information must be included. One of the
reasons for this is that if a user chooses to repudiate his signature (e.g., his private key
was compromised), then he should not have complete freedom to repudiate individual
signatures. If his key was indeed compromised, then it may be necessary to issue a revo­
cation of signatures generated after that date. Another reason to include secure times­
tamps is that they can be used to detect replay attacks. A replay attack occurs when an
adversary intercepts a valid message and transmits it at some later date. In addition, digit­
al signatures, or more accurately the public key certificates associated with digital signa­
tures, also have expiration dates.

11. Key Management
Key management is the process of:

• generating keys, including the choice of appropriate key values;
• protecting keys within the system;
• verifying the authenticity of keys;
• using the keys;
• storing the keys, including escrow and archival;
• changing the keys;
• destroying the keys; and
• handling compromised keys.

2 -4

Basics of Information Surety

Any system which makes use of cryptographic keys must address key management.
Key management can often be the bulk of a secure system focus. In addition, any sys­
tem which employs public-key or asymmetric algorithms for encryption or digital signa­
tures must provide a mechanism for linking a user identity to his or her public key. One
mechanism for accomplishing this connection is the implementation of certificates. Cer­
tification as defined in the X.509 standard [ITU-T, 1993] is accomplished by a certifica­
tion authority or a chain of certification authorities that are trusted by users. Users ob­
tain certified public keys from a certification authority or are notified that their request
cannot be met if the public key has been revoked or has expired.

12. Policies
Usage policies and security policies help prevent security incidents and provide guidance
for when incidents do occur. The policies must include guidelines for violations and
they must be enforced. Users must be made aware as to the appropriate uses of resourc­
es. In the health care environment, guidelines for the handling of information must be
designed with an eye towards government legislation and regulations.

2-5

Basics of Information Surety

2-6

Securing a UNIX Database Server

Chapter 3 - Securing a UNIX Database Server
1. Overview and Goals

The purpose of this chapter is to provide an overview of how to secure a SQL server run­
ning on top of a generic UNIX platform, as is required for the Oceania CRADA. This
chapter is aimed at a system administrator who is familiar with basics of UMX, and
does not address a particular vendor's operating system. A system that is configured ac­
cording to the principles here should be quite resistant to all but the most dedicated hack­
ers, but each variation of UNIX will have its own peculiarities. It is recommended that
the vendor's instructions for patching security holes be used to complement the proce­
dures discussed here. Some vendors are more responsive than others in patching such
holes, but the increasing reliance on the Internet has made all of the vendors more con­
scious of security problems.
Providing security for a complete information system will require attention to other as­
pects not covered here, including:

• key management for encryption and authentication,
• database configuration to provide access control and auditing mechanisms,
• client security, and
• policies for users and administrators.

This chapter will concentrate on securing the database host, in order to protect against
back door attacks. This does nothing to address abuses of data and/or systems by sys­
tem administrators and legitimate users.

2. Who Has a Legitimate Need For Access?
There are two kinds of access: physical and logical. It is generally very desirable to pro­
vide physical security for the server if at all possible, because otherwise disks can be car­
ried away to be read elsewhere, tape backups can be made, and boot procedures can of­
ten be over-ridden. Physical protection can be provided by locking the machine in a
room where the only people who are authorized to enter are the database and system ad­
ministrators. If it is placed in a large common machine room where multiple people can
get to it, there will be risks from attacks that would not otherwise be possible.
The database may need to be logically accessed by the following persons (some of
whom may perform multiple tasks):

• one or more UNDC system administrators (with root password)
• one or more database system administrators
• one or more database security administrators
• the database users

However, the form of access that is provided to the system should certainly vary. In par­
ticular, there should be no need for the database users to have UNIX accounts on the
server. Moreover, it is a fairly large security hole to do so. If a user can gain access to
a shell on most UNIX machines, there are generally holes that can be found in s e t u i d
system utilities that will allow them to gain root privileges. Examples of past compro-

3-1

Securing a UNIX Database Server

mises include the use of r d i s t , sendmail, / b i n / l o g i n , and / b i n / m a i l . Moreo­
ver, even if the legitimate user does not have this ability or knowledge, legitimate users
logging into the server will create an opening to break into the machine, through a varie­
ty of mechanisms such as password sniffing or badly chosen or improperly handled pass­
words.
Access to the database itself need not go through the front door. In particular, if the
UNDC system administrator is not the same as the database administrator, the UNTX sys­
tem administrator can still read the data from the raw device file where the database is
located using standard UNTX utilities such as cpio, dump, dd, or ca t . The interfaces
to these utilities are not particularly easy to use for the average user, but are relatively
easy for a competent system administrator. Using these utilities, it would be simple to
replicate the raw partition to a tape and move it to another database server.
In the event that there is more than one system administrator with knowledge of the root
password, one should probably institute a policy that they log in under their own identity
and execute an su command to obtain root privileges. The method for doing this is sys­
tem-dependent (e.g., / e t c / t t y t a b in SunOS), but it can usually be enforced to disal­
low remote root logins. This is useful to instill responsibility in administrators, but can
also be used to keep track of who makes administrative changes.

3. Use a Firewall or Secure the Server?
Unfortunately, the definition of access as discussed so far is simplistic. Computers are
often installed as part of a larger information infrastructure, and may in fact interact with
processes on other computers on the network. For example, systems generally need to
be backed up, and this is often done on a facility-wide system rather than on an individu­
al system. Such network services can, however, be a gaping hole to someone trying to
penetrate the database server, and such things need to be planned in such a way that
they do not compromise security. For example, the BudTool backup system requires
that the backup server perform an r sh with root privileges to systems being backed up,
and this leaves a gaping hole in what might otherwise be a very secure system. Com­
mercial products such as this should be examined to ensure that they do not open up
holes.
In the current world of internetworked computers, one can usually identify sets of sys­
tems that need to trust each other, and sets of computers that need to communicate with
each other without necessarily trusting each other. For example, the previously men­
tioned problem of backing up a network of computer systems generally requires the
backup system to be trusted (unless a cryptographic mechanism is used to identify the
backup system to the systems being backed up). It often makes sense to draw a fence
around machines within a single administrative trust domain, and protect these machines
from outside untrusted machines. Such a fence is called a firewall, and can greatly sim­
plify the task of administering security by allowing attention to be focused on the bound­
ary where trust is not universal. It is important to remember, however, that trust is tran­
sitive. That is, if machine A trusts machine B, and machine B trusts machine C, then
machine A is implicitly trusting machine C. Boundary machines of a firewall (often
called bastion hosts) therefore need to be configured very carefully to limit this transfer
of trust.

3-2

Securing a UNIX Database Server

In the example of the Oceania CRADA, the SQL server might be grouped together with
machines such as an administrator's workstation, backup server, mail server, or Kerberos
security server, but separated from database user workstations. The most obvious com­
munication that needs to take place between the trusted Local Area Network (LAN) and
user workstations is SQL. Sybase uses a very simple communication between clients
and servers that is well-suited to protection by a firewall, namely communication over a
single TCP port connection to the server, on a destination port that is chosen at installa­
tion time. Firewall architecture is beyond the scope of this discussion, but this kind of
communication can easily be handled with a packet filter provided by a router or dual-
hosted firewall. If this is the only service required from the server by the outside world,
then a boundary router with an access control list allowing only the SQL port to pass in­
side will be a very simple solution. For more information on firewalls, consult the excel­
lent books by Cheswick and Bellovin [Cheswick 1994] and Chapman and Zwicky [Chap­
man 1995].
In the event that further services are required to be passed from the trusted database serv­
er to untrusted machines, a full-blown and potentially complicated firewall will likely be
needed. For example, SMTP mail service must be configured carefully to protect
against known security weaknesses in s endmai l . There are times when existing net­
work architectures or performance considerations make it impractical to use a firewall.
For example, firewalls are usually dependent on packet filters provided by routers or
UNIX machines that function as routers. In a network architecture such as switched eth-
emet or ATM, this may not be possible. In this case, much more effort needs to be ap­
plied to securing the database server.
It is now commonplace to provide remote network access via dial-up terminal servers
that run SLIP or PPP. One of the biggest problems with using this kind of network ac­
cess is that most PC dialup software does not allow for support of one-time passwords
for strong authentication. In particular, this author is not aware of any configurations to
support the OSF Distributed Computing Environment (DCE). As a result, dialup termi­
nal servers can become a target of attack, and can be very difficult to secure (or audit).
This raises the question about where to place the firewall, and in particular whether to as­
sume that the database clients are within the trusted domain secured by a firewall.
There is no simple answer to this question, since it will depend on the function of the cli­
ents, the other systems they interact with, and the level of control that can be placed on
clients. In the case of dial-up clients, however, one should probably assume that they
are outside a firewall, and provide only the access that they need. This probably means
only allowing SQL and DCE authentication requests to come through the firewall.

3-3

Securing a UNTX Database Server

Client 1

Client 2

Database
Server

Firewall

Firewall

Dial-up
Terminal
Server

Figure 3.1 Firewalls

Firewalls can be placed around the database server, around a domain containing the serv­
er and the clients, or in both locations. The purpose of a firewall is to limit the interac­
tion between two domains, and they can be configured to protect servers from clients,
and to protect clients from the outside world.

4. Tools for Securing Machines
There are a number of tools and products that can be used to secure a UNIX system.
Among the more notable are:

SATAN This tool is available from the Internet at various sites. It is not a marketed
product and can be tricky to use and install. It's quite useful however if one
has the time.

ISS The Internet Security Scanner is used for probing machines from outside to
reveal weaknesses.

tcp_wrappers This set of tools can be used to limit the IP addresses that connect to a given
service started from i n e t d . It is very useful, and available for free on the
Internet [Purdue].

Kerberos More on this later.

DCE
S/Key

See the appendix discussing DCE.
S/Key is a challenge-response user authentication system that can be used
to replace passwords. This has recently been superseded by OPIE, and is
available from the Internet [Navy].

3-4

Securing a UNTX Database Server

TIS firewall This is an early freeware version of the Gauntlet firewall product. It is not a
toolkit complete firewall, but a useful set of tools for building a firewall. For a se­

rious installation, you should probably purchase the commercial version.
Other The last few years have brought an explosion in the number of vendors sell-
firewalls ing firewall products. There has been very little reputable evaluation work

done on these products, and most of them are designed for different purpos­
es than the requirements of the Oceania product. Some vendors that appear
to be quite reputable are TIS, V-One, and Secure Computing Corporation.
A large list of firewall products and vendors is provided on the Internet
[GreatCircle].

Security A handheld authentication replacement for passwords. The kit that they sell
Dynamics includes software for the host that replaces the login shell with a proprietary
SecurlD program to call the authentication server. In comparison to other handheld

devices, this one has some advantages in the battery life and relatively little
typing required by the user.

Tripwire Once you think you have secured the database server, you then have the
problem of maintaining your confidence in it. One tool that can be very use­
ful for this is Tripwire, which keeps a database of cryptographic checksums
of critical files and programs that will allow you to detect changes caused
by hackers. It is available from the COAST project at f t p : / /
c o a s t . c s . p u r d u e . e d u / p u b / t o o l s / u n i x / T r i p w i r e .

A very useful list of security tools is available online [CIAC A, 1996].

5. Network Authentication
Given that the number of accounts on the server should be severely limited, there are
still situations in which remote logins to the machine are required, for example to per­
form system backups, database administration, or other system maintenance tasks. This
is particularly true if the machine is located in a physically secure location such as a
locked computer room. In such cases, it is extremely desirable to use a mechanism
whereby the remote login session is strongly authenticated with cryptography, and the
contents of the communication are also encrypted to prevent eavesdropping. The Ker­
beros network security system can provide both services, and is strongly recommended
if remote maintenance is required. Without it, attacks can be mounted against the sys­
tem using password sniffing, TCP session takeovers, or password guessing. This is par­
ticularly important if the network used to connect the server and administrator worksta­
tion has untrusted users or machines located on it.

5.1 Which Kerberos?
Kerberos was originally developed under U.S. government funding at M.I.T., and ver­
sion IV gained wide acceptance among a variety of sites. There were however weak­
nesses and deficiencies in version IV, so multiple organizations undertook to enhance it.
For example, Sandia National Laboratories undertook to write extensions for using hand­
held authentication tokens, but these changes were never folded into the M.I.T. distribu­
tion directly. The most notable version of Kerberos now available is M.I.T.'s version 5,

3-5

Securing a UNTX Database Server

which DCE Security Services are based on. The former is available in source code
form, but comes with no support from M.I.T.. Third party support is available from sev­
eral sources however, including Cygnus Software in Mountain View, California [Cyg-
nus, 1996]. DCE Security Services offer extensions including access control lists and
groups, and DCE Security Services are also used in DCE's Distributed File Service
(DFS). DCE is generally regarded as more powerful, but also includes more complexi­
ty, more expense, and only limited support of server platforms. Information on DCE is
available from OSF [OSF/DCE, 1996].
One of the strongest factors in favor of using Kerberos is that it provides a key manage­
ment infrastructure to support "single login", where a user has a single method of log­
ging into all machines that are within a single ad'ministrative domain. In particular, in
theory this can be used to secure access to the database, logins on the database server
via telnet, logins on the clients, and logins on the terminal server. In practice, support
for Kerberos is not universal. It should be noted that all UNIX machines support Ker­
beros, and Xyplex terminal servers support it as well. In addition, Microsoft has an­
nounced support for Kerberos/DCE in the next version of NT (Cairo) [MicroSoft A,
1996] [MicroSoft B, 1996].

6. UNIX Can Be Made Secure
UNTX machines have been the perennial whipping boys of the computer security commu­
nity. The reasons for this are twofold: (1) UNTX machines were primarily designed to
provide a robust and rich set of services, but were designed to be open, not necessarily
secure, and (2) UNTX machines are generally shipped with a default configuration that
favors a multitude of services rather than security. For example:

• Sun systems default to have a plus sign in the / e t c / h o s t s . equiv file, allow­
ing root users from other machines to login as root without a password,

• SGI machines are shipped by default with several guest accounts that have no pass­
words.

• SGI machines are shipped with a default on their X windows display manager
(xdm) configuration set so that all keystrokes are world readable.

Each of these problems can be easily corrected, but one must know to do so. It should
be pointed out that SGI and Sun are not necessarily worse than the other vendors in secu­
rity, but these are the ones that the authors are most familiar with. In spite of the fact
that UNTX has a bad reputation in security, it is a fact that the overwhelming majority of
Internet firewalls are built from specially configured UNTX machines, and a properly
configured UNIX machine can provide both a high degree of functionality as well as a
high degree of security in the face of capable adversaries. The devil is in the details
however.

6.1 Turn Off Everything You Don't Need
The function identified for the server in the Oceania CRADA is very simple: provide da­
tabase services to standard SQL commands. Anything beyond this function should be
considered a potential risk. The purpose of a firewall is to mediate the communication
between different trust domains so that only safe communication is allowed. The discus-

3-6

Securing a UNIX Database Server

sion of this section can be used to design such a firewall or to secure the database server
in lieu of a firewall.
The previous section mentioned that the number of UNTX user accounts on the server
machine should be severely limited. This generally precludes using such a server in a
dual role as an electronic mail server (say using the POP protocol). For a large installa­
tion, this is completely reasonable because there are often other machines available for
these other functions. For a small organization that wants to leverage a single machine
for multiple functions, the situation becomes much more complicated. In particular, if
the SQL server is also a POP server, then user accounts and passwords are required on
the SQL server. If the SQL server is used as a World Wide Web server, then the ma­
chine is vulnerable to attacks through the h t t p protocol. It's best to keep things simple.
Given that you have identified the services that you need to supply, the next thing to do
is to turn off all other services. This is a somewhat haphazard procedure that depends
on the particular brand of UNIX that is being used. In general network services are ei­
ther started at boot time or else are started through the Internet services daemon i n -
e td . A complete discussion of services is beyond the scope of this paper, but we dis­
cuss the most common ones here. Further information can be found in the books by
Chapman and Zwicky [Chapman, 1995] or Garfinkel and Spafford [Garfinkel, 1996],

6.2 Services Started at Boot Time
Services started at boot time are usually accessed from the / e t c / r c * hierarchy, al­
though variations exist on different UNIX flavors. The following services need to be ex­
amined:
named This is the domain name service. This is often necessary for convenience,

but in no case should security be based on it. Whenever machines are re­
ferred to in access control lists (say on a router), the reference should be
made by IP address only and not DNS names. This is necessitated by the
fact that DNS uses no authentication, and is subject to spoofing. Note that
there has recently been a dramatic increase in attacks using DNS corruption
on the Internet.

sendmail/smtp This is the protocol used for transferring mail. If at all possible, it should be
disabled on the database host. This has been the single biggest cause of se­
curity compromises in UNIX machines.

NFS NFS stands for Network File System. Most implementations are based on
version 2.0, and are inherently insecure because the only authentication that
is done is performed at initial mount time, and never after this. It is excep­
tionally convenient for sharing files, but in no case should it be used to share
files that are critical to security. In particular, if user's home directories are
exported or imported via NFS, then the . rhost s files are vulnerable to at­
tack. If the / e t c partition is exported from the server, then it will likely
expose weaknesses on the server.

statd This is used to provide remote s t a t () service for the Network File Sys­
tem. There is currently a weakness that has been discovered in UNIX fla-

3-7

Securing a UNTX Database Server

vors involving the s t a t d daemon, and is being exploited to break into
machines. No patch is yet available for some vendors, so you should turn it
off unless you absolutely need NFS.

syslog s y s l o g is used for receiving and sending log messages. Unfortunately,
bugs have been found in the s y s l o g () routine of UNTX versions derived
from BSD (it uses g e t s ()), and this can be exploited to break into ma­
chines if it has not been patched. On the other hand, logging things can be
very useful to detect break-in attempts and service failures. Make sure you
pay attention to how it is configured, and try to make sure that the server
does not accept syslog information from just any machines. It may also be
useful to do remote logging of security and service events such as failed lo­
gins and TCP/IP portscans. This can be done for clients, network routers,
and terminal servers.

rpcbind and These are used for RPCs (remote procedure calls) to support other services.
portmapper Unfortunately, network services that go through most vendor-supplied port-

mapper programs cannot be trusted, and should be disabled if possible. In
any event you should be careful to screen the portmapper and RPC services
against untrusted machines.

6.3 Services Typically Started in / e t c / i ne td . con f
At boot time, a master daemon is started called i n e t d (Internet Services Daemon).
The purpose of this process is to listen to the network and answer calls to start other pro­
grams to provide services. The configuration of i n e t d is contained in the file / e t c /
i n e t d . conf. Consult your UMX vendor documentation for the exact syntax.

ftp This is used to transfer files across networks. It is often required, but should
be configured to use strong authentication such as Kerberos, S/Key, or a
hand-held authenticator. TURN OFF ANONYMOUS FTP.

telnet This is used for remote login. It should be configured to use strong authen­
tication via one-time passwords. This can be done with Kerberos, S/key, or
a variety of other products. Beware also that some telnet server programs
have been discovered to have bugs related to the passing of environment
variables. Make sure that your version has the latest security patches from
the vendor.

shell/login/exec This is the Berkeley suite of remote operations. They should be disabled as
they are inherently insecure. They rely on passwords or . r h o s t s files
placed in the home directories of users.

talk This is a remote talk protocol for interactively typed conversations. Turn it
off.

finger This is useful for finding out who is actively logged onto the server, but it
can also be used to reveal usernames for password guessing attacks. Weak­
nesses in older versions of the f i n g e r daemon were used in the Morris In­
ternet worm. Turn it off.

3-8

Securing a UNIX Database Server

tftp This is sometimes used for booting X terminals, terminal servers, routers, or
diskless workstations. It has no authentication whatsoever, and if it is im­
properly configured can be used to fetch absolutely any file from the server.
Other devices on the network should be configured to boot from local flash
cards or other t f t p servers. Turn it off.

systat Turn it off. It allows others to invoke a s e t u i d executable to see what
processes are being run.

netstat Turn it off. It can be used to see what network connections are open to re­
mote machines.

uucp This is a crafty old mechanism used to transfer mail and files, primarily over
dialup lines. Turn it off on the server.

time This is an old protocol for keeping clocks of machines on a network syn­
chronized. A much better alternative is NTP, the Network Time Protocol.
Source for NTP is available for free on the Internet. Note that a reliable time
source is needed for timestamping, so you should pay particular attention to
this if you intend to rely on the machine's notion of time.

mountd This is part of NFS (Network File System). It is generally a very bad idea
to export file systems from the server, and in any event should only be done
in a read-only mode. If NFS is not required, then turn it off.

rexd This is an insecure remote execution protocol. Turn it off.

rquotad This is used to support quotas for NFS clients. Turn it off.

rusersd This is used to determine what users are logged into the server, and should
be turned off just like f i n g e r .

sprayd This service is used for network testing, but is generally redundant with oth­
er services. Turn it off.

walld This is used for broadcasts to all users logged into a machine. Turn it off.
The advice given here is not absolute. You might actually need some of these services
for your network environment. In the event that you need to leave one or more running,
you will need to evaluate options for securing them or screening them from untrusted
machines.

6.4 Other services
Once you have gone through the list of services described here, you should reboot your
system and go over it again. First run p s to see what processes are still running. The
list should be very small, and you should be able to identify what each and every proc­
ess is there for. Some of these (like i n i t) are part of the kernel and need to be there.
Others should be tracked down to determine if they are needed or if they pose a risk.
One method you can use to identify dangerous processes is to run n e t s t a t to see what
network connections are available or active. As an alternative, you can install a port
scanner to see what services are still running. There are several commercial product
(ISS is a reputable product), but you can also use the freely distributed scanners from

3-9

Securing a UNTX Database Server

the SATAN network security scanner, or the TIS firewall toolkit. Pointers to the source
code for these can be found through the CERT [SEI, 1996] and CIAC World Wide
Web pages [CIAC B, 1996]. CERT stands for Computer Emergency Response Team,
and CIAC stands for Computer Incident Advisory Capability. The former serves the uni­
versity research community, and the latter serves the Department of Energy complex.
Both offer an excellent source of information on securing internetworked systems.

3-10

Database Specifics

Chapter 4 - Database Specifics
This chapter will discuss the following specific database issues:

• Database User Authentication,
• Database User Authorization, and
• Database Event Auditing.

1. Database User Authentication
Oceania's current implementation utilizes Sybase's supplied authentication service. Ac­
cess is controlled through a SQL Server login and password (not an operating system lo­
gin and password).

1.1 Sybase Logins
When a login is established, the user can connect to the server and use any database to
which he or she has permission.

1.1.1 How Logins Work
When a new login is created, a row is added to a system table. Each login is assigned a
system identifier that identifies that user uniquely in the server. During login, the server
matches the name passed in the login structure against the name column in a system ta­
ble. If a match is found and the password matches, the user's identifier is stored in the
memory allocated for the new connection.
The login name is not stored in any table except the system table. The user's identifier is
the key used in all other tables that relate to a person's login, including system tables as­
signing roles and those relating server access to database access.

1.1.2 System Administrators
System Administrators are special users who handle tasks not specific to applications.
SQL Server recognizes a System Administrator as a super-user who works outside SQL
Server's command and object protection system. The role of System Administrator is
usually granted to individual SQL Server logins. This provides a high degree of individu­
al accountability because all actions taken by that user can be traced to his or her individ­
ual server user ID.
The fact that a System Administrator operates outside the protection system serves as a
safety precaution. For example, if the Database Owner accidentally deletes all the entries
in the s y s u s e r s table, the System Administrator can recover the information (provid­
ed, of course, that the system is being backed up regularly).
When Release 10.0 of SQL Server is installed, it still has the default "sa" account,
which has System Administrator, System Security Officer, and Operator roles enabled.
For greater accountability for the highly privileged users in your system, it is recom­
mended that you create individual login accounts for users who are to be granted these
privileges, grant them their roles, and then lock the "sa" account.

4 - 1

Database Specifics

1.2 Sybase Passwords
In Sybase SQL Servers of release 10.0 and later (currently used by Oceania), passwords
may be encrypted on the client side before passing across a network. If password encryp­
tion is desired, the following occurs:

• The initial login packet is sent without passwords.
• The client indicates to the remote server that encryption is desired.
• The remote server sends back an encryption key, which the client uses to encrypt

its plaintext passwords.
• The client then encrypts its own passwords, and the remote server uses the key to

authenticate them when they arrive.
This scheme is vulnerable to the following attacks:

• Anyone who overhears or intercepts the key in transit can later read all pass­
words encrypted using that key.

• A man-in-the-middle attack, where someone masquerades as the server, in­
tercepts the key, passes it to the user, and then authenticates to the server
with the response.

• A password guessing attack.

2. Database User Authorization
Once clients (i.e., users) are authenticated, the server apphcation is responsible for verify­
ing which operations are permitted on the information being accessed. A requirement
placed on the system by one of Oceania's customers is that a "user's rights are identical
whether the interaction is through the EMR (Electronic Medical Record) application or
third party SQL tools"1. It will be necessary to implement a sophisticated privilege
scheme in order to satisfy this requirement.
This section will briefly discuss DBMS object privileges and present several different ta­
ble privilege granting schemes. It assumes a basic understanding of Sybase authorization
mechanisms. The examples presented will graduate from one that will provide no securi­
ty at all to one that provides row-level security enforced within the database server. The
section will not discuss field-level security in any detail, but notes that the examples
could be extended to provide for such granularity.

2.1 Object Privileges
To obtain access to database tables, views, and procedures, users must either have privi­
leges based on role, special user status, or group membership, or be granted explicit per­
mission for each type of access. Database and object owners can grant or revoke permis­
sion on objects they own. For each permission granted, the grantor can specify that the
recipient can grant the permission to another user. This form of delegating permission is
called "granting with grant". When revoking permission, the revoker can specify that the
permission be revoked from all users to whom the recipient granted it.
You can grant or revoke the following object permissions:

• SELECT select data from a table or view
1. Oceania Inc., Security Functional Requirements V.2.2, January 30,1996

Database Specifics

• INSERT insert a row in a table or view
• DELETE delete a row in a table or view
• UPDATE update a row in a table or view
• EXECUTE execute a procedure

Providing and enforcing user authorizations to the table-level within a relational database
is quite trivial. Permissions to tables may be granted and revoked to and from users and
groups of users and enforced within the database server. Providing row-level security,
however, is another matter. Providing and enforcing user authorizations to the row-level
or field-level can be accomplished within the client apphcation, but is useless if a user
accesses the database through a third-party query tool or one of the database vendor sup­
plied utilities.

2.2 Table Definitions
In order to illustrate some privilege schemes, the following table definitions including
subsets of fields from the respective Oceania tables will be used:

• LdbAccess defines which application users can access which patient records
• LdbPatient holds information about patients
• LdbProvider holds information about providers
• LdbPPatientList assigns patients to providers

Table 1: LdbAccess

Field Name

LdbPatientID

LdbUserlD

Data Type

char(10)

char(10)

Null

not allowed

not allowed

Primary
Key

X

X

Table 2: LdbPatient

Field Name

LdbPatientID

SSN

LastName

FirstName

MiddleName

DateOfBirth

Data Type

char(10)

varchar(ll)

varchar(32)

varchar(32)

varchar(32)

datetime

Null

not allowed

Primary
Key

X

4-3

Database Specifics

Table 2: LdbPatient

Field Name

Primary Physician

Data Type

char(10)

Null Primary
Key

Table 3: LdbProvider

Field Name

LdbProviderlD

SSN

LastName

FirstName

MiddleName

UserlD

Data Type

char(10)

varchar(ll)

varchar(32)

varchar(32)

varchar(32)

int

Null

not allowed

Primary
Key

X

Table 4: LdbPPatientList

Field Name

LdbProviderlD

LdbPatientID

Data Type

char(10)

char(10)

Null

not allowed

not allowed

Primary
Key

X

X

2.3 All Privileges
The simplest implementation of table access grants SELECT, INSERT, UPDATE, and
DELETE on every database table to the p u b l i c group (see the following table). Every
user defined by the database is automatically a member of the p u b l i c group and may
then perform queries against all tables granted to the group. Where all privileges are
granted to the p u b l i c group, any user may insert new rows, and select, update and de­
lete existing rows within the tables. Essentially, no security is enforced.

4 - 4

Database Specifics

Table 5: All Privileges

Object

LdbAccess

LdbPatient

LdbPPatientList

LdbProvider

Object Type

User Table

User Table

User Table

User Table

Permission

SELECT
INSERT
UPDATE
DELETE

SELECT
INSERT
UPDATE
DELETE

SELECT
INSERT
UPDATE
DELETE

SELECT
INSERT
UPDATE
DELETE

Subject (Group)

public

public

public

public

2.4 Granting Specific Table Privileges to Users and Groups
To limit query activity to the table level, all privileges could be revoked from the p u b ­
l i c group and specific privileges granted to application specific groups (and/or users).
For instance, SELECT could be granted on a particular table for some groups of users
and INSERT, UPDATE, and DELETE be explicitly revoked on the table for other groups
of users. In this case, a user who is the member of a group possessing the SELECT privi­
lege may select (i.e., retrieve) all rows in the table. However, he or she may not insert
new rows or update or delete existing rows without the appropriate privileges. This
scheme provides no row-level security. The privileges granted allow queries to be per­
formed on all rows within the respective tables.
The following groups of users will be used for the examples:

• OCJSYSADMIN System Administrators,
• OC_PHYS Physicians, and
• OC_RN Registered Nurses.

The following table reflects such a scheme. It is not, necessarily, intended to duplicate
Oceania's use of group privileges.

4-5

Database Specifics

Table 6: Specific Table Privileges

Object

LdbAccess

LdbPatient

LdbPatient

LdbPPatientList

LdbPPatientList

LdbProvider

LdbProvider

LdbProvider

Object Type

User Table

User Table

User Table

User Table

User Table

User Table

User Table

User Table

Permission

SELECT
INSERT
UPDATE
DELETE

SELECT
UPDATE

INSERT
DELETE

SELECT

INSERT
UPDATE
DELETE

SELECT

UPDATE

INSERT
DELETE

Subject (Group)

OC.SYSADMIN

OC.SYSADMIN
OC.PHYS
OC_RN

OC.SYSADMIN

OC.SYSADMIN
OC.PHYS
OC_RN

OC.SYSADMIN

OC.SYSADMIN
OC.PHYS
OC.RN

OC.SYSADMIN
OC.PHYS

OC.SYSADMIN

Referring to the LdbPatient table in explaining the above table of privileges, notice that
users who are members of the OC.SYSADMIN, OC.PHYS, and OC.RN groups have
the ability to select (and view) and update existing rows in the table. Only members of
the OC.SYSADMIN group have the ability to insert new rows (i.e., patients) and delete
existing rows.
Privileges as granted in this case are granted to users whether they are accessing the data­
base through the client application (i.e., WAVE), a third-party query tool, or database
server utilities like I SQL. They do not, however, provide row-level security.

2.5 Basic Stored Procedures
For this discussion, a basic stored procedure is one that performs an elementary SE­
LECT, INSERT, UPDATE, or DELETE transaction against an individual table. Extend-

Database Specifics

ing the previous example, some row-level security may be enforced by performing all da­
tabase updates with basic stored procedures.
These basic stored procedures must be called from the user interface or some functional
layer between the user interface and the database server. They require input parameters
and return result sets and/or status information.
Here are some example basic stored procedures for the LdbPatient table assuming the
following naming conventions:

• dlettablename for all DELETE procedures,
• nsrttablename for all INSERT procedures, and
• updttablename for all UPDATE procedures.

2.5.1 INSERT Stored Procedure

create procedure nsrtLdbPatient
(@LdbPatientID char(10) = null,
@SSN varchar(ll) = null,
@LastName varchar(32) = null,
@FirstName varchar(32) = null,
@MiddleName varchar(32) = null,
@DateOfBirth datetime,
@PrimaryPhysician char(10) = null)

as
— Procedure for inserting a row in the LdbPatient ta­
ble
if @LdbPatientID = null

begin
print "Invalid Patient identifier"
return -100

end
INSERT into LdbPatient
values (@LdbPatientID,

@SSN,
@LastName,
@FirstName,
@MiddleName,
@DateOfBirth,
@PrimaryPhysician)

if @@transtate = 2

4-7

Database Specifics

b e g i n
rollback tran
return

end
commit tran
return

2.5.2 UPDATE Stored Procedure

create procedure updtLdbPatient
(@LdbPatientID char(10) = null,
@SSN varchar(ll) = null,
@LastName varchar(32) = null,
SFirstName varchar(32) = null,
@MiddleName varchar(32) = null,
SDateOfBirth datetime,
@PrimaryPhysician char(10) = null)

as
— Procedure for updating a row in the LdbPatient ta­
ble
i f @LdbPatientID = nul l

begin
print "Invalid Patient identifier"
return -100

end
UPDATE LdbPatient
set SSN = @SSN,

LastName = SLastName,
FirstName = @FirstName,
MiddleName = @MiddleName,
DateOfBirth =- @DateOfBirth,
PrimaryPhysician = @PrimaryPhysician

where LdbPatientID = @LdbPatientID
if @@transtate = 2

begin
rollback tran

4-8

Database Specifics

r e t u r n
end

commit t r a n
r e t u r n

2.5.3 DELETE Stored Procedure

crea te procedure dletLdbPatient
(©LdbPatientID char(10) = null)
as
— Procedure for deleting a row in the LdbPatient ta­
ble
if QLdbPatientID = null
begin
print "Invalid Patient identifier"
return -100
end
DELETE LdbPatient
where LdbPatientID = @LdbPatientID
if @@transtate = 2
begin
rollback t ran
re turn
end
commit t ran
re turn

2.5.4 Basic Stored Procedures Privileges
In order to duphcate the functionaUty described in the section, Specific Table Privileges,
privileges to execute the stored procedures would be as follows:

Table 7: Basic Procedure Privileges

Object

LdbAccess

Object Type

User Table

Permission

SELECT

Subject

OC.SYSADMIN

4-9

Database Specifics

Table 7: Basic Procedure Privileges

Object

nsrtLdbAccess

updtLdbAccess

dletLdb Access

LdbPatient

nsrtLdbPatient

updtLdbPatient

dletLdbPatient

LdbPPatientList

nsrtLdbPPatientList

updtLdbPPatientList

dletLdbPPatientList

LdbProvider

nsrtLdbProvider

updtLdbProvider

dletLdbProvider

Object Type

Procedure

Procedure

Procedure

User Table

Procedure

Procedure

Procedure

User Table

Procedure

Procedure

Procedure

User Table

Procedure

Procedure

Procedure

Permission

EXECUTE

EXECUTE

EXECUTE

SELECT

EXECUTE

EXECUTE

EXECUTE

SELECT

EXECUTE

EXECUTE

EXECUTE

SELECT

EXECUTE

EXECUTE

EXECUTE

Subject

OC.SYSADMIN

OC.SYSADMIN

OC.SYSADMIN

OC.SYSADMIN
OC.PHYS
OC.RN

OC.SYSADMIN

OC.SYSADMIN
OC.PHYS
OC.RN

OC.SYSADMIN

OC.SYSADMIN
OC.PHYS
OC.RN

OC.SYSADMIN

OC.SYSADMIN

OC.SYSADMIN

OC.SYSADMIN
OC.PHYS
OC.RN

OC.SYSADMIN

OC.SYSADMIN
OC.PHYS

OC.SYSADMIN

Although the above example procedures and privileges provide no more security than
granting specific privileges on tables to groups, there are a couple of immediate advan­
tages:

• SQL to perform the inserts, updates, and deletes has been removed from the client
apphcation.

• The procedure source code may be programmatically generated given the table defi­
nitions stored in the database server.

The next section will extend the procedures in order to illustrate how further levels of se­
curity could be accomplished.

4-10

Database Specifics

2.6 Extended Basic Stored Procedures
In both, the Specific Table Privileges examples and the Basic Stored Procedures exam­
ples, we noticed that any member of the OC.PHYS group can update any and all exist­
ing rows in the LdbPatient table. To extend the examples without creating new database
tables or modifying the existing ones, we will make the following assumptions:

• The values stored in the LdbUserlD field in the LdbAccess table match user names
in the database server.

• The LdbAccess table identifies which LdbPatient occurrences can be updated by
the current user.

The examples presented will extend the UPDATE and DELETE stored procedures for the
LdbPatient table. Permissions to execute the procedures will remain as above. Inserts to
the table will be discussed in a later section.

2.6.1 Extended UPDATE Stored Procedure

create procedure updtLdbPatient
(@LdbPatient ID char(10) = null,
@SSN varchar(ll) = null,
@LastName varchar(32) = null,
@FirstName varchar(32) = null,
@MiddleName varchar(32) = null,
@DateOfBirth datetime,
@PrimaryPhysician char(10) = null)
as
— Procedure for updating a row in the LdbPatient ta­
ble
if @LdbPatientID = null
begin
print "Invalid Patient identifier"
return -100
end
— Begin extension to provide row-level security
— Check to see if the current user has been provid­
ed access to the patient
— Accepting the current user's name from the server
assures that the user
— has successfully completed the authentication proc­
ess.
if not exists (SELECT * from LdbAccess

4-11

Database Specifics

where LdbPatientld = @LdbPatientID
and LdbUserlD = suser_name()
begin
print "Access to patient denied."
return -200
end
— End extension to provide row-level security
UPDATE LdbPatient
set SSN = @SSN,
LastName = @LastName,
FirstName = ©FirstName,
MiddleName = @MiddleName,
DateOfBirth = §DateOfBirth,
PrimaryPhysician = @PrimaryPhysician
where LdbPatientID = @LdbPatientID
if Intranstate = 2
begin
rollback tran
return
end
commit tran
return

2.6.2 Extended DELETE Stored Procedure
(just like the UPDATE procedure)

create procedure dletLdbPatient
(@LdbPatientID char(10) = null)
as
— Procedure for deleting a row in the LdbPatient ta­
ble
if @LdbPatientID = null
begin
print "Invalid Patient identifier"
return -100
end

4-12

Database Specifics

— Begin extension to provide row-level security
— Check to see if the current user has been provid­
ed access to the patient
— Accepting the current user's name from the server
assures that the user
— has successfully completed the authentication proc­
ess.
if not exists (SELECT * from LdbAccess
where LdbPatientld = @LdbPatientID
and LdbUserlD = suser_name()
begin
print "Access to patient denied."
return -200
end
— End extension to provide row-level security
DELETE LdbPatient
where LdbPatientID = @LdbPatientID
if @@transtate = 2
begin
rollback tran
return
end
commit tran
return

2.6.3 Extended INSERT Stored Procedure
In discussing INSERT privileges, we will continue using the LdbPatient table as our ex­
ample. Since the inserting of an LdbPatient row establishes a new patient with a new
identifier (i.e., LdbPatientID), we know that a row with the same patient identifier can­
not exist in the LdbAccess table prior to the insert. We note from the privileges table
above that members of the OC.SYSADMIN group are the only users capable of insert­
ing rows into the LdbPatient table. And, members of the OC.SYSADMIN group are the
only users that can insert into the LdbAccess table. Therefore, only members of the
OC.SYSADMIN group can insert rows into the LdbPatient table and the LdbAccess ta­
ble. This is important because one would assume that a user who is authorized to insert
new patient information should also be able to update or delete the information (i.e.,
grant herself or himself permissions to do so).

The following INSERT procedure establishes the access permissions for the user
entering new patient information. It does not establish privileges for any other us­
ers.

4-13

Database Specifics

create procedure nsrtLdbPatient
(@LdbPatientID char(10) = null,
@SSN varchar(ll) = null,
@LastName varchar(32) = null,
@FirstName varchar(32) = null,
gMiddleName varchar(32) = null,
@DateOfBirth datetime,
@PrimaryPhysician char(10) = null)
as
— Procedure for inserting a row in the LdbPatient ta-
ble
if @LdbPatientID =■ null
begin
print "Invalid Patient identifier"
return -100
end
INSERT into LdbPatient
values (@LdbPatientID,
@SSN,
@LastName,
SFirstName,
@MiddleName,
@DateOfBirth,
@PrimaryPhysician)
if @@transtate = 2
begin
rollback tran
return
end
— Begin extension to provide row-level security
— Insert privileges to patient for current user
INSERT into LdbAccess
values (@LdbPatientID,
suser_name 0)
if @@transtate = 2

4-14

Database Specifics

b e g i n
rollback tran
return
end
— End extension to provide row-level securi ty
commit t r an
re turn

2.6.4 Extended Stored Procedures Summary
This section illustrated one method for providing and enforcing privileges to insert, up­
date, and delete rows in and from the LdbPatient table to the current user. The examples
utilized existing Oceania table definitions without additional tables or attributes. User/
group privileges to tables and procedures were modified to accommodate the examples.
There were some necessary assumptions made during the process. The procedure code
was intended to provide easily understood examples and is not necessarily performance
tuned.
The section does not address the issue of row-level privilege management. The INSERT
procedure illustrated how the user inserting the new patient information could be auto­
matically granted access to update and delete the respective patient information. It does
not, however, address privileges to be granted to other users. It also does not address the
issue of revoking privileges. However, the DELETE procedure does remove privileges
from the LdbAccess table when a patient is removed from the LdbPatient table. Further­
more, none of the procedures address referential integrity issues that may need to be pro-
grammatically maintained when considering dependent relationships.

2.7 Using Views
Enforcing row-level security during retrievals can be enforced through database proce­
dures or views. This section will present some examples of using views. As before, there
will be no additional attributes or tables, user/group privileges to tables will remain the
same as in the previous section, and direct access to tables is prohibited.
We will begin with the view definitions required.

Table 8: View Definitions

View Name
[comment]

Access
[select all rows and all columns from the
LdbAccess table that meet the supplied
where clause criteria]

Definition

c r e a t e view Access a s
SELECT * from LdbAccess

4-15

Database Specifics

Table 8: View Definitions

View Name
[comment]

Patient
[select all rows and all columns from the
LdbPatient table that meet the supplied
where clause criteria and where the user
has been granted access to the patient in
the LdbAccess table]

PPatientList
[select all rows and all columns from the
LdbPPatientList table that meet the sup­
plied where clause criteria and where the
user has been granted access to the patient
in the LdbAccess table]

Provider
[select all rows and all columns from the
LdbProvider table that meet the supplied
where clause criteria]

Definition

c r e a t e view P a t i e n t as
SELECT b . * from LdbAccess a, Ldb­
P a t i e n t b
where a.LdbUserlD = suse r named
and b .LdbPat ient ID = a .LdbPa t i en ­
tID

c r e a t e view P P a t i e n t L i s t as
SELECT b . * from LdbAccess a, Ldb­
P P a t i e n t L i s t b
where a.LdbUserlD = suser name()
and b .LdbPat ient ID = a .LdbPa t i en ­
tID

c r e a t e view Provider as
SELECT * from LdbProvider

Table 9: View Privileges

Object

LdbAccess

Access

LdbPatient

Patient

LdbPPatientList

PPatientList

LdbProvider

Object Type

User Table

View

User Table

"View

User Table

View

User Table

Permission

none

SELECT

none

SELECT

none

SELECT

none

Subject

n/a

OC.SYSADMIN

n/a

OC.SYSADMIN
OC.PHYS
OC.RN

n/a

OC.SYSADMIN
OC PHYS
OC.RN

n/a

4 - 1 6

Database Specifics

Table 9: View Privileges

Object

Provider

Object Type

View

Permission

SELECT

Subject

OC.SYSADMIN
OC.PHYS

Notice in the View Privileges table that SELECT permissions are the only permissions
granted to the views. It is possible to insert, update, and delete rows from views. It is, al­
so, possible to enforce certain update rules with views. There are, however, caveats. For
instance:1

• DELETE statements are not allowed on multi-table views.
• INSERT statements are not allowed unless all non null columns in the underlying

table or view are included in the view through which you are inserting new rows.
• You cannot insert a row through a view that includes a computed column.
• INSERT statements are not allowed on join views created with d i s t i n c t or

w i t h check o p t i o n .
• UPDATE statements are allowed on join views w i t h check o p t i o n . The up­

date fails if any of the affected columns appears in the where clause, in an expres­
sion that includes columns from more than one table.

• If you insert or update a row through a join view, all affected columns must belong
to the same base table.

• You cannot update or insert into a view defined with the d i s t i n c t clause.
• Data update statements cannot change any column in a view that is a computation,

and cannot change a view that includes aggregates.
The limits described above prohibit us from duplicating all of the functionaUty provided
by the stored procedures in the previous sections with views alone. We could, however,
enforce retrieval (i.e., SELECT) row-level security through views and UPDATE and DE­
LETE row-level security through stored procedures. Providing and enforcing row-level
security when inserting rows, becomes another issue.
It is easy to grant permissions to select, update, and delete particular rows to the user
who inserted the rows. It would also be easy to grant permissions to select, update, and
delete those rows to users that are members of the same group as the user who inserted
them. It would just be a matter of keeping track of users and the group or groups to
which they belong. How would we, though, grant permissions to a particular user or
group of users to insert a particular row before we know about the row? Let's use an ex­
ample. Say, Bob is a legitimate user of the system and a member of the
OC.SYSADMIN group with permission to insert rows into the LdbPatient table. While
using the system, Bob has the need to enter information about a new patient, John. Since
Bob has permission to insert into the table, should the system let him insert information
concerning John, or should the insert be authorized by John or some representative of
John? If John was required to authorize the insert, how would he interact with the sys­
tem? If John was unable to interact with the system and there were no representatives
available, how would the insert be authorized? How could the system grant permission

1. Sybase SQL Server vlO.O Reference Manual Volume 1,1994

4-17

Database Specifics

to Bob to insert information concerning John if it doesn't even know about John? This
paper will not attempt to answer these questions, only to point out the simple example.
The paper does assume that if Bob has the privileges necessary to insert a row into the
LdbPatient table, then he possesses the necessary authorization to insert information
about John.

2.8 Labeling of Subjects and Objects
Secure Relational Database Management Systems (SRDBMS) as provided by some ven­
dors implement sensitivity labeling of subjects and objects in order to provide trusted
transactions and multi-level security. These SRDBMS s, however, are probably not practi­
cal for most non-military applications. For instance, Sybase's Secure SQL Server re­
quires a secure server operating system and expensive client software. It also labels such
objects as databases and tables and provides certification of stored procedures that may
be considered unnecessary for most applications.
It would be desirable, however, to implement some of the functionality provided by se­
cure RDBMSs in a non-secure database apphcation, especially sensitivity labeling of sub­
jects (or users) and objects (or rows). If row-level security is considered during the infor­
mation modeling phase, the appropriate attributes could be implemented as integral parts
to the data tables and queries.
In Sybase's Secure SQL Server, access control is enforced through the implementation
of sensitivity labels. Sensitivity labels are applied to subject users and procedures, and to
object databases, tables, views, and rows. In order to access (i.e., SELECT, INSERT,
UPDATE, DELETE) any particular object, the subject must possess clearance levels (or
labels) that exceed or dominate the object's sensitivity labels.
Labels are composed of two components:

• hierarchical classification
• non-hierarchical compartments

A sensitivity label consists of a single hierarchical classification label plus any number
of non-hierarchical compartments. The number of hierarchical classification levels and
non-hierarchical compartments is limited only by the secure operating system. Examples
of hierarchical classification could be:

• Top Secret
• Secret
• Confidential
• Unclassified

Examples of non-hierarchical compartments could be:
• A - Z

An illustration of label dominance could be:
• Top Secret dominates all Secret, all Confidential, and all Unclassified, but does not

dominate Top Secret A.
• Secret A B does not dominate any Top Secret or Secret C, but does dominate Se­

cret A, Secret B, Secret A B, all Confidential, and all Unclassified.

4-18

Database Specifics

This paper will not attempt to create examples of how sensitivity labels might or should
be implemented within a non-secure RDBMS apphcation. It only proposes that the use
of such a scheme along with stored procedures and database views could increase the
granularity at which row-level and field-level security could be achieved.

3. Database Audit Trails
Auditing is an important part of security in a database management system. Security-re­
lated system activity can be recorded in an audit trail, which can be used to detect pene­
tration of the system and misuse of resources. By examining the audit trail, system secu­
rity officers can inspect patterns of access to objects in databases, and can monitor the
activity of specific users. Audit records are traceable to specific users, enabling the audit
system to act as a deterrent to users attempting to misuse the system.
This chapter will discuss some database event auditing requirements.

3.1 The Audit System
The audit system should:

• be able to enable and disable system-wide audit options;
• establish auditing of different types of events within a database, or of references to

objects within that database from another database;
• establish selective auditing of accesses to tables and views;
• audit the execution of stored procedures;
• audit a user's attempts to access tables and views, or the text of commands that the

user executes; and
• allow privileged users to enter user-defined audit records (comments) into the audit

frail.

3.2 Establishing Auditing
The System Security Officer should manage the audit system. Only a user who has been
granted that role should be able to:

• execute any of the auditing system procedures;
• read the audit trail; and
• access the audit database.

3.2.1 System-Level Audit Requirements
The following is a list of system-level auditing requirements. The system should:

• provide for enabling and disabling of system-wide auditing. A System Security Of­
ficer must set the enable auditing option on before any other auditing can take
place. Enabling or disabling auditing should automatically generate an audit record,
so that you can bracket time periods when auditing was enabled.

• be able to enable or disable auditing of successful, failed, or all login attempts by
users.

• be able to enable or disable auditing of all logouts from the server, including unin­
tentional logouts such as dropped connections.

4-19

Database Specifics

• be able to enable or disable the generation of an audit record when the server is re­
booted.

• be able to generate an audit record whenever a user from another host connects to
the local server to run a procedure via a remote procedure call (RPC). Auditing
should be able to capture all connection attempts, successful attempts only, or
failed attempts only.

• be able to audit the use of any privileged commands requiring special roles for exe­
cution. It should be able to audit for successful executions only, failed attempts
(where failure is due to the user lacking the proper role), or both.

• be able to audit fatal errors (errors that break the user's connection to the server
and require the client program to be restarted), nonfatal errors, or both kinds of er­
rors.

• allow privileged users to send text to the audit trail.

3.2.2 Auditing Users
The auditing system should be able to audit a user's attempts to access tables and views
in any database, and the text of commands that the user sends to the database server. An
access is the use of the SELECT, INSERT, UPDATE, or DELETE command on a table
or view.

3.2.3 Auditing Databases
The system should permit the estabhshment of selective auditing on databases. These are
some auditable events that can occur in or on a database:

• Use of the drop, g ran t , revoke, and other table commands within a database.
• Use of the all database level commands.
• Execution of SQL commands from within another database that reference the audit­

ed database.

3.2.4 Auditing Tables and Views
The auditing system should allow you to audit accesses of specified tables and views.
An access is the use of the SELECT, INSERT, UPDATE, or DELETE command on a ta­
ble or view. It should allow the estabhshment of auditing of specified tables and views,
or create default audit settings for newly-created tables and views.

3.2.5 Auditing Stored Procedures
The auditing system should allow you to audit the execution of stored procedures. The
values of any parameters passed to a stored procedure should be audited. It should allow
the estabhshment of auditing of existing stored procedures or create default audit set­
tings for newly-created stored procedures.

3.2.6 Adding User-Specified Records to the Audit Trail
The system should allow privileged users to enter user-defined audit records (comments)
into the audit trail. For instance, it may be important to note with comments such actions
as disabling and enabling particular types auditing.

4-20

Database Specifics

3.3 Audit Trail Operations
The only operations allowed on the audit trail should be SELECT and other commands
that may be executed only by a system security officer.

3.4 Archiving Audit Data
Because the audit trail is appended continuously, it is necessary to archive old audit data
from time to time, depending on the size of the device on which it resides. If the audit
device fills up, audited system activity and database activity may come to a halt.

4. Summary
The user authentication process provided by the DBMS vendors must be considered vul­
nerable to attack. It may be necessary to investigate the effectiveness of using a DCE/
Kerberos system accompanied with smart card technology to provide a safe authentica­
tion process (see the appendix on DCE and the chapter on Smart Cards).
This chapter has presented several examples of stored procedures and database views to
provide and enforce row-level security. It has proposed that the addition of a sensitivity
labeling scheme could be added to increase row-level and field-level security granulari­
ty. Oceania's scheme of granting permissions to tables to users and groups of users
alone will not provide row-level security. Legitimate users and system administrators
will be able to access all rows in tables where permissions have been granted. They will
be able to access the database tables through third party query tools bypassing the client
apphcation.
Stored procedures offer many advantages, but there are some drawbacks. The main draw­
back of stored procedures is that they are non-standard. No two vendor implementations
are alike. The language for describing the stored procedures and their functionality vary
from server to server. Stored procedures are not portable across vendor platforms. There
is no standard way to pass or describe the parameters.
In a typical two-tiered application such as Oceania's apphcation, the business rules are
enforced in either the client application, the stored database procedures, or some combi­
nation of the two. In a three-tiered architecture (see the appendix on Multi-tiered Archi­
tecture) that contains a data layer, a functional layer, and a presentation layer, the busi­
ness rules are enforced in the functional layer residing on a server. The stored proce­
dures presented in this paper along with the rules of the business could be implemented
in a functional layer. Implementing a functional layer would avoid the drawbacks of
stored procedures and remove functions from the client apphcation. Authorizations to ex­
ecute the functions would have to be granted and maintained through a facihty independ­
ent of the client apphcation and the database management system such as the DCE's
Privilege Service and Access Control Lists (ACLs) (see the appendix on Distributed
Computing Environment). The Privilege Service determines whether a given client is au­
thorized to perform specific operations. Access to the database would be granted to the
functional layer only. Direct access would not be granted to users or groups.
In order to meet the requirement that a "user's rights are identical whether the interac­
tion is through the Electronic Medical Record (EMR) application or third party SQL
tools ' , it will be necessary to implement a sophisticated security mechanism that will

4-21

Database Specifics

provide and enforce user privileges regardless of access method. Granting permissions to
access tables and views to users and groups of users alone will not suffice. It is suggest­
ed that direct access not be granted to tables and that some combination of views, sensi­
tivity labeling, and stored procedures or functions be used to accomplish row-level and/
or field-level security. There will be maintenance issues involved with a sophisticated se­
curity scheme. Privileges to views and stored procedures would have to be managed
through the DBMS. Tools would probably have to be developed to managed the sensitiv­
ity labeling of subjects and objects.
Auditing is an important part of security in a database management system. An exten­
sive audit system is required to detect penetration of the system and misuse of resources.
By examining the audit trail, system security officers can inspect patterns of access to ob­
jects in databases, and can monitor the activity of specific users. Audit records are tracea­
ble to specific users, enabling the audit system to act as a deterrent to users attempting
to misuse the system. Most DBMS vendors supply auditing capabilities that may be suf­
ficient for recording database activity.

1. Oceania Inc., Security Functional Requirements V.2.2, January 30,19%

4-22

Smart Cards

Chapter 5 - Smart Cards
A smart card contains a microcontroller that is mounted onto a plastic card the size of a
credit card. The card has specific built-in functions such as protected memory, crypto­
graphic functions, and I/O control. The microconfroUer contains a microprocessor usual­
ly based on the Motorola 68HC05 or Intel 8051 calculation unit (used for the encryption
algorithms), small amount of RAM (usually around 256 bytes), ROM which is used to
store the controller's operating system and instruction set (from about 4K to 14K bytes),
and user memory in the form of EEPROM. Currently the EEPROM ranges from 256
Bytes to 8K bytes depending upon the apphcation needs and budget allocated to pay for
the cards (current prices are from $4.00 to $19.00 for small quantities of cards). The en­
cryption algorithms are usually DES, RSA, or both.
A card's memory basicaUy determines the card's performance and usabihty. The size of
the RAM greatly affects the encryption performance. The size of the ROM determines
what functions can be included in the card's operating system. The EEPROM deter­
mines how much user or application information can be stored in the card.
Smart card operating systems can be rather difficult to understand. In addition, the tech­
nical documentation for the card's operating system is often poorly written. Smart card
apphcation developers wiU need to become very familiar with the operating system for
the respective cards they are working with.
Some of the advantages of smart cards are that they:

• Can easily be used as an ID badge;
• Perform basic cryptographic functions that can be used to provide authentication

and digital signatures;
• Provide protected memory that can be used to store a user's private encryption keys

and other confidential information; and
• Are inexpensive technology.

A major disadvantage of smart cards is the smaU amount of usable memory (only a few
thousand bytes).

1. Standards
The International Standards Organization (ISO) has defined several standards for smart
cards, which include:

• -ISO 7816-1. Physical characteristics.
• -ISO 7816-2. Dimensions and location of contacts.
• -ISO 7816-3. Electronic signals and transmission protocols.
• -ISO 7816-4. Inter-industry commands and responses (i.e., read, update, etc.).
• 'ISO 7816-5. Registration system for applications in cards (standard method to

store apphcation VXYZ' on a card).
• -ISO 7816-6. Data Elements for interchange (i.e., user's name, address, card expira­

tion date, etc.).

5-1

Smart Cards

2. Current Uses
While smart cards are being utilized heavUy in Europe and Asia, they are currently stiU
in the early stages of development in the U.S. Some examples of their current uses are
given below.

• Pay Telephone Debit Cards. Individuals purchase a fixed amount of telephone cred­
its. When they use the card, the phone deducts the number of credits consumed by
the caU from what is available on the card. The card is disposed of when aU the
credits are used.

• Electronic Purse. Individuals can go to their local bank or ATM and transfer funds
from their account into their smart card. The card is then used like cash. The Ma­
rine Corps training facihty at Paris Island is currently using a modified version of
the electronic purse. Recruits have their pay entered in the cards which they then
use to make purchases on the base or get cash withdrawals from post exchanges.

• Vehicle Maintenance. Toyota in Japan is issuing a smart card with each new car
to track the vehicle's maintenance history.

• Agriculture. The U.S. Department of Agriculture has issued smart cards to several
peanut farmers to monitor and control crop sales.

3. Common Features

3.1 File Structure
The basic file structure on the card is divided into three areas, as shown in the structure
below. The first is the Master FUe (required); the next level is the Dedicated File (DF)
and finaUy, the Elementary File (EF). DFs are used to store EFs (like a sub-directory
in DOS) and the EFs store user data (like user files in DOS).

Figure 3.1 Smart Card File Structure

3.2 Security
Security is usuaUy handled by the use of a Personal Identification Number (PIN). The
PIN, however, is not limited to numbers, but can be any ASCII character (so the PIN
can be a password). A maximum of eight characters can be used to create the PIN.

5-2

Smart Cards

Once the PIN has been correctly submitted, the card then will aUow access to the data
protected with that PIN. For example, EFl and DFl files could be protected by a single
PIN. Once that PIN is entered, all data in those areas can be accessed by the user. DF2
on the other hand could be protected by a different PIN. Many cards have variations on
this approach where EFs within a specific DF can be individuaUy protected by their own
PIN. This can be useful if several different applications wish to use the same card. If
the card is to be used in only one apphcation, this feature is often not used.
In order to protect the data in the card from password attacks, the card wiU only aUow a
fixed number of wrong PIN submissions by the user. UsuaUy this value can range from
one to seven and can be programmed by the apphcation developer. If a user submits in­
correct PINs beyond the specified limit, the card wiU become locked until the card issu­
er unlocks it. For example, if the value is three then after three wrong submissions the
card is locked until the issuer unlocks it. With some cards the three wrong entries must
be entered consecutively (three misses in a row). With other cards, wrong PIN entries
are cumulative (three wrong submissions over the life of the card). To unlock a card,
the issuer must usuaUy submit its PIN and the user's PIN (this can be a problem if the
user has forgotten his or her PIN).

3.3 Communication
Communication with a smart card is performed via a serial I/O port. The I/O speed of
most smart cards is 9600 bits per second.

3.4 Instruction Set
Smart cards have a limited basic instruction set due to the fact the operating system
must fit into a few thousand bytes of ROM. Each smart card vendor has a slightly dif­
ferent instruction set but most include the following functions:

• Read data stored in the card's memory.
• Write data to the card's memory.
• Erase data stored in the card's memory.
• Submit PIN or key.
• Read result of last operation performed by the card (for example, result of DES en­

cryption).
• Generate a random number.
• Select DF or EF.
• Create DF or EF.
• Generate temporary DES key (i.e., session key).
• Encrypt (use DES to encrypt an eight byte block of data).
• Decrypt (use DES to decrypt an eight byte block of cipher text).
• Increment/decrement count.
• Increase/decrease the balance of an electronic purse.

Most card manufacturers provide a set of high level language libraries in C. Some ven­
dors also provide Visual Basic libraries.

5-3

Smart Cards

4. Cryptographic Uses of Smart Cards
Microprocessors with buUt-in cryptographic capabilities such as DES, RSA, and DSS
(Digital Signature Standard) are available. Smart cards with cryptographic capabilities
accessible by apphcation developers can be used in key management, strong user authen­
tication, encryption, and digital signatures.
In a typical Kerberos or DCE environment, a user submits his or her password (shared
by the user and the Kerberos server) to a chent. The chent uses the user's password to
encrypt/decrypt authentication information to/from the Kerberos/DCE server. The use of
a smart card in a Kerberos/DCE environment has four advantages, as described below.

• The user's Kerberos password can be securely stored on the card and does not
have to be remembered by the user.

• Since the user does not have to remember his or her password, the password could
be the 56-bit DES key shared by the Kerberos/DCE Server.

• Since the password is stored on the card, it could be used to decrypt and store the
Kerberos/DCE credentials.

• The password is never passed to the chent.
• It provides two-factor authentication. The user must use a password to gain access

to the smart card and must have physical possession of the card to gain access to
the Kerberos password.

Smart cards with support for public key cryptography can also be used for digital signa­
ture generation. The card can store the signer's private key and compute the digital sig­
nature. As such, the signer's private key is not exposed to the chent workstation. In or­
der to improve the performance of document signing, the chent workstation can perform
the one-way hash function on the data that is to be signed. The hashed data can then be
passed to the card, which will then compute the digital signature.

5. Functional Requirements
An examination of ten smart card vendors was performed for this CRADA. The types
of smart cards available from these vendors range from protected memory cards which
have no processing capabilities to cards that have complex cryptographic capabilities.
To be able to use the smart cards as described above in a Kerberos or DCE environ­
ment, the smart card must meet the foUowing functional requirements.

• The System Security Officer must be able to choose and store the user's Kerberos/
DCE password (a DES key) in the card's protected memory. This is necessary so
that both the card and Kerberos/DCE server share the same key, and that it can be
updated when necessary.

• The card must be support public key cryptography for digital signatures.
• The card must be capable of using the DES key(s) stored in its protected memory

to perform encryption and decryption of data. The card must be able to decrypt
the Kerberos/DCE ticket granting ticket on the card.

• The card must have a basic file system that wiU be used to store information
deemed necessary by apphcation developers.

5-4

Smart Cards

• The card vendor should provide a high level language library (for example, C) for
the card. If this is not provided the apphcation developers wUl have to program
the card with machine language.

• The card vendor must provide good technical documentation and good technical
support.

Microprocessors with cryptographic features are available that would enable smart cards
to be used for key management, strong user authentication, encryption, and digital signa­
tures. However, no COTS smart card with such features has been identified. Custom
smart cards could be manufactured, but at an extra expense. Hence, one must consider
the individual strengths and weaknesses of each card and compare them to the minimum
requirements for an apphcation. In the near term, vendors are expected to develop smart
cards capable of meeting aU of the specified requirements. Such cards may become
avaUable in 1997.

Smart Cards

5-6

Architecture Alternatives

Chapter 6 - Architecture Alternatives
1. Introduction

After assessing the surety needs of Oceania, this project focused on Commercial Off-
The-Shelf-based (COTS) solutions. The hope was that COTS-based solutions would
niinimize the amount of surety development by Oceania. However, the current state of
COTS surety products and technologies replaces custom surety development with cus­
tom and complex integration and surety system administration. No product today pro­
vides the complete set of surety services required by systems like Oceania's. The best
that can be done today is to integrate several products to provide the services needed.
There are trade-offs associated with each combination of products. The architectures be­
low describe specific alternatives buUt using different combinations of products and the
issues that must be considered with each.

2. Specific Architecture Alternatives
Each of the specific architectures described in the following sections is based on the ge­
neric architecture shown in Figure 2.1. Custom and COTS apphcations are supported by
a surety layer which in turn runs on a COTS operating system. The differences between
the various architectures are limited to the surety layer. The architectures described are
peer-to-peer indicating that various peers may act as servers for different apphcations.
The specific architectures include only technologies that are currently available or which
are known to be avaUable in the near term.

Generic Architecture

Peer!

Peer 2

Custom and COTB
Apphcaton6

.1.
Surety Layer

:::::::x:::::.

Insecure Channel
or Network

Figure 2.1 Generic Architecture

6-1

Architecture Alternatives

The foUowing sections describe each alternative and discuss the surety risks mitigated
and those not addressed by the architecture. In addition, the technologies described in
the chapter on Basics of Information Surety are considered where applicable.

2.1 Architecture Alternative A
Architecture Alternative A is shown in Figure 2.2. The surety layer functionaUty is pro­
vided by DCE [OSF, 1992, 1996] (see appendix on DCE) or Kerberos [Neuman, 1993,
1994] [Jaspan, 1995]. DCE and Kerberos are both surety middleware products.

Services
- User authentication
- Access control
- Communications privacy

Issues
- Heavy maintenance and administrative

burden associated with DCE
- DCE provides a distributed computing

environment which includes more than
secunty features

- DCE provides a distributed time service
and audit trail capabilities

- Some customers may be adopting a DCE
infrastructure

- No public key support
• No digital signatures

- Application code must be altered
• Impact of code modification is

greater when using DCE
- Peer which acts as security server must

be physically protected
- Peer which acts as database server must

be physically protected
- Smart cards may be used

Figure 2.2 Architecture Alternative A
DCE security is based on Kerberos so many of the surety features in the current version
of DCE are provided by the underlying Kerberos tibraries. In particular, Kerberos fur­
nishes the authentication capabihty. However, DCE supphes other functionaUty in sup­
port of distributed computing including audit traU and a distributed time service capabih­
ty. While DCE supports flexible access control to system objects, access control within
an apphcation must stiU be managed by the application. DCE does provide Access Con­
trol List (ACL) (see the appendix on DCE) support but the lists must be managed by the
apphcations via ACL management software written by developers. ConfidentiaUty
across communications links is a feature of both DCE and Kerberos. However, encryp­
tion is used to provide this feature and so export controls apply to both of these products.
DCE is a complex environment so the system administrative and maintenance costs
could be quite high. Since Kerberos provides some of the underlying surety features for

Architecture Alternative A

PeeM

Peer 2

Custom and COTS
Applications

' ' ' "[" ' .

DCE/Kerberos

. . . J
COTS OS

Insecure Channel
or Network

COTS OS

. . : i . . .
DCE/Kerberos

' 'I " '
Custom and COTS

Applications

Architecture Alternatives

DCE, it appears Ukely that a system run on M.I.T. Kerberos version 5.0 wUl be compati­
ble with a system run on DCE version 1.1. Kerberos requires a much smaUer system ad­
ministration burden and might therefore, be the better choice for Oceania to support.
Neither Kerberos nor DCE provide any digital signature capabiUties. Open Software
Foundation (OSF), the consortium that sponsors the development of DCE, has formed a
working group to develop a pubUc-key infrastructure. However, it does not seem Ukely
that a pubUc key infrastructure capability wiU appear in the near term. Since digital sig­
nature algorithms are pubUc-key algorithms, a pubhc-key infrastructure that provides key
management functions is required. WhUe the avaUabihty of digital signature capabiUties
in DCE may not be imminent, OSF is aware of the need. DCE does support the use of
smart cards within the system and smart cards can be used to generate digital signatures
[Merckling, 1994]. However, there are several caveats:

• apphcations must support smart cards;
• principal registry structures must be changed;
• some protocols must be changed (login, account creation, password and key modifi­

cation); and
• the smart card must be able to store auxUiary files.

However, digital signature capabilities generaUy require a public-key infrastructure that
would have to be developed.
DCE and Kerberos require modifications to apphcation code to make use of their surety
features. Therefore, portabihty to systems other than those which are DCE- or Kerberos-
enabled must be addressed. Within the system, peers that act as database servers and/or
security servers must be physicaUy protected. This protection could be provided by sim­
ply locking these servers in a room and limiting access.

2.2 Architecture Alternative B
Architecture Alternative B is shown in Figure 2.3. The surety layer functionaUty is pro­
vided by Entrust from Northern Telecom [Entrust]. Entrust features may be accessed
through the Entrust Programmer's Toolkit or via the Entrust apphcation.

6-3

Architecture Alternatives

Architecture Alternative B

Services
- User authentication
- Dgital signatures
- Encryption
- Key management
- Public key infrastructure

Issues
- No access control
- Peer which acts as security server must

be physically protected
- Peer which acts as database server must

be physically protected
- User is associated with a particular peer
- No smart card support
- Application code must be altered
- Some customers may be adopting a DCE

infrastructure

COTS OS

Custom and COTS .

Figure 2.3 Architecture Alternative B
This architecture provides a pubUc-key infrastructure that includes X.509 certificates
[ITU-T, 1993]. These certificates are internationaUy recognized which would allow for
broad compatibility with other such apphcations. Entrust supplies both RSA and DSA
digital signature algorithms. Encryption is avaUable to provide confidentiahty of data in
storage and transmission. Export controls clearly apply. Entrust manages both encryp­
tion and digital signature keys. However, Entrust provides no support for smart cards.
This lack of support would not be problematic except that Entrusts key management
mechanism associates a user with a particular peer. Handling users who access the sys­
tem from various peers would be difficult although this issue might be mitigated by de­
velopment to support smart cards independent of Entrust.
Entrust suppUes user authentication functionaUty but not access control functionaUty. In
addition, using Entrust alone would not support a DCE-based architecture. As with
DCE and Kerberos, apphcation code would have to be altered to make use of Entrust's
surety features so portabihty issues would have to be addressed. However, Entrust is
JJDUP-GSS-API [Adams, 1996] compliant so apphcations can be ported to other BDUP-
GSS-API comphant environments. In addition, the peers that act as security servers and
database servers must be physicaUy secured.

2.3 Architecture Alternative C
Architecture Alternative C is shown in Figure 2.4. The surety layer functionaUty is pro­
vided by DCE or Kerberos, and Entrust. This architecture combines the access control

Peerl
Custom and COTS

Applications

Entrust

COTS OS

Insecure Channel
or Network

Architecture Alternatives

capabilities of DCE/Kerberos with the digital signature, key management and public-key
infrastructure capabiUties of Entrust. In addition, this architecture would support a DCE-
based architecture. Not unexpectedly, integration of these products would require some
effort.

Architecture Alternative C

Peer!

Peer 2

Custom and COTS
Applications

DCE/Kerberos

COTS OS

Insecure Channel
or Network

COTS OS

DCE/Kerberos
Entrust

Custom and COTS
Applications

Services
- User authentication
- Access control
- Qgital signatures
- Encryption
- Key management
- Public key infrastructure

Issues
- Heavy maintenance and administrative

burden associated with DCE
- DCE provides a distributed computing

environment which includes more than
security features

- DCE provides a distributed time service
and audit trail capabilities

- Some customers may be adopting a DCE
infrastructure

- Application code must be altered
• Impact of code modification is

greater when usmg DCE
- Peer which acts as security server must

be physically protected
- Peer which acts as database server must

be physically protected
- Smart cards may be used
- User is associated with a particular peer

for the purposes of generating digital
signatures

Figure 2.4 Architecture Alternative C
If DCE is chosen rather than Kerberos, the system administration and maintenance bur­
den is quite high. AppUcation code would have to be modified to make use of DCE/Ker­
beros and Entrust surety features; so code portabUity is an issue. Smart cards could be
used for user authentication and encryption, but users would be associated with a particu­
lar peer for purposes of generating digital signatures. Although, this issue might be miti­
gated by development to support smart cards independent of Entrust. See a discussion
of the caveats for using smart cards with DCE in the section on Architecture Alternative
A. FinaUy, peers that act as security servers and database servers must stiU be physical­
ly secured.

2.4 Architecture Alternative D
Architecture Alternative D is shown in Figure 2.5. The surety layer functionality is pro­
vided by DCE or Kerberos, Entrust and Open Horizon's Connection [OpenHorizon] (see
the appendix on Open Horizon's Connection). In addition to the functionaUty provided
in Architecture Alternative C, Connection provides a single sign-on capabUity and appli­
cation authentication. Single sign-on in this context means that the user is not forced to

6-5

Architecture Alternatives

log on to the system and then log on to various appUcations separately. The user logs on
only once. Apphcation authentication means that apphcations can authenticate them­
selves to the system and to other appUcations. Perhaps more importantly, the use of
Connection would aUow developers to easUy write portable appUcations. Connection cur­
rently suppUes support for DCE and Kerberos. Support for Entrust is under development.

Architecture Alternative D

Peerl

Peer 2

Custom and COTS
Applications

Open Horizon
Connection

DCE/Kerberos
Entrust

COTS OS

Insecure Channel
or Network

COTS OS

DCE/Kerberos
Entrust

Open Horizon
Connection

Custom and COTS
Applications

Services
- User authentication
- Access control
- Qgital signatures
- Encryption
- Key management
- Public key infrastructure
- 3ngle sign-on
- Application authentication

Issues
- Heavy maintenance and administrative

burden associated with DCE
- DCE provides a distributed computing

environment which includes more than
security features

- DCE provides a distributed time service
and audit trail capabilities

- Some customers may be adopting a DCE
infrastructure

- Peer which acts as security server must
be physically protected

- Peer which acts as database server must
be physically protected

- Smart cards may be used
- User is associated with a particular peer

for the purposes of generating digital
signatures

Figure 2.5 Architecture Alternative D
The maintenance and administration of DCE is stiU burdensome and peers that act as se­
curity servers and database servers must stiU be protected. Users are stiU associated
with a particular peer for the purposes of generating digital signatures. Although, this is­
sue might be mitigated by development to support smart cards independent of Entrust.
See a discussion of the caveats for using smart cards with DCE in the section on Archi­
tecture Alternative A.

6-6

Multi-tiered Architecture

Appendix A - Multi-tiered Architecture
1. Introduction

Multi-tiered apphcation architecture, sometimes referred to as apphcation partitioning, is
not a new concept. Apphcation designers have attempted to partition appUcations in one
form or another for many years. Business logic has been separated from data access in
many corporate appUcations in order to aUow for future changes in technology. AppUca­
tions developed in cUent/server environments are divided into components and typicaUy
distributed to two or more computers. CUent/server physicaUy distributes process, data,
and transactions across local and wide area networks. s

2. Two-tiered Model
A two-tiered apphcation usuaUy consists of two primary machines: the user's cUent ma­
chine and a remote database or file server. In a typical two-tiered apphcation, the busi­
ness rules are enforced in either the chent apphcation (or user interface), the stored data­
base procedures, or some combination of the two.
When two-tiered departmental apphcations are pushed to support enterprise use, organi­
zations encounter a number of problems. These problems include unacceptable perform­
ance, lack of scalabiUty, high costs of maintenance, inabUity to share business rules
across appUcations, and the inability of the first-generation client/server tools to handle
highly complex business logic. AdditionaUy, organizations find that they lack some of
the mainframe quahty services such as security services, which include user authentica­
tion, authorization and data protection, centralized directory services, and a coherent
management solution.
Organizations have invested heavUy in the development of logic that encapsulates rules
about the business. With these business rules located on client workstations embedded
within an apphcation, they are inaccessible to other apphcations. Therefore, they must
be re-developed and maintained for each individual apphcation.

3. Three-tiered Model
CUent/server apphcation partitioning scenarios have been worked out in detail by several
organizations. The most popular partitioning scheme divides an appUcation into three
specific layers: the presentation layer, the function layer, and the data management layer.
Developers accommodate the presentation layer by creating a user interface. The func­
tion layer is refined into subcomponents including data validation, data integrity, and
transaction-processing control, and apportioned between the client and server. The data
management layer accommodates the data services, such as the database management
system, on one or more servers.
There are some inconveniences to partitioning apphcations. One is complexity. The dis­
tribution of process, data, and transactions across numerous physical environments great­
ly increases complexity. The application's components no longer reside within a single,
well-controlled physical environment. They must now communicate among themselves
in a coordinated fashion. A complex transaction may have to access several computers
in order to complete as a logical unit of work.

A-1

Multi-tiered Architecture

Another inconvenience is connectivity. A ctient/server appUcation adds to the competi­
tion among appUcations by distributing them across networks with finite capacities. De­
velopers must overcome this issue by optimizing distribution for performance.
Distributed appUcations bring considerable flexibiUty and chaUenge to the developer's
world. It is considered normal for part of an apphcation to exist on the end-user's desk­
top while attached to a local area network. It is also expected that the same functionaUty
be portable. The apphcation's end user may need to access the appUcation from home or
on the road using a laptop computer and a means of connectivity that's not nearly as fast
as a departmental local area network. A specific connectivity scenario may require parti­
tioning the apphcation in a way that further adds to its complexity. There is also a need
to insulate the required apphcation partitions from the end users, making them transpar­
ent.

4. Choice of Tools
The choice of tools to implement a three-tiered architecture covers a broad spectrum. Be­
ginning with the presentation layer, several popular 4GL integrated development environ­
ments are on the market. 3GL languages such as C/C++ and COBOL may also be used.
With the business (or function) layer, the developer has even more choices. 4GL devel­
opment is an option for the function layer; however, when combined with the 4GL of
the presentation layer, it leads to the fat-client implementations that are prevalent today.
In addition, traditional 3GL languages such as C/C++, COBOL, or FORTRAN may be
used. Notice also that RDBMS proprietary stored procedures are also used to implement
the functional layer. However, stored procedures are non-standard but in this architec­
ture, the functional layer could be implemented to perform the tasks of stored procedures
using ANSI SQL. This would provide portabihty between commercial database manage­
ment systems.
The biggest chaUenge is deciding the physical location of service execution. A direct re­
lationship exists between the physical tools chosen to build logical services and where
the components can physicaUy execute. For example, if functional layer services are con­
structed using a 4GL tool such as VisualBasic, then the developer's only choice for exe­
cution is on the processor serving the cUent. A better solution would be to write as much
of the business logic as possible using a tool that provides the most flexibUity, portabUi-
ty, and leverage for the future, like C/C++ and COBOL.

A-2

Distributed Computing Environment

Appendix B - Distributed Computing Environment
In 1990, the Open Software Foundation (OSF) announced the Distributed Computing En­
vironment (DCE), a comprehensive, integrated set of services that supports the develop­
ment, use and maintenance of distributed systems. DCE is a distributed architecture that
consists of Security Services, Directory Services, Remote Procedure CaUs (RPCs),
Threads, Distributed File System, and Time Services. DCE is an industry standard and
its specifications have been incorporated by X/Open into the Common AppUcation Envi­
ronment. DCE aUows companies to create an environment in which aU systems and their
resources are immediately accessible to users on the network, regardless of their loca­
tion, and provides the necessary services across multiple operating environments for se­
curity and global naming.

1. Introduction to DCE
Computer users require a communications environment that wiU aUow information to
flow from wherever it is stored to wherever it is needed, without exposing the network's
complexity to the end user, system administrator or apphcation developer. The goal of
distributed computing is to make a network of individual computers act as one. Benefits
include uniform access to resources and ease of resource sharing. The OSF DCE is a
software system that aUows people to bmld scalable, secure distributed applications.
DCE provides an architecture for building apphcations that are:

• Scalable,
• Secure,
• Distributed,
• Interoperable with other resources, and
• Portable across heterogeneous platforms.

DCE comprises the following components:
• Secure Core:

• CeU Directory Service (CDS),
• Global Directory Agent (GDA),
• Remote Procedure CaU Facihty (RPC),
• Security Service,
• Distributed Time Service (DTS), and
• Threads Fatility;

• Extended Services:
• Global Directory Service (GDS), and
• Distributed File Service (DFS); and

• Others:
• Audit Services, and
• Server Management Fatilities.

B-1

Distributed Computing Environment

1.1 UUIDs
DCE makes abundant use of numeric identifiers caUed Universal Unique Identifiers
(UUIDs) for anything that requires a unique identifier (i.e., DCE ceUs, users, processes,
interfaces, etc.). A UUID is buUt from a timestamp, process ID of the generating proc­
ess, a machine ID, and 32 bits for uniqueness. UUIDs have no inherent meaning.
An example UUID:

00162b64-6738- 1060-933e-9e621066aa77
I I I I
I I I Machine ID
I I Process ID
I Timestamp
Uniqueness bits

1.2 DCE Cells
DCE divides its world into ceUs. A ceU is a coUection of users, computers, and other re­
sources managed as a group. Boundaries depend on the purpose of the ceU. A cell may
encompass an entire organization, departments within an organization, or some other log­
ical division.
Each DCE user and machine belongs to a single ceU, caUed the local or home cell. Oth­
er ceUs are caUed foreign ceUs.
Each ceU includes components of the DCE Secure Core:

• Remote Procedure Call Facihty (RPC),
• CeU Directory Service (CDS),
• Security Service,
• Distributed Time Service (DTS), and
• Threads Facihty.

1.3 Remote Procedure Calls
The OSF Remote Procedure CaU capabiUty is based on the premise: make individual pro­
cedures in an appUcation run on a computer somewhere else in the network. RPC is
DCE's mechanism for inter-process communication. An RPC is a function caU that
looks like an ordinary local function caU. The caUing code and caUed procedure actually
belong to different processes that may be on different machines. The chent program
makes the RPC and the server program answers the RPC. A process may be both a ch­
ent of some server and a server to some cUents. It should be noted that DCE RPCs are
not necessarily compatible with other vendors' RPC facilities.

1.4 DCE Servers and Application Servers
The phrase "DCE server" correctly describes both a DCE server and/or an apphcation
server.

B-2

Distributed Computing Environment

DCE's system servers implement DCE services (i.e., Security servers, Name servers,
etc.). They are provided by the vendor and may act as servers to other system servers
and apphcation servers.
Apphcation servers implement particular appUcations, are written by a site's program­
mers, and are often ctients of DCE's system servers.

1.5 RPC Interfaces
An interface is a set of function descriptions. A server may offer one or more interfaces.
Many servers may offer the same interface. Each interface is defined in a separate file,
is written by a programmer, some information is compiled into clients, and some infor­
mation is compUed into servers. The interface definition file includes the UUID and ver­
sion number, the interface name, and the set of function prototypes.

1.6 The DCE Control Program (dcecp)
DCE 1.1 provides a unified administration tool, dcecp, that supports most, but not all,
of the DCE administration functions. It is based on Tel (Task Control Language), ver­
sion 7.3. dcecp attempts to provide a common, consistent command-hne interface to all
DCE components for user interaction and writing scripts and programs.

2. Directory Service
The Directory Service provides a single naming model throughout the distributed envi­
ronment. It aUows the users to identify by name resources such as servers, files, disks,
or print queues, and gain access to them without needing to know where they are located
in a network. Sometimes caUed the Naming Service, the Directory Service offers a gener­
al way to locate distributed resources.
DCE client appUcations will usuaUy know:

• the server's CDS name: indicates the DCE ceU and server desired;
• the RPC interface specification: indicates the functions offered by a server; and
• possibly, an RPC object UUID, associated by the server code with some specific re­

source.
Programmers determine how chents acquire this information.
To communicate with servers, DCE chents need to find three pieces of data:

• the machine on which the server runs (i.e., IP address);
• the protocol sequence to use when communicating with the server (e.g., TCP/IP or

UDP/IP); and
• the protocol-specific endpoint (i.e., a TCP/IP port number).

Chents store this information in data structures caUed binding handles.
Directory services faU into three categories:

• Global name services which:
• indicate the home ceU of a server, and
• allow clients to narrow their searches to specific DCE ceUs;

• CeU-wide services which:

B-3

Distributed Computing Environment

• indicate the host machine of a server, and
• aUow ctients to narrow searches to specific machines;

• Machine-specific services which:
• indicate the precise location of a server, and
• aUow ctients to pinpoint a server.

2.1 Cell Directory Service
The CeU Directory Service (CDS) is DCE's ceU-wide directory service. CDS maps serv­
er's DCE names to locations. It does not know about foreign ceUs, does not map host
names to addresses, and is not a replacement for / e t c / h o s t s or DNS. It is, also,
known as the name service.
CDS servers maintain the CDS database. CDS databases are caUed clearinghouses.
Each DCE ceU has a namespace which represents its resources that is structured as a
tree. Servers have names like: "/.../Oceania.com/medDB". The fuU name indicates the
DCE ceU. Client programs pass this name to CDS in return for the server's location.

2.2 Global Directory Agent
CDS understands names in the local ceU. Other software is used for interceU communica­
tions. DCE provides the Global Directory Agent (GDA) as an intermediary between a
ceU's CDS and the remote name services.
If a chent wants to contact a remote server:

• The chent's GDA uses DNS to look up the other ceU,
• DNS tells GDA where the other ceU's CDS server is,
• GDA teUs the chent where to find the other ceU's server, and
• The chent asks the other cell's CDS for the servers location.

2.3 Endpoints
After finding the server's machine through CDS, the chent must find the endpoint(s) at
which the server is listening. "Endpoint" is a generic term for a specific network address
(for example: a port in TCP/IP).
The RPC endpoint mapper:

• Tracks which servers are currently using which endpoints (ports),
• Runs on every machine,
• Maintains a local table that is:

• the endpoint database (or map), and
• a per-machine, not per-ceU, table:

• is more dynamic than IP addresses, and
• is of no use elsewhere.

2.4 Putting It All Together
When starting, a DCE server:

B-4

Distributed Computing Environment

• DCE informs the endpoint mapper of the ports it's using,
• informs CDS of:

• the IP address of the host,
• any supported protocol sequences, and
• services provided:

• interfaces, and
• RPC objects.

A DCE chent contacting a server imports binding information by:
• finding a foreign ceU with global naming and GDA (if necessary),
• locating the machine through CDS,

• the machine IP address,
• the protocol sequence;

• determining the server's endpoint, and
• communicating with the server.

2.5 Access Control
CDS protects its resources with Access Control Lists (ACLs). ACLs provide privileges
to user requests based on DCE Security Identities (principals). The CDS server stores
and manipulates ACLs. Administrators manage ACLs via the DCE Control Program
ACL manager.
CDS places ACLs on everything:

• Names in the namespace are for:
• Directories,
• Objects,
• Clearinghouses,
• etc.

• Processes
• DCE chent process

• CDS advertiser - a per-host process that creates and loads the host's
CDS cache, locates CDS servers at DCE start-up, and creates cdscle-
rk processes for users.

• CDS clerks - a process for each CDS user on a machine that makes
requests to the CDS server for importing chent binding information
and exporting server binding information.

• CDS server process: cdsd is a process that runs on a DCE server that main­
tains the CDS database, writes from servers exporting information, reads
from chents importing information, etc.

2.6 CDS Replication
Replication makes CDS information more available by making copies of the information.

B-5

Distributed Computing Environment

• A Rephca is a physical copy of a CDS directory where a writable copy is caUed
the master and a read-only copy is caUed read-only.

• A Clearinghouse is a coUection of directories where a ceU can have multiple clear­
inghouses, each holding some subset of directories in the namespace.

• A replication unit is a CDS directory.
Each CDS directory can be stored in multiple clearinghouses. In the most common form
of repUcation, one clearinghouse holds the master rephca and other clearinghouses hold
read-only rephcas. CDS chents automaticaUy talk to the proper kind of rephca: master
for updates read-only or master for lookups.
Skulking is when CDS automaticaUy propagates updates from the master to the read­
only rephcas.

2.6.1 Multiple Clearinghouses
RepUcation results in multiple clearinghouses. Each is maintained by a c d s d process.
Each has files stored on local disks. Each has an entry in CDS.
Each clearinghouse may hold a different subset of CDS directories. Depending on the
repUcation scheme, a clearinghouse may hold master copies of some directories and read­
only copies of others.

2.6.2 Multiple cdsd Processes
Multiple clearinghouses mean multiple CDS servers, each of which exports binding infor­
mation to CDS.

3. Security Service
Security servers offer three component services:

• Registry Service - manages information about DCE users,
• Authentication Service - verifies the identities of users, and
• PrivUege Service - helps determine which users are aUowed to do what.

Some Security-related definitions:
• Principal: any user of DCE services (i.e., people, computers, processes, cells).
• Account: information used when a principal logs in is:

• sirnilar to UNIX /etc/passwd file, and
• includes a password, home directory, etc.

• Group: a coUection of principals used for access control, and
• Organization: a coUection of principals assigned a set of password rules.

3.1 Registry Service
Each ceU has its own Security Registry that holds information about DCE principals and
accounts, security groups, and other information. It is separate from the operating sys­
tem's security files (hke UNIX's / e t c / p a s s w d and / e t c / g r o u p) .

B-6

Distributed Computing Environment

3.1.1 Security Assumptions
DCE Security works under these assumptions:

• Machines on users' desks are untrustworthy.
• Users are knowledgeable and malicious.
• Hardware and software can be hacked.

• CeU Directory Service is untrustworthy.
• Only Security server machines are trustworthy.

• Hardware and software are safe.
• Bad guys can't get administrative access.

• AU DCE users keep their passwords secret.

3.1.2 Principals
A principal identifies a user of DCE services as any of the following:

• people,
• machines,
• processes, and
• DCE ceUs.

DCE services include:
• CeU Directory Service (CDS),
• Distributed Time Service (DTS),
• Distributed FUe System (DFS),
• Security Service, and
• access to other applications using such services.

3.1.3 Accounts
The Security Registry also holds an account for every DCE user. A principal without an
account cannot log into DCE.
Each account is a "triple" of:

• Principal,
• Principal's primary DCE Security group, and
• Principal's primary DCE Security organization.

Before an account can be created, each element of the triple must exist and the principal
must belong to both, a group and an organization.

3.1.4 Security Groups
Security groups are used only to simpUfy access control. A set of principals with similar
rights belongs to the same primary group. Principals may belong to many groups.

B-7

Distributed Computing Environment

3.1.5 Organizations
An organization holds a coUection of principals sirmlar in administration to a Security
group. It is used for password management, not access control as groups are. Each princi­
pal belongs to a "primary" organization.

3.1.6 Policies
PoUcies are sets of rules governing security. Different policies may apply to the entire
ceU, each organization, and individual accounts.

3.1.7 Aliases
A user can have multiple, alternate names, "ahases". One principal is caUed the primary.
One primary may have multiple ahases. Atiases aUow a single user to assume multiple
DCE identities that share the same UUID. Each atias has a separate account with a dif­
ferent password, different group, and different organization. DCE's Distributed File Sys­
tem (DFS) aUows ahases to access different sets of files.

3.2 Authentication Service
The Authentication Service aUows users to estabUsh DCE identities. Authentication
proves you are who you say you are.
The Authentication Service:

• receives authentication requests from principals,
• issues DCE identities (credentials) to users,
• provides mutual authentication between a chent and a server,
• is based on Kerberos version 5 from M.I.T., and
• provides account passwords that are used for encryption and decryption and are not

sent out over the network.

3.2.1 Session Keys
A session key is a temporary secret key that is generated by the Authentication Service.
This key is made known only to the two parties requiring authentication. For instance,
when the chent sends a message to the server, the chent would encrypt the message us­
ing the assigned session key. The server would then decrypt the message using its copy
of the session key. If the message decrypts properly, the sender must be the chent since
the chent is the only other principal that knows the key.

3.2.2 Tickets
Tickets provide the abilities to:

• protect the session keys from being tampered with;
• verify that the session key was generated by the Authentication Service; and
• prohibit anyone else from getting the session key even if they were to intercept the

message that carried the session key.

B-8

Distributed Computing Environment

3.2.3 TGT and PTGT
A successful DCE login leaves the user holding tickets or credentials. A ticket-granting
ticket (TGT) granted by the Authentication Service is a user's basic proof of identity. A
privUege ticket-granting ticket (PTGT) created by the PrivUege Service is a list of securi­
ty groups to which a user belongs.

3.2.4 Server Tickets
Chents need separate server tickets to talk to each server. The Security Service automati­
caUy constructs server tickets on request from authenticated users. Each server ticket is
encrypted with the target server's key, chents don't know the key nor can they forge
server tickets. A chent sends the ticket to a server with requests. The server decrypts the
ticket and responds.

3.2.5 Mutual Authentication
The exchange of tickets between clients and server securely gets a key to the client and
server and provides mutual authentication between processes. The server believes the us­
er's identity because the chent holds a server ticket. The client beheves the server's iden­
tity because the server can decrypt the ticket.

3.3 Privilege Service and ACLs
The PrivUege Service creates privUege ticket-granting tickets (PTGTs).

3.3.1 Access Control Lists (ACLs)
Access-control lists permit apphcations to protect resources. They are similar to the
UNTX filesystem's "mode bits", which divide the universe up into:

• Three categories of "who" are:
• the owner of the file,
• the group (i.e., other members of the owner's group), and
• the rest of the world.

• Three categories of "what" are:
• read,
• write, and
• execute.

When making a request to a server, a client presents its "certificate of identity", granted
by the Security Service. The server:

• extracts the chent's identity information;
• evaluates the combination of the:

• chent's identity,
• resource the client wishes to access, and
• the operation the cUent wishes to perform; and

• grants or refuses access if the client:

B-9

Distributed Computing Environment

• has the necessary rights on the resource, the server authorizes the client and
permits access, or

• doesn't have the necessary rights, the server refuses access.

3.3.2 ACL Managers
Servers implement access control in code caUed the ACL managers.
DCE does not use a common ACL manager. Each server that uses ACLs must manipu­
late its own ACLs. DCE apphcations don't even have to use ACLs; they can do authori­
zation in any way they choose. Each apphcation is free to manipulate ACLs as it sees fit.

3.3.3 ACL Inheritance
ACLs on the Registry aUow access restrictions to propagate down the tree. Each directo­
ry has three ACLs:

• the actual ACL,
• the initial-container ACL, and
• the initial-object ACL.

A new directory in the branch inherits its parent's initial-container ACL. A new Registry
object in the branch inherits its parent's initial-object ACL.

3.3.4 Keytab Files
Processes need a way to remember their DCE passwords. A keytab file is a local disk
file that holds some principal's DCE key. A process uses a keytab file when acting as a
chent to automaticaUy authenticate as some principal. A process uses a keytab file when
acting as a server to decrypt incoming server tickets.
Access to keytab files is physically managed by the local operating system. Only author­
ized local users are granted read and write permissions. Keytab files are not stored in a
distributed filesystem.

4. Time Service
DCE's Distributed Time Service (DTS) synchronizes time across all DCE machines and
provides an API for applications needing accurate time information. Kerberos authentica­
tion requires that there is less than a five minute time difference between chent and serv­
er.
The goal of DTS is to keep aU clocks within a specified tolerance by reference to an out­
side, rehable time source and negotiating between machines to converge on the external
time.
The two main problems DTS corrects are:

• Drift - the tendency of a clock to graduaUy deviate from the actual time.
• Skew - the difference between two clocks' values of the current time.

The Time Service includes DTS servers that maintain an accurate notion of the current
time, adjust the clocks on their host machines, and provide time to DTS chent processes.
And, DTS clerks (clients) that receive time values from DTS servers and adjust their
clocks based on input from DTS servers.

B-10

Distributed Computing Environment

4.1 DTS Servers
Each server maintains a local representation of the time by:

• trying to contact a rehable outside source for accuracy;
• if not avaUable:

• ask aU other servers for the time,
h • include its own time, and

• compute a new time based on the inputs; and
• adjust its system clock accordingly.

4.2 DTS Clerks
Clerks request the time from a number of servers. The minimum number of servers is
configurable. From these inputs, each clerk:

• computes the time and
• adjusts its system clock accordingly.

Clerks do not use their system clocks as an input. They attempt to use "close" servers
(those on the local LAN).

4.3 Access Control
DTS maintains an ACL on each node's DTS process to govern the rights to manipulate
DTS on the machine. Members of the DTS administration group automaticaUy get aU
rights.

5. Host Services
Each host maintains local information about its DCE ceU. This host-data information in­
cludes:

• the name of the DCE cell,
• any aliases for the DCE cell,
• the name of the host machine, and
• other information.

Administrators can define new host-data items for their own needs. Access to host data
is governed by ACLs.

6. Audit Service
The Audit Service lets DCE record events by providing ways to:

• capture potentiaUy critical events; and
• select the important events, based on

• individuals causing events,
» • events themselves, and

• combinations of the two.

B- l l

Distributed Computing Environment

B-12

Open Horizon's Connection

Appendix C - Open Horizon's Connection
Open Horizon, Inc. is a leading provider of connectivity software that assists organiza­
tions in moving from departmental to enterprise-wide chent/server solutions. The compa­
ny buUds and markets Connection, the first product to provide new or existing apphca­
tions with plug-and-play access into enterprise services, such as heterogeneous databas­
es, user authentication, data encryption, directory services and transaction processing
monitors, for both two-tier and three-tier ctient/server architectures.
Open Horizon's Connection is a plug-and-play replacement for proprietary middleware
products avaUable from the relational database management system vendors. It provides
a connectivity infrastructure that ties together disparate hardware, operating systems and
networks into a single, integrated environment - a single computer. It provides transpar­
ent access to enterprise services, including database, security, directory, appUcation and
management services. Connection also aUows an organization to simply plug in new or
existing appUcations.

1. Application Broker
The Connection Apphcation Broker (the "Apphcation Broker") has been designed to
meet the foUowing organizational requirements:

• To enable any client appUcation with the ability to transparently access virtuaUy
any remote business logic that has been implemented with a 3GL (such as C, C++,
or COBOL), a 4GL (such as Dynasty), transaction processing monitors (such as
Encina, CICS, Tuxedo, or Top End), legacy appUcations, or CORBA-compliant dis­
tributed business objects.

• To allow an organization to continue to leverage their investments in two-tier apph­
cations by providing a simple migration path to extend these apphcations to three-
tier architectures.

• To support decentralized development teams in which the "front-end" GUI develop­
ers can work independently from the "back-end" business rule developers. WhUe
this separation is important, it can only be effective if both groups are capable of
easUy integrating their work.

• To be capable of using buUt-in functionality from leading GUI vendors' tools -
such as PowerSoft PowerBuUder, Gupta SQLWindows, Borland Delphi Client/Serv­
er, and Microsoft's Visual Basic, Excel, and Word - to invoke remote business log­
ic transparently.

• To support a constantly changing business environment, in which new business
rules can be added and existing business rules changed dynamically at runtime,
without the requirement to redevelop, recompUe, relink and redeploy appUcations
across the enterprise each time a change is made.

The Apphcation Broker does not itself provide support for buUding the front-end GUI or
the back-end business rules. Rather, it provides an infrastructure that allows front-end
tools to access business rules that have been registered within it.

2. Architecture

c- i

Open Horizon's Connection

Connection's architecture comprises two primary components, Connection Chent and
Connection Server. Connection Chent resides on every chent workstation in the environ­
ment, as weU as every server platform that in turn must interoperate with other server
platforms. A Connection Server tibrary resides on every server platform that wUl partici­
pate in the environment.

3. DCE Compliant
Connection is fully DCE-compUant. Open Horizon is a member of the Open Software
Foundation and chairs the DCE Database Special Interest Group.

4. Remote Procedure Calls
Connection utiUzes remote procedure caUs (RPCs) to communicate between each in­
stance of Connection Chent and Connection Server. Connection leverages the DCE
RPC, but does not require the implementation of DCE Runtime or any other DCE serv­
ice. AU required base software comes bundled with the product.

5. ODBC Compliant
Connection Client with the ODBC Interface is itself an ODBC driver. When a chent ap­
pUcation issues an ODBC caU, it passes the caU directly to the Connection ODBC driv­
er. Rather than convert the ODBC caU into the target database API on the chent, Connec­
tion takes the caU as is and transports it across the network to the Connection Server
that resides next to the target database. The Connection Server hands the ODBC caU off
to a server-resident ODBC driver, which converts the ODBC caU into the target database
API, and communicates directly with the database. Result sets are then sent back across
the network to the chent appUcation.

6. Database Vendor API Support
In addition to ODBC support, Connection OCI Interface supports the Oracle Call Inter­
face for accessing Oracle databases and Connection CT-Lib Interface supports Sybase's
CUent Library for accessing Sybase databases.

7. Three-Tiered Support
Connection supports a three-tier apphcation architecture with chent appUcation access to
business logic that is packaged for deployment to the second-tier apphcation server. Con­
nection transports chent requests to the server in RPC format. On the apphcation server,
Connection formats the RPC into a C language function caU. This C function caU can be
used to execute business rules that have been deployed in any of several formats: rela­
tional database stored procedures, C functions, etc.

References

References
[I] [Acly, 1996] Acly, Ed, Connection from Open Horizon - Extending Data Access APIs to

Support Enterprise Middleware Requirements, International Data Corporation, January
1996.

[2] [Adams, 1996] C. Adams, Independent Data Unit Protection Generic Security Service
f Application Program Interface, Internet Draft, BeU-Northern Research, February 1996.

[3] [Chapman, 1995] D. Brent Chapman and Elizabeth D. Zwicky, Building Internet Fire­
walls, O'ReiUy and Associates, 1995.

[4] [CIAC A, 1996] U.S. Department of Energy, Computer Incident Advisory CapabiUty
World Wide Web page, http://ciac.Unl.gov/ciac/SecurityTools.html.

[5] [CIAC B, 1996] U.S. Department of Energy, Computer Incident Advisory CapabiUty
World Wide Web page, http://ciac.Unl.gov/.

[6] [Cheswick, 1994] Wiltiam R. Cheswick and Steven M. BeUovin, Firewalls and Internet
Security, Addison-Wesley, 1994.

[7] [Colton, 1994] Colton, Malcolm, SYBASE Secure SQL Server For Practical Multi-Level
Database Applications, Sybase, Inc., Technical Paper Series. 1994.

[8] [Colton, 1993] Colton, Malcolm, SYBASE System 10, The Foundation for Enterprise Cli­
ent/Server Computing, Sybase, Inc., Technical Paper Series. 1993.

[9] [Cygnus, 1996] Cygnus Support World Wide Web page, http://www.cygnus.com/data-
dir.html.

[10] [DOS, 1989] Department of State, International Traffic in Arms Regulations (ITAR), 22
CFR 120-130, Office of Munitions Control, November 1989.

[II] [DOS, 1992] Department of State, Defense Trade Regulations, 22 CFR 120-130, Of­
fice of Defense Trade Controls, May 1992.

[12] [Entrust] Entrust Home Page, http://www.nortel.com/entrustr'.

[13] [Garbus, 1995] Garbus, Jeff, Solomon, David, and Tretter, Brian, Sybase DBA Survival
Guide, SAMS Publishing. 1995.

[14] [Garfinkel, 1996] Simson Garfinkel and Gene Spafford, Practical UNIX & Security,
O'ReiUy and Associates, 1996.

[15] [GreatCircle] World Wide Web page, http://www.greatehcle.corn/firewalls/vendors.html

[16] [Hu, 1995] Hu, Wei, DCE Security Programming, O'ReiUy & Associates, Inc., 1995.

[17] [ITU-T, 1993] ITU-T, Recommendation X.509, The Directory — Authentication Frame-
> work, International Telecommunications Union, Telecommunications Standardization

Sector, Geneva, 1993.

References -1

http://ciac.Unl.gov/ciac/SecurityTools.html
http://ciac.Unl.gov/
http://www.cygnus.com/datadir.html
http://www.cygnus.com/datadir.html
http://www.nortel.com/entrustr'
http://www.greatehcle.corn/firewalls/vendors.html

[18] [Jaspan, 1995] B. Jaspan, Kerberos Users Frequently Asked Questions, Open Vision
Technologies (http://www.ov.com/misc/krb-faq.html), September 1995.

[19] [McCurley, 1993] Kevin McCurley, FY93 Technology Transfer Initiative Proposal: In­
formation Integrity and Privacy for Computerized Medical Patient Records, Sandia Na­
tional Laboratories, 1993.

[20] [MerckUng, 1994] R. MerckUng and A. Anderson, OSF RFCs on Smart cards and
DCE, Open Software Foundation DCE SIG, Request for Comments: 57.0, March 1994.

[21] [MicroSoft A, 1996] Microsoft BackOffice World Wide Web page, http://www.mi-
crosoft.com/backoffice/reading/bstl 1120.htm.

[22] [MicroSoft B, 1996] Microsoft BackOffice World Wide Web page, http://www.mi-
crosoft.com/backoffice/reading/bstlOOOO.htm.

[23] [Navy] Navy ftp site, ftp://ftp.nrl.navy.mU/pub/security/nrl-opie/.

[24] [Neuman, 1993] C. Neuman, The Kerberos Network Authentication Service (V5), Net­
work Working Group, Request for Comments: 1510, September 1993.

[25] [Neuman, 1994] C. Neuman, Kerberos: An Authentication Service for Computer Net­
works, USC/ISI Technical Report number IS1/RS-94-399, Institute of Electrical and
Electronics Engineers, September 1994.

[26] [NISTa, 1993] National Institute of Standards and Technology, NIST FIPS PUB 46-2,
Data Encryption Standard, U.S. Department of Commerce, December 1993.

[27] [NISTb, 1993] National Institute of Standards and Technology, NIST FIPS PUB 180,
Secure Hash Standard, U.S. Department of Commerce, May 1993.

[28] [NIST, 1994] National Institute of Standards and Technology, NIST FIPS PUB 186,
Digital Signature Standard, U.S. Department of Commerce, May 1994.

[29] [Oceania, 1996] Oceania Inc., Security Functional Requirements V.2.2, January 30, 1996.

[30] [OpenHorizon] Open Horizon, Inc. World Wide Web page, http://www.openhori-
zon.com.

[31] [OpenHorizon A, 1995] Open Horizon, Inc., Client/Server Connectivity - Beyond the De­
partment to the Enterprise, White Paper, December, 1995.

[32] [OpenHorizon B, 1995] Open Horizon, Inc., 3-Tier Client/Server Applications, White Pa­
per, December, 1995.

[33] [Orfati, Harkey, Edwards, 1994] Orfati, Harkey, and Edwards, Essential Client/Server
Survival Guide, International Thomson Pubtishing, 1994.

[34] [OSF, 1992] Distributed Computing Environment, An Overview, Open Software Founda­
tion, January, 1992.

[35] [OSF, 1996] DCE Frequently Asked Questions, February, Open Software Foundation,
1996.

References - 2

http://www.ov.com/misc/krb-faq.html
http://www.microsoft.com/backoffice/reading/bstl
http://www.microsoft.com/backoffice/reading/bstl
http://www.microsoft.com/backoffice/reading/bstlOOOO.htm
http://www.microsoft.com/backoffice/reading/bstlOOOO.htm
ftp://ftp.nrl.navy.mU/pub/security/nrl-opie/
http://www.openhorizon.com
http://www.openhorizon.com

References

[36] [OSF/DCE, 1996] Open Software Foundation, Distributed Computing Environment
World Wide Web page, http://www.osf.org/dce/.

[37] [Purba, 1994] Purba, Sanjiv, Developing Client/Server Systems Using Sybase SQL Serv­
er System 10, John WUey & Sons, Inc. 1994.

[38] [Purdue] Purdue Education ftp site, ftp://coast.cs.purdue.edu/pub/tools/uriix/tcp_wrappers.

[39] [Reed, 1995] Reed, Paul and Jackson, Steve, Separation Anxiety, Database Program­
ming & Design, October, 1995.

[40] [Rivest, 1978] R.L. Rivest, A. Shamir, and L.M. Adleman, A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems, Communications of the ACM, v. 21,
n. 2, February 1978, pp. 120-126.

[41] [Schneier, 1996] B. Schneier, Apphed Cryptography, John WUey and Sons, New York,
NY, 1996.

[42] [SEI, 1996] Software Engineering Institute World Wide Web page, http://
www.sei.cmu.edu/SEiyprograms/cert/.

[43] [SNL, 1993] CRADA No. SC93/01183, Appendix A, Sandia National Laboratories, July
26, 1993.

[44] [Sybase A, 1994] SyBooks, SQL Server and Open Client/Open Server Release 10.0 on­
line documentation. Sybase, Inc., 1994.

[45] [Sybase B, 1994] System 10 Fast Track to SQL Server. Sybase, Inc., 1994.

[46] [Sybase C, 1994] SYBASE SQL Server Technical Overview. Sybase, Inc., 1994.

[47] [Sybase D, 1994] Tools and Connectivity Troubleshooting Guide. Sybase, Inc., 1994.

[48] [Sybase E, 1994] Sybase SQL Server System Administration Guide, Sybase, Inc., 1994.

[49] [Sybase F, 1994] Sybase SQL Server Security Administration Guide, Sybase, Inc., 1994.

[50] [Sybase G, 1994] SQL Server vlO.O Reference Manual Volume 1, Sybase, Inc., 1994.

[51] [Sybase H, 1994] Secure SQL Server Security Features User's Guide, Sybase, Inc., 1994.

[52] [Sybase I, 1994] TransArc Corp., DCE Secure Core System Administration, Sybase,
Inc., 1996.

References - 3

http://www.osf.org/dce/
ftp://coast.cs.purdue.edu/pub/tools/uriix/tcp_wrappers
http://
http://www.sei.cmu.edu/SEiyprograms/cert/

References

References - 4

Glossary

Glossary
3GL

4GL

ACL

atias

API

ASCH

ATM(l)

ATM (2)

BSD

CDS

cell

CERT

CIAC

Clearinghouse

Third Generation Language

Fourth Generation Language

Access Control List

An assumed or additional name

Application Program Interface

American Standard Code for Information Interchange

Asynchronous Transfer Mode

Automated TeUer Machine

Berkeley Software Distribution

CeU Directory Service

In DCE, a self-sufficient environment for distributed computing.

Computer Emergency Response Team

Computer Incident Advisory CapabiUty

A collection of directories in DCE. A DCE ceU can have multiple
clearinghouses, each holding some subset of directories in the

COAST Computer Operations, Audit, and Security Technology Laboratory at

CORBA Common Object Request Broker Architecture

COTS Commercial-Off-The-Shelf

CRADA Cooperative Research and Development Agreement

CT-Lib Sybase's chent libraries.

data security The means by which the SQL server restricts access to the server,
restricts access to data, restricts operations that can be performed on
data, and maintain an audit trail that keeps records of who entered the
system and/or used any system resources.database owner

Glossary -1

Glossary

DBMS

dbo

DCE

DES

DF

DFS

DNS

DOS (1)

DOS (2)

DSA

DTS

EEPROM

EF

EMR

FTP

GDA

GDS

GUI

VO

IDUP-GSS-API

IK

IP

ISO

Database Management System

Sybase database owner

Distributed Computing Environment

Data Encryption Standard

Dedicated FUe

Distributed FUe Service

Domain Name Service

Department of State

Disk Operating System

Digital Signature Algorithm

Distributed Time Service

ElectricaUy Erasable Programmable Read-Only Memory

Elementary FUe

Electronic Medical Record

FUe Transfer Protocol

Global Directory Agent

Global Directory Service

Graphical User Interface

Input/Output

Independent Data Unit Protection Generic Security Service Application
Program Interface

Internal Key

Internet Protocol

International Standards Organization

Glossary - 2

Glossary

ISQL

ITU-T

LAN

login

M.I.T.

master database

MLS

NFS

NIST

NTP

OCI

ODBC

OS

OSF

PIN

POP

PPP

PTGT

RAM

RDBMS

Rephca

In Sybase, Interactive SQL user interface for accessing and updating
system and user databases, tables, indexes, users, groups, etc.

International Telecommunications Union, Telecommunication Standards

Local Area Network

A login is synonymous to an account. It is comprised of a login name
and a password.

Massachusetts Institute of Technology

The Sybase system database that records aU of the server-specific
configuration information, including authorized users, devices,
databases, system configuration settings, and remote servers.

Multi-Level Security

Network FUe Service

National Institute of Standards and Technology

Network Time Protocol

Oracle CaU Interface

Open Database Connect

Operating System

Open Software Foundation

Personal Identification Number

Post Office Protocol

Point-to-Point Protocol

Privilege Ticket-Granting Ticket

Random Access Memory

Relational Database Management System

A physical copy of a DCE CDS directory. A writeable copy is called
the master replica and a read-only copy is caUed a read-only replica.

Glossary - 3

Glossary

Replication Unit

ROM

RPC

RSA

SGI

SLIP

SMTP

SQL

surety

Tel

TCP/IP

TGT

TIS

UDP/IP

UUID

A DCE CDS directory

Read-Only Memory

Remote Procedure CaU

Rivest, Shamir and Adleman Algorithm

Siticon Graphics, Inc.

Serial Line Internet Protocol

Simple Mail Transfer Protocol

Structured Query Language

A balance between confidentiality, Integrity and avaUabUity; a balance
between unauthorized used of information and assurance of authorized
use

Task Control Language

Transmission Control Protocol/Internet Protocol

Ticket-Granting Ticket

Trusted Information Systems

User Datagram Protocol/Internet Protocol

Universal Unique Identifier

Glossary - 4

Numerics
3GL Glossary -1
4GL Glossary -1
A
Access Control 2 - 3, B - 5, B -11
Access Control List 6 - 2
Access Control Lists B - 5, B - 9
Account B - 6
Accounts B - 7
ACL 6 - 2, Glossary -1
ACL Inheritance B -10
ACL Managers B -10
ACLs B - 5, B - 9
alias Glossary -1
Aliases B - 8
API Glossary - 1
Application Broker C -1
ASCII Glossary -1
ATM Glossary -1
Audit Service B -11
Audit Services B -1
Audit System 4 -19
Audit Trails 2 - 3,4 -19
Auditing Databases 4 - 20
Auditing Stored Procedures 4 - 20
Auditing Tables and Views 4 - 20
Auditing Users 4 - 20
Authentication Service B - 6, B - 8
Authorization 4 -1
B
Basic Stored Procedures 4 - 6
BSD Glossary - 1
C
CDS B - 1, B - 2, B - 5, Glossary - 1
CDS advertiser B - 5
CDS clerks B - 5
CDS Replication B - 5
CDS server B - 5
cdsd process B - 6
cell Glossary -1
Cell Directory Service B - 1 , B - 2, B - 4
Cell-wide services B - 3
CERT Glossary -1
CIAC Glossary -1
CICS Glossary -1
Clearinghouse B - 6, Glossary -1
COAST Glossary - 1

Index

Commercial Off-The-Shelf 6 - 1
Common Application Environment B - 1
Connection 6 - 5, C -1
CORBA Glossary - 1
COTS 6 - 1 , Glossary -1
CRADA Glossary - 1
CT-Lib C - 2, Glossary -1
D
Data Encryption Standard 2 - 2
data security Glossary - 1
DBMS Glossary - 2
dbo Glossary - 2
DCE 3 - 4,5 - 4,6 - 2, 6 - 6, B - 1, C - 2, Glossary - 2
DCE Cells B - 2
DCE Control Program B - 3
DCE Secure Core B - 2
DCE server B - 2
dcecp B- 3
DES 2 - 2,5 - 1,5 - 4, Glossary - 2
DF Glossary-2
DFS B - 1, Glossary - 2
Digital Signature Algorithm 2 - 3
Digital Signature Standard 5 - 4
Digital Signatures 2 - 3
Directory Service B - 3
Distributed Computing Environment B -1
Distributed File Service B -1
Distributed Time Service B - 1 , B - 2, B -10
DNS B - 4, Glossary - 2
DOS Glossary - 2
Drift B-10
DSA 2 - 3, 6 - 4, Glossary - 2
DSS 5 - 4
DTS B - 1 , B - 2, B -10, B -11, Glossary - 2
DTS Clerks B-11
DTS Servers B-11
E
EEPROM Glossary - 2
EF Glossary - 2
EMR Glossary - 2
Encryption 2 - 2
endpoint mapper B - 4
Endpoints B - 4
Entrust 6 - 3 , 6 - 4 , 6 - 6
exec 3 - 8
Extended Basic Stored Procedures 4-11
Extended Services B -1
F
finger 3 - 8

Index - 2

Index

firewall 3 - 2
FTP Glossary - 2
ftp3-8
G
GDA B - 1 , B - 4, B - 5, Glossary - 2
GDS B - 1, Glossary - 2
Global Directory Agent B - 1 , B - 4
Global Directory Service B -1
Global name services B - 3
Grants 4 - 5,4 - 6,4 - 9,4 -16
Group B - 6
group Glossary - 2
GUI Glossary-2
H
Host Services B -11
I
I/O Glossary - 2
IDUP-GSS-API 6 - 4, Glossary - 2
IK Glossary - 2
International Standards Organization 5 -1
IP Glossary - 2
ISO 5 - 1 , Glossary - 2
ISQL Glossary - 3
ISS 3 - 4
ITU-T Glossary - 3
K
Kerberos 3 - 4,3 - 5,5 - 4,6 - 2,6 - 6, B -10
Key Management 2 - 4
Keytab Files B -10
L
Labeling 4-18
LAN Glossary - 3
login 3 - 8, Glossary - 3
M
M.I.T. Glossary-3
master database Glossary - 3
MLS Glossary - 3
mountd 3 - 9
Mutual Authentication B - 9
N
named 3 - 7
netstat 3 - 9
Network Authentication 2 - 2,3 - 5
NFS 3 - 7, Glossary - 3
NIST Glossary - 3
NTP Glossary - 3

Index - 3

Index

o
Object Privileges 4 - 2
OCIC - 2, Glossary - 3
ODBC C - 2, Glossary - 3
Open Horizon 6 - 5, C -1
Open Software Foundation B - 1 , C - 2
Operator 4 -1
Organization B - 6
Organizations B-8
OS Glossary - 3
OSF B - 1 , Glossary - 3
P
Personal Identification Number 5 - 2
PIN 2 - 2,5 - 2, Glossary - 3
Policies B - 8
POP Glossary - 3
portmapper 3 - 8
PPP Glossary - 3
Principal B - 6
Principals B - 7
principals B-5
Privilege Service B - 6, B - 9
privilege ticket-granting ticket B - 9
PTGT B - 9 , Glossary-3
R
RAM Glossary - 3
RDBMS Glossary - 3
Registry Service B - 6
Remote Procedure Call B - 1 , B - 2
Remote Procedure Calls B - 2, C - 2
Replica B - 6, Glossary - 3
Replication Unit Glossary - 4
replication unit B - 6
rexd 3 - 9
Rivest, Shamir, Adleman 2 - 2
role Glossary - 4
ROM Glossary - 4
RPC B - 1 , B - 2, Glossary - 4
RPC Interfaces B - 3
rpcbind 3 - 8
RPCs C - 2
rquotad 3 - 9
RSA 2 - 2,2 - 3,5 - 1 , 5 - 4, 6 - 4, Glossary - 4
rusersd 3 - 9
S
S/Key 3 - 4
SATAN 3-4
Secure Core B -1

Index - 4

Index

Secure Relational Database Management Systems 4-18
Secure Timestamping 2 - 4
SecurlD 3 - 5
Security Groups B - 7
Security Service B - 1 , B - 2, B - 6
sendmail/smtp 3 - 7
Server Management Facilities B -1
Server Tickets B - 9
Session Key B - 8
SGI Glossary - 4
shell 3 - 8
Skew B -10
SLIP Glossary - 4
Smart Cards 2 - 3
SMTP Glossary - 4
sprayd 3 - 9
SQL Glossary - 4
SQL Server Glossary - 4
SRDBMS 4-18
statd 3 - 7
stored procedure Glossary - 4
surety 6 -1 , Glossary - 4
Sybase Passwords 4 - 2
syslog 3 - 8
systat 3 - 9
System Administrator 4 - 1
System Security Officer 4 -1
T
talk3-8
Task Control Language B - 3
Tel B - 3, Glossary - 4
TCP/IP B - 3, Glossary - 4
tcp_wrappers 3 - 4
telnet 3 - 8
tftp3-9
TGT B - 9, Glossary - 4
Threads Facility B - 1 , B - 2
Three-tiered Model A - 1
Three-Tiered Support C - 2
Ticket B - 8
ticket-granting ticket B - 9
time 3 - 9
Time Service B -10
TIS Glossary - 4
TIS firewall toolkit 3 - 5
Tripwire 3 - 5
Two-tiered Model A -1
U
UDP/IP B - 3, Glossary - 4

Index - 5

Index

User Authentication 2 - 2
uucp 3 - 9
UUID B - 2, Glossary - 4
V
Views 4 -15
W
walld 3 - 9
WAVE Glossary - 4
X
X.509 2 - 5,6 - 4
X/Open B -1

Index - 6

Distribution

Distribution

5 MS 0449 Joselyne GaUegos, 9415
2 MS 0449 Victoria Hamilton, 9415
2 MS 0451 Timothy Gaylor, 9417
2 MS 1109 Kevin McCurley, 9224
2 MS 0661 Timothy Meeks, 4821

MS 1109 Art Hale, 9224
MS 0449 Judy Moore, 9415
MS 0661 Michael Pendley, 4821
MS 0451 Michael Sjulin, 9417
MS 1380 David Larson, 4231

1 MS 9018
5 MS 0899
2 MS 0619

Central Technical FUes, 8523-2
Technical Library, 4414
Review and Approval Desk, 12630
For DOE/OSTI

Distribution - 1

