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Introduction - GalnAsSb alloys are of great interest for lattice-matched

thermophotovoltaic (TPV) devices because of the high performance attainable at 2.2 um.

Extension of the TPV device cutoff wavelength to beyond 2.2 um is especially desirable
since the emissive power of the source is significant at these longer wavelengths.
However, the GalnAsSb quatemary alloy system exhibits a miscibility gap in the
wavelength range of interest, and no devices with cutoff wavelengths longer than 2.3 um
have been demonstrated. This paper reports the successful growth of GalnAsSb alloys
which exhibit room temperature photoluminescence (PL) at wavelengths as long as 2.5

pm. TPV devices with cutoff wavelengths out to 2.5 Hm exhibit external quantum

efficiencies of 57%. These values are comparable to those measured for 2.2 pm devices.
Viewgraph 1 - This viewgraph shows the miscibility gap for Gaj.xInxAsySby.y alloys.
The solid curve shows the boundary between stable and metastable alloys at a
temperature of 600 °C, Alloys inside the boundary are metastable. The dashed curves
show the energy gap of the GalnAsSb alloys. The solid line corresponds to alloys that are
lattice matched to GaSb substrates. GalnAsSb alloys that are lattice matched to Gasb and
have cnergy gaps greater than 0.6 eV (~2.1 pum) are stable, while those less than 0.6 eV
(the alloys of interest for TPV’s) are metastable according to the thermodynamic
calculations. The composition of the metastable alloys lattice matched to GaSb have x-
and y- values approximately greater than 0.1. We have grown high quality GalnAsSb
alloys into this miscibility gap with energy gap downto 0.5 eV.

Viewgraph 2 - Gaj.xInsAsySby.y epilayers were grown by organometallic vapor phase
epitaxy (OMVPE) in a vertical rotating-disk reactor with Hz carrier gas at a flow rate of
10 slpm, reactor pressure of 150 Torr, and a typical rotation rate of 100 rpm. Solution

*This work was sponsored by the Department of Energy under AF Contract No. F19628-
95-C-0002. The opinions, interpretations, conclusions and recommendations are those of
the author and are not necessarily endorsed by the United States Air Force.
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trimethylindium (TMIn), triethylgallium (TEGe), tertiarybutylarsine (TBAs), and
trimethylantimony (TMSb) were used as organometallic precursors. For doping studies,
diethyltellurium (DETe) (10 ppm in Hp) and dimethylzinc (DMZn) (1000 ppm in H3)
were used as n- and p-type doping sources, respectively. Epilayers were grown at 525,
550, and 575°C. The growth rate was ~2.5 to 5 um/h. Ga}.xInxAs,Sbj.y epilayers were

grown without a GaSb buffer on (100) Te-doped GaSb substrates misoriented 2° toward
(110) or 6° toward (111)B. For clectrical characterization, semi-insulating (SI) GaAs
substrates of similar orientations were used because SI GaSb substrates are not available.
The surface morphology was examined using Nomarski contrast microscopy and atomic
force microscopy (AFM). High-resolution axis x-ray diffraction (HRXRD) was used to
measure the degree of lattice mismatch to GaSb substrates. PL. was measured at 4 and 300
K using a PbS detector. The microstructure was studied using transmission electron
microscopy (TEM). Carrier concentration and mobility of GalnAsSb epilayers were
obtained from Hall measurements based on the van der Pauw method, while secondary
ion mass spectroscopy (SIMS) was used to determine the atomic concentration of
dopants. '
Viewgraph 3 - The distribution (incorporation) coefficient of In in GalnAsSb is shown
here for epilayers grown at 525, 550, or 575°C. Indium is more effectively incorporated
at lower growth temperatures. At 525°C, the In distribution coefficient is 1.2, and
decreases to 0.95 and 0.5 at 550 and 575°C, respectively. The highest indium content in
the GalnAsSb is ~ 0.2,

Viewgraph 4 - The data for As incorporation indicate that the distribution coefficient is
approximately unity independent of growth temperature. These results suggest that the
TBAs and TMSb are completely pyrolized.

Viewgraph S - The degree of lattice mismatch of GaInAsSb epilayers on GaSb can
influence the performance of the TPV devices. Therefore, we determined the sensitivity
of lattice mismatch on the fraction of TBAs in the gas phase. The results show here that
excellent control of lattice matching can be obtained with TBAs. The change in x-ray

splitting is about 160 to 180 arc sec per sccm Hp flow through the TBAs source.
Viewgraph 6 —~Nomarski micrographs of the surface morphology of Ga]-xInxAsySbi.y

layers lattice matched to GaSb substrates are shown here. The layers were grown at 525
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°C. The In and As concentrations were varied with 0.09 < x < 0.23 and 0.08 <y < 0.21.

As the In and As concentrations increase, the surface morphology exhibits an increased
‘wavy’ texture. Layers with X and y values less than approximately 0.21 had a mirror-like
appearance to the eye. For x ~ 0.23, y ~ 0.21, the surface was hazy.

Viewgraph 7 - AFM images comrespoading to the layers shown in the previous viewgraph
are shown here. A marked increase in surface roughness is measured as the x- and y- -
values increase. The root-mean-square roughness for thcée layers is 0.2, 0.8, 1.5, and 8
nm, respectively, for layers with increasing x-and y-values. The surface features are
oriented in the [011] direction for layers with x, y < 0.2, and suggest a step-bunching
growth mode. The irregular pattern observed for the layer with x ~ 0.23, y~ 0.21 suggests
a three-dimensional growth mode. The degradation in surface morphology may be related
to the increased instability of the alloy since this composition corresponds to a region
further inside the miscibility gap.

Viewgraph 8 — This viewgraph shows HRXRD ©-2© scans plotted on a log scale for
GalnAsSb epilayers about 2 um in thickness. All layers are nominally lattice matched to
the GaSb substrate. A dependence of the full width at half-maximum (FWHM) of the
epilayer peak on the In and As concentrations is observed. For the epilayer with the
lowest x and y values (x = 0.09, y = 0.08), FWHM of the epilayer peak is comparable to
that of the GaSb substrate (23 arc s). The FWHM increases to 32 arc s with increasing In-
and As-values, For x = 0.20, y = 0.18, the cpilayer is matched to the substrate, but the
scan is substantially broadened. This broadening may be related to a range of d-spacings
associated with early stages of phase separation of the Gal-xlnxASySb1-y metastable
alloy to GaAs- and InSb- rich regions.

Viewgraph 9 — The PL from epilayers shown in the previous viewgraph is shown here.
The peak emission for the sample with x = 0.09, y = 0.08 is 1818 and 2035 nm at 4 and
300 K, respectively. The 4 K FWHM is 5.3 meV. With increasing x and y values, the 4
and 300 X emission increases to 2080 and 2320 nm, respectively, for x = 0.16, y = 0.15;
and to 2225 and 2505 nm, respectively, for x = 0.2, y = 0.18. The 4 K FWHM also
increases to 7.5 and 25 meV, respectively. The longest PL emission at 300 K observed in

our current study is 2525 nm.
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Viewgraph 10 -~ This viewgraph sumimarizes the 4 K PL FWHM data for Gaj.
xInxAsySb1.y epilayers. These layers were grown at 525, 550, and 575°C. Several trends

are observed. The PL FWHM values are strongly dependent on growth temperature and
peak energy. The lowest PL. FWHM values are obtained for layers grown at the lowest
temperature of 525°C. The narrowest PL FWHM values are ~5 meV for 4 K peak energy
greater than 0.62 eV, and increase sharply below 0.60 e¢V. On the other hand, the PL
FWHM increases below ~0.63 and 0.67 eV for layers grown at 550 and S575°C,
respectively. Since broadening in PL spectra can be a result of alloy scattering, the data
are consistent with increased alloy clustering especially for layers with composition
approaching the miscibility gap. These results suggest that under nonequilibrivm
conditions for OMVPE growth, the kinetics can have a significant influence on the extent
of penetration into the miscibility gap. The smallest FWHM value measured is 4.7 meV
at 0.643 eV, which is the lowest value that has been reported for this alloy system grown
by OMVPE.

Viewgraph 11 - This viewgraph shows plan view TEM micrographs for GalnAsSb with
alloy composition in the stable region (x = 0.06,y = 0.05) and in the metastable region (x
= 0.18, y = 0.14). The layer grown in the stable region is characterized by a uniform
contrast, while that in the metastable region exhibits significant contrast. This contrast
may arise from the compositional variations in the layer.

Viewgraph 12 — The composition was estimated from energy dispersive x-ray analysis,
and the results are shown in this viewgraph. The lighter regions are InSb-rich compared
to the bulk composition, while the darker regions are GaAs-rich. The compositional
changes relative to the average concentrations are less than a few percent for the InSb-
rich regions and about 10 percent for the GaAs-rich regions,

Viewgraph 13 - The 300 K clectrical properties of p-doped Gaj.xIngAsySbi.y are
summarized in this viewgraph. The 300 K PL wavelength of the layers represented by the
closed circles is approximately 2.25 um. The electrical propertics of the p-type GalnAsSb
depend on the epilayer composition. For Zn-doped epilayers with p ~ 1 x 1017 cm-3, the
hole mobility decreases from 440 to 240 cm?/V-s for 2.05- and 2.5-um material, On the
other hand, the electrical characteristics are similar for undoped GalnAsSb epilayers (p-
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type at ~ 1 x 1016 cm3). The Zn concentration as measured by SIMS is about 1.5 to 2
times higher than the measured hole concentration.

Viewgraph 14 - The 300 K electrical propecties of n-doped GalnAsSb epilayers is shown
here. The electron concentration ranges from 2.3 x 107 to 2.3 x 1018 cm3, with
corresponding mobility values between 5208 and 2084 cm?/V-s, respectively. The
electrical characteristics of the n-type layers are not dependent on the composition of the

alloy. It should be noted, however, that Hall measurements could not be made on n-type

GalnAsSb with 300 K PL wavelength ~ 2.5 um. The Te concentration measured by

SIMS is about 1.5 to 2 times higher than the electron concentration.
Viewgraph 15 - This viewgraph shows the layer structure of the TPV devices, which

were grown at 525°C on (100) 6° toward (111)B GaSb substrates. The structure consists
of 0.1-ium-thick n-GaSb buffer layer, 1-pm-thick n-GalnAsSb base layer (doped to ~5 x
1017 cm3), 3-pm-thick p-GalnAsSb emitter layer (doped to ~2 x 1017 cm'3), and 0.05-
Um-thick p-GaSb contact layer (doped to ~2 x 10!8 cm3). The GalnAsSb alloy
composition was varied to evaluate device performance as a function of cutoff
wavelength.

Viewgraph 16 - The external quantum efficiency (QE) for several devices is plotted as a
function of wavelength in this viewgraph. The external QE at 2 um is 56, 54, and 57%,
respectively for devices with cutoff wavelength of 2.3, 2.4, and 2.5 um. At 2.5 pm, the
QE is as high as 41% for the 2.5-um device. These high values of QE suggest that this

characteristic of the TPV devices is not highly dependent on the specific characterization
of materials properties reported in this study.
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GalnAsSb Growth And Characterization

® Sources:
— Triethylgallium (TEGa)
— Trimethylindium (TMIn, solution)
— Tertiarybutylarsine (TBAS)
— Trimethylantimony (TMSb)
— Dimethylzinc (DMZn, 1000 ppm in H,)
— Diethyltellurium (DETe, 10 ppm in H,)

®* Growth temperature: 525, 550, 575 °C
® VAll ratio: 0.9t0 1.7
¢ Growth rate: 2.5 to 5 ym/h

¢ Substrates: GaSb and SI GaAs
- (100) 2° —.(110)
- (100) 6° — (111)B

® Vertical rotating-disk reactor operated at 150 TORR

® Characterization
— Nomarski contrast microscopy, XD, PL, TEM, Hall, SIMS  viewgraph 2
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Lattice Matching Gay.xInyAs,Sb¢.,/GaSb ]

with Tertiarybutylarsine
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X-Ray Diffraction of GajxInxAsySby.y
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FWHM of 4K PL of GalnAsSb
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TEM Contrast Modulation
in Gaj.xInyAs,Sby.y
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Electrical Characteristics of p-GalnAsSb
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Electrical Characteristics of n-GalnAsSb
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GalnAsSb/GaSb TPV Structure
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