
LBL-3855 1 
7- UC-405 

ERNEST ORLAND LAWRENCE 
BERKELEY NATIO AL LABORATORY 

An Adaptive Projection Method 
for the Modeling of Unsteady, 
Low-Mach Number Combustion 

Richard B. Pember, Louis H. Howell, John B. Bell, 
Phiffip ColelIa, William Y. Crutchfield, 
Woodrow A. Fiveland, and J. Patrick Jesse 
Computing Sciences Directorate 

October 1997 
To be presented at the 



DISCLAIMER 

This document was prepared as an account of work sponsored by t h e  
United States Government. While this document is believed to contain 
correct information, neither the United States Government nor any 
agency thereof, nor The Regents of the University of Californu. nor any  
of their employees, makes any warranty, express or implied. or assumes 
any legal responsibility for the accuracy, completeness. of usefulness of 
any information, apparatus. product, or process dircloxd. or 
represents that its use would not infringe pnvatelj ouned rights. 
Reference herein to any specific commercial product. process. or 
service by its trade name, trademark, manufacturer. or othcrp~isc. does 
not necessarily constitute or imply its endorsement. recommendation. 
or favoring by the United States Government or any agency thereof. o r  
The Regents of the University of California. The view and opinions of 
authors expressed herein do not necessarily state or reflect thw of t h e  
United States Government or any agency thereof, or Thc Repents of the 
University of California. 

Ernest Orlando Lawrence Berkeley National Laborator) 
is an equal opportunity employer. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



An Adaptive Projection Method for the Modeling of 
Unsteady, Low-Mach Number Combustion' 

1 

Richard B. Pembe?, Louis H. Howell, John B. Bell, 
Phillip Colella, and William Y. Crutchfield 

Lawrence Berkeley National Laboratory 
Berkeley, CA 94720 

Woodrow A .  Faveland and J. Patrick Jesse 
Babcock & Wilcox 

Alliance, OH 44601 

Abstract 
In this paper we present an adaptive projection method for modeling unsteady, low- 

Mach reacting flow in an unconfined region. The equations we solve are based on a 
model for low-Mach number combustion that consists of the evolution equations for 
density, species concentrations, enthalpy, and momentum coupled with a constraint on 
the divergence of the flow. The algorithm is based on a projection methodology in which 
we first advance the evolution equations and then solve an elliptic equation to enforce 
the divergence constraint. The adaptive mesh refinement (AMR) scheme uses a time- 
varying, hierarchical grid structure composed of uniform rectangular grids of varying 
resolution. The integration scheme on the grid hierarchy is a recursive procedure in 
which a coarse grid is advanced, fine grids are advanced multiple steps to reach the 
same time as the coarse grid, and the coarse and the fine grids are synchronized. The 
method is valid for multiple grids on each level and multiple levels of refinement. 

The method is currently implemented for laminar, axisymmetric flames with a re- 
duced kinetics mechanism and a Lewis number of unity. Two methaneair flames, one 
steady and the other flickering, are presented as numerical examples. 

Introduction 

The computational modeling of reacting flows with limited computer resources can be made 
difficult by the presence of multiple length scales and by the large number of species in a 
sufficiently detailed reaction mechanism. The problem of limited resources has generally 
been overcome in combustion modeling by the use of globally refined, nonuniform grids. 

In this paper we present a method based on a different approach, local adaptive mesh 
refinement (AMR). We develop an AMR algorithm to solve a system of equations for un- 
steady low-Mach number reacting flow in an unconfined region. This system is based on a 
generalization of the low-Mach number combustion model in 129, 231. The system includes 
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of Mathematics, Information, and Computational Sciences under contract DEAC03-76SF00098. Additional 
support was provided by the Applied Mathematical Sciences Program of the DOE Office of Mathematics, 
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evolution equations for density, velocity, enthalpy, and species concentrations, coupled with 
a constraint on the divergence of the flow. 

Our approach to AMR uses a hierarchical grid structure approach first developed by 
Berger and Oliger [lo] and Berger and Colella [9] for hyperbolic conservation laws. The 
grid structure is dynamic in time and is composed of nested uniform rectangular grids of 
varying resolution. By using grids of finer resolution in both space and time in the regions 
of most interest, AMR allows one to model large problems more efficiently. The integration 
algorithm on the grid hierarchy is a recursive procedure in which a coarse grid is advanced, 
fine grids are advanced multiple steps to reach the same time as the coarse grid, and the 
coarse and the fine grids are synchronized. The method is valid for multiple grids on each 
level and for multiple levels of refinement. 

The methodology presented here is based on a single grid algorithm developed by Pem- 
ber et al. [27, 281. The single grid method is a fractional step scheme in which we first 
advance the evolution equations and then solve an elliptic equation to enforce the diver- 
gence constraint and update pressure. The solution of the evolution equations essentially 
follows the approach described in [3, 13. In order that the method be second-order accu- 
rate in time for nonlinear differential equations with source terms, however, a sequential, 
predictor-corrector treatment of the equations is used. The sequential approach ensures that 
all implicit finite difference equations are linear and can be solved by standard multigrid 
techniques, while the predictor-corrector formulation guarantees second-order accuracy in 
time. A simple extension of the second-order approximate projection algorithm in [3, 11 to 
low-Mach number compressible flows is employed to enforce the divergence constraint and 
update the pressure. A pressure relaxation term is added to the numerical representation 
of the divergence constraint to account for the fact that the sequential approach cannot 
simultaneously conserve mass and satisfy the equation-of-state. 

The single grid algorithm is coupled to an extension of the conservative adaptive mesh 
refinement scheme for variable density, constant viscosity incompressible flow (IAMR) de- 
veloped by Almgren et al. [2, l]. In the present paper the IAMR algorithm is extended to 
account for the thermal expansion of the flow due to heat transfer and combustion, i.e., 
the non-zero divergence of the velocity. Additional enhancements ensure that the vari- 
ous relationships among the state quantities, in particular, density, enthalpy, temperature, 
and species concentrations, are always satisfied by the numerical solution. The treatment 
of scalars in [l] is also extended to account for evolution equations such as those for en- 
thalpy and species concentrations. These two sets of extensions ensure that the method 
is freestream preserving with respect to primitive quantities as well as conservative and 
freestream preserving with respect to conserved quantities. Spatial and temporal variation 
of viscosity and of thermal and mass diffusivity are also accounted for. 

The method is currently implemented for laminar, axisymmetric flames with a reduced 
kinetics mechanism and a Lewis number of unity. Results from two numerical examples, a 
steady methane-air diffusion flame [30] and a flickering methane-air flame [33, 39, 321, are 
presented . 

There are numerous references to the use of globally refined, non-uniform grids in com- 
bustion modeling. We refer the reader to Bennett [7], Bennett and Smooke [8], and the 
references therein. Local adaptive mesh refinement and local rectangular refinement meth- 
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ods have been used to model steady, low-Mach number combustion. In addition to the two 
references above, see Coelho and Pereira [ll], de Lange and de Goey [13], Mallens et  al. 
[24], Smooke et aZ. [31], and Somers and de Goey [34]. The authors are unaware of any 
previous work using local adaptive mesh refinement to model unsteady low-Mach number 
combustion. Projection methods without mesh refinement have been used in the unsteady 
case; see Dwyer [14], Lai [20], Lai et al. [21], Najm 125, 261, and Yam et  al. [39]. 

The remainder of this paper is organized as follows. In §2, we discuss the model for 
low-Mach number combustion and the governing equations solved with our approach. We 
describe the single grid algorithm in $3 and the adaptive algorithm in $4. Numerical results 
are shown in §5. 

2 Model for Low-Mach Number Combustion and Governing Equations 

The system of equations for reacting flow considered here is based on a model for low-Mach 
number combustion[29, 231, which we now briefly review. (See Table 1 for the nomencla- 
ture.) 

For flow in a spatially open domain the underlying assumption in the low-Mach number 
model is that M is sufficiently small (say M < .3) so that the pressure p can be written as 
the sum of a temporally and spatially constant part po and a dynamic part 7r7 

P k ,  2, t )  = PO + xb-7 2, t ) ,  (2.1) 

where ./PO = 0 (Ad2). All thermodynamic quantities are considered to be independent of 
T. The perfect gas law for a multi-component gas in a flow satisfying the low-Mach number 
assumption is then 

(2.2) 

Differentiating (2.2) with respect to time and using continuity, the following constraint on 
the divergence of the velocity is obtained: 

1 DYi 
Wi Dt +wc- -=s .  1 DT v.u=-- 

T Dt E 

We consider flows that are axisymmetric without swirl. In addition, we assume a Lewis 
number of unity and neglect radiative heat transfer. The system of governing differen- 
tial equations thus consists of the divergence constraint (2.3) and the following evolution 
equations for density, velocity, enthalpy, temperature, and species concentrations: 

DU 
p x  = -P(O,g)*-VP+V-7 
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specific heat-of species 1 at p = po 
specific heat of the gas mixture at p = po 
molecular mass diffusivity 

activation energy in Arrhenius law 
magnitude of acceleration due to gravity: 9.81 m/sec2 
enthalpy of gas mixture, El hl(T)K 
specific enthalpy of species I at p = PO, 
including the heat of formation 
subscript denoting species, fu (fuel), 
oz (oxidizer), pr (product) 
Lewis number, Sc/Pr = X/pDc, 
Mach number 
pressure 
ambient pressure: 101325 N/m 
Prandtl number, pLcp/X 
universal gas constant 
gas constant of mixture 
Reynolds number, pUL/p  
radial coordinate 
right hand side of divergence constraint 
Schmidt number, p/pD 
temperature 
velocity 
radial component of velocity 
axial component of velocity 
mass fraction of species 1 
axial coordinate 
thermal conductivity 
viscosity 
dynamic pressure, p - po 
density 
stress tensor 
specific mass production rate of 

slat + u .  v 

2 

species 2 by chemical reactions 

Table 1: Nomenclature: Physical Model 

In this system, equations (2.6) and (2.7) are redundant because the enthalpy h is defined 
bY 

h = C X h l ( T ) .  
1 

Numerically, equation (2.9) is used only to define the initial and inlet values of h; otherwise, 
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h is found as the solution of (2.6). Moreover, in our numerical method, equation (2.7) is 
used solely to define intermediate values of T; otherwise, T is computed using h, 8, and 
(2.9). The specific heat of the gas mixture cp is found by 

(2.10) 

The system of equations are overdetermined in two other ways. Equations (2.4) and 
(2.8) are redundant because p = C,pYi.  We account for the redundancy numerically by 
computing V pU as CE V - pUx. By using (2.4) in addition to (2.8), we are able to use a 
simpler discretization of (2.8) and thereby use a simpler solution strategy. Equations (2.4) 
and (2.2) are also redundant. We use (2.4) to ensure conservation of mass. The sequential 
approach used numerically makes it impossible, in general, to simultaneously satisfy the 
continuity equation and the equation of state; see $3.1 for further discussion. 

For the calculations shown in this paper, a one-step reaction model [18] for methane 
oxidation is used: 

natural gas + 9.57 air + 10.57 product. (2.11) 

The rate of fuel consumption is given by 

(2.12) 

where A = 1010m3/(kg-sec) .and E,/R = 1.84 x lo4 K. Polynomial curve fits are used 
for ~p,~,., [36] and %,tu [15]. We use a heat of formation of 4.855 x 107J/kg for 
natural gas[36]. The viscosity, p, is computed by the curve fit p = ~o(T/T').~ [17], where 
po = 1.85 x kg/m-sec and TO = 298K. pD and X / c ,  are determined from p by 
pD = X/cp = p/Pr. We use a fixed Prandtl number of .7. 

3 Single Grid Algorithm 

The algorithm used to advance the solution from time tn to tn + At = tn+' on a single grid 
follows the general approach used in [28] for the case of simple boundaries and incorporates 
many of the details of the single grid algorithm described in [l]. The reader is referred to 
[6, 4, 5, 3, 271 for additional discussion. We use a uniform grid of rectangular cells with 
widths Ar and Az indexed by i and j .  (See Table 2 for the nomenclature.) At the beginning 
of the time step, the numerical solution, except for pressure, represents the flow at time tn 
at cell centers. The solution for pressure, pi+-112,j+y2, n-M represents the pressure at the previous 
half-time step, tn-y2, on cell corners. 

The method is essentially a second-order projection method [6]. The overall approach, 
then, is that of a fractional step scheme. In the first step (which we call the advection- 
diffusion-reaction step), values of h,T, and K are computed at time tn+l using a higher- 
order upwind method for the convective terms and Crank-Nicholson differencing for the 
diffusive and the reactive terms. In addition, values of U, denoted by U* or (u*,v*), are 
computed in this step which do not necessarily satisfy the divergence constraint at In 
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cell indices in r--, z- directions 
cell width in r-direction 
cell width in z-direction 
time step used to advance solution from tn to tnf l  
a cell-centered gradient for a node-based pressure p 
r-coordinate of center of cell ij, iAr 
r-coordinate of upper r-edge of cell ij 
right hand side of the numerical divergence constraint 
time at the end of the n-th time step 

value at center of cell ij at time tn 
or average value over cell ij at tn 
axial and radial components of velocity 
before enforcement of divergence constraint 
predicted value at center of cell ij at time tn 
value at center of cell ij at time tn + At12 
value at upper r-edge of cell ij at time tn + At/2 
value at upper z-edge of cell ij at time tn + At/2 
value at upper corner of cell ij at time tn + At/2 
value at center of cell ij at time tn + At 

tn + At/2 

Table 2: Nomenclature: Numerical Algorithm 

the second step (the projection step), the divergence constraint is imposed on the velocity 
via a node-based projection 131.. This step yields Un+' and pi+y2,jrtyz, n+y2 the pressure at tn++1/2. 

The first step uses a predictor-corrector formulation and consists of the following steps: 
(1) Compute At: 

where the CFL number CT satisfies c < 1. 

at time tn + At/2: 
(2) Compute discrete approximations of the convective terms in the governing equations 

(V - ~Ucp);+'~ for cp = h,Yi and 
(U ~cp)z+' for cp = u, v, T. 

(3) Compute 
n41 = p$ - At (V pUX), n+% Pi j 

1 

and p;+'l2 = (p;  + pG+') /2. 

cp = x, T, and h using the Crank-Nicholson method. 
(4) Compute predicted values cpn+lJ' of the solution at tn+' for the flow quantities cp, 
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(5) Compute corrected the values of 5, T,  h, and (u*, v*) to provide the solution at time 
tnfl  again using Crank-Nicholson differencing. 

In step (2), a MAC projection [16] is performed so that the edge velocities used to 
form the convective derivatives satisfy the divergence constraint. In steps (4) and (5) the 
equations for each of the flow quantities x, h, T, and (u*,v*) are solved sequentially so 
that only linear systems of equations result from the Crank-Nicholson differencing. The 
update for (u*,v*) is a coupled solve due to the tensor nature of 7. In the predictor step, 
T is advanced using (2.7); this approach is typically less computationally expensive than 
solving (2.9) for P+l+’. In the corrector step, Tn+’ is found by solving (2.9) for T. 

The species update is itself performed sequentially in two steps, one accounting for 
convection and diffusion and the other for kinetics, in order to facilitate the use of complex 
kinetics mechanisms. In the kinetics update, the system of equations apX/d t  = wi is 
integrated with an implicit difference scheme. 

The spatially implicit finite difference equations that arise in the MAC projection, the 
Crank-Nicholson differencing steps, and in the nodal projection are solved with multigrid 
techniques [38, 13. The cell-centered solves use V-cycles with red-black Gauss-Seidel relax- 
ation and conjugate gradient at the bottom of the V-cycle. The nodal solve uses a similar 
approach. 

In the remainder of this section, we present the above algorithm in more detail. 

3.1 Numerical divergence constraint 

The right hand sides of equations (2.7) and (2.8) can be used to obtain the following 
expression for S: 

s = -( 1 

P%T 1 

n I .  Jmerically, wl /p  is approximated by AX/At, where AX is the change in 5 due to c-emical 
reactions during the time step. The other terms are approximated by central differences. 

If equation (3.3) is used without modification, however, the algorithm may suffer from 
a mild instability due to the fact that the sequential approach cannot simultaneously con- 
serve mass and enforce the constraint po = pRT; at the very least, the solution drifts from 
this constraint. (Analytically, this is not an issue; the equation of state and the continuity 
equation (2.4) are equivalent [23].) In our approach, expression (3.2) guarantees consem- 
tion of mass. To stabilize the method, we add an extra term to the discrete form of the 
divergence constraint (3.3) which accounts for the discrepancy between the value of p found 
by continuity and that found using the equation of state. The value of the right hand side 
of the divergence constraint used numerically, 3, is found by incrementing S as follows, 
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where$ij = &jpijTij and f is a constant satisfying f < 1.0. The extra term in the numerical 
divergence constraint is found by approximating Dp/Dt in the enthalpy equation for non- 
isobaric flow [19] by @ij -pamb) / A t ,  rewriting the resultant equation in terms of T, and 
using (2.3). The term f&j -pamb) /A t  acts to drive the solution back to the constraint 
fi i j  = pamb. Similar treatments have been used in numerical petroleum reservoir simulation 
P51- 

Equation (3.4) is evaluated once per time step, immediately prior to the projection step, 
to determine *+l. sn is used whenever an evaluation of V - U" is needed. 

For the MAC projection, we also need an estimate of &'/at in order to approximate 3 
at tn+1/2. We use S?. - p.-1 

(3-5) 23 $3 ($):= At 

3.2 Advect ion-Diffusion-Reaction Step 

3.2.1 Computation of convective derivatives 

The approximation of the convective derivatives generally follows the approach described in 
[l]; see [4] for additional discussion. There are two primary components to this computation: 
a higher-order upwind scheme [12] to determine edge states and a MAC projection [16] to 
enforce the divergence constraint on the edge velocities. 

The general procedure can be summarized as follows: 
(1) Compute values of ui+1/2,j n+Y2 and n+% and ui,j+y2 n+M and z):$;~, on all T- and z- cell 

(2) Compute advection velocities and $:F2 by projecting the edge velocities 
edges, respectively, using the higher-order upwind scheme. 

found in (1) so that they satisfy the divergence constraint. 

( P K ) , ~ + ~ ~ ,  n+Y2 (ph)i+1/2a, n-tY2 and (ph)y;s2 using the higher-order upwind scheme. 

n+1/2 n+1/2 n+% n+ 72 n+ 1/2 n+ 1/2 (3) Recompute ui+y2,j' ui+1/,,j, ui,j+Y27 and ?-'i,j+y27 and compute q+1/2j, q:;$27 (PK)i+y2,j, 

(4) Form discrete approximations of convective terms. 
The first step follows the approach in [l]. First, time-centered left and right edge states, 

' i + 1 / 2 , j , ~  n-t1/2 and Ui+1/2a,R, n+y2 at all T-cell faces and bottom and top edge states, Uij+y2,B n+y2 and 
n+y2 at all z-cell faces are found with Taylor expansions that use monotonicity-limited 

ui,j+~z,~~ 
approximations to the spatial derivatives in the convective terms. (Other spatial derivatives 
are evaluated by standard central difference approximations.) The time-centered edge states 

n+y2 at all T-cell faces and Ut:; at all z-cell faces are then found by an upwinding 
*i+1/2,j 
procedure. 

In step (2), we use a MAC projection to enforce the divergence constraint (3.4). The 
equation 

is solved for 4, where Sn and are given by (3.4) and ( 3 4 ,  and DMAC and GMAC 
are the standard discretizations of the divergence and gradient operators on a staggered 
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grid [l]. The advection velocities are then computed by 

where the edge values of p are averages of the adjacent cell centered values. 
n+M n+% n+M n+Y2 n+M In step (3), we recompute and Uij+y2, and compute q,j+y2, ( P Y ) ~ + ~ ~ ~ ,  

and (pY)i,j+Y2, n+Y2 again using the approach in [l]. In this step, the upwind states are found 

using the MAC projected edge velocities from step (2). 
n+ Y2 and ( ~ h ) : ; - , ~  are computed in a slightly different manner. The edge values 

of T are used to compute edge value of hl(T) for all species 1. These values of hl and the 
edge values of p x  are then used to compute edge values of ph using (2.9). 

In step (4), the convective derivatives are approximated by 

The higher-order upwind scheme used in steps (1) and (3) uses a second-order Taylor 
series expansion in time and space about (ri, zj, t n )  to determine left and right (bottom and 
top) states at time tn+lI2 at r- (z-) edges. The time derivative in the Taylor expansion 
is expressed in terms of the spatial derivatives and lower order terms by using a quasilinear 
form of the appropriate governing equation. The particular form of the quasilinear equation 
for a given state variable cp depends on whether we compute pcp or cp at edges. In the 
former case, pcp is computed directly - there is not a separate computation of p - and in 
the quasilinear equation, V pUcp is expressed as U - V (pcp) + pcpV - U. Note that in the 
case of p x ,  we omit the wl term from the quasilinear equation because of the operator split 
treatment of the kinetics. 

The edge values of p h  are computed in the manner described to ensure that the numerical 
scheme is freestream preserving with respect to temperature in the presence of multiple 
species. The advection scheme uses van Leer slope limiting [37] in the approximation of the 
first-order spatial derivatives. The advection scheme is hence monotonicity preserving but 
also necessarily nonlinear [22]. In particular, then, if the edge values of ph were computed 
in the same manner as pY, edge values of pY and ph would not necessarily satisfy (2.9) 
under isothermal conditions; the scheme might then incorrectly generate a non-constant 
temperature field. 

9 



3.2.2 Crank-Nicholson differencing 

In steps (4) and ( 5 )  of the advection-diffusion-reaction step we solve difference equations 
obtained by applying the Crank-Nicholson method to the governing equations. The differ- 
ence equations are solved using the multigrid strategy outlined above. By using a sequential 
approach and a predictor-corrector formulation, these difference equations are linear and 
uncoupled in the sense that we can solve for T, h, Yfu, Ym, Y,,., and (u*,v*) separately. 
In step (4), we compute predicted values of temperature, species mass fractions, and en- 
thalpy at time n + 1. Note that we do not need to find predicted values of (ti* , v*) because 
the equations have no coupled or nonlinear dependencies on the velocity. In step ( 5 ) ,  we 
compute corrected values of T ,  x, and h, as well as (u*,v*). In the corrector step, Tn+' is 
found directly by solving (2.9) given values of hn+l and Y;a+'. 

The difference equations for T,  h, yi, and U are summarized below; the cell indices ij 
are suppressed. The details of the discretizations of the divergence and gradient operators, 
except in the case of of V - 7, are discussed in [l]. The discretization of V - r uses similar 
strategies and will be discussed in detail in a future paper. Note that in all the discretiza- 
tions, edge-based values of the appropriate diffusivity are needed. These are found by simple 
averages of the cell-based values. 

Temperature. In the predictor, we compute Tn+l,p by solving the difference equation 

+v . vx (T") VP+11P) 

Note that w is not included because of the operator split treatment of kinetics. 

for cp = h,l$ has the form 
Enthalpy and Species. In the corrector, the discretization of the evolution equations 

where AN = p (TN)  /Se when cp = X and p (TN)  / (Pr I$) when cp = h for N = n or 
n + 1,p. The equations used in the predictor are found by substituting cpn+l¶p and A" for 
cpn+' and AnS1,p. As was the case for the temperature equation, w is not included for q. 

Velocity. The discretization of the momentum equation is a coupled difference equation 
for U* = (u*,u*): 

The viscosities in (V + 7 ) n  and (V - 7)"" are evaluated using Tn and Tn+l~p, respectively. 
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3.3 Projection Step 

A projection [3] is now used to approximately enforce the divergence constraint (3.4) and 
determine pn+$. In the advection-diffusion-reaction step, we use (3.10) and a timelagged 
pressure gradient to compute a velocity that does not necessarily satisfy the divergence 
constraint (3.4). In the projection we enforce 

(V . U);+l = q+12. 
From (3.10) and (3.11), we see that 

(3.11) 

where bi+%,j+y2 = 
following equation, 

(3.12) 
f'i j 

n+Y2 n-y2 Taking the divergence of (3.12), we obtain the 
P i + f l ~ , j + ~ 2  - P i + ~ 2 , j + ~ 2 .  

(3.13) 

which we solve using a standard finite-element bilinear discretization. Un+l and pn+$ are 
then found by , 

(3.14) 

where (Gb),  represents the cell average of Gb over cell ij. 

4 Extension to Adaptive Mesh Refinement 

In this section we describe the extension of the single grid algorithm to an adaptive hierarchy 
of nested rectangular grids. The methodology is based on the IAMR algorithm described 
by Almgren et al. [l]. Many of details of the present algorithm are identical, or very nearly 
so, to those of the IAMR algorithm. The reader is referred to [l] for these. In the following 
subsections, we review the features common to both algorithms to provide context but 
otherwise emphasize those that are specific to the modeling of low-Mach number reacting 
fiow. 

4.1 

The adaptive mesh refinement (AMR) algorithm uses a hierarchical grid structure, which 
changes dynamically, composed of rectangular, uniform grids of varying resolution. The 

Grid Hierarchy and Overview of Time-Stepping Procedure 
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collection of grids at a given resolution is referred to as a level. By definition, level 0 covers 
the entire problem domain. The widths of the cells in the level t grids differ from those at 
t + 1 by a even integer factor Re called a refinement ratio; Re is typically 2 or 4. In space, 
the levels are properly-nested, i.e., there must always be a region at least one cell wide at 
level 8 + 1 separating levels L and t + 2. (See Figure 1). 

levelo levelo 
levell 

level2 
I 
I 

Figure 1: A properly nested hierarchy of grids 

On the full adaptive mesh, the AMR timestep consists of separate timesteps on each 
of the levels, plus synchronization operations to insure correct behavior at the coarse-fine 
interfaces, plus regridding operations which permit the refined grids to track complex and/or 
interesting regions of the flow. The ratio of the level t and the level t + 1 time steps is Re. 
Figure 2 shows a space-time diagram of a single level 0 timestep, during which a regridding 
operation moves the interface between levels 1 and 2. The timestep is a recursive procedure 
which proceeds as follows on level e: 

1. Advance level L, using boundary information from level L - 1 as needed but ignoring 
levels t + 1 and higher. 

2. Advance level t + 1 Re times.(This will involve advancing levels t + 2 and higher, 
recursively.) 

3. Synchronize levels t and t + 1. 

4. If the appropriate regridding interval has passed, tag cells at level t that require 
refinement according to some predefined user criteria, determine new level t + 1 grids 
to cover this region, and transfer data to new grids (using conservative interpolation 
from level t if necessary). 

In the remainder of this section, we refer to steps 1 and 2 as a complete coarse level advance 
or time step; step 1 is referred to as a level advance or a level t advance. 

The algorithm to advance a single level uses the same sequence of steps as the single 
grid algorithm presented in §3. Note that the MAC projection, the Crank-Nicholson solves, 
and the nodal projection must be done on all grids in a level simultaneously. The only 
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T 
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Figure 2: Multilevel timestep structure 

significant modification in adapting the single grid algorithm to a level itclance is that the 
level 0 value of At is always used in the pressure relaxation term in 3 (3.4) regardless of 
the level index. 

A detailed treatment of boundary conditions for the level advance is presented in [l]. 
For our purposes, we need only mention that boundary conditions for the advection and the 
Crank-Nicholson steps are essentially implemented by filling ghost cells of the grids. The 
ghost cells which are interior to the problem domain but exterior to all of the level grids 
are filled by conservative interpolation from the underlying coarser level grids. 

4.2 General State Variable Considerations 

In the adaptive algorithm, the flow quantities whose values persist from one time step to the 
next are the dependent variables in the evolution equations, and, additionally, 3 and a3/&. 
The last two quantities are persistent for algorithmic simplicity and efficiency. The values 
of 3 and &/at at a given level ! are computed by (3.3) and (3.5) only before the projection 
step during the level advance. Otherwise, they are computed by averaging down (at the 
end of a complete level ! time step in cells covered by level ! + 1 cells) or by conservative 
interpolation to level ! cells (in level t cells that are newly created or that are ghost cells not 
contained within existing level ! grids.) The choice to consider 3 and &/at as state-like 
quantities was made in particular to minimize the complexity of the synchronization step. 

The treatment of the primitive quantities T, Yj, and h also requires discussion. Whenever 
ph and p x  have been defined by conservative interpolation or redefined by synchronization, 
T is recomputed according to (2.9). Within a given level, % and h are defined in the obvious 
way. In ghost cells completely exterior to a level, (h) is defined by first conservatively 
interpolating p and p x  (ph). 

The conservative interpolation of the quantities p ,  p x ,  and ph is the final area requiring 
general discussion. As in the single level advection step, the conservative interpolation 
algorithm uses van Leer slope limiting [37] in the approximation of spatial derivatives. For 
the same reasons discussed in 53.2.1, if the conservative interpolation scheme were used 
without modification, interpolated values of ph and pY would not necessarily satisfy (2.9) 
under isothermal conditions. Further, interpolated values of p and pYj might not satisfy 
p = Clpq.  In order to overcome these shortcomings, we modify the slope calculation 
procedure used in the interpolation scheme. In a given cell, we compute van Leer-limited 
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slopes and unlimited central-difference slopes of p, p x ,  and ph. We then compute the 
minimum of the ratios of the limited slopes to the unlimited slopes, where the ratio is 
defined to be one if the slope is zero. The slopes Sp, p = p,ph,pl$, used in interpolation 
are then defined to be this minimum ratio times the unlimited slopes, Le., 

where Slim and Gunyim denote the van Leer limited and the unlimited slopes. In the syn- 
chronization step, corrections for p, ph, and pl$ at a given level may need to be interpolated 
to finer levels. The interpolation of these corrections follows the same strategy. 

4.3 Synchronization 

The general synchronization issues for the present algorithm are roughly the same as those 
for IAMR [I]. Before discussing details specific to low-Mach number combustion, we briefly 
review these. 

The advance of a single level entails a number of convective and diffusive solves as well 
as projections. During the advance of a given fine level, each such operation obtains its 
Dirichlet boundary data from next coarser level. Even though the solution within each level 
is consistent, there is a mismatch at the coarse-fine interface at the end of a complete coarse 
grid advance prior to the synchronization step. Specifically, there are four mismatches 
between a coarse and a fine level after a complete coarse level time step (we adopt the 
notation from 111): 

(M.1) The solution in coarse celis underlaying fine grid cells is not synchronized with the 
overlying fine grid solution. 

(M.2) The composite advection velocity, properly defined, does not satisQ a properly de- 
fined composite divergence constraint at the coarse-fine interface. 

(M.3) The convective and diffusive fluxes from the coarse and the fine levels do not agree 
along the coarse-fine interface. 

(M.4) The coarse and fine cell-centered velocity do not satisfy a properly defined composite 
divergence constraint at the coarse-fine interface. 

The purpose of the synchronization step is to correct the effects of each mismatch. We 
use the notation (Sa)  to refer to the correction for mismatch (M.n). In the remainder of 
this section we outline the correction strategies. The details will be presented in a future 
paper. 

(M.l) is corrected by averaging the fine grid data onto the coarse grid data following the 
approach in [l]. Note that here we average 3 and aS/at onto the coarse grid as well. We 
also average T onto the coarse grid to provide the temperature used to compute diffusivities 
in (S.3). 
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Mismatch (M.2) is corrected with exactly the same approach as that used in [l]. During 
the coarse and fine grid level advances, the difference between the coarse and the fine grid 
advection velocities at a given cell edge along the interface are accumulated in a time and 
area weighted fashion. 

In (S.2), the accumulated differences appear as the right hand side of a MAC sync solve 
whose result is a correction to all the coarse grid advection velocities. Because the coarse 
and fine grid velocities both satisfy the divergence constraint within their respective levels, 
the velocity correction is divergence free; hence, the elliptic equation that is solved in this 
step is identical to that used in [l] for incompressible flow. Because the advection velocities 
used in the original coarse level advance did not contain this correction, we repeat the coarse 
level advection step to generate flux corrections that account for the convective transport 
due to the advective velocity corrections. Note that in this Computation, which we call the 
MAC sync advection step, we follow the same prescription for ph that was used in $3.2.1. 

The correction for (M.3) uses the same general approach as in [l]. There are, however, 
a number of modifications and additional details. For a given coarse cell edge along the 
coarse-fine interface, the differences between the coarse and fine level fluxes (both convective 
and diffusive) are accumulated. A cell-centered correction field is defined on the coarse grid 
cells by combining the accumulated flux differences, which are associated with the coarse 
cells along the interface outside the fine grids, and the divergence of the flux corrections 
computed in the MAC sync advection step. 

Unlike (S.l), (S.3) affects the solution at the coarse level and all finer levels. We first 
define the coarse grid corrections to the scalar fields. We denote the scalar correction fields 
by RHS,,, RHS,,h, and RHS,Y,. The values of the state quantities after (S.l) but prior to 

. First, we redefine RHS, to be CE RHS,,y,. pn+l is then (S.3) are denoted by (-) 
found by 

n+l,S.l 

n+l - nf1,S.l + RHS,. P - -P  
For cp = h, x, we can write 

(P(Prfl - (Pcp) n+l,S.l - - pn+l ( p + l  - p + l , S . l )  + cpn+l,S.l (pn+' - pn+19s-1) . (4.2) 

We see that there are two components to the correction to p'p: a correction to p and a 
correction to cp. The correction to pcp therefore has two steps. We first solve the difference 
equation 

for qcwr, where (P,,,,~ denotes 'pn+' - ' p n S 1 7 S - 1 .  (pep)"" is then computed by 

(pcp)"+l = (pcp)n'l'S.l + pn+lcp,T + 'pn+l,s.l ( p + l  - pn+l,S.l) . 

The coarse grid velocity correction in (S.3) follows the same approach used in [l], with 
straightforward modifications for non-constant viscosity and the tensor form of 7. All the 
coarse grid corrections are conservatively interpolated to the overlying fine grid cells in all 
finer levels. Finally, T is recomputed on the coarse and all finer levels using equation (2.9). 
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The h a l  mismatch, (M.4), is corrected with a similar approach to that used in [l]. 
During the coarse and fine grid level advances, a composite residual is accumulated at 
the coarse nodes at the coarse-fine interface that measures the extent to which the level 
projections fail to satisfy the composite projection equations at the interface. 

Unlike the case of the MAC projection, there is a contribution to this residual due to 
the compressibility of the flow. At a given coarse node at the coarse-fine interface, there 
is a contribution to the residual from the value of aS/at (3.5) in each coarse cell outside 
the fine grid which shares the node and each fine cell bordering any of these coarse cells. 
The total residual R e s y p  (the “SP” subscript denotes sync projection) equals the resid- 
ual Res’$$yeu=o for incompressible flow [l] plus the finite-element weighted contributions 
of ag/at from the coarse cells, plus the time and space averaged finite-element weighted 
contributions from the fine cells, i.e., 

a3 R e s y Y  = + coarse grid - contributions + at 
a3 

&oarsf? at 
1 Rcoarse 

fine grid - contributions. 

Note that the fine grid contributions are first computed at the fine nodes and then averaged 
to the coaxse node. See Figure 3 for an example. 

Figure 3: Schematic showing contributions of coarse and fine grid cell-centered values of 
&/at to the node-based residual for a refinement ratio 2. 

The remainder of (S.4) is identical to the case for incompressible flow reported in [l]. 
The composite residual is combined with the divergence of the velocity corrections found 
in (S.3) to form the right hand side of a multilevel sync projection. Corrections to both the 
velocity and the pressure at the coarse and all finer levels result. 

5 Computational Results 

In this section we present two numerical examples illustrating the methodology described 
above. In both examples, Ar = AZ and the CFL number 0 = .4. 
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5.1 

The first example is the calculation of the steady, unconfined coflowing methane-air dif- 
fusion flame previously computed by Smooke et al. [30]. The experimental configuration 
is illustrated in Figure 4. The radius of the inner fuel jet is .2 cm and the radius of the 
coflowing air jet is 2.54 cm. At the inlet, the temperature is 298 K and the fuel velocity is 
u = 0, ZI = 5.0 cm/sec. The inlet air velocity is u = 0, ZI = 25.0 cm/sec; Re M 760 for a 
reference length equal to the outer diameter of the air jet. 

Steady Laminar Methane-Air Diffusion Flame 

symmetry - 
line 

k 2.56 cm 
\ 

air 
inlet 

fuel 
inlet \ 

I- L. 34 t 

extent of 
computational 
domain 

6.4 crn 

solid 

i”’ 
Figure 4: Sketch of specification of unconfined coflowing methane-air diffusion flame. 

In our computation, the flame is ignited by a small hot patch (T = 1200K) next to the 
inlet. We use a 16 x 40 level 0 grid to cover a 2.56 cm by 6.4 cm problem domain. There 
are three additional levels of refinement. The refinement ratio Re = 2 for ! = 0,1,2, so that 
the equivalent uniform grid is 128 x 320. The inlet boundaries are refined to level 3 so that 
they align with level 3 grid lines. The region T > 2000 K is refined to level 2. 

Figure 5 shows the early development of the flame. The unsteady phase is characterized 
by a vortex ring which appears as a “mushroom” shape in the plots. The ring forms due to 
the initial expansion of gas following ignition and ultimately rises out of the computational 
domain. The boundaries of the level 1, 2, and 3 grids are also shown as thin lines in the 
plots. 

Figure 6 shows the flame at steady-state. We compute a flame length and a maximum 
temperature of 1.68 cm and 2197 K, respectively; Smooke et aE. compute values of 1.25 
cm and 2053 K. Qualitatively, our calculation shows the same general flame shape and 
the same rapid increase of axial velocity along the centerline. We speculate that our high 
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Laminar methane-air flame: early time 

0.0000 sec 

0.0824 sec 

Axial velocity d s e c  

0.0824 sec 

0.0123 sec 

0.0969 sec 0.1110 sec 0.1248 sec 0.1386 sec 

0.0969 sec 0.1110 sec 0.1248 sec 0.1386 sec 

Figure 5: Unconfined coflowing methane-air laminar diffusion flame: early time 

temperatures may be due to using a reduced kinetics mechanism and/or species-independent 
mass diffusivities. 

Note that after the initial projection, the maximum axial velocity umax = 1 m/sec; 
at steady state, vmax M 1.8 m/sec. The computed acceleration is consistent with the 
acceleration due to buoyancy. However, the use of a hot patch to ignite the flow, and the 
resultant large initial velocity due to the imposition of the divergence constraint, probably 
results in too rapid a development of the computed flow. A possible approach to computing 
zt more realistic picture of the early time flow would be to ramp the inlet velocity in time 



I 
Mass fraction Methane 

secA-l Fuel burning rate/density ra rnoK I 

Figure 6: Unconfined coflowing methane-air laminar diffusion flame: late time (0.419 sec). 
pRT is plotted to show how well the scheme meets the constraint po = pRT. The two 
values differ significantly only along the edge of the flame. 

and to model ignition as a transient source in the enthalpy equation. 

5.1.1 Timings 

We now present timings of the code for the steady laminw flame problem discussed above. 
All refinement ratios equal two. Four cases are reported: the 16 x 40 base grid with three 
levels of refinement discussed above, a 32 x 80 base grid with two levels, a 64 x 160 base grid 
wi th  one level, and a uniform 128 x 320 g id .  In the two additional refined cases, the inlets 
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and the region T > 2000K are refined to the finest level. The calculations were all run on 
a 300 MHz single processor DEC Alpha workstation to a final time of .lo412 sec. Table 3 
shows the CPU time used to complete the calculation, the total number of cells advanced, 
the CPU time per cell, and the approximate peak memory usage. The total number of 
cells advanced is the sum over all levels of the number of cells advanced at that level. The 
numbers show that the adaptive mesh refinement scheme can reduce the computational cost 
in terms of both CPU time and memory usage. For the examples run, however, the CPU 
time per cell does increase with the number of levels of refinement; the time for the level 
three case is double that of the level zero case. The results suggest that the refinement 
strategy used must be judicious; if too large a portion of the domain were refined, grid 
refinement would not lower the computational cost. 

u 16 x 40,R= 2,2 ,2  11 8039. 11 1208 11 6654496 9 U 
Table 3: Timings for uniform grid and refined grid calculations on a single processor of a 
four-processor DEC Alpha for the steady laminar flame problem presented in Section 5.1. 

5.2 Flickering Methane-Air Diffusion Flame 

The other example is the calculation of a flickering, unconfined coflowing methane-air dif- 
fusion flame. The computation models the coannular burner used by Smyth et al. [33, 321 
in a flame study performed to help develop better models of soot formation. They report 
results that include the effect of acoustic forcing [33] and those that do not [32]. The latter 
case is the one computed here. Yam et al. [39] have also simulated this flow using a single 
grid projection method. 

The experimental configuration is conceptually similar to that modeled in the previous 
section. The coamular burner consists of a fuel inlet with a radius of .55 cm surrounded 
by an annulus of coflowing air with an outer radius of 5.1 cm. The velocity of both inlet 
streams is 7.9 cm/sec. 

In our computation, the flame is ignited by a small hot patch (T = 1200K) next to the 
inlet. We use a 32 x 128 level 0 grid to cover a 6.4 cm by 25.6 cm problem domain. There 
are two additional levels of refinement. The refinement ratio Re = 2 for f2 = O,l, so that 
the equivalent uniform grid is 128 x 512. The inlet boundaries are refined to level 2 so that 
they align with level 2 grid lines. The region T > 1950 K is also refined to level 2. 

During the early development of the flow, the flame grows in length and oscillates in.a 
non-periodic manner; see Figure 7 for the time history of the flame length. After approx- 
imately .75 sec, the flame reaches a “steady-state” in which it exhibits a highly periodic 
oscillatory behavior best described as flickering. The flame oscillations are caused by a 
buoyancy induced Kelvin-Helmholtz type of instability. Figure 8 displays the temperature 
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field during a single flame oscillation. We compute a flickering frequency of 12.2 Hz; Smyth 
et al. report a value of 12 Hz. The computed time-averaged flame height is 6.94 cm; the 
experimental value is 7.9 cm. Yam et al. compute values 15.7 Hz and 5.51 cm. As in the 
calculation reported in the previous section, our computed temperatures are again too high; 
see the discussion above. We also compute a larger flame height oscillation (roughly 3 cm) 
at steady-state than do Yam et aE. (1 cm). 

Flame Length 
(axial location of temperature maximum) 

' I  1 . 1 ' 1 '  I ; '  I ' I ' I ' I ' I ' 
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Q) - I 
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1 
0.020 

0.000 
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 

time (sec) 
Figure 7: Axial position of the maximum temperature of the flickering flame along the 
centerline axis as a function of time. 

6 Conclusions and Discussion 

We have presented an adaptive projection method for computing unsteady, low-Mach num- 
ber combustion. The adaptive mesh refinement scheme incorporates a higher-order projec- 
tion methodology and uses a nested hierarchy of rectangular grids which are refined in both 
space and time. The algorithm is currently implemented for laminar, axisymmetric flames 
with a reduced kinetics mechanism and a Lewis number of unity. Numerical results for two 
test problems are favorable with the exception that the computed temperatures are signifi- 
cantly higher than the values reported elsewhere. We speculate that the high temperatures 
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Flickering laminar methane-air flame: 1 cycle 

K 

2.0121 sec 

1.9799 sec 

2.0276 sec 
- 
2.0464 sec 

Figure 8: Temperature field of flickering flame during a single flame oscillation. 

may be due to the use of a reduced kinetics mechanism and/or species-independent mass 
diffusivities. 

Future directions for this work include incorporating detailed chemistry and species 
dependent mass diffusivities, and extending the methodology to three-dimensional and tur- 
bulent flows and to realistic engineering geometries. 
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