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THE EFFECT OF NEUTRON IRRADIATION ON SILICON CARBIDE FIBERS

G.A. Newsome .
Lockheed Martin, Schenectady, New York

ABSTRACT

Nine types of SiC fiber have been exposed to neutron radiation in the Advanced Test Reactor at
250°C for various lengths of time ranging from 83 to 128 days. The effects of these exposures
have been initially determined using scanning electron microscopy. The fibers tested were
Nicalon™ CG, Tyranno, Hi-Nicalon™, Dow Corning SiC, Carborundum SiC, Textron SCS-6,
polymethysilane (PMS) derived SiC from the University of Michigan, and two types of MER SiC
fiber. This covers a range of fibers from widely used commercial fibers to developmental fibers.
Consistent with previous radiation experiments, Nicalon fiber was severely degraded by the neutron
irradiation. Similarly, Tyranno suffered severe degradation. The more advanced fibers which
approach the composition and properties of SiC performed well under irradiation. ' Of these, the
Carborundum SiC fiber appeared to perform the best. The Hi-Nicalon and Dow Coming fibers
exhibited good general stability, but also appear to have some surface roughening. The MER fibers

and the Textron SCS-6 fibers both had carbon cores which adversely influenced the overall stability
of the fibers.

INTRODUCTION

The objective of this study is to provide initial information on the radiation stability of
silicon carbide fibers. Ceramic matrix composites made with these fibers are being investigated.
Other studies have been reported on these and similar fibers and composites which showed that
some SiC fibers shrink and debond from the matrix when irradiated.»? The debonding degrades
the mechanical properties of the composite. Furthermore, crystalline SiC swells when irradiated
which also promotes debonding. The scope of the current study is to confirm the behavior of the
materials that have been previously tested and extend the database to newly developed and less well
characterized fibers.

MATERIALS AND EXPERIMENTAL PROCEDURE

Table I lists the fibers evaluated in this study and some of their attributes.>® They include

. commercial fibers such as Nicalon™, Tyranno, Hi-Nicalon™, and Textron SCS-6 as well as

developmental fibers such as Dow Corning Crystalline SiC, Carborundum Sintered SiC, University
of Michigan PMS-SiC, and MER SiC. The density and an estimate of the level of crystallinity of
each of these fibers is also given in Table L

Irradiation Conditions

The fibers were irradiated in the Advanced Test Reactor in Idaho in an inert atrhosphere
at an irradiation temperature of about 250°C. The reactor exposures ranged from 83 to 128
effective full power days (EFPD) which produced neutron fluences from 12.8 to 34.3 x10%° n/cm®



(E>0.1 MeV). This can be converted to a dose range of 1.0 to 2.8 displacements per atom SiC
(dpa-SiC). Table I gives the radiation dose for each type of fiber tested. During the exposure,
the fibers were sealed in an irradiation capsule that was filled with inert gas (helium or argon).

Characterization

The fibers were observed visually after they were removed from the irradiation capsule.
This provided general insight into how the fibers performed. Many poor performing fibers crumbled
into powder. High magnification scanning electron microscopy (SEM) was used to qualitatively
assess the fibers. Particular attention was paid to changes in surface condition and to the ends of
the fibers. Also, any characteristic features due to processing were investigated.

RESULTS AND DISCUSSION

The Nicalon™ fiber exhibited severe degradation due to irradiation (Figure 1). The fiber
surface became very rough. This was consistent with the earlier studies of the irradiation
performance of this fiber. However, it should be pointed out that the degree of damage seen here
was much higher than previously reported.” > This may be a function of the low irradiation
temperature of this test. Low temperature irradiation is more damaging than intermediate
temperature irradiation (1000 - 1200°C) since less damage is annealed out. The amorphous
structure of this fiber is believed to be the reason for the poor performance. Further, the
appearance of the irradiated fibers is similar to that of Nicalon™ fiber that has been degraded by
thermal exposure (at temperatures greater than 1100°C). These and earlier results clearly show that
ceramic grade Nicalon™ is not suitable for applications that require neutron irradiation. Table I
summarizes the effect of irradiation observed in this test.

The Tyranno fiber displayed the most degradation of all the fibers tested here (Figure 2).
This fiber disintegrated into mostly powder with only small fragments of fiber remaining. In Figure
2 sections of the outer parts of the fiber that have not spalled off can be seen. 'I'hlsﬁberls also
highly amorphous (nearly 100%) which causes the poor performance.

The Hi-Nicalon™ fiber showed only minor surface changes after the irradiation (Figure
3).. The fiber appeared to have a rougher surface. This could cause a reduction in strength of the
fiber and could limit the amount of fiber pull-out in a ceramic matrix composite. However, the
fiber appeared to be acceptable for radiation environments. The changes in surface character may
also be different if the fiber was coated or in a composite matrix.

The crystalline SiC fiber from Dow Coming exhibited some surface roughening (Figure
4) with more open porosity present. The boron sintering aid may have caused the increased
porosity due to helium gas formation during irradiation.

The PMS-SiC fiber made by the University of Michigan had some minor damage after
irradiation that appeared as crumbling or spalling of an outer surface layer (Figure 5). This had
the effect of producing a somewhat rougher surface. The most interesting feature of this fiber was
the rows of porosity that were visible after irradiation (Figure 5 and 6). The linear nature indicated
that the distribution of whatever caused the porosity was controlled by the extrusion process used
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to make the fiber. There are several explanations for the linear porosity including entrapped gas
during the fiber forming process and helium gas generation during irradiation from clumped boron.

The sintered SiC fiber from Carborundum showed the least amount of degradation
(change) with irradiation. The major change was that the surface became smoother (Figure 7).
This was the opposite response to what happened to most of the other fibers. This could lead to
higher fiber strengths and higher pull-out amounts for composites made with this fiber. This fiber
also had a small amount of boron, but no evidence of increased porosity due to helium gas
generation was evident. The amount of boron in this fiber was probably much less than that in the
other fibers. '

The MER SiC fibers underwent some surface roughening during irradiation. For the fiber
produced from the T300 carbon fiber, the striated surface roughness transformed into general
surface roughness (Figure 8). Furthermore, most of the longitudinal cracks present prior to
irradiation disappeared. This fiber also appeared to have a multi-layer internal structure. At the
ends of the individual filaments, the outer portion of this fiber had spalled away (Figure 9). The
MER fiber produced from the IM9 carbon fiber went from a relatively smooth surface to a rough
surface with irradiation (Figure 10). As with the other MER fiber, the cracks present prior to
irradiation were not present after irradiation.

The Textron SCS-6 fiber had an interesting response to the irradiation due to its structure.
The carbon filament which serves as a mandrel during the chemical vapor deposition (CVD)
processing of this fiber shrank away from the SiC part of the fiber due to the irradiation (Figure
11). The shrinkage of the carbon filament was consistent with the behavior of imradiated graphite.'°
Similarly, the carbon rich coating on the SCS-6 fiber also degraded (Figure 12). It appeared to peel
off in some locations and to spall locally in others. The SiC portion of this fiber, however,
appeared to be unaffected. The shrinkage of the carbon core of the SCS-6 fiber does not preclude
the use of this or any other similar fiber in composites intended for neutron exposure. However,
at high neutron exposures and irradiation temperatures, carbon will stop shrinking and start to
expand. If this expansion is such that it causes the carbon core to push on the SiC portion of the
fiber, mechanical degradation of the fiber may occur.

The significantly amorphous polymer derived fibers (Nicalon™ and Tyranno) were
severely degraded by irradiation such that they would not be suitable for neutron radiation
environments. Fibers that are primarily crystalline SiC and have only minor amounts of boron (Hi-
Nicalon™ and Sintered SiC from Carborundum) had the best performance under irradiation. These
two fibers had only small changes in surface appearance. Polymer derived fibers with larger
amounts of boron (Dow Corning Crystalline SiC and PMS-SiC) had major changes in surface
appearance and an increase in surface porosity. This can be addressed by either a reduction in the
boron content or by changing the isotopic enrichment of the boron such that less helium is
generated. The MER SiC fibers held together rather well, except for the increase in surface
roughness. Finally, the SiC portion of Textron SCS-6 fiber showed good stability, but the carbon
core and carbon rich outer coating were degraded. The shrinkage of the carbon core in itself may
not be detrimental to the performance of the SCS-6 fiber.
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SUMMARY

Several SiC fibers were irradiation tested to gage their performance under neutron irradiation.
Fibers which were significantly amorphous were severely degraded by the radiation. Fibers that
approach crystalline SiC showed only small changes, primarily in the texture of the surface. Two
fibers appeared acceptable as they exist today, while several others will require more development
before they are acceptable for neotron radiation environments.
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TABLE I - Manufactorer and Key Attributes of Tested Fibers®®

Fiber Vendor Year Composition

Made (wt%)
Nicalon™ CG Nippon 1993 Si-31C-120
Tyranno Ube 1993 Si-28C-170-3Ti
Hi-Nicalon™ Nippon 1993 $i-36C-0.50
SCS-6 Textron 1993 SiC+C
Crystalline SiC =~ Dow Coming 1994 Si-28C-2.3B-0.90
Sintered SiC Carborundum. 19%4 SiC+B
PMS-SiC U. of Michigan 1993 Si-31C+B
MER SiC (T300) MER 1994 Si-30C

1994 Si-30C

MER SiC (IM9) MER

Fiber Dose
dpa-SiC
‘Nicalon™ CG 25
Tyranno 24
Hi-Nicalon™ 238
Crystalline SiC 20
PMS-SiC 18
Sintered SiC 20

MER SiC (T300) 1.0

MER SiC (IM9) 24

'SCS-6 20

Ob # ASN3dX3 LAOD IV 0I0NAOYdIY

* Crystallinity is estimated from x-ray diffraction and density data.

TABLE II - Summary of the Effect of Neutron Irradiation

Observations

major degradation

major degradation, worst

minor surface changes

some surface degradation

some smface degmdation‘

good performance,-surface smoothing
increase m surface roughness
increase in surface roughness
shrinkage of carbon core

degradation of carbon rich surface layer
no observed changes to SiC portion

(gfem®)

255
237
274
32
3.0
3.15
3.1
3.1
31

S888888ck ®

Acceptable for
Radiation Env.
no

no

yes

marginal
marginal

yes |
marginal
marginal

marginal
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Figure 2: Tyranno fiber before and after irradiation.
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Figure 3: Hi-Nicalon™ fiber before and after irradiation.
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Figure 4: Dow Corning Crystalline SiC fiber before and after irradiation.
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Figure 5: University of Michigan PMS-SiC fiber before and after irradiation.
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Figure 6: Close-up of row of porosity found on PMS-SiC fiber after irradiation.
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Figure 7. Carborundum Sintered SiC fiber before and after irradiation.
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Figure 8: MER SiC (T300) fiber before and after irradiation.
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Figure 10: MER SiC (IM9) fiber before and after irradiation.
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Figure 11: Textron SCS-6 fiber before and after irradiation.
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