UCRL-JC-131753
PREPRINT

SimTracker-Using the Web to Track
Computer Simulation Results

J. Long
P. Spencer
R. Springmeyer

This paper was prepared for submittal to the

1999 International Conference on Web-Based Modeling and Simulation
San Francisco, CA
January 17-20, 1999

August 26, 1998

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprint is made available
with the understanding that it will not be cited or reproduced without the
permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

SimTracker - Using the Web to Track
Computer Simulation Results

J. Long, P. Spencer, R. Springmeyer
Lawrence Livermore National Laboratory

ABSTRACT

Large-scale computer simulations, a hallmark of computing at Lawrence Livermore
National Laboratory (LLNL), often take days to run and can produce massive amounts

of output. The typical environment of many LLNL scientists includes multiple hardware
platforms, a large collection of eclectic software applications, data stored on many
devices in many formats, and little standard metadata, which is accessible documentation
about the data. The exploration of simulation results typically proceeds as a laborious
process requiring knowledge of this complex environment and many application
programs.

We have addressed this problem by developing a web-based approach for exploring
simulation results via the automatic generation of metadata summaries which provide
convenient access to the data sets and associated analysis tools. In this paper we will
describe the SimTracker tool for automatically generating metadata that serves as a quick
overview and index to the archived results of simulations.

The SimTracker application consists of two parts - a generation component and a
viewing component. The generation component captures and generates calculation
metadata from a simulation. These metadata include graphical snapshots from various
stages of the run, pointers to the input and output files from the simulation, and assorted
annotations describing the run. SimTracker generation can be done either during a
simulation or afterwards. When integrated with a code system, SimTracker does its
work on the fly, allowing the user to monitor a calculation while it is running.

The viewing component of SimTracker provides a web-based mechanism for both quick
perusing and careful analysis of simulation results. HTML is created on the fly from a
series of Perl CGI scripts and metadata extracted from a database. A variety of views are
provided, ranging from a high-level table of contents showing all of one's simulations,

to an in-depth results page from which numeric values can be extracted and analysis
tools can easily be launched. Annotations can be associated with a calculation at any
time, allowing an end-user to customize the summary pages with titles, abstracts, and
pointers to related information, for example.

In this paper, we will present an overview of the design, implementation, and
operational aspects of the SimTracker application. We will also discuss how it is being
deployed in the environment of the Accelerated Strategic Computing Initiative [1].
SimTracker was designed as an extensible application that we are now adapting to use
with several simulation codes.

Keywords: Computer simulation, electronic notebook, metadata, simulation monitoring

INTRODUCTION

SimTracker is applicable to a wide range of computing and work environments, but this
paper focuses on the environment of our target users: physicists at the Lawrence
Livermore, Los Alamos, and Sandia national laboratories. The LLNL computing
environment includes workstation clusters, symmetric multiprocessor (SMP) clusters,
massively parallel machines, high speed parallel storage architectures, disk and tape
archives, local area networks, and internet wide area networks (WANS), all connected via
very high speed data networks and switches.

Physicist end users perform extremely complex and large-scale simulations to model
physical phenomena. They use a suite of computer applications, called a simulation code
system, that can take from hours to weeks to run and that can generate massive amounts of
data. Typical components of a code system include a generation code that creates the initial
digital representation of the simulation based on user-supplied grid and material

information; a physics code that performs the actual simulation and which generates the
majority of the data; and a handful of utility codes which perform tasks ranging from data
translation to scientific visualization and analysis.

The nature of the phenomena being studied often makes it necessary to use multiple code
systems, each with specialized modeling capabilities and grid characteristics. Physicists
compare their many sets of results with other computational results and with experimental
data, in an effort to understand how well their simulations predict physical events. A user
typically runs dozens or even hundreds of variations. Managing the resulting output has
been handled on an ad hoc basis by each user. Most use hardcopy notebooks to keep track
of their computational plans and results. Their data is scattered across multiple platforms,
uses a variety of formats, is difficult for them to keep organized, and is typically

inaccessible to their colleagues. Managing on-line calculation components, from input
decks to results files, is currently a very manual process. Files are moved from one system
to another with FTP, analysis tools are launched manually, and the metadata that does get
created is typically hand-written. With the advent of the massive computing capability
provided by the national laboratories' current accelerated program, managing calculation
results in this fashion becomes untenable.

Our approach to this problem is to provide users with a familiar, web-based, paradigm for
accessing their simulation components, from input parameters to results. Metadata is
generated automatically where possible, and mechanisms for easily adding personal
annotations are supported. All metadata is stored in a database suitable for subsequent
searching. The mechanics of transferring data from one host to another and of launching
analysis tools are hidden from the user. Most importantly, with SimTracker the user can
easily find both recent and legacy results, and then simply view and analyze all pertinent
datafiles associated with the run. Furthermore, other scientists can use SimTracker to view
the results of colleagues.

BACKGROUND AND RELATED WORK

Techniques for monitoring and documentation of simulation runs or experimental data
collections have been developed for several applications areas, such as chemistry and
biology. Ecce’ is an integrated environment for molecular modeling and simulation
activities, developed at PNL [2]. LBL has with other partners developed a collaboratory
aimed at facilitating remote collaboration and sharing of spectro-microscopy data [3].
Electronic notebooks, such as the Virtual Notebook System [4] can replace traditional

hand-written lab notebooks and add new functionality, such as searching, hyperlinks, and
WYSIWYG editing. SimTracker shares some of the features of electronic notebooks, such
as electronically collecting related information together, and associating metadata with data.
It differs in that it has been tailored to run within the framework of large physics code
systems and to produce updated summaries as the code runs. It meets a specific goal of
tracking a simulation and it also fits into a larger system of metadata tools, in which a
database is used to store and access metadata created by SimTracker and other tools. Our
goal was a flexible architecture that can be adapted to many code systems and can work
within that framework of tools.

The SimTracker work grew out of the Intelligent Archive project [5,7] at LLNL, and is

now being sponsored by the Scientific Data Management area in ASCI. The metadata
formats used are heavily influenced by the efforts of an archiving project which has defined
a set of metadata fields for the exchange of information and data within a subset of the
Department of Energy complex [6]. The remainder of this paper describes in detail our
design and implementation of the SimTracker tool for solving this problem.

DESIGN

The SimTracker application consists of two distinct parts - a generation component and a
viewing component. (See Figure 1.) The generation component runs on the large
computing platforms along with the simulation codes. It is responsible for tracking all

files associated with the code run, for copying these files to the mass storage system,
and for generating meaningful metadata such as graphical snapshots from the code
output. The viewing component is completely separate and is responsible for creating the
web-based interface to the results.

raphics
Tools
Data E:-:t

A pplicationsg

simulation
Clode

HPR2E

D IO T3EL

Figure 1: SimTracker Architecture Diagram

An important design consideration for SimTracker was to support the creation of
calculation summaries both as the simulation is running, and afterwards. This was
accomplished by splitting the generation component into three pieces - “begin”, “cycle”,
and “end”, to reflect the times during which files can be collected and operations
performed. When integrated with a code system, SimTracker allows a user to track
calculations as they are running, by viewing updated summaries including graphical
shapshots.

A key requirement for SimTracker was to provide web-based viewing of calculation
summaries. In an effort to gather user feedback, our quick and simple first prototype
created static HTML documents. Armed with a full set of user requirements, we refined
the design and migrated to a CGl-based dynamic HTML solution. This gives us a great
deal of flexibility in customizing and extending the capabilities of SimTracker.

The viewing component of SimTracker consists of a collection of CGI programs which
create HTML calculation summaries on the fly, giving users a quick glance at their
results and a way to initiate further analysis. The contents of the web pages are
assembled from information in a metadata database populated by the generation
component. The layout of the pages is controlled by customizable template files. The
view provided to the user is hierarchical (See Figures 2,3,4). The top level, or table of
contents, shows all calculations at a glance. The next level down is a results page
consisting of information about a specific calculation. The final level down, the cycle
page, consists of information about a particular state in a calculation.

= Netscape: Calculation Index (By Project) =————— P H

Calculation Index

Jeffery W. Long {(07-07-1998 14:36)

1 .
L et Livermora

[Run
Stat

e Hwiro Experiment 007198 - . Calculation of the jet formation Cwcle
.ﬁ 14108 mmm |~y 4.y | Jet Formation Calculation | “p 50,0 iy preparation for. .. 1349

*ﬂ Container Drop drp 07103198 | COYOTE Transportation CORBA coupled COYOTEIALEGRA
1

Data Project ID Date Title Comment

Test 14:04 Container Drop Test zimulation of a WanpoIta. .. Done

07101198
14:10

Spherical shells test problem ron
with Tecolote. ...

ﬁ Tecolote shl Tecolote Spherical Shells
. Compaction Stmdy | cth nfi!f_fi!a?ﬁ CTH Run CTH calculation of particle Done

Done

COMPACHon. ...

I Compare] [House Keeping]

SimTracker

INTELLIGENT ARCHIVE

00206 00395
2.06 3.95
Ccle (00610 |ona7z 01349
[Time [6.10 la.72 [13.42
Calculation Overview
Calenladon of the jet fonmation problen in preparation for performing the Hwimo Experiment 14108,
Other Related Data Time Dependent Data
Input Files
o Main Input Deck
o SimTrackerlnput
Output Text Files

o Coniroller Log File

Figure 2: Table of contents page showing entries for all simulations.
Netscape: Jet formation calculation for 14108 BHH
Hydro Experiment 1410B (mmm)
Jeffery W. Long
Calculation Summary

Cpele (00000 I
T !

Launch on file{s) "momm. dp"

o Bawh Log File

o Edit Filz

Time Dependent Drata [Locally

=

Other Files

L” Lau.m:h]

Figure 3: Result page showing summary of one simulation

] »

1

A TR

&

O =——————————Netsrape:Hydro Experiment 1410B (yrcle 1M =——————— I H

] »

Hydro Experiment 1410B

JetSim (mmm)

Jeffery W. Long 07-07-1998

CYCLE 01349 TIME 13.49

42daladg

25,
El:

a1349 pasUudo v bnd

Lannch ¥is Tool on graphics file: [Locally L” Launch]

A
—a

SimTracker

= | I
Figure 4: Cycle page showing details from a specific cycle, or state.

IMPLEMENTATION

The generation component is implemented as a set of Perl scripts. An early prototype
was implemented in Expect, but difficulties operating under the local batch job
submission system required an alternative approach. Perl has lent itself well to this
project’s needs -- many quick experiments and prototyping ventures, with an underlying
evolutionary software design model.

The files to be tracked during the calculation are defined in a file definition template. This
document consists of a set of triplets: a unique identifier associated with a file or set of
files, a sentinel defining when to collect this set of files -- at the beginning of the run, at
the end of the run, during the course of the run, or any combination of these, and a
regular expression used to match the actual file names created by the calculation. These

expressions include special variables which will match a job identifier associated with
the run, the current cycle number, and so on. Implementing the file definition template
was a major step towards generalization of SimTracker. By defining the files to track in
a general, external fashion, SimTracker is much easier to deploy with new code
systems.

Each of the three generation components consists of general code which is independent
of the code system. Any custom or other code system-specific development is done in
separate modules pulled in when appropriate. We have found approximately 80% of
SimTracker coding to be general across the code systems with which we’ve worked.
The remaining code is put into code system-specific modules which handle
idiosyncrasies such as collecting files that cannot be specified via the file definition
template. The code system-specific modules also will invoke the appropriate metadata
generation tools provided by the code system. These tools include visualization
applications which are used for creating thumbnail images.

Additional operations performed by the generation components include running data
translation and conversion utilities otherwise done manually by the user, compressing
data files, creating metadata describing the calculation and where it is stored, running
post-processors to create visualizations, and copying all tracked result data and metadata
to archival storage.

The CGl-based viewing components are also implemented in Perl, due to the language’s
strong support for string processing and rapid prototyping. Like the generation
component, template files are also used by the viewing scripts. They control the layout
of the dynamic web pages created for the users. These templates are HTML documents
with additional SimTracker-defined tags embedded throughout. These tags allow one to
specify information such as MIME types for files to be downloaded, execute lines for
remote launching of analysis tools, which files to provide links to in the web pages, and
labels to use for individual links.

OPERATION

The begin script performs a number of important set-up steps. It first processes the file
definition template to generate a set of file identifiers and associated regular expressions.
It then sets up initial temporary directories and copies files from the calculation which do
not change during the course of a run. The user’s input command file is an example of
an unchanging file which can be collected at the outset.

The cycle script is invoked periodically during the calculation. Each time it is invoked it
will generate thumbnail images and larger user-defined plots, and it will collect all files
requested on the cycle interval. The number and frequency of these invocations is
controlled by the code system itself. Preferably, the code system will provide a
mechanism for the user to control these parameters.

The end script is invoked at the conclusion of the calculation. Files requested to be
copied at this time, typically log files, are processed. This is also the time to run
pertinent post-processing applications such as time dependent data extractors.

The user typically will begin a viewing session by launching the CGl script which

renders the table of contents from metadata stored in the SimTracker database. Because
there are no static HTML documents on disk, all references in the pages are to other CGI
scripts. The final column in the table of contents shows the run status of the calculation.
This field can contain strings such as “Done” for completed jobs or “@ydi¢he job

is still underway. In the latter case, the thumbnail image shown in the table of contents is
periodically updated to show the current state of the calculation. Once the job has
completed, the thumbnail reverts to the initial problem state, as requested by the majority
of our users.

Other fields in the table of contents include job identification, title, date of run, and
comment. Other than the date, all fields are editable by the user. Initial values can be
supplied at the beginning of the simulation, but default values are supplied if not present.
The web interface allows the user to easily update these values at any time.

All of the CGI scripts have a built-in search path to use when looking for files. The
metadata for a calculation defines the identifier used for the job, as well as on-line and
off-line locations where they were stored. Small files such as thumbnails are kept
initially in the user’'s home directory. All files from a calculation are initially stored in a
scratch partition on the machine where the calculation was run. Likewise, all files are
copied to archival storage. If when trying to retrieve a file, SimTracker will look first in
the home directory, then in the scratch partition, and if neither of those are successful,
the pertinent data is automatically moved from storage.

FUTURES

SimTracker presently has been deployed with two different code systems. In the coming
weeks and months we expect to deploy with two more. And this number will continue to
grow in the coming year. The feedback received to this point has been extensive and

very positive. This feedback has been crucial to establishing the direction for new work.

One request from a number of users is the ability to incorporate additional information
with calculation summaries. In particular, users would like to add analysis data, such as
plots, and related experimental data. This ability would be a step towards creating more
of a notebook environment for the user. This is an area we plan to investigate
aggressively in the coming year. We have also begun assembling a mechanism for
comparing simulations. At present this is rudimentary, but we hope to devise a more
sophisticated comparison capability. Finally, we are currently using a simple DBM file
for storing metadata. We expect in the next year to migrate to a commercial DBMS.

This work was performed under the auspices of the U.S. Dept. of Energy at LLNL
under contract no. W-7405-Eng-48.

REFERENCES

[1] Accelerated Strategic Computing Initiative: Overview, LANL Technical Report, LALP-
97-175. November 1997. Available at
http://www.lInl.gov/asci/sc97fliers/lanl/ASCI_Overview.pdf.

[2]. Extensible Computational Chemistry Environment. Available at
http://www.emsl.pnl.gov:2080/docs/ecce/ecce.html

[3]. D.A. Agarwal, S.R. Sachs, W.E. Johnston, “The Reality of Collaboratories”,
Computer Physics Communications vol. 110, issue 1-3 (May 1998), pages 134-141.

[4]. Burger, A. M., “The Virtual Notebook System”, Proceedings of Hypertext'91, pp.
395-401.

[5] Intelligent Archive: Integrated Data Access and Organization for Scientists, LLNL
Technical Report, UCRL-TB-118571, November 1995. Available at
http://www.lInl.gov/ia/.

[6] Bruce Lownsbery and Helen Newton, The Key to Enduring Access: Multi-
organizational Collaboration on the Development of Metadata for Use in Archiving
Nuclear Weapons Data, First IEEE Metadata Conference, April 16-18, 1996, NOAA
Auditorium, Silver Spring, Maryland.

[7] R. Springmeyer, N. Werner, J. Long, “Mining Scientific Data Archives through
Metadata Generation”, First IEEE Metadata Conference, April 16-18, 1996, NOAA
Auditorium, Silver Spring, Maryland.

