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ABSTRACT 

Borehole and d a c e  recordings of Nevada Test Site nuclear explosions provide the only 
data available for characterization of ground motions at the potential repository depth at 
Yucca Mountain. Triaxial accelerometer pairs were located from 1980 to 1990 at four 
boreholes in the Yucca Mountain area; three of these boreholes are aligned in a north- 
south profile traversing the potential repository (with downhole instrumentation at 350- 
375 m depth) while the fourth was located near the suggested site for the associated 
surface facilities (instrumentation at 82m depth). Thirty-seven nuclear tests recorded at 
these locations have yielded 86 surfacddownhole data pairs usefd for modeling near- 
surface seismic structure. 



We have used the propagator matrix method of calculating the fill plane wave 
response for body waves incident on a layered structure to develop synthetic one- 
dimensional transfer functions for each of the four borehole stations. The velocity models 
used for calculating the transfer finctions are based on available geologic, seismologic, 
and well-log information for Yucca Mountain, and were developed using forward 
modeling. The transfer hc t ion  is the ratio of the spectral response at the depth of the 
downhole instrument to that at the surface instrument. Convolution of the transfer 
function with the actual surface seismogram yields a synthetic downhole record that is 
compared to the data. The modeling process results in one-dimensional velocity models 
for the four borehole locations. We used the models for the three stations in the north- 
south profile to construct a two-dimensional velocity model for the uppermost 350m of 
Yucca Mountain. While none of the boreholes intersect the potential repository, the two- 
dimensional model provides a means to predict motions at the actual repository location 
and depth for a specified sudkce seismogram. 
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Introduction 

The Department of Energy is investigating Yucca Mountain, Nevada as a potential 
site for commercial radioactive waste disposal in a mined geologic repository. One critical 
aspect of site suitability is the tectonic stability of the repository site. The levels of risk ftom 
both actual fault displacements in the repository block and ground shaking from nearby 
earthquakes are beiig examined. In particular, it is necessary to determine the expected level 
of ground shaking at the repository depth for large seismic sources such as nearby large 
earthquakes or underground nuclear explosions (CINES). Earthquakes are expected to cause 
the largest ground motions at the site, however, only underground nuclear explosion data have 
been obtained at the repository depth level (about 350m below the ground level) to date. In 
this study we investigate ground motion fiom Nevada Test Site underground nuclear 
explosions recorded at Yucca Mountain to establish a compressional velocity model for the 
uppermost 350m of the mountain This model is usefid for prediction of repository-level 
ground motions for potential large nearby earthquakes. 

Ground motion data fiom nuclear explosions were recorded at several surfkce and 
borehole sites in the vi’cinity of Yucca Mountain between 1980 and 1990 (see Figures 1 and 2). 
Triaxial acceleration data ftom 37 Nevada Test Site events recorded in four boreholes at Yucca 
Mountain have been used, coupled with available detailed geologic information, to develop the 
model velocity structure. Using the well established propagator matrix method (e.g., Shearer 
and Orcutt, 1989, and a suite of surfiddownhole record pairs, we developed a one- 
dimensional velocity model for each borehole that is most consistent with the available 
geological infomation and observed seismograms. From these models, we derived synthetic 
one-dimensional transfer hctions between the surfixe and downhole recording depths. For a 
specified mfiice ground motion, these transfer functions accurately predict the level of motion 
expected downhole. 

Three of the four borehole stations (28,25,30; see Figure 2) form a north-south 
line through the Yucca Mountain block We use the three independently-derived one- 
dimensional velocity models for these three stations to construct a north-south two- 
dimensional model for the uppermost 350m of Yucca Mountain Because none of the existing 
borehole stations intersect the potential repository, the two-dimensional model is quite usefid 
for extrapolating the model velocities at the borehole locations to the repository location. 
Predictions of repository-level ground shaking ftom UNE-like events can then be made using 
existing au-hce recordings at a station that was sited directly over the proposed repository 
(station 21). The velocity model developed here can also help predict shaking at depth for a 
nearby earthquake, given a specified shaking level, waveform, or spectrum at the surfhce. 
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Figure 1: Map of the study area showing various geologic features along with the 
potential nuclear repository site at Yucca Mountain. Locations of mclear events 

(asterisks) and recording stations (triangles) are also shown. 
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Figure 2: lm enlarged view of the Yucca Mountain area, showing the topographic extent 
of the mountain and the location of recording stations used in the study. Stations 28,25, 
and 30 comprise the north-south cross-section used for the 2-D model developed in this 

instrumentation alone and is located directly over the repository site. 
report. Station 29 also has borehole instrumentation. Station. 21 has surface 
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Data Summary 

To determine a near-dace velocity structure for Yucca Mountain, we used 
surface and borehole pairs of triaxid accelerations recorded fiom 37 underground nuclear 
explosions occurring at the Pahute Mesa and Yucca Flat testing areas at the Nevada Test Site 
(FITS) between 1980 and 1990. Figure 1 shows an outline oftheNTS, some relevant geologic 
features, the location of underground nuclear testing areas, events used in the study and the 
locations of the recording stations. The nuclear shots recorded at these stations were 
conducted in two portions of the NTS, Pahute Mesa and Yucca Flat (Figure 1). Table 1 lists 
the location of the nuclear events, including latitude and longitude, elevation, depth of burial, 
and the area where the test was conducted. In the table, Pahute Mesa is subdivided into two 
areas which correspond to Areas 19 (PM1) and 20 (PM2) in Figure 1. These designations are 
consistent with those used in the crustal modeling study of Wdck and Phillips (1990). 

.. 

Figure 2 shows a close-up of the Yucca Mountain area: stations 28,25 and 30 are 
located at boreholes USW G-2, USW G-1, and USW G-3, respectively, and form a north- 
south cross-section through the Yucca Mountain ridge. Each of these stations had a surface 
accelerometer and one at approximately 350m depth. Station 29, located in Midway Valley 
east of the mountain itsex was sited near the proposed location for repository surface facilities, 
and had a surface accelerometer and downhole instrumentation at 82m depth. Station 21 
indicates the she of a dace-only station that is directly above the potential repository. Table 
2 contains the location of the five Yucca Mountain stations at which the nuclear events were 
recorded that have been used in this study. Four of these stations (25,28,29, and 30) had both 
surface and downhole instrumentation, while station 21 had only surface instrumentation. 

The data used in this analysis are 86 upholddownhole vertical component 
acceleration pairs and 86 upholddownhole radial component acceleration pairs fiom stations 
25,28,29, and 30, and 12 each uphole vertical and radial component data for station 21. The 
37 events yielded only 86 upholddownhole pairs due to recording site changes and 
instrumentation fdures during the ten year period over which the nuclear explosions were 
monitored at Yucca Mountain. The data were collected by Sandia National Laboratories as 
part of the Weapons Test Seismic Investigations project. Digital waveform data sampled at 
200 sampldsec were acquired and assembled into a data base designed for easy event 
retrieval. We picked arrival times for all of the available records. Table 3 displays the event 
name, station number, event-to-station distance, azimuth, travel time at.the surface, and 
travel-time at depth, respectively for each record pair. The event-to-station distances range 
&om 37-57 km for Pahute Mesa events and fiom 41-5 1 km for the Yucca Flat tests. Source to 
receiver azimuths range fiom 231' to 241' for the Yucca Flat path and 177' to 197' for the 
Pahute Mesa path. Travel times recorded for Pahute Mesa 'shots range between 7.43-10.83 
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Tiihle 1 : Event Location Data 

UNE Name Latitude Longitude Elevation (m) Test Depth (m) Area 

Barnwell 37.231100 -116.409400 2003 601 PM1 

Am ar i I lo 

Contact 

Dalhart 

Kearsarg 

Alamo 

Conistock 

Kernvi 1 le 

Lockney 

Tahoka 

Hardin 

Delamar 

Bodie 

Belmont 

Labquark 

Jefferson 

Nebbiolo 

Cabra 

37.275500 

37.282900 

37.089000 

37.297200 

37.252400 

37.260100 

37.314400 

37.228000 

37.061000 

37.233000 

37.247900 

37.263000 

3 7.22020 0 

37.300100 

37.264100 

37.236220 

37.300680 

-116.353600 

-116.412300 

-116.049300 

-116.306500 

-11 6.376700 

-11 6.4411 00 

-116.471500 

-116.374700 

-116.045300 

-11 6.423 100 

-116.509100 

-116.411700 

-116.461600 

-116.307400 

-116.440200 

-116.370170 

-116.460030 

2200 

2007 

1259 

2129 

2012 

19S7 

1926 

2072 

1250 

1951 

1902 

2018 

1900 

2100 

1981 

2065 

1934 

640 

544 

640 

616 

622 

620 

545 

615 

640 

625 

544 

635 

605 

616 

609 

640 

543 

PM2 

PM1 

YF 

PM2 

PM2 

PM 1 

PM1 

PM2 

YF 

PM1 

PM1 

PM1 

PM1 

PM2 b 

PMl 

PM2 

PM1 
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T;ihle I : Event Location Data (conlinued) 

UNE Name Latitude Longitude Elevation (m) Test Depth (m) Area 

Darwin 37.264600 -116.499300 1875 549 PM1 

Goldstone 

Serena 

Salut 

Towanda 

Hermosa 

Cottage 

Tierra 

E, CTmont 

Kappeli 

Caprock 

Mundo 

Tort iigas 

Gorbea 

Romano 

Techado 

Chancellor 

Bxebal I 

Atrisco 

37.237800 

3 7.297200 

37.247900 

37.243700 

37.094800 

37.179600 

37.281400 

37.270100 

37.267800 

37.065800 

37.106200 

37.065800 

37.112700 

37.140400 

37.105600 

37.272800 

37.087060 

37.084210 

-116.472800 1914 

-116.438100 1969 

-116.489100 1900 

-116.36500 2112 

-116.032300 1278 

-116.020300 1389 

-116.305400 2145 

-116.497600 1867 

-116.410600 2010 

-116.047300 1243 

-116.024400 1319 

-116.046300 1243 

-116.121700 1371 

-116.072100 1314 

-116.049400 1268 

-116.355000 2040 

-116.041710 1259 

-116.006540 1295 

6 

549 

597 

608 

665 

640 

515 

640 

546 

640 

600 

320 

640 

388 

515 

533 

625 

564 

640 

PM1 

PM1 

PM1 

PM2 

YF 

YF 

PM2 

PMl 

PM1 

YF 

YF 

YF 

YF 

YF 

YF 

PM2 

YF 

YF 



Table 2: Yucca Mountain Weapons Test Seismic Investigations Stations used in this 
Study 

Station Latitude Longitude Elevation 
degrees degrees meters 

21 

25 

28 

29 

30 

3 6.8488 

36.8667 

36.8896 

3 6.8435 

36.8178 

-1 16.4654 

-116.4581 

-1 16.4598 

-116.4204 

-1 16.4668 

7 

1482 

1325 

1554 

1109 

1480 



Table 3 : Surface/Bottom sound motion travel-Lime picks for various nuclex explosions 
(continues) 

Event Name Station Distance Azimuth Travel Time Travel Time 
(Degrees) (Top) (Bot tom) 

(Seconds) (Seconds) 
186.76 

(km) 

WELL 
25 

26 

AMARILLO 28 

25 

BARN- 28 

29 

30 

26 

29 

30 

CONTACT 28 

25 

26 

29 

30 

38.164 

40.674 

42.078 

43.026 

46.150 

43.856 

46.311 

47.389 

48.312 

51.785 

43.853 

46.369 

47.818 

48.770 

51.844 

186.13 

181.60 

181.31 

186.37 

192.46 

191.61 

187.46 

187.08 

191.25 

185.54 

185.05 

181.10 

180.85 

185.38 

8 

7.86 

8.27 

8.30 * 

8.42 

9.15 

8.70 

9.06 

9.02 

9.15 

9.93 

8.69 

9.10 

9.13 

9.25 

9.95 

7.69 

8.38 

8.50 

9.21 

8.53 

9.21 



Tahle 3 : Surface/Bottom ground motion travel-lime picks for various nucle;~ explosions 
(conli nued) 

Event Name Station Distance Azimuth Travel Time Travel Time 
(Degrees) (TOP) (Bottom) 

(Seconds) (Seconds) 
(km) 

DALHART 26 

28 

42.381 

42.721 

231.77 

238.93 

7.82 

7.94 7.77 

7.82 29 42.830 

43.972 

47.839 

230.61 

235.99 

.231.14 

7.87 

8.04 

8.64 

25 

30 

KEAR- 
SARG 

28 47.243 196.81 9.21 9.05 

25 

26 

29 

30 

49.641 

50.465 

51.360 

55.081 

195.80 

191.84 

191.41 

195.05 

9.55 

9.44 

9.58 

10.36 

9.39 

9.51 

ALAMO 28 40.937 190.42 8.23 8.06 

25 

26 

29 

30 

43.413 

44.613 

45.546 

48.495 

189.63 

185.26 

184.91 

189.46 

8.62 

8-60 

8.72 

9.48 

8.46 

8.66 
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Tiible 3 : Surfiice/Bottom ground motion travel-lime pich for various nuclear cxplosions 
(continued) 

Event Name Station Distance Azimuth Travel Time Travel Time 
(Degrees) (Top) (Bottom) 

(Seconds) (Seconds) 
COM- 2s 
STOCK 

25 

26 

29 

30 

KERN- 28 
VlLLE 

25 

26 

29 

30 

LOCKNEY 28 

25 

26 

29 

30 

41.151 

43.685 

45.309 

46.271 

49.139 

47.155 

49.700 

51.490 

52.458 

55.114 

38.310 

40.777 

41.933 

42.S65 

46.255 

10 

182.32 

181.99 

177.91 

177.71 

182.67 

178.73 

178.62 

175.14 

175.01 

179.56 

191.42 

190.51 

185.85 

185.4G 

190.23 

8.32 

s.75 

8.Sl 

S.96 

9.60 

9.38 

9.81 

9.89 

10.03 

10.64 

7.81 

s.20 

8.15 

8.27 

9-01 

8.19 

8.62 

5.90 

9.21 

9.65 

9.97 

7.63 

5.04 

8-24 



Talde 3 : Surface/Bottom ground motion travel-time picks for various nuclear explosions 
(continued) 

Event Name Station Distance Azimuth Travel Time Travel Time 
(km) (Degrees) (Top)- (Bottom) 

(Seconds) (Seconds) 
TAHOKA 26 40.824 235.51 7.48 

29 41.216 234.26 7.49 7.44 

7.49 

7.61 

28 41.521 242.86 7.65 

25 42.619 239.73 7.75 

30 46.242 . 234.42 g.27 

HARDIN 28 38.250 184.90 7.75 7.58 

25 . 

26 

29 

30 

40.770 

42.271 

43.228 

46.242 

184.39 

179.94 

179.68 

184.84 

8.20 

8.24 

8.34 

9.03 

8.03 

8.30 

8.97 

DELAMAR 26 44.594 170.04 8.82 

29 

30 

45.569 

47.880 

170.00 

175.48 

9.0 

9.55 

8.92 

9.42 
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Tahle 3 : Surface/Bottom ground motion travel-time picks for various nuclear cxplosions 
(continucd) 

Event Name Station Distance h i m  u t 11 Travel Time Travel Time 
(1cm) (Degrees) (Top) (Bottom) 

(Seconds) (Seconds) 
BODIE 28 41.660 185.91 

26 

29 

30 

BELMONT 28 

25 

26 

29 

30 

LAB- 28 
QUARK 

25 

26 

29 

30 

45.611 

46.562 

49.649 

36.691 

39.233 

40.998 

41.966 

44.661 

47.529 

49.929 

50.764 

51.659 

55.371 

12 

181.22 

180.95 

185.68 

179.75 

179.55 

175.13 

174.98 

180.60 

196.61 

195.61 

191.68 

191.25 

194.88 

8.31 

8.75 

8.89 - 
9.58 

7.44 

7.89 

8.00 

8.11 

8.72 

9.32 

9.63 

9.55 

9.68 

10.45 

8.16 

8.85 . 

9.46 

7.28 

7.74 

8.07 

8.63 

9.3 6 

9.50 

9.65 

10.36 



T;~l)le 3 : Surface/Bottom ground motion travel-time picks for various nuclear explosions 
(con ti n ued) 

Event Name Station Distance Azimuth Travel Time Travel Time 
(km) (Degrees) (Top) (Bottom) 

(Seconds) (Seconds) 
JEFFER- 28 41.599 182.41 8.29 8.13 
SON 

25 44.131 182.07 8.71 8.57 

26 45.749 178.03 8.76 - 
29 46.712 177.83 8.91 8.87 

30 49.586 . 182.74 9.55 9.48 

DARWIN 28 41.765 175.16 8.37 8.21 

25 44.309 175.24 8.81 8.67 

26 46.283 171.50 8.93 

29 47.258 171.43 9.07 9.03 

30 49.670 176.65 9.68 9.56 

GOLD- 28 38.659 178.28 7.95 7.79 
STONE 

25 41.204 178.18 8.39 8.25 

26 43.036 174.03 ' 8.48 

29 44.008 173.90 8.61 8.58 

30 46.615 179.34 9.21 9.12 

c I 

13 



Table 3 : SurfacdBottom ground motion travel-time picks for various nuclear explosions 
(continued) 

Event Name Station Distance Azimuth Travel Time Travel Time 
(Degrees) (Top) (Bottom) 

(Seconds) (Seconds) 
(km) 

SERENA 

SALUT 

28 

25 

26 

29 

30 

28 

25 

26 

29 

30 

TOWANDA 28 

25 

26 

29 

30 

45.275 

47.811 

49.416 

50.375 

53.265 

39.849 

42.396 

44.322 

45.294 

47.773 

40.191 

42.652 

43.761 

44.686 

48.125 

14 

182.45 

182.14 

178.40 

178.20 

182.76 

176.24 

176.26 

172.31 

172.23 

177.61 

192.14 

191.22 

9.06 

9.48 

9.51 

9.53 

10.21 

7.88 

8.34 

8.50 

8.60 

9.20 

8.23 

8.55 

186.74 8.48 

186.35 8.60 

190.88 9.40 

8.90 

9.33 

9.60 

10.11 

7.73 

8.20 

8.56 

9.10 

8.41 

8.57 

9.30 



Table 3 : Surface/Bottom ground motion travel-time picks for various nuclear explosions 
(continued) 

Event Name Station Distance Azimuth Travel Time Travel Time 
(Degrees) (Top) (Bottom) 

(Seconds) (Seconds) 
(W 

HERMOSA 26 43.968 232.34 7.91 

28 44.348 239.23 8.01 7.87 

29 44.407 231.21 7.95 - 7.92 

25 

30 

COTTAGE 28 

26 

29 

25 

30 

TIERRA 28 

45.585 

49.420 

50.644 

51.018 

51.567 

52.187 

56.495 

45.597 

236.40 8.13 8.01 

237.67 8.78 8.65 

230.68 8.39 8.17 

224.69 8-30 

223.79 8.45 8.39 

228.42 8.55 8.40 

224.84 9.40 9-01 

197.57 8.87 8.73 

25 47.984 196.49 9.20 9.05 

26 48.770 192.38 9.17 

EGMONT 25 44.907 175.50 8.90 8.78 

26 46.866 171.80 9.11 

28 42.361 175.44 0.00 8.31 
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Table 3 : Surface/Bottom ground morion travel-time picks for various nuclear explosions 
(concluded) 

Event Name Station .Distance Azimuth Travel Time Travel Time 
(Degrees) (Top) (Bottom) 

(Seconds) (Seconds) 
(W 

KAPPELI 25 44.715 

26 

27 

28 

CAPROCK 26 

25 

MUNDO 26 

25 

TORTUGAS 25 

GORBEA 25 

ROMANO 25 

TECHADO 25 

CHANCEL- 25 
LOR 

46.146 

47.072 

42.200 

40.981 

42.737 

45.441 

47.022 

42.813 

40.524 

45.858 

45.021 

45.992 

16 

185.44 

181.33 

181.50 

185.96 

234.75 

238.99 

231.76 

235.71 

239.05 

227.75 

228.64 

234.04 

191.53 

8.90 8.76 

8.93 

8.87 8.87 

0.00 8.32 

7.71 

7.95 7.76 

8.31 

8.54 8.41 

7.83 

7.48 7.30 

8.63 8.39 

8.43 8.04 

8.97 



. 

and between 7.52-8.75 seconds for the Yucca Flat events. In Figure 3, travel t i e s  for the 
three event areas are plotted with respect to distance for the events used in this study. Travel 
times for Yucca Flat events are significantly shorter than those for Pahute Mesa events at the 
same distance. This large (0.5 s) travel time difference is likely due to differences in crustal 
velocity structure between the two paths (see Walck and Phillips, 1990). Relative amplitudes 
among the Yucca Mountain stations also differ as a bction of source amplitude, as seen in 
Figures 4 and 5. For Pahute Mesa events (e.g., Figure 4), stations located at the north end of 
Yucca Mountain (28 and 25) typically have the largest first arrival amplitudes, while for Yucca 
Flat explosions (see Figure 5), stations located to the east of the mountain ridge (26 and 29), 
have the largest amplitudes. The variations in travel times and relative amplitudes between the 
two source areas are indicative of signiscant azimuth-dependent crustal structure, or path 
effects, as discussed by Walck and Phillips (1990). S ip le  azimuth-independent site 
corrections are probably not adequate for pr@icting absolute ground motions for these 
stations. 

Several examples of vertical acceleration surfacddownhole data pairs are shown in Figures 6- 
11. Obvious differences between the surface and downhole records include the overall 
amplitude levels and the absolute travel times. As expected, the surface records are larger in 
overall amplitude, although the level of amplification varies and is not the simple ‘factor of 
two” expected fi-om a half-space velocity structure. Note the differences in surface 
amplification among the four record pairs shown for the Belmont event in Figures 6 and 7. At 
stations 28 and 29, the sucface records are about twice as large as the downhole records, while 
the amplification is less than two for station 30 and is a factor of 3-4 for station 25. Travel 
times between the downhole and uphole instruments also vary by station (see Table 3 for 
detailed travel time information). Although the relative depths of the three deep borehole 
stations are quite similar, the average differential travel times up the borehole range fiom 0.10 s 
at station 30 to 0.16 s at station 28. These differences indicate differences in the velocity 
structure among the boreholes, with station 30 having an overall faster velocity structure than 
stations 25 and 28. 

The borehole and surface waveforms are often similar near the beginning of the records, but 
become much less L i a r  a few cycles into the record, as shown particularly in Figures 6, 8, 9, 
and 10. Usingthe method descriied in the next section, we attempt to explain the differences 
between the surfkce and downhole records using geologically reasongable velocity models for 
each borehole site. 
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Figure 3: Travel time 11s a finction of distance for nuclear tests recorded at surface 
accelerometers at Yucca Mountain. Note the significantly faster travel t h e s  for Yucca 

Flat events. 
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Figure 4: Vertical acceleration waveforms at the surface in record section form for event 
Belmont @b.hute Mesa). Station numbers are at the right of each trace. First 
arrival amplitudes are largest at stations 28 and 25. 
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Figure 8: Comparison of vertical acceleration waveforms at the surface and downhole, 
stations 28 and 25, event Hermosa (Yucca Flat) 
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Modeling Technique 

.. 

Our goal is to develop a means to predict subsurface ground motions at the 
repository location for a specified seismic source. The site’s tectonic setting dictates that 
ground motions fi-om a large, nearby earthquake would be larger than motions fiom any 
explosion sources. Because the natural seismicity at Yucca Mountain occurs at a very low 
rate, however, by fir the largest motions that have been actually measured in boreholes are 
fi-om underground nuclear explosions detonated at the nearby Nevada Test Site. 
Unfortunately, borehole accelerometer instrumentation that was installed to monitor UNE 
ground motions was operational only for the time immediately surrounding the planned 
explosion, thus no earthquake motions have been recorded downhole at the repository horizon. 
We therefore chose to use the explosion data to develop velocity models that can be used to 

predict subsurface ground motions at any dep& for any specified surface source, earthquake or 
explosion. 

Given the limitation of explosion data recorded downhole, our approach is to use 
multiple sets of single-source upholddownhole data pairs to develop, in a forward modeling 
fashion, one-dimensional velocity models for each of the boreholes for which we have data. 
From these one-dimensional models we can calculate synthetic transfer functions, which are 
simply spectral ratios of the downhole model response to the surface model response. 
Convolution of a surface ground motion with the transfer function then results in a prediction 
of downhole ground motion, which can be accomplished for any depth within the model. 
Furthermore, the series of one-dimensional models can be generalized into a two-dimensional 
model along a north-south line through Yucca Mountain that intersects the proposed location 
of the repository and three of the four boreholes. This 2-D model is usem for predicting 
ground motions where we have no actual data. By taking a slice through the model at the 
desired location, we can calculate the subsurface body wave response for any specified input at 
the surface. 

To develop the velocity models and transfer hnctions, we have used the explosion 
data coupled with detailed geologic information available for each borehole and nearby 
boreholes. Inspection of the surfkceldownhole record pairs (e.g., Figures 6-11) show that 
simple half-spaci: velocity models will not explain the variations in amplitude, travel time, and 
waveform for the observed data, therefore geologic information was sought to constrain the 
starting models. Initial compressional - velocity models were developed using geologic 
descriptions of the boreholes (e.g., Scott and Castellanos, 1984, Spengler et al., 1981, 
Wdonado and Koether, 1983), geophysical logs where available (Spengler et al., 1984, 
Muller and KibIer, 1983), available rock property information (Lappin et al., 1982), and the 
thermal-stratigraphic unit descriptions of Ortiz et al. (1985). Initial shear wave values were 
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specified using a Poisson’s ratio of 0.25; in later experiments we also considered unpublished 
information on very shallow shear velocities fiom the recent vertical seismic prosling study by 
Daley and Majer (written comunication, 1995). Vertical travel times through the trial models 
were compared to observed travel times differences between the uphole and downhole 
recordings of the Same events to provide a control on the integrated velocity of the model 
above the depth of the downhole station 

We tested the velocity models using the data and the algorithm of Shearer and 
Orcutt (1987), which is based on the propagator matrix method first described by Haskell 
(1953, 1960, 1962). The code calculates the lli plane wave response for incoming body 
waves through a layered stack SurEdce waves are not calculated with this method. Complex 
spectra are computed at the surfhce and any specified depths. An example calculation is shown 
in Figure 12, where the vertical response of a model consisting of one layer over a halfspace, 
with receivers at depths of 0, 50, 100, 150, and 200m is illustrated. The surface layer‘s P 
velocity is 1.5 W s e c  and the halfspace veloci6 is 4.0 Msec; the P wave is incident at 42” 
fiom the vertical. On the leR is shown the spectral amplitude as a fbnction of fiequency for 
each receiver depth. The time domain response is on the right. This formulation includes both 
upgoing and downgoing waves, and the source’ can be specified as either P waves only, S 
waves only, or both. In.the modeling described below, P waves were used to simulate the 
explosion source Either the vertical or horizontal (radial) component can be calculated. 
Attenuation is spedied in the modeling but does not have a large effect on the calculations 
presented here (see Shearer and Orcutt, 1987). We specify the incidence angIe of the incoming 
energy based on observed particle motions from the three component data. In general, the 
UNE data approach Yucca Mountain at a steep (< 30’ fkom vertical) angle due to the large 
velocity gradient in the upper crust (Walck and Phillips, 1990). 

The modeling process is shown in flow chart form in Figure 13. This procedure is 
followed separately for each borehole. Forward modeling of several surfacddownhole data 
pairs, including data fiom both Pahute Mesa and Yucca Flat, determines the final model for 
each hole. The ‘$oodness of fit”for each model was assessed visually. We attempted to match 
the downhole record both in amplitude and waveshape while maintaining simple velocity 
models. The vertical component data were modeled first. We then revised the models as 
necessary to provide the best possible fit to the combined radial and vertical data sets. Perhaps 
due to poor controls on shear velocities at the station sites, fits to our radial records using the 
models developed fiom the vertical data were not as good. We chose to maintain the good 
vertical data fits and match overall signal-amplitude and frequency content for the radial 
records. For all of the modeling the travel time between the uphole and downhole record was 
used as a check on the overall velocity structure determined for the borehole. Our one- 
dimensional models represent SubjectiveIy determined ‘best fits”to the data suite that is also 
consistent with the geological data, thermal stratigraphic units, and available geophysical data. 
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Figure 12: Theoretical spectral response for a delta fbnction incident at 42' fiom vertical 

impinging on a layer over a halfspace velocity model (from Shearer and Orcutt, 
1987). The vertical component is shown. On the left are the spectral amplitudes at 
each depth as a fbnction of frequency, and on the right are the time domain 
responses. 

29 



Construct initial model based on geological 
and geophysical knowledge 

Divide downhole spectral response by the 
surface response to form a transfer function 
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Figure 13: Flow chart showing modeling procedure. 
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Data Analysis 

We have developed one-dimensional velocity models for four boreholes in the 
vicinity of Yucca Mountain. Station 29 (see Figure 2 for location), which has instrumentation 
at the surface and at 82m depth, is located east of the mountain itself near the proposed 
location of repository surface facilities. Stations 28, 25, and 30 Figure 2) comprise a north- 
south projile through Yucca Mountain itseK None of the boreholes intersects the potential 
repository, but station 25 is just north of the repository boundary and station 30 is located just 
to the south. The stations were operational fiom the mid 1980s to 1990 and each station has 
approximately 20 upholddownhole data recordings of underground nuclear explosions 
available for analysis. Data fiom both the Yucca Flat and Pahute Mesa source areas are 
available for all four stations. The downhole accelerometers for the three stations with deeper 
instrumentation were located in the Topopah Springs member of the Paintbrush Tuff , while 
the downhole accelerometer for station 29 was placed in the Tiva Canyon member (Phillips, 

The detailed geology differs among the three stations due to local tilting and 
faulting. The Tiva Canyon member of the Paintbrush tuff tops the section for stations 30 and 
28, but is absent at station 25, which has alluvium at the surface (Spengler et al., 1981). The 
Yucca Mountain and Pah Canyon members of the Paintbrush tuffare present at stations 25 and 
28, but not at station 30 (Scott and Castellanos, 1984). All three boreholes penetrate 
significant thicknesses of the Topopah Springs member. This formation is also laterally 
heterogeneous, however, containing zones with sigmficant proportions of lithophysal cavities 
that might be Zerred to have a lower seismic velocity due to higher porosity (e.g., Muller and 
Kibler, 1983). The differences in geology translate into different seismic models for each 
station. 

1991). 

Four one-dimensional models representing the near-surface seismic velocities for 
the four Yucca Mountain borehole stations are presented in Figures 14 and 15 and summarized 
in Table 4. In the illustrations, TC denotes Tiva Canyon member, BT stands for bedded tuffs, 
which includes the Yucca Mountain and Pah Canyon members, and TS denotes the Topopah 
Springs member of the Paintbrush TS. In each m e  alluvium has been assigned a low velocity 
of less than 1.5 Wsec,  and the Tiva Canyon member of the Paintbrush Tuff was assigned 
either 1.5 lan/sec or 2.3 Wsec, depending on the degree of welding. Bedded tuf& were given 
velocities of 2.3 Msec, the upper part of the Topopah Springs tuffwas assigned 3.1 W s e c  
(the TSwl thermal stratigraphic unit of O h  et al., 1985) and the lower part 3.9 km/sec 
(TSw2 unit of O h  et al., 1985). 

For each station we present three examples of the uphole data, downhole data, and 
calculated downhole response based on the seismic model, for both vertical and radial 
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Figure 14: P-wave velocity model for station 29, located to the east of the Yucca 
Mountain block. Downhole station is located at 82 m depth. TC denotes Tiva 
Canyon Member of the Paintbrush TuE 
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Figure 15: One-dimensional P-wave velocity models representing the near-sdace seismic 
velocities for the three Yucca Mountain borehole stations (fi-om south to north) 
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hole. 
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Thickness Depth P-wave S-wave 
km km velocity velocity 

k d S  k d S  

Station Rock Type 

28 Alluvium 
Tiva Canyon 
Bedded Tuff 
Topopah Spg. 
(Tswl) 
Topopah Spg. 
(Tsw2) 

0.0 
0.075 
0.156 
0.204 

0.0 
0.075 
0.23 1 
0.435 

NIA 
1.50 
2.30 
3.10 

NIA 
1.07 
1.33 
1.79 

1.43 5 3.90 2.25 1.000 

0.7 
NIA 
2.30 
3.10 

-018 
0.0 
0.122 
0.170 

0.018 
0.0 
0.140 

. 0.310 

0.4 
NIA 
1.64 
1.79 

25 Alluvium 
Tiva Canyon 
Bedded Tuff 
Topopah Spg. 
(Tswl) 
Topopah Spg. 
(Tsw2) 

3-90 0.101 0.41 1 2.25 

30 0.0 
0.129 

0.0 
0.129 

NIA 
2.30 

NIA 
1.33 

Alluvium 
Tiva Canyon/ 
Bedded Tuff 
Topopah Spg. 
(Tswl) 
Topopah Spg. 
(Tsw2) 

3.10 1.79 0.301 

1 .ooo 

0.430 

1.430 3 -90 2.25 

0.046 
0.036 
1.000 

0.046 
0.082 
1.082 

1.10 
1.50 
2.30 

0.64 
0.87 
1.33 

29 Alluvium 
unit ccr 
Tiva Canyon 

Table 4: One-dimensional velocity models: stations 28,25,30, and 29. 
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components of motion. The transfer fbnctions were computed based on incoming 
compressional energy alone. The data fits for the vertical component data are quite good; the 
radial component data fits, while generally not as good, are also acceptable in terms of overall 
ground motion amplitude and frequency content. These data examples demonstrate that 
simple one-dimensional models are suflicient for understanding of the general differences 
between the observed uphole and downhole data for each borehole. 

Station 29 
5 

YuccaMountah station 29 is located east of the mountain block near the proposed 
location for the repository surface facilities in hole UE-25 RF#4 Figure 2). The site geology is 
relatively simple, with 46m of alluvium overlying 35m of nonwelded Unit 'X' tuff over the 
Tiva Canyon member of the Paintbrush tuff (Gibson et al., 1992). The downhole 
accelerometer was located 82m below the surface, just below the boundary between Unit 'Y 
and the Tiva Canyon. A schematic of the hole geology and the final model is shown in Figure 
14. Table 4 contains the complete specification of the model. The alluvium was assigned a P- 
wave velocity of 1.1 km/sec, the Unit 'X'tuff a velocity of 1.5 km/sec, and the Tiva Canyon 
unit a velocity of 2.3 km/sec. The S-wave velocities for this hole are set using a Poisson's ratio 
of 0.25. The simple ~o-layer  over a halfspace model matches the obsewed data quite well, 
as shown in the Figures 16-21 for three sample events. The vertical simulated downhole 
records match the observed data nearly perfectly for the Pahute Mesa events Belmont and 
Kearsarg; the predicted downhole record for the Yucca Flat event Tahoka has the proper 
waveshape with an overall amplitude level that is slightly too large. The radial component 
simulated downhole data also match the actual records quite well in both amplitude and 
fkquency content for both source areas. The excellent match between the synthetic downhole 
records and the actual accelerograms demonstrate the consistency of the recorded data and the 
validity of the modeling approach. 

Station 28 

Station 28 occupied drillhole USW G-2 (see Figure 2 for location). Maldonado 
and Koether (1983) describe the geological units encountered in the hole. This station is at the 
northern end of the north-south profle through the Yucca Mountain ridge defined by stations 
28,25, and 30 (see Figure 15). The downhole accelerometer was located at 375m depth until 
April, 1987; it was then moved to 358m depth until the instrumentation was removed in 1990. 
While detailed geological information is available for hole G-2, we found no reliable seismic 
velocity measurements to use in developing an initial model. The ultrasonic log for the nearby 
hole G-1 (station 25; Muller and Kibler, 1983) contained no resolvable velocity information for 
the uppermost 350m. We used the seismic velocity log for nearby hole G-4 (Spender, 
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Figure 16: Results of velocity modeling for station 29, Pahute Mesa event Belmont, 
vertical component. Panel A shows the observed vertical surface record; panel B 
is the observed downhole record. Panel C displays the synthetic downhole 
response obtained by convolving the transfer function generated from the velocity 
model in Figure 14 with the observed surface record in panel A. Panel D is an 
overlay of the observed and synthetic downhole traces. The dotted line is the 
synthetic'response and the solid line is the data. 
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Figure 17: Results of velocity modeling for station 29, Pahute Mesa event Belmont, radial 
component. Figure layout is the same as figure 16. 
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Figure 18: Results of velocity modeling for station 29, Yucca Flat event Tahoka, vertical 
component. Figure layout is the same as figure 16. 
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Figure 19: Results of velocity modeling for station 29, Yucca Flat event Tahoka, radial 
component. Figure layout is the same as figure 16. 
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Figure 20: Results of velocity modeling for station 29, Pahute Mesa event Kearsarg, 
vertical component. Figure layout is the same as figure 16. 
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Figure 21: Results of velocity modeling for station 29, Pahute Mesa event Kearsarg, 
radial component. Figure layout is the same as figure 16. 
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Chornack, Muller and Kibler, 1984) coupled with the geological information for the hole to 
tentatively assign compressional velocities to specific geologic units. Tying the velocities to the 
thermal stratigraphic units of Ortiz et al. (1985) was also useful in assuring consistency among 
the three deeper boreholes. 

The model for station 28 has several layers that correlate to the thermal 
stratigraphic units of Ortiz et al. (1985). The Tiva Canyon tuff (TCw thermal stratigraphic 
unit) is 1.5 W s e c ;  the Yucca Mountain and Pah Canyon members (PTn thermal stratigraphic 
unit) are assigned 2.3 W s e c ,  and the two thermal stratigraphic units corresponding to the 
Topopah Springs member, TSwl and TSw2, are assigned velocities of 3.1 and 3.9 km/sec, 
respectively. The Tiva Canyon member of the Paintbrush T e  which tops the hole, is quite 
slow where measured in Midway Valley (see Gibson et al., 1992); this is consistent with the 
value of 1.5 km/sec found here, The velocity of the Topopah Springs member is variable, 
depending on the degree of welding and lithophysal content (Spengler, Chornack Muller and 
Kibler, 1984), but the modeling process revealed it to be relatively homogeneous at the 
wavelengths sampled here, thus we differentiate only between the two major thermal 
stratigraphic units. The model for station 28 appears in Figure 15, and three examples of 
waveform modeling are seen in Figures 22-27. The vertical component downhole records are 
matched quite well by the synthetics, as seen in Figures 22, 24, and 26. The matches for the 
radial records are not quite as good (Figures 23, 25, 27), however the overall level of radial 
ground motion predicted by the transfer function is quite consistent with the observations. The 
data fits obtained for the Yucca Flat event Dalhart (Figures 26 and 27) are similar in qudity to 
that obtained for the Pahute Mesa events, indicating that a one-dimensional transfer hnction is 
adequate for the very shallow structure at this location. 

5 

Station 25 

Located in drillhole USW G-1, station 25's downhole instrumentation was located 
at 358m until April, 1987 and thereafter at 305m below the ground surhce. According to 
Spender et al., (1981), 18rn of alluvium is present at the surface, underlain by the Yucca 
Mountain, Pah Canyon, and Topopah Springs members of the Paintbrush tuffdown to a depth 
of 416111. The hole continues to a depth of 181Om. Some additional information is available 
fiom the geophysical logs for this hole (Muller and Kibler, 1983), although the seismic 
velocities in the upper 305m were deemed unreliable. The density values used in all of the 
models were determined largely fiom thk work of Lappin et al. (1982); their density 
measurements were made on rocks from this hole. 

Probably due to the presence of the alluvium layer, this station was the most 
difficult to model. Surface records at station 25 typically have very large amplitudes for Pahute 
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Figure 22: Results of velocity modeling for station 28, Pahute Mesa event Amarillo, 
vertical component: Figure layout is the same as figure 16. 
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Figure 23: Results of velocity modeling for station 28, Pahute Mesa event Amarillo, radial 
component. Figure layout is the same as figure 16. * 
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Figure 24: Results of velocity modeling for station 28, Pahute Mesa event Lockney, 
vertical component. Figure layout is the same as figure 16. 
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Figure 25: Results of velocity modeling for station 28, Pahute Mesa event Lockney, radial 
component. Figure layout is the same as figure 16. 
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Figure 26: Results of velocity modeling for station 28, Yucca Flat event Dalhart, vertical 
component. Figure layout is the same as figure 16. 
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Figure 27: Results of velocity modeling for station 28, Yucca Fiat event Dalhart, radial 
component. Figure layout is the same as figure 16. 
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Mesa tests, but not for Yucca Flat events. A compressional velocity of 0.7 M s e c  was 
assigned to the alluvium, underlain by a 122m thick layer of 2.3 Msec representing the Yucca 
Mountain and Pah Canyon members PTn thermal stratigraphic unit). The TSwl and TSw2 
thermal stratigraphic units of the Topopah Springs Unit were assigned 3.1 Msec and 3.9 
Msec, respectively. This model (Figure 15; Table 4) works fairy well at predicting the 
downhole records from the surface data (Figures 28-32), however, the data fits are not as good 
for station 25 as they are for the other stations, particularly for the vertical component records. 
For the vertical component, the synthetic downhole first arrival amplitudes (about the first 0.5 
second of waveform) are very well matched. The fit degrades farther into the record, with the 
synthetic waveform often somewhat larger than the data. The detailed waveshapes of the 
radial records are not particularly well-matched, although the overall amplitudes predicted by 
the transfer hction are quite reasonable. We attempted to improve the fit of the radial 
records by trying different Poisson’s ratios, consistent with the results of Daley and Majer 
(written communication, 1995), however the results are still not ideal. The final model has a 
VpNs ratio of 1.35 for the alluvium layer and 1.40 for the bedded tuffs before returning to 
typical 1.73 for the deeper portion of the model. 

Station 30 

The geology for the shallow portion of hole USW G-3 (station 30, Figure 2) is 
relatively simple, with the Tiva Canyon member overlaying the Topopah Springs member of 
the Paintbrush Tuff (Scott and Castellanos, 1984). We found that a simple model with 
velocities of 2.3 Wsec  for the Tiva Canyon and 3.1 Wsec  and 3.9 Msec for the Topopah 
Springs member does a good job predicting the downhole records at 352m depth (Figure 15). 
The Tiva Canyon was given a faster velocity at the station 30 location than for stations 28 and 
29 based on faster travel times between the downhole and uphole instruments. Also, Scott and 
Castellanos (1984) observed that at USW G-3, the non-welded upper portion of the Tiva 
Canyon is missing and only the weIded lower portion (with faster velocity) is present. The 
Topopah Springs members were assigned the same velocities as for the other stations, but not 
strictly in alignment with the Ortiz et al. (1985) depths for thermal stratigraphic units. Ortiz et 
al. (1985) define the TSwlESw2 boundary to be at 210m depth in this hole, but our modeling 
indicates that the faster velocity material must be located deeper, and we make the velocity 
transition at 430m depth (Figure 15; Table 4). The simple model for station 30 does an 
excellent job of predicting the vertical observed downhole vertical waveforms for events from 
both Pahute Mesa and Yucca Flat (Figures j4, 36, and 38). The radial component waveforms 
are not fit as well. In particular, for event Hermosa (Yucca Flat) the overall amplitude of the 
downhole radial record is overpredicted by this model. The overall amplitude response for the 
Pahute Mesa events is better, however the waveform fits are not particularly good. Attempts 
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Figure 28: Results of velocity modeling for station 25, Pahute Mesa event Kearsarg, 
vertical component. Figure layout is the same as figure 16. 
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Figure 29: Results of velocity modeling for station 25, Pahute Mesa event Kearsarg, 
radial component. Figure layout is the same as figure 16. 
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Figure 30: Results of velocity modeling for station 25, Yucca Flat event Hermosa, 
vertical component. Figure layout is the same as figure 16. 
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Figure 32: Results of velocity modeling for station 25, Pahute Mesa event Kerndle, 
vertical component. Figure layout is the same as figure 16. 
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Figure 33: Results of velocity modeling for station 25, Pahute Mesa event Kemville, 
radial component. Figure layout is the same as figure 16. 
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Figure 34: Results of velocity modeling for station 30, Yucca Flat event Hermosa, 
vertical component. Figure layout is the same as figure 16. 
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Figure 35: Results of velocity modeling for station 30, Yucca Flat event Hermosa, radial 
component. Figure layout is the same as figure 16. 
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Figure 36: Results of velocity modeling for station 30, Pahute Mesa event Labquark, 
vertical component. Figure layout is the same as figure 16. 
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Figure 37: Results of velocity modeling for station 30, Pahute Mesa event Labquark, 
radial component. Figure layout is the same as figure 16. 
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Figure 38: Results of velocity modeling for station 30, Pahute Mesa event Delmar, 
vertical component. Figure layout is the same as figure 16. 
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Figure 39: Results of velocity modehg for station 30, Pahute Mesa event Delmar, radial 
component. Figure layout is the same as figure 16. 
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to improve the match of the synthetics by altering the shallow shear velocities were not very 
successll; the final model contains VpNs ratios of 1.73 at all depths. 

Two-dimensional model 

The four one-dimensional models developed in the previous sections allow us to 
predict downhole body-wave ground motions, both vertical and horizontal, for a specified 
su&ce input at the location of the borehole. None of the boreholes Gtersects the potential 
repository location, however, so in order to predict ground motions that might occur in the 
repository fiom a seismic event, it is necessary to develop a two-dmensional model that 
includes the repository location. Because Stations 30,25, and 28 define a north-south line that 
crosses the proposed location for waste storage (Figure 2), we have used the one-dimensional 
models developed above to define a simpWied~ seismic velocity model for this cross section 
(Figure 40). The locations of the various drillholes in the vicinity are marked at the top of the 
figure, as is the location of the seismic station 21, which overlies the repository location. While 
the actual geologic structure along this proflle is obviously much more complex than shown 
here, these seismic velocities represent the levei of sensitivity of seismic waves of fiequencies 
up to about 10 Hz to thevelocity structure. 

The southern part of Yucca Mountain itself is quite flat, as seen fiom the 
topography in the figure, while station 25 lies in a topographic depression, and the elevation 
begins to rise to the north by station 28. While the 2.3 km/s material is described as 'bedded 
Win the illustration, it shodd be noted that for much of this area, the Tiva Canyon member 
is present and included in that 2.3 km/s layer. The Topopah Springs member is assigned 
velocities of 3.1 kmls and 3.9 M s ,  corresponding to the TSwl and TSw2 thermal 
stratigraphic units of Ortiz et al. (1985). The depth of the potential repository would lie near 
the bottom of the iuustration, in the TSw2 thermal stratigraphic unit. In the section below, we 
use this model to define a one-dimensional model for the station 21 site to use in prediction of 
UNE-like ground motion at the proposed repository location (see Table 5 for the model). 

Repository-level ground motion predictions 

The velocity model for material immediately overlying the repository is quite 
Similar to the model for station 30 (Table 4). Using this model and actual surface accelerations 
from underground nuclear explosions recorded at station 21, we have predicted downhole 
responses at 350m depth for the vertical and radial components for three sample nuclear events 
Pigures 41-46). These UNEs had body wave magnitudes ranging from 5.2 to 5.9 and were 
located at distances of 44 to 50 km from station 21. The predicted time series generally have 
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Figure 40: A simple two-dimensional compressional velocity model running 
approximateIy north-south through Yucca Mountain fiom station 30 at the south 
to station 28 at the north. 
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Rock Type Thickness Depth P-wave S-wave 
km velocity velocity 

Station 
km 

k d s  km/s 

Alluvium 0.0 0.0 NIA NIA 21 

Tiva Canyon/ 0.140 0.140 2.30 1.33 
Bedded Tuff 

0.290 0.430 3.10 1.79 Topopah Spg. 
(Tswl) 

1.000 1.430 3 -90 2.25 Topopah Spg. 
(Tsw2) 

Table 5: Velocity model at location of station 21. 
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ffequency content similar to that of the observed surface trace, and maximum amplitudes that 
are at most 50% of the observed data. The accelerations recorded ffom these explosions, 
while easily recordable, are not large enough to cause damage at either the surface or at the 
repository depth. Earthquakes of concern at the site would be larger (in the magnitude 6.0 to 
7.0 range) and closer (perhaps as close as a few km) than these sample events. The seismic 
radiation pattern of earthquakes is also significantly different ffom explosions. So while these 
examples are illustrative, they do not deiine expected ranges of accelerations for the seismic 
events of interest at Yucca Mountain. 

While the UNE-based predictions have definite limitations, it is still interesting to 
examine the characteristics of the 12 events for which we calculated simulated downhole 
accelerograms at station 21. Four of these events were detonated at Yucca Flat and eight on 
Pahute Mesa. Perhaps surpnSingly, the larger events (rn, = 5.6-5.9) in this data set occurred at 
Yucca Flat, while the Pahute Mesa explosions were in the body wave magnitude range.of 5.2- 
5.7. Plots of peak amplitude as a finction of distance and also as a fbnction of event 
magnitude showed no obvious correlations. Figure 47 shows the range of peak-to-peak 
vertical acceleration amplitude for these events, separated by source area. The average peak- 
to-peak acceleration for Pahute Mesa events is .138 k.04 d s '  and for Yucca Flat events is 
.105+.03 dS2. These values correspond to .014 and .011g, respectively. While these 
acceleration ranges overlap, there appears to be a tendency for Pahute Mesa explosions to have 
somewhat larger peak accelerations than Yucca Flat explosions for the same distance range 
and with somewhat smaller magnitude events. This amplitude difference may be due to a 
propagation effect; as noted by Walck and Phillips (1990), fist-arrival amplitude variations for 
the two source areas exist and can be explained by laterally varying crustal structure along the 
propagation path. 

Although it is beyond the scope of this study, in order to predict ground motions at 
the repository depth fiom earthquakes instead of UNEs, it would be quite possible to use the 
transfer finction fiom the station 21 model in Table 5 to predict repository-ievel earthquake 
ground motions uSig microearthquakes recorded at the surface of Yucca Mountain. While 
these simulations would not be of the proper amplitude for design calculations, they would 
contain more earthquake-appropriate spectral content and radiation partitioning. A Simulated 
time history or spectrum for a close, large earthquake &Id also be used with the transfer 
finction fiom this.mode1 to predict the associated downhole motions. 

The one-dimensional transfer Gnctions do not include surface wave propagation, 
which can cause very $@cat ground motions in large earthquakes. Surface waves can be 
included in fbture calculations by using the model with a different calculational method, such as 
a finite difference scheme. The validity of the extrapolated two-dimensional model presented 
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Figure 41: Vertical component observed (A) and "downhole" (depth=350m) simulated 
(B) records for station 21 (located directly over the potential repository) for event 
Atrisco. 
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ATRISCO RADIAL COMPONENT STATION W21 
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Figure 42: Same as figure 41 for the radial component of the Yucca Flat event Atrisco. 
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Figure 43: Same as figure 41 for the vertical component of the Yucca Flat event Baseball. 
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BASEBALL RADIAL COMPONENT STATION W21 

Figure 44: Same as figure 41 for the radial component of the Yucca Flat event Baseball. 
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CABRA VERTICAL COMPONENT 

d 

$ -.04- 
2, 

STATION W21 

- 
I I I I 1 I I 1 I I 1 I I 1 I I I I I I I 1 I 

I "  I l l  t Surface ResDonse 
nc; I I I I I 1 I I I I I I 1 I I 

l l  A -  n II w -02 
. 00 

3 - 3 2  .. 

C: nnl I '-' .UL 

.30 2 
-.02L - 
-.04 - - 

I I I I 1 I 1 I I I I 1 1 1 I I 1 1 I I 1 I I 

-.06* 2 4 6 8 10 

Figure 45: Same as figure 41 for the vertical component of Pahute Mesa event Cabra. 
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CABRA RADIAL COMPONENT STATION W21 
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Figure 46: Same as figure 41 for the radial component of Pahute Mesa event Cabra. 
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Figure 47: Comparison of predicted peak-to-peak ground motion amplitudes at 350 m 
depth, station 21 site, for 12 events observed at the surfl'ace, as a finction of source area. 
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here could be checked using a true two-dimensional method, and more sophisticated 
calculations carried out in order to include the effects of surface waves. 

Conclusions 

We have developed four one-dimensional velocity models for boreholes located at 
and near Yucca Mountain using a propagator matrix technique and a suite of upholddownhole 
triaxial recordings of underground nuclear explosions. These models, while relatively simple 
layered structures, are consistent with the available geologic and well-log information and 
produce synthetic downhole seismograms that match the data very well in overall amplitude 
and frequency content. Individual waveforms were also very well fit for several of the stations, 
particularly for the vertical component. The radial component ground motion predictions do 
not fit the detailed waveforms as well as the verticals, but still provide a reasonable estimate of 
overall ground motion levels. The poorer fit of the radials probably reflects a lack of 
constraints on the shear wave velocities in the very uppermost part of Yucca Mountain. 

This series of one-dimensional models was used to develop a two-dimensional model for a 
north-south cross section through Yucca Mountain. A vertical slice through the two- 
dimensional model provides a one-dimensional velocity model at the location of a former 
surface-only station that was located directly over the repositov site. Nuclear events recorded 
at this station (21) have been used to simulate expected vertical and radial body-wave ground 
motions for events similar in size and distance to the observed nuclear events (45-50 km, body 
wave magnitude between 5.2-5.9). These predicted ground motions are relatively small. 
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