August 9, 1984

and a straight

James and the second

## ANL Analysis of ZPPR-13A

compiled by P. J. Collins and S. B. Brumbach

ANL -- 97003542

Applied Physics Division Argonne National Laboratory P. O. Box 2528 Idaho Falls, ID 83403-2528

# MASTER

Work supported by the U. S. Department of Energy under Contract W-31-109-Eng-38.

DISTIPIEUTION OF THIS DOCUMENT IS UNLIMITED

#### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.



DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

See f Sum

#### TABLE OF CONTENTS

|     |                                                                                                                                                                                                | rage                                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 1.0 | INTRODUCTION                                                                                                                                                                                   | 1                                                    |
| 2.0 | DESCRIPTION OF THE ASSEMBLIES AND MEASUREMENT<br>TECHNIQUES                                                                                                                                    | 7<br>7<br>8<br>9<br>10<br>10<br>10<br>12<br>13<br>14 |
|     | 2.3.6 Doppler Coefficients                                                                                                                                                                     | 15<br>15                                             |
| 3.0 | CALCULATION METHODS                                                                                                                                                                            | 22<br>22                                             |
|     | Method and Asymptotic Cell Processing3.3 Anisotropic Diffusion Coefficients3.4 Reactor Models3.5 More Complex Reactor Models and Asymmetry Effects3.6 Sensitivities and Eigenvalue Separations | 24<br>25<br>26<br>28<br>32                           |
| 4.0 | CRITICALITY PREDICTIONS, BETA, REACTIVITY COEFFICIENTS4.1Analysis of k-effective4.2Delayed Neutron Data4.3Reactivity Coefficients                                                              | 65<br>65<br>66<br>67                                 |
| 5.0 | ANALYSIS OF REACTION RATE MEASUREMENTS                                                                                                                                                         | 73<br>79                                             |
|     | 5.3 Reaction Rate Ratios                                                                                                                                                                       | 98<br>103                                            |
| 6.0 | ANALYSIS OF CONTROL ROD WORTHS                                                                                                                                                                 | 119<br>120                                           |
|     | 6.3 Control Rod Interactions                                                                                                                                                                   | 138<br>141                                           |

### DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

#### TABLE OF CONTENTS (cont.)

|      |                           | Page       |
|------|---------------------------|------------|
| 7.0  | SODIUM VOID ANALYSIS      | 159<br>159 |
| 8.0  | DOPPLER REACTIVITY        | 171        |
| 9.0  | SMALL SAMPLE REACTIVITIES | 176        |
| 10.0 | SUMMARY                   | 187        |
|      |                           |            |

REFERENCES

 $\frac{Appendix A}{Specimen MC^2} \text{ and SDX Input}$ 

Appendix B Atomic Densities for ZPPR-13

Appendix C Detailed Reaction Rate Data for ZPPR-13A

#### LIST OF FIGURES

|     |                                                                                                                                             | Page |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.1 | Core/blanket configurations for the ZPPR-13 cores                                                                                           | 4    |
| 2.1 | Typical loading pattern for a single-fuel-column drawer                                                                                     | 16   |
| 2.2 | Typical loading pattern for a double-fuel-column drawer                                                                                     | 17   |
| 2.3 | Typical loading pattern for a blanket drawer                                                                                                | 18   |
|     |                                                                                                                                             |      |
| 3.1 | ZPPR-13A: Ratios of reaction rates with "Multibuckled cell data" to those with "Asymptotic cell data"; $^{239}$ Pu(n,f) and $^{238}$ U(n,f) | 37   |
| 3.2 | ZPPR-13A: Ratios of reaction rates with "Multibuckled cell data" to those with "Asymptotic cell data"; $235$ U(n,f) and $238$ U(n,Y)        | 38   |
| 3.3 | Calculated percent change in <sup>235</sup> U fission rate in ZPPR-13A when plate streaming is included                                     | 39   |
| 3.4 | xy calculation model for ZPPR-13A critical reference                                                                                        | 40   |
| 3.5 | rz calculation model for ZPPR-13A critical reference<br>(dimensions in cm)                                                                  | 41   |

| 3.12 | ZPPR-13A: Correction factors for <sup>235</sup> U fission rates due<br>to narrow drawers in blankets | 48 |
|------|------------------------------------------------------------------------------------------------------|----|
| 3.13 | Perturbation in <sup>235</sup> U fission rates in ZPPR-13A due to<br>detector drawers in blankets    | 49 |
| 3.14 | ZPPR-13A: Locations of drawers with slightly greater or                                              | 50 |

#### LIST OF FIGURES (cont.)

#### 

| 5.1 | Percent change in <sup>235</sup> U fission rate in ZPPR-13A caused<br>by partially inserted shim rods | 7 <del>6</del> |
|-----|-------------------------------------------------------------------------------------------------------|----------------|
| 5.2 | Radial variation of <sup>239</sup> Pu fission and <sup>239</sup> U capture<br>in ZPPR-13A             | 77             |
| 5.3 | Radial variation of $^{239}$ Pu fission and $^{238}$ U fission in ZPPR-13A                            | 78             |
| 5.4 | Foil locations in ZPPR-13A Irradiation No. 1                                                          | 82             |
| 5.5 | Foil locations in ZPPR-13A Irradiation No. 2                                                          | 83             |
| 5.6 | Ratio of calculation to experiment for <sup>235</sup> U fission<br>rates in ZPPR-13A                  | 84             |

#### Page

|            | individual rods in ZPPR-13A                                                                | 123 |
|------------|--------------------------------------------------------------------------------------------|-----|
|            |                                                                                            |     |
|            |                                                                                            |     |
| <i>с</i> , |                                                                                            |     |
| 0.4        | transport effects in ZPPR-13A                                                              | 143 |
|            |                                                                                            |     |
|            |                                                                                            |     |
|            |                                                                                            |     |
| 71         | Interface diagram showing the reference configuration                                      |     |
| / • •      | for the sodium-voiding experiments and showing the<br>voiding zones in ZPPR-13A. Half l    | 166 |
|            |                                                                                            |     |
| 0 1        | Measured and calculated radial reactivity worth profiles                                   |     |
| 7.1        | for the Pu-30 sample in ZPPR-13A                                                           | 178 |
| 9.2        | Measured and calculated radial reactivity worth profiles<br>for the U-6 sample in ZPPR-13A | 170 |

6.1 Rod locations and C/E values for the worths of

#### LIST OF FIGURES (cont.)

Page

· · · ·

| 9.3 | Measured and calculated radial reactivity worth profiles for the KSS-1 sample in ZPPR-13A   |   | • | 180 |
|-----|---------------------------------------------------------------------------------------------|---|---|-----|
| 9.4 | Measured and calculated radial reactivity worth profiles for the B-l sample in ZPPR-13A     | • |   | 181 |
| 9.5 | Measured and calculated radial reactivity worth profiles<br>for the DU-6 sample in ZPPR-13A | • | • | 182 |
| 9.6 | Measured and calculated radial reactivity worth profiles<br>for the Fe-1 sample in ZPPR-13A | • |   | 183 |
| 9.7 | Measured and calculated radial reactivity worth profiles<br>for the C-l sample in ZPPR-13A  |   |   | 184 |

#### LIST OF TABLES

| 1.1 | Physical Characteristics of ZPPR-13A                                                   | ٠  | •   | • | 5  |
|-----|----------------------------------------------------------------------------------------|----|-----|---|----|
| 1.2 | The Experimental Program in ZPPR-13A                                                   | •  | •   | • | 6  |
| 2.1 | Estimated Uncertainties for Experimental k <sub>eff</sub> Values in ZPPR-13            | ı  |     | • | 20 |
| 2.2 | Summary of Experimental Uncertainties                                                  | •  | •   | • | 21 |
| 3.1 | Directional Diffusion Modifiers for ZPPR-13A D(Benoist)<br>D(Heterogeneous)            | )/ | •   | • | 59 |
| 3.2 | Energy Structure of the Cross Section Sets used for ZPPR-13 Analysis                   | •  | •   | • | 60 |
| 3.3 | Variation in Average Composition of Drawer Masters in ZPPR-13A; Deviation in Mass      | •  | . • | • | 61 |
| 3.4 | Perturbation in Control Rod Worths in ZPPR-13A due to<br>Variations in Master Loadings | •  | •   | • | 62 |
| 3.5 | Characterization of the Eigenvalue Spectrum in the ZPPR-13 Series of Assemblies        | •  | •   | • | 62 |
|     |                                                                                        |    |     |   |    |
| 3.7 | Eigenvalue Separation for ZPPR-13 Cores                                                | •  | •   | • | 63 |
| 3.8 | Sensitivity of Fission Rates in ZPPR-13A                                               | •  | •   | • | 64 |
| 4.1 | Experimental Values for k <sub>eff</sub> in the ZPPR-13 Reference<br>Cores             |    | •   | • | 68 |

|     |                                                                                   |   | - |    |
|-----|-----------------------------------------------------------------------------------|---|---|----|
| 4.2 | Reference Diffusion Theory keff Calculations for ZPPR-13                          | • | • | 69 |
| 4.3 | Mesh and Transport Corrections Derived for ZPPR-13A                               | • | • | 70 |
| 4.4 | Comparison of $k_{eff}$ Results for a Range of ZPPR Cores                         | • | • | 71 |
| 4.5 | Delayed Neutron Parameters for ZPPR-13                                            | • | • | 72 |
| 4.6 | Mass Sensitivity Coefficients for ZPPR-13                                         | • | • | 72 |
| 5.1 | ZPPR-13A: Summary of Radial Reaction Rate Analysis                                | • | • | 85 |
| 5.2 | ZPPR-13A: Summary of Radial Fission Rate Analysis<br>for <sup>235</sup> U         | • | • | 86 |
| 5.3 | ZPPR-13A: Summary of Analysis for the Fission Chamber<br>Calibration Foils        | • | • | 86 |
| 5.4 | ZPPR-13A: Summary of <sup>235</sup> U Fission Near Control Rod<br>Position in FR3 | • | • | 87 |
| 5.5 | ZPPR-13A: Axial Reaction Rate Analysis in Matrix 147-42                           | • | • | 87 |
| 5.6 | ZPPR-13A: Axial Reaction Rate Analysis in Matrix 147-27                           | • | • | 88 |
| 5.7 | ZPPR-13A: Summary of Axial <sup>235</sup> U Fission Rate Analysis .               | • | • | 89 |

5.13 ZPPR-13A: Summary of Reaction Rate Ratio Analysis . . . . 112

#### Page

|      |                                                                                          | Page |
|------|------------------------------------------------------------------------------------------|------|
| 5.17 | ZPPR-13A: Transport Corrected Reaction Rates for<br>235U(n,f)                            | 116  |
| 5.18 | ZPPR-13A: Transport corrected Reaction Rates for<br>$^{238}U(n,Y)$                       | 117  |
| 5,19 | ZPPR-13A: Transport corrected Reaction Rates for<br><sup>238</sup> U(n,f)                | 118  |
| 6.1  | ZPPR-13A: Comparison of xyz and xy Calculations for<br>Control Rod Worths                | 124  |
| 6.2  | Control Rod Worth Analysis for the First Series of<br>Measurements in ZPPR-13A           | 125  |
| 6.3  | Worths of CRPs Relative to Fuel for the First Series of<br>Measurements in ZPPR-13A      | 126  |
| 6.4  | Single Control Rod Worths for the Second Series of<br>Measurements in ZPPR-13A           | 127  |
| 6.5  | Comparison of C/E Results for Single Control Rods in<br>Left and Right Sides of ZPPR-13A | 128  |
| 6.6  | ZPPR-13B/1: Comparison of xyz and xy Calculations<br>for Control Rod Worths              | 134  |
| 6.7  | Comparison of 28 Group and 8 Group xy Calculations<br>for Control Rod Worths             | 134  |

| 6.11 | Compar 19 | son o | t Control  | Kod Worth: | s in 2PPR-134 | 7  |   |   |   |   | • | • | 137 |
|------|-----------|-------|------------|------------|---------------|----|---|---|---|---|---|---|-----|
| 6.12 | Control   | Rod   | Interactic | on Effects | in ZPPR-13A   | •• | • | • | • | • | • | • | 139 |

| 6.14 | Variation | in | the | Worth  | of | a | 1 | rod | E | lan | k | wi | th | 0 | th | er | E | bod | ls |   |   |   |   |     |
|------|-----------|----|-----|--------|----|---|---|-----|---|-----|---|----|----|---|----|----|---|-----|----|---|---|---|---|-----|
|      | Inserted  | in | the | Core . | •  | • | • | •   | • | •   | • | •  | •  | • | •  | •  | • | ٠   | •  | • | • | ٠ | • | 140 |

:

|      |                                                  |                               |           |    |    |    | Page |
|------|--------------------------------------------------|-------------------------------|-----------|----|----|----|------|
| 6.15 | ZPPR-13A: Comparison of Calculations for Control | Diffusion and<br>Rod Worths . | Transport | •• | •• | •• | 144  |
|      |                                                  |                               |           |    |    |    |      |
|      |                                                  |                               |           |    |    |    |      |
|      |                                                  |                               |           |    |    |    |      |
|      |                                                  |                               |           |    |    |    |      |

| 6.18 | Comparison of Transport Corrections in xy and r-<br>geometry for ZPPR-13A Control Rod Banks | 147 |
|------|---------------------------------------------------------------------------------------------|-----|
| 6.19 | Higher Order Quadrature and Fine Mesh Effects for<br>Control Rod Worths in ZPPR-13A         | 147 |
| 6.20 | The Effect of Calculational Improvements on Control<br>Rod Worth C/E values in ZPPR-13A     | 148 |

| 7.1 | ZPPR-13A Sodium-void Zone Measurement Results                                                                          | 168 |
|-----|------------------------------------------------------------------------------------------------------------------------|-----|
| 7.2 | Calculated Sodium-void Reactivity in ZPPR-13A                                                                          | 169 |
| 7.3 | Comparisons of Calculated and Measured Results for<br>the ZPPR-13A Sodium-void Reactivity Experiments                  | 170 |
| 8.1 | Comparison of Measured and Calculated Doppler<br>Reactivities for ZPPR-13A                                             | 174 |
| 8.2 | Comparison of Measured and Calculated Values for<br><sup>238</sup> U Doppler Sample Worth in Fuel Rings of<br>ZPPR-13A | 175 |

Page

| 8.3 | Values of Average C/E for $^{238}$ U Doppler Measurements<br>Compared with Average $(C/E)^2$ for $^{238}$ U(n, $\gamma$ ) Foil<br>Measurements in ZPPR-13A | 175 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |                                                                                                                                                            |     |
| 9.1 | Description of the Reactivity-Worth Samples used in<br>ZPPR-13A                                                                                            | 185 |
| 9.2 | Analysis of Reactivity Samples from Radial Traverses<br>in ZPPR-13A and Comparison with Results from ZPPR-9<br>and ZPPR-10                                 | 186 |

#### 1.0 INTRODUCTION

The ZPPR-13 experiments provide basic physics data for radial-heterogeneous LMFBR cores of approximately 700 MWe size. Assemblies ZPPR-13A, ZPPR-13B and ZPPR-13C comprised the JUPITER-II cooperative program between US-DOE and PNC of Japan. The measurements were made between August 1982 and April 1984. The core designs and the measurements were planned jointly by the two parties with substantial input from U.S. industrial interests (GE-ARSD, W-AESD) to ensure coverage of the design requirements.

This report describes in detail the results of the ANL analyses of phases

The data were compiled primarily for discussions at the Third Jupiter Analysis Meeting to be held at ANL-West between September 11th and 14th, 1984.

The Jupiter-I program covered experiments in conventional cores of similar size to ZPPR-13. ANL analyses of these data are described in Ref. 1 (ZPPR-9) and Ref. 2 (ZPPR-10).

The ZPPR-13 assemblies possessed the common features of a large central blanket zone, two internal blanket rings and three fuel zones of the same average enrichment. The cores were surrounded radially and axially by uranium oxide/sodium/steel blanket regions and by steel reflectors. The core height was 0.916 m and the fissile loading was about 2500 kg in each assembly.

The fuel and internal blanket arrangements for the 2PPR-13 series are shown in Fig. 1.1.

The physical

characteristics of the ZPPR-13A are given in Table 1.1. The values in Table 1.1 refer to the reference critical configurations In the design of the cores, the basic internal blanket arrangements were chosen first. Small adjustments were made to fuel and blanket boundaries to obtain peak/average power densities which were within reasonable limits, generally less than 1.3; but little attempt was made at optimization.

The experimental program was designed to follow changes in core properties in progressing from a simple benchmark, ZPPR-13A, to a power reactor design,

A major concern in the large heterogeneous cores is the ability to predict spatially varying parameters. Consequently, measurement of reaction rate distributions and control rod worths comprised the principal measurements in each phase. Data on most other integral parameters were taken in ZPPR-13A

The measurements made in each assembly are shown in Table 1.2. The analysis of ZPPR-13 used ENDF/B-IV data for two reasons. First, for consistency with past analysis of ZPPR so that the ZPPR-13 cores could fill in gaps in the existing data base. Second, because at the start of the program the ENDF/B-V data were in the process of revision.

The reference model for each phase was three-dimensional (xyz) diffusion theory calculated with 28 group data. Since a vast number of calculations were required for analysis of control rod worths and for reduction of the experimental data, these were made in two-dimensional (xy) geometry and 8 groups. However, 28 group xyz calculations were also made for the principal rod banks in each phase. Two-dimensional models were also used to study asymmetry effects and transport corrections. These calculations will be described in detail in the subsequent sections.

In addition to the reference calculation, three special studies have been made for ZPPR-13A:

(i) Comparisons of calculations with ENDF/B-IV data and ENDF/B-V.2 (the second and final revision).

(ii) A Monte Carlo calculation with the VIM code.

(iii) Calculations with the recently developed nodal-diffusion and nodal-transport codes.

These studies will be reported as special topics.

•



ZPPR - 13 A



ZPPR-13 B/I



ZPPR-138/2



ZPPR- 138/3



٠.



Fig. 1.1. Core/blanket configurations for the ZPPR-13 cores.

TABLE 1.1.

#### Physical Characteristics of ZPPR-13A

|                                                                                                                  | ZPPR-13A                                        |      |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------|
| Core Volume, L <sup>a</sup>                                                                                      | 5715.472                                        |      |
| Effective Radius, m <sup>a</sup>                                                                                 | 1.995                                           |      |
| <sup>239</sup> Pu Mass, kg                                                                                       | 2435.060                                        |      |
| Total Fissile Mass, kg                                                                                           | 2513.073                                        |      |
| 238 <sub>U Mass, kg<sup>b</sup><br/>Core Regions<br/>Internal Blanket<br/>Radial Blanket<br/>Axial Blanket</sub> | 8332.193<br>16313.678<br>21572.243<br>10200.764 |      |
| Total Fuel Drawers                                                                                               | 2880                                            |      |
| Total Internal<br>Blanket Drawers                                                                                | 1216                                            |      |
| Fraction of Double-<br>Fuel-Column Drawers <sup>d</sup>                                                          | 0.72                                            | <br> |
| <sup>a</sup> Fuel plus internal bla                                                                              | nket zones.                                     |      |

<sup>b</sup>Internal and radial blankets are <u>+</u> 788 mm. Core region is <u>+</u> 458 mm. Axial blanket is <u>+</u> 458 to <u>+</u> 788 mm.

<sup>c</sup>Includes sodium-filled control rod positions.

d<sub>Core</sub> average.

JAIIA4

TABLE 1.2.The Experimental Program in ZPPR-13A

|                                                                                                                           | ZPPR-13A |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|
| Date of first critical                                                                                                    | 8-5-82   |  |  |  |  |
| Approach to critical                                                                                                      | ٠        |  |  |  |  |
| Criticality                                                                                                               | •        |  |  |  |  |
| Reaction Rates:<br>Detailed xy<br>Limited xy<br>Axial                                                                     | . 0<br>0 |  |  |  |  |
| Control Rod Worths:<br>Single Rods<br>Rod Banks<br>Rod Interactions<br>Pin Rods<br>Large Rod Sizes<br>CPR/Fuel Reactivity | •        |  |  |  |  |
| Sodium Void                                                                                                               | •        |  |  |  |  |
| Doppler Coefficient                                                                                                       | •        |  |  |  |  |
| Reactivity Samples:<br>Traverses                                                                                          | •        |  |  |  |  |
| Drawer Oscillator                                                                                                         |          |  |  |  |  |
| Kinetics Measurements                                                                                                     |          |  |  |  |  |

<sup>a</sup>ZPPR-13B/2 was subcritical by 3.6\$. Reaction Rates were measured with the 64 incore fission chambers. JAIIA5

#### 2.0 DESCRIPTION OF THE ASSEMBLIES AND MEASUREMENT TECHNIQUES

#### 2.1 General Features of Cell Designs and Core Loadings

Previous experience with smaller heterogeneous cores (350 MWe) and larger homogeneous cores (700-900 MWe) had indicated the need for maximum simplicity and uniformity in cell designs. The following constraints were imposed at the outset:

(i) Use of a single type of fiel throughout -- the ZPPR Pu/U/Mo metal fuel using plutonium with 11% <sup>240</sup>Pu content. This limited the core sizes to a little less than 2500 kg.

(ii) Use of cells symmetric in placement of plutonium and uranium plates within a drawer.

Five basic cell designs were used in all cores of the series: singlefuel-column, double-fuel-column, internal and radial blanket, axial blanket and steel reflector. The plate loadings of the cells are shown in Fig. 2.1, 2.2 and 2.3.

In practice, many detailed variations about the basic cell loadings were necessary because of inventory limitations and operational/experimental requirements. These were:

(i) Variations in piece length distributions making up the fuel and sodium columns in a drawer.

(ii) Variations in ZPPR fuel by "vendor type" (Vendor-65, Vendor-63).

(iii) Variations in sizes of individual uranium oxide, uranium metal and steel plates.

(iv) Narrow drawers required to accommodate the ZPPR safety/shim rod blades.

(v) Special drawers for in-core fission chambers.

(vi) Thermocouple drawers.

Initially, narrow blanket drawers and blanket detector drawers contained less <sup>238</sup>U than standard blanket drawers. This mass difference and other small variations in drawer loading had significant effects on the measured parameters, as will be discussed in detail in subsequent sections.

Other, less important, deviations from an ideal, uniform, loading imposed by inventory limitations occurred in the upper reaches of the axial blanket and in the radial reflector.

Changes in fuel enrichment were achieved by changing the ratios of single-fuel-column (SFC) drawers to double-fuel-column (DFC) drawers. Exactly the same ratio could not be obtained in each fuel region, but these proportions were made as close as possible. All fuel and blanket loadings were symmetric in the four quadrants, but the SFC and DFC drawers were not symmetric about the quadrant bisector (resulting in differences of several percent in fluxes between the x and y axes). This latter feature was not regarded as important since analyses would necessarily be made in xy or xyz geometry and little uncertainty in the evaluation of the data was expected. Other asymmetries were caused by the narrow drawers and detector drawer placements. The former are constrained by locations available in the ZPPR machine. The latter were placed in asymmetric positions in order to provide maximum utility in coverage of the whole core.

#### 2.2 The Assemblies

ZPPR-13A was designed to be a benchmark core for the series. Internal blanket zones were continuous and all regions had closely cylindrical outlines. The reactor loadings prohibit direct use of an rz model for detailed comparison with experiment, but the calculation of reactor-average properties ( $k_{eff}$ ,  $\beta_{eff}$ ) are reasonably accurate and transport/diffusion theory corrections are facilitated in this geometry.

ZPPR-13B/1 retained the basic zone outline of 13A, but gaps were introduced into the two internal blanket rings as a first step in the progression towards more prototypic cores. Reaction rates and control rod worths were measured for comparison with analyses of ZPPR-13A, Fig. 2.4 compares fission rates in -13A. This figure explains the changes in most measured parameters.

#### 2.3. Experimental Techniques and Uncertainties

Most of the experimental methods used in ZPPR-13 have been in standard use at ZPPR and are described in the TM reports. Several refinements were found necessary due to the sensitivity of the larger heterogeneous cores. Some

new techniques for sample reactivity worth measurements were used in ZPPR-13, following results from the ANL diagnostic core series in ZPR-6, ZPR-9 and ZPPR-12. This section summarizes the principal points relevant to the analysis and the uncertainties estimated for each type of measurement.

2.3.1 Critical Mass (k-effective)

Uncertainties in the experimental critical mass are due to imprecision in material masses and locations, and core temperatures. For convenience in the analysis, adjustments are made for the reactivity of inserted shim rods, parked shim and safety rods and to a uniform temperature of 293 K. The adjustments are conveniently expressed in  $\Delta k$  units using a calculated value for  $\beta_{eff}$ . A number of less tractable features of the assembly are normally assigned experimental uncertainties. These are often relatively small and need be only crudely estimated.

The current assessment of uncertainties for experimental values of  $k_{eff}$  in ZPPR-13 is shown in Table 2.1. The total uncertainty of about 0.04%  $\Delta k$  (1 $\sigma$ ) is dominated by knowledge of the fuel mass. Consequently this varies but little among all Pu/U oxide LMFBR criticals built at ZPPR. Many of the large uncertainties are correlated among the assemblies.

2.3.2 Reaction Rate Measurements with Foils

Four reaction rate types were measured in ZPPR-13 with foils:  $^{239}Pu(n,f)$ ,  $^{235}U(n,f)$ ,  $^{238}U(n,\gamma)$ ,  $^{238}U(n,f)$ . The number of available plutonium foils and their recycle time limits their use to a few traverses in the principal assemblies of the series. However, experience has shown that equivalent information on the ability to predict spatial power distributions in core regions is obtained with  $^{235}U$  foils. Thus extensive use is made of  $^{235}U$ . For convenience in the analysis and to provide data directly relating to principal components of the neutron balance in the assemblies, the basic reaction

rates measured in the foils are converted to "plate-average" and to "cellaverage" quantities using measurements with several foils in the unit cells and "split-plates", i.e. plates of half-thickness to include central foils or "cellaveraging foils".

The uncertainties in measured reaction rates may be considered in three categories:

(i) Statistical uncertainties in the foil counting (these also include components for foil placement and correction for other isotopes).

(ii) Uncertainties in the cell-average/foil factors.

(iii) Uncertainties due to absolute calibration.

For analysis of reaction rate distributions between cells of the same type, the statistical uncertainty is the major component. Measurements with multiple foils in cells at different locations generally indicate good separability between the cell fine-structure and the overall reactor reaction rates.

For comparison of a given reaction rate in different cells, the uncertainties in cell-average factors should be considered. For reaction rate ratios the calibration uncertainties must be taken into account together with the correlation implicit when a common denominator reaction, usually  $^{239}$ Pu(n,f), is used.

Typical statistical uncertainties are about 0.8% for the three non-threshold reactions and about 1.5% for  $^{238}U(n,f)$  within the fuel and internal blanket regions. In the radial, axial and the large internal blanket the statistical uncertainties for the  $^{238}U(n,f)$  reaction rate deteriorate rapidly with penetration, increasing from 2% to 20% or more. This is due to the attenuation of the high energy flux and to the increasing importance of corrections for  $^{235}U$  content in the foil.

Uncertainties in the cell-average/foil factors are due to statistics in the fine-structure measurement, calculated adjustments for gross reactor gradients and to the split-plate/whole-plate factor (Stanford-Robinson experiment). These uncertainties are about 2%.

Uncertainties in the foil calibration are estimated to be 1.5%. However systematic differences between ANL and UK techniques<sup>(3)</sup> of 3% in the  $^{238}$ U capture to  $^{239}$ Pu fission ratio, of which 2% is due to the plutonium fission calibration, have yet to be explained.

Foil irradiations are made at a reactor power of approximately 1 kW. The reactor is controlled by ZPPR shim rods, which are narrow blades of 93% enriched B4C inserted in 1/2 in. spaces in the matrix created by use of drawers of only 3/4 normal width. The excess reactivity is kept to a minimum and for ZPPR-13 was in the range of 6¢ to 13¢. The shim rods produce perturbations in reaction rates at the midplane of about 1%. To facilitate their modelling in the calculations, eight symmetrically disposed shim rods (four in each half) are used in the irradiation with equal insertion. The shim-rod perturbations have been checked in several cases using the 64 fission chamber system.

2.3.3 Reaction Rate Measurements with the In-core Fission Chambers

The statistical precision obtainable with the sixty-four in-core fission chambers can be very high. In practice an uncertainty of about 0.1% is usually obtained to avoid overly long counting times in far-subcritical states. For reactivity measurements, using countrate ratios in each chamber, only the statistical uncertainties need be considered.

Because of the extensive core-coverage afforded by the fission chamber system, the fission chambers have been calibrated against  $^{235}$ U foils placed in normal cells in positions symmetric to the fission chambers. The

calibration takes into account the variation in mass of the fission chamber deposits and the electronic biases. The calibration has been discussed by Ikegami.<sup>(4)</sup> Uncertainties in the calibration are estimated to be 1.5%.

2.3.4 Reactivity Measurements

Large-scale reactivity measurements of control rod worths, zone sodium voiding and drawer substitutions are measured relative to a reference configuration by the modified-source-multiplication (MSM) technique.<sup>(5)</sup> A reference state, subcritical by 10¢ to 20¢, is established and the reactivity scale (in dollars) is measured by inverse-kinetics analysis of the power history following a "rod-drop". The only calculated input required are the  $\lambda_i$ values from the delayed neutron analysis. The experimental reactivity is insensitive to these data and an uncertainty of 0.7% is estimated from the statistical analysis.

Calculated values for "detector efficiencies" and "effective source ratios" are provided for determination of reactivity relative to the chosen reference. A linear least-squares fit of the reactivity estimate from each detector versus efficiency ratio ( $\varepsilon$ ) results in a statistical uncertainty for the system reactivity of about 0.1%. Measurements of asymmetric perturbations in ZPPR-13 showed the need for improved estimates of the effective source ratio ( $S_R$ ). These can be obtained by an iterative method in which the cross sections in the perturbed region are adjusted until a good fit to the detector countrates (relative to those in the reference) is obtained. Numerical tests have shown that the result could be achieved by the relation  $(1-\varepsilon^2) \simeq (1-S_R)$ (Ref. 6), thus eliminating the need for multiple calculations. The source ratios vary in the range 0.7 (for control rod banks worth about \$20) to 1.1. As a result of the numerical tests, an uncertainty of 0.04  $(1-S_R)$  was assigned with a minimum uncertainty of 0.3%. Additional uncertainty components arise from

corrections for the (relative) ZPPR interface gap, temperature, and <sup>241</sup>Pu decay. These are relatively small components for control rod worths, but may dominate in the case of sodium void reactivities.

2.3.5 Small-sample Reactivity Worths

Small-sample reactivity worths were measured in ZPPR-13 using three techniques. These techniques were the radial and axial tube, the shim blade and the long-drawer oscillator. Radial tube measurements are made at the reactor midplane. The oscillator tube is accommodated by pushing the drawers along one row of both assembly halves back from the interface about 6.4 mm. The axial tube is accommodated by using a special drawer with 12.7 mm of material removed from the center of the drawer. Small, encapsulated samples, usually with cylindrical or annular geometry are oscillated in and out of the core. Because of the perturbation caused by the presence of the tube, sample worths are also measured by other techniques. One new technique used in ZPPR-13 measurements is the shim-blade oscillator. A sample, normally a foil of fissile material, is attached to a (0.9 mm thick) stainless steel blade which is oscillated axially in the air gap between the top of the contents of a drawer and the matrix tube. Special drawers with a bottom thickness of 0.25 mm instead of the normal 0.75 mm are used to increase the thickness of the air gap to 2 mm. Foils up to 0.5 mm thick are placed in a shallow depression in the blade and covered with 0.05 mm thick stainless steel to protect the samples during oscillation. In the long-drawer-oscillator technique, a special drawer, is loaded with core material and special samples of interest. The sample zone is oscillated axially in and out of the core. Sample worths are inferred from worth differences with and without the samples. For all techniques, worths are derived from the inverse-kinetics analysis of the output of the two experimental ex-core BF3 chambers.

All three sample worth :echniques were used in ZPPR-13, but only the axial- and radial-tube measurement data have been processed and none of the measurements have been adequately analyzed.

Statistical uncertainties in the tube-oscillator technique range from 0.2 - 0.6% for high worth samples. Other, larger, systematic uncertainties arise from uncertainties in temperature, sample position and half closure. These systematic uncertainties are estimated to be about 1-2% for high-worth samples.

2.3.6 Doppler Coefficient

The Doppler measurements at ZPPR use a cylindrical sample, sealed in Inconel, 305 mm long and 25.4 mm in diameter with a 3 mm hole in the center to accommodate thermocouples. Samples are heated in vacuum by a heating element wrapped around the Inconel capsule. Measurements are made in a single matrix location by oscillating the sample axially into and out of the core. Worth is inferred from inverse-kinetics analysis of the output of the two experimental ex-core BF3 chambers. Uncertainties in measured values are estimated to be about 2-4%, based mostly on measurement reproducibility.

2.3.7 Summary of Experimental Uncertainties

Table 2.2 summarizes the uncertainties in the various measured quantities discussed in this report. For the sample worth measurements and the Doppler measurements, the random uncertainties are relatively small. For these measurements it is likely that not all sources of systematic uncertainty have been quantified or, perhaps, even identified. Thus, the Doppler, and small sample worth uncertainties are estimated from experience in reproducing results of similar measurements.



Fig. 2.1. Typical loading pattern for a single-fuel-column drawer.







Fig. 2.3. Typical loading pattern for a blanket drawer.



Fig. 2.4. Calculated percent change in <sup>235</sup>U fission rates, ZPPR-13B/1 compared to ZPPR-13A.

19

清

|    |                                              |        | Estimated | 1 <i>0</i> | Uncerta | ainty, | % ∆k |  |
|----|----------------------------------------------|--------|-----------|------------|---------|--------|------|--|
|    |                                              | 13A    |           |            |         |        |      |  |
|    | •                                            |        |           |            |         |        |      |  |
| a. | Measured excess:                             |        |           |            |         |        |      |  |
|    | period measurement                           | 0.0008 |           |            |         |        |      |  |
| Ь. | Calculated Beff                              | 0.0025 |           |            |         |        |      |  |
| c. | Configuration reproducibility                | 0.0005 |           |            |         |        |      |  |
| d. | Material location                            | 0.0066 |           |            |         |        |      |  |
| e. | Interface gap                                | 0.0149 |           |            |         |        |      |  |
| f. | Core temperature adjustment:                 |        |           |            |         |        |      |  |
|    | thermocouple calibration                     | 0.0017 |           |            |         |        |      |  |
|    | average temperature                          | 0.0033 |           |            |         |        |      |  |
|    | temperature coefficient                      | 0.0024 |           |            |         |        |      |  |
| g. | <sup>241</sup> Pu decay of fuel <sup>a</sup> | 0.0100 |           |            |         |        |      |  |
| h. | Void slots:                                  |        |           |            |         |        |      |  |
|    | shim/PSR drawers                             | 0.0066 |           |            |         |        |      |  |
|    | fission chambers                             | 0.0090 |           |            |         |        |      |  |
| i. | Isotopic composition                         | 0.0320 |           |            |         |        |      |  |
| j. | Humidity                                     | 0.0002 |           |            |         |        |      |  |
| k. | PSR blades parked in plenum                  | 0.0040 |           |            |         |        |      |  |
|    | Statistical sum                              | 0.0395 |           |            |         |        |      |  |

TABLE 2.1. Estimated Uncertainties for Experimental k<sub>eff</sub> Values in ZPPR-13

<sup>a</sup>Uncertainty in calculated decay from fabrication date

JAII-A17

| Τ. | ΑB | LE | 2. | 2. |
|----|----|----|----|----|
|    |    |    |    |    |

Summary of Experimental Uncertainties

|                                                                              | Typical Uncertainties (10) |                |  |  |  |
|------------------------------------------------------------------------------|----------------------------|----------------|--|--|--|
| Measured Parameter                                                           | Random (Statistical)       | Correlated     |  |  |  |
| Critical Mass                                                                |                            |                |  |  |  |
| (keff)                                                                       | 0.01%                      | 0.04%          |  |  |  |
| Reaction Rate<br>Distributions                                               |                            |                |  |  |  |
| Core F9,F5, C8<br>F8<br>Blankets F9, F5, C8                                  | 0.8%<br>1.5%<br>1-2%       | 2%<br>2%<br>2% |  |  |  |
| F8                                                                           | 2-30%                      | 2%             |  |  |  |
| Reaction Rate<br>Ratios (Core region)                                        |                            |                |  |  |  |
| F5/F9, C8/F9<br>F8/F9                                                        | 1%<br>1.5%                 | 2%<br>2%       |  |  |  |
| Control Rod Worths                                                           | 0.1% to 0.5%               | 1%             |  |  |  |
| Sodium Void Reactivity                                                       | 0.2%                       | 1%             |  |  |  |
| Sample Traverses                                                             |                            |                |  |  |  |
| High worth (fissile, <sup>10</sup> B)<br>Low worth and scattering<br>samples | 0.05 Ih/kg                 | 1-2%           |  |  |  |
| Drawer Oscillation                                                           | <0.5%                      | 1-2%           |  |  |  |
| Doppler Effect                                                               | <1%                        | 2-4%           |  |  |  |
|                                                                              |                            | JAIIA16        |  |  |  |

#### 3.0. CALCULATION METHODS

#### 3.1 Cross Section Processing

Calculations for ZPPR-13 used the ENDF/B-IV data. The generation of a multigroup library which includes treatment of heterogeneity effects in the unit cells used methods similar to those for JUPITER-I analysis<sup>(1,2)</sup>, with the following steps:

(i) Processing the ENDF/B files into a 2082 group library for the MC<sup>2</sup>-II code is done by the Methods and Computation Group in Illinois using the ETOE code. This library is used in all neutronics calculations (with ENDF/B-IV) within the Applied Physics Division at ANL.

(ii) Calculation of a 2082 group spectrum with MC<sup>2</sup>-II and production of an "intermediate library" in 226 groups. This calculation was done once only, using the double-fuel-column composition.

(iii) Calculation of resonance shielding and flux fine-structure for each cell type using the SDX code with 226 groups, homogenization of the cross sections in each cell by flux-volume weighting and collapse to 28 groups.

These methods are described in more detail in Refs. 1 and 2. Several differences were invoked for ZPPR-13, principally as a result of studies in ZPPR-11 and ZPPR-12. These were:

(i) Improved treatment of resonance shielding for <u>narrow</u> resonances in iron, nickel, chromium, manganese, molybdenum, and sodium, following modifications to the  $MC^2/SDX$  codes. For ZPPR-13, data for these isotopes were shielded for the homogeneous cell compositions. Heterogeneous treatment is possible but leads to difficulties in equivalence theory between adjacent plates with the same isotopes. These improvements give an increase in  $k_{eff}$  of 0.1% for the ZPPR cores which contain similar volume fractions of steel.

(ii) Cell calculations were made with group-dependent bucklings. The bucklings were obtained from a prior xyz calculation for ZPPR-13A using microscopic

cross sections generated for ZPPR-11. The 28 group fluxes were edited in the DIF3D code to provide the average leakages and bucklings for all occurrences of a given cell in a given zone of the reactor. The bucklings in the subset of 28 groups were used in the 2000 groups for  $MC^2$  and in the 226 groups for SDX. Some further details of the calculations were:

(a) The option to scale collision probabilities was used (rather than to add DB<sup>2</sup> to  $\Sigma_{tr}$ ).

(b) Since the one-dimensional cell models used "mid-cell densities and thicknesses", the impressed bucklings produced a k<sub>eff</sub> of about 1.1. A modification to the codes was made to scale the bucklings by a constant factor to achieve the reactor k-effective of 0.980. Since a given cell type will have a variety of neighboring cell-types in the actual loading, it is obvious that this prescription does not match any location exactly. It is further obvious that prediction of the correct flux shape within the cell would require consideration of the different leakages on the "left" and "right" sides of the cell. An improved scheme would require processing of an impracticably large number of cells and vast complications in the application of the data in the reactor model. The average bucklings are a compromise, but have been shown to give improvements in calculations of the threshold fission rate and in sodium void reactions.

The cell calculations for ZPPR-13A used bucklings generated for each cell in each radial zone. Differences of about 1% in flux-advantage factors for a given cell between the zones were noted. It was decided to use different cross sections in each zone although the effectiveness, compared with a simple method of using an average buckling for all zones of the same type is not obvious. In addition, cross sections for the large central blanket were generated for inner and outer regions. The following processed cross sections were generated:
- central blanket inner region (CBI), outer region (CBØ)
- fuel ring one, single column (F1 SC), double column (F1 DC)
- blanket ring one (Bl)
- fuel ring two, F2 SC and F2 DC
- blanket ring two (B2)
- fuel ring three (F3 SC and F3 DC)
- radial blanket (RB)

• axial blanket (AB), using bucklings in the 18 in.-28 in. region of the double-fuel-column drawer. The axial blanket cell of the single-fuelcolumn drawer and axial blanket cells remote from the core were not processed, but the data from the principal cells were mixed with the appropriate homogeneous compositions.

• cross sections for the steel reflector regions were taken for the steel cross sections in the radial blanket.

The input data for the  $MC^2$ -II calculation and for SDX calculations of the two fuel cells in ring 2 are shown in Appendix A.

Microscopic cross sections processed for ZPPR-13A were used in all other assemblies with no additional cell calculations. Macroscopic cross sections for each phase were "remixed" with the appropriate average atomic densities. These densities are given in Appendix B. The date for <sup>241</sup>Pu decay was fixed at January 1, 1982 for the library and was not adjusted for each assembly.

3.2 Comparison of Results using the Buckling-Recycle Method and Asymptotic Cell Processing

Cross sections were generated using the method used for conventional cores using the same SDX cell models as above, but with a buckling search to

critical for fuelled-cells and a zero buckling for blanket cells. These cross sections were compared with the data generated with the reactor bucklings, in an rz-model of ZPPR-13A. The calculations were done by M. Kawashima.

The k-effective values for the rz model differed by only 0.05%:

Buckling-recycle data k = 0.977775

Asymptotic data k = 0.977225

A comparison of radial reaction rate distributions was made with the rz model. Figs. 3.1 and 3.2 compare the radial reaction rate distributions. Differences are about 1% for the three non-threshold reactions, but about 5% for  $^{238}$ U fission. Changes for this reaction type significantly improve agreement with experiment.

A similar improvement was shown for analysis of ZPPR-7.<sup>(7)</sup> In that case cross sections were generated for a two-drawer cell-model with adjacent fuel and blanket cells.

3.3 Anisotropic Diffusion Coefficients

Anisotropic diffusion coefficients were generated by the Benoist method. One-dimensional cell models were used in which the plate regions were "stretched" over the lattice pitch. Sodium-plate regions included both steel clad and sodium core. The perpendicular matrix and drawer structure was "smeared" uniformly into all plates.

The anisotropic diffusion coefficients are implemented in the DIF3D code as "modifier factors" which multiply the cell-average diffusion coefficients calculated with the SDX code  $(D_{SDX})$ . Modifier factors for ZPPR-13 are shown in Table 3.1. The modifiers are defined as the ratios of  $D_x$  (perpendicular to plates) and  $D_y$  (parallel to plates), which is the same as  $D_z$  in the one-dimensional model, to the  $D_{SDX}$ . Previous analysis used the ratios of  $D_x$  and  $D_y$  to the homogeneous diffusion coefficient  $D_{hom}$  (see Ref. 8).

Figure 3.3 shows the effect of plate streaming on calculated fission rates in ZPPR-13A. This figure shows the ratio of  $^{235}U$  fission for an xy calculation with anisotropic D's to a calculation with the D<sub>SDX</sub>'s. The fluxes are normalized to the same total fission source in the reactor. Inclusion of streaming modified the fission distributions in the core by up to 1%. Effects on reactivity worths are approximately twice those shown for fission rates. Inclusion of streaming generally improves agreement with experiment. The effects in the heterogeneous cores are quite complex. Since the peak fluxes are in the second fuel ring, streaming effects flatten the fission distributions both towards the core center and outwards into the radial blanket.

Since anisotropic diffusion coefficients are used in all calculations, corrections for streaming are not shown separately as in previous analyses. The effect on calculated  $k_{eff}$  is about -0.3% (-0.1%  $\Delta k$  in the xy-plane and -0.2%  $\Delta k$  in the z-direction). For sodium void analysis, the Benoist diffusion coefficients increase the leakage contributions by 30% to 40%. Results of least squares fitting to experiment indicates that the Benoist method (in the cell model used here) overestimated the streaming effect in the sodium voided cells.

3.4 Reactor Models

Analysis of ZPPR-13A made more extensive use of three-dimensional (xyz) models than in the past. The reference method used was:

• ENDF/B-IV data in 28 energy groups.

 Diffusion theory in xyz geometry, one-eighth core model (one quadrant, half-height).

• Mesh spacing of 55 mm in the xy-plane (one mesh point per ZPPR drawer (1MPD)). The axial mesh-spacing was similar, but varied to match shim rod insertion (for reaction rate calculations) and axial zone boundaries. The core contained six equal intervals of 51 mm for the first 306 mm from the

midplane, four intervals of between 25 mm and 50 mm up to the blanket boundary, and six intervals of 42 mm in the lower part of the axial blanket.

• Anisotropic diffusion coefficients were used in all calculations.

The xyz models are used for calculation of  $k_{eff}$ , reaction rates, sample traverses and sodium void reactivity. Two-dimensional models in xy and rz geometry are used to calculate mesh and transport effects and for special studies. Group and region dependent buckling terms for xy models are obtained from the leakages calculated in the xyz models. These generally lead to small errors in the xy  $k_{eff}$  (~0.01%) and in c>re-region reaction rates (tenths of a percent). Specification of an rz model is not unique in the cores with complex internal blanket and CRP arrangement. These models have been used to calculate transport corrections in ZPPR-13A and preliminary values of  $\beta_{eff}$  for all cores.

The xy and rz models for ZPPR-13A, are shown in Figs. 3.4 **+6 3.5** \* Axial regions in the xyz models were the same as in the rz models.

A large number of calculation; are required for control rod experiments, both to obtain calculated worths and to derive detector efficiencies and source ratios required for analysis of the experimental data. These calculations are made with the following method:

• ENDF/B-IV data in 8 energy groups.

• Diffusion theory in xy geometry, using quarter-, half- or full-plan models as required.

• Mesh spacing of 55 mm.

\*

Calculations for 13A used the average blanket drawers in these locations.

• Group and region dependent buckling terms derived from the leakages at the core/axial blanket interface (±458 mm).

The 8 group library is essentially the same as the 9 group library used in JUPITER-I analysis, and differs only in combination of the lowest energy group (upper energy 3 eV) with the group above. Group collapse is made for all regions in the reference model using the xyz fluxes. Data for control rods and CRPs are obtained from an xyz calculation with a bank of rods (or CRPs) fully inserted in the second fuel ring. These data are used for control rods (and CRPs) in all locations.

The buckling terms are obtained by repeating the xyz calculations (reference, rod bank and CRP bank) in 8 groups. The buckling terms are used in the same way as the collapsed data; bucklings for the reference model in all zones, and bucklings for the control rod (CRP) in all locations.\*

In each phase of ZPPR-13, the principal control rod banks were calculated with xyz models in both 28 groups and 8 groups for comparison with results from the xy models. As will be seen in Section 6, the approximation in the two-dimensional models lead to errors in rod worths of less than 2%.

Energy group structures of the 2082, 226, 28 and 8 group data are shown in Table 3.2.

#### 3.5 More Complex Reaction Models and Asymmetry Effects

OM

The early measurements in ZPPR-13A showed unanticipated differences between measurements in what were thought to be symmetrically equivalent locations in the reactor. A series of investigations mounted to study this problem is described in Ref. 9.

One effect seen in this study was due to the variation in interface gap between the two halves of the ZPPR machine. Upon half-closure, the matrix

<sup>\*</sup>Note that the buckling terms include effects of streaming in the z-direction, since the xyz model used anisotropic diffusion.

is in contact at the top of the core and separated by about 1 mm at the bottom. This has the effect of bringing fuel closer together at the top of the core than at the bottom. Fission rates at the top are about 1% higher and control rod worths are about 2% higher. This feature of the loading is exceedingly difficult to model in the calculations.

At a later stage, two features of the reactor loadings which affect the symmetry of the measurements were uncovered. These were:

(i) Asymmetries due to the loading of the "narrow drawers" used in blanket regions to accommodate the ZPPR safety/shim rod blades.

(ii) Asymmetries due to the loadings of fission-chamber drawers in blanket regions.

In both of these cases, a significant amount of uranium was removed from the cells. The effects were calculated using xy models (half xy-plan for (i) and full xy-plan for (ii)).

Perturbations in fission rates due to the narrow blanket drawers for ZPPR-13A are shown in Fig. 3.12. Note that in addition to the effect on left to right symmetry, there is a sensible difference between points on the x-axis and the y-axis.

Perturbations due to blanket fission chamber drawers are a little more subtle. These are shown in Fig. 3.13. The asymmetries largely result from a nonuniform distribution of the blanket fission chambers -- more are present in the upper-left-hand (ULH) quadrant of half-one than in the LRH quadrant. The perturbations affect fission rates between left and right sides and also between the top and bottom of the interface.

Correction for these two effects resulted in much improved consistency between C/E values on the left and right sides of the core.(10,11)

A remaining characteristic of the analyses with the reference models was a marked difference in predictions of experiments at the x-axis and at the y-axis. For example, C/E values for control rods CR25 (x-axis in F3) and CR28 (y-axis in F3) differed by 4% even after including the effects described above.<sup>(9)</sup> Diligent efforts by the ZPPR analysts, in the face of rising torrents of experimental data, eventually revealed that most of this problem was due to variation in the fissile masses in the individual loadings of a generic drawer-master. This feature had not been considered important in any previous ZPPR cores. It was found that perturbations in fission rates, compared with those calculated using homogenized compositions, arose from three principal effects:

(i) Use of two types of ZPPR fuel (Vendor 63 and Vendor 65) for which the fissile contents per plate differ by about 1%.

(ii) Use of four plutonium plates in a fuel column of a drawer instead of the more usual three plates (e.g. a 5 in., 5 in., 4 in., 4 in. loading compared with a 8 in., 6 in., 4 in. loading). This difference results in a decrease in fissile content of 0.5% to 1% compared with the average.

(iii) Variations in total uranium content among the various specific blanket drawer masters.

The variations in  $239p_u$  and 238u for the ZPPR-13A masters are shown in Table 3.3.

Given a uniform distribution over the core of each master type, these variations would result in local perturbations only. However, it transpired that in ZPPR-13A, the drawers with higher or lower fissile content than average tended to be grouped in certain areas. Thus an overall perturbation in reactor fission rates was produced.

Effects due to variation in uranium content were somewhat surprising, since the uranium worth is considerably lower than that for plutonium and variations were only about 0.5% from the average. However, the different masters were loaded selectively in regions at the axes and centered around 45° to the axes. Figure 3.14 shows diagrammatically the locations of the most deviant masters for fuel drawers in ZPPR-13A.

Calculations have been made to test the effect of variation in the drawer masters using an xy model. A computer code (called McMASTERS) has been written which takes the assembly loading record (on tape). scans through the matrix and automatically writes most of the input required for the DIF3D code. Since some of the masters are different between half-one and half-two of the reactor (fission chamber locations, thermocouple locations, radial reflector), the code scans both half-one and half-two loadings and, for the xy model, uses an average composition for these cases. An auxiliary module (McADEN) writes the composition of each master in ARC system format for data mixing. These codes will eventually form part of a general system for setting up ARC system calculations from the reactor loading records.

The fission chamber drawers in blanket regions presented an additional twist, since the uranium was removed only from the first 8 in. of the drawer. For these drawers weighted average atomic densities, N, were defined as:

N = 0.545 N(0-8 in.) + 0.455 N (8 in. - 18 in.).

The xy calculations were run in diffusion theory with the 55 mm mesh size and 28 group cross sections. To simplify the input, cross sections and bucklings processed for middle fuel ring (F2), second blanket ring (B2) and radial reflector (RR) were used throughout. The fission rates from the allmaster model (AMM) were compared with those using the model with homogenized composition (HMM). The same microscopic cross sections and bucklings for F2 and B2 were used in the homogenized model.

Figure 3.15 shows the effects in ZPPR-13A of using individual masters for the fuel drawers. Figure 3.16 shows the effects of using individual masters for the blanket drawers. Figure 3.17 shows the effects of using all master, including narrow blanket drawers and blanket fission chamber drawers. In each case the fluxes are normalized to the same total fission source in the reactor.

It can be seen that the individual effects are additive, to a good approximation. That is, superposition of Figs 3.12, 3.13, 3.14, 3.15, and 3.16 reproduces the total perturbations in Fig. 3.17.

Perturbations to reactivity worths at different positions in the reactor are about double those for fission rates. Direct calculations for control rods CR25, CR28 and a bank of six rods in fuel ring 3 (6F3) for ZPPR-13A are shown in Table 3.4. Corrections to worths from the HMM model are within 0.2% of estimates from the fission rate perturbations in Fig. 3.17. Estimated corrections for control rods in other positions have been made from the fission rate data.

### 3.6 Sensitivities and Eigenvalue Separation

A key parameter for describing large, heterogeneous LMFBR designs is the neutronic coupling between the core zones. It has become customary to refer to heterogeneous cores as loosely coupled or tightly coupled, depending on the sensitivity of the power distribution to local perturbations. Decoupling is generally introduced in designs by isolating the individual core zones with thick internal blanket rings. The degree of coupling (or decoupling) can be quantified by several parameters, but not all of them give a good picture of overall reactor behavior. In planning the ZPPR-13 experiments, the  $(k_{ij})$ 

matrix from the Avery theory of coupled reactors<sup>(12)</sup> and the eigenvalue spectrum were chosen as decoupling descriptors. In applying the Avery theory, the reactor is arbitrarily divided into two parts, and the coupling between them is described by the elements of the (2 x 2)  $k_{ij}$  matrix. The eigenvalue spectrum is particularly useful if nodal kinetic analysis to be used.

For ZPPR-13, only the separation between the fundamental and the first harmonic eigenvalues\* were used for analysis of the eigenvalue spectrum. Previous experience had shown that the first harmonic eigenvalue was always for an azimuthal mode, even if there were only two fuel rings separated by an unusually thick blanket. Intuitively one might expect the core to be more radially decoupled, but in general azimuthal decoupling dominates for local perturbations.

Approximate solutions for the first harmonic eigenvalue were obtained by imposing a zero-flux boundary condition along the x or y axis in a 1/8-core, xy model of the assembly. Exact solutions were later obtained by stripping out the fundamental mode and solving directly for the first harmonic. It was demonstrated that the approximate solutions were sufficiently accurate provided that the zero-flux boundary condition was imposed along an axis where there was a natural minimum in the reference flux solution. Application of this knowledge made preliminary planning considerably easier.

For ZPPR-13, only the separation between the first two eigenvalues was considered as a measure of the relative decoupling. Table 3.5 gives the percentage separation

\*Here we refer to the eigenfunction closest to the fundamental as the first harmonic.

-33

• •

Table 3.7 shows eigenvalue separation for ZPPR-13 cores, estimated for the 8 group models used for control rod analysis. Eigenvalues were obtained by forming a zero flux at the x-axis and at the y-axis in each case. In addition to the reference configuration, results are shown for control rod banks inserted in each ring in the subcritical states. The eigenvalue separations in the critical cores will depend on the changes made to bring the core critical. However, for a uniform increase in enrichment, it appears that the cores with control rods inserted may be far more sensitive than the references.

The response to a perturbation of the reactor (flux tilts) can be analyzed by an eigenfunction expansion. If  $\Psi_i$  are the eigenfunctions of the reference reactor, with eigenvalues  $\lambda_n$ ,

$$L\psi_n = (1/\lambda_n)M\psi_n$$

Wade<sup>(13)</sup> has shown that the fluxes,  $\phi$ , in the perturbed case are given by:

$$\psi(\mathbf{r}) = a_0 \psi_0(\mathbf{r}) + \sum_n \frac{\rho_n \lambda_n \lambda_n}{\lambda_0 - \lambda_n} \psi_n(\mathbf{r})$$

where

$$\rho_n = \langle \psi_n^{\star}, (-\delta L + \delta M) \phi \rangle / \langle \psi_n^{\star}, M \psi_n \rangle$$

Thus, harmonics with the smallest eigenvalue separation dominate. Perturbations at the peak of the eigenfunction have maximum effect, while perturbations at the nodes will give zero contribution. The sensitivities of the cores to errors in cross section data can also be characterized by the eigenvalue spectra. Only a limited number of results have been obtained for ZPPR-13 at this stage. Table 3.8 shows the results of a 5% increase in  $^{238}$ U capture, uniformly in all regions, for ZPPR-13A







Fig. 3.2. ZPPR-13A: Ratios of reaction rates with "multibuckled cell data" to those with "asymptotic cell data";  $^{235}$ U(n,f) and  $^{238}$ U(n, $\gamma$ ).

j of



Fig. 3.3. Calculated percent change in <sup>235</sup>U fission rate in ZPPR-13A when plate streaming is included.

| 48 | 49       | 50       | 51          | 52  | 53       | 54       | 55  | 56       | 57        | 58        | 59       | 60       | 61       | 62       | 63 | 64        | 65       | 66       | 67       | 68       | 69       | 70       | 71       | 72         | 73  | 74         | 75       | 76       | 77         | 78         | 79        | 80           | 81        | 82        | 283        | 84           | 85       |      |
|----|----------|----------|-------------|-----|----------|----------|-----|----------|-----------|-----------|----------|----------|----------|----------|----|-----------|----------|----------|----------|----------|----------|----------|----------|------------|-----|------------|----------|----------|------------|------------|-----------|--------------|-----------|-----------|------------|--------------|----------|------|
|    |          |          |             |     |          |          |     |          |           |           |          |          |          |          |    |           |          |          |          |          | ŀ        |          |          |            |     |            |          |          |            |            |           |              |           |           |            |              |          |      |
|    |          |          |             |     |          |          |     |          |           |           |          |          |          |          |    |           |          |          |          |          |          |          |          |            |     |            |          |          |            |            |           |              |           |           |            |              |          | 11_  |
|    |          |          |             |     |          |          |     |          |           |           |          |          |          |          |    |           |          |          |          |          |          |          |          |            |     |            |          |          |            |            |           |              |           |           |            |              |          | 116  |
|    |          |          |             | Ī   |          |          |     |          |           |           |          |          |          |          |    |           |          |          |          |          |          |          |          |            |     |            |          |          |            |            |           |              | 1         | T         | Γ          |              |          | 11   |
|    |          |          |             |     |          |          |     |          |           |           |          |          |          |          |    |           |          |          |          |          |          |          |          |            |     |            |          |          |            |            | Mat       | :rí          | Ĺx        |           |            |              |          | 110  |
|    |          |          |             |     |          |          |     |          |           |           |          |          |          |          |    |           |          |          |          |          |          |          |          |            |     |            |          |          |            |            |           |              |           | •         |            |              |          | 119  |
|    |          |          |             |     |          |          |     | Γ        |           |           |          |          |          |          |    |           |          |          |          |          |          |          |          |            |     |            |          |          |            |            |           |              |           |           |            |              |          | 12   |
|    |          |          |             | ŀ   |          | T        |     |          | Γ         |           |          |          |          |          |    |           |          |          |          |          |          |          |          |            |     |            |          |          |            |            |           |              | Τ         | 1         | T          |              |          | 121  |
|    |          |          |             |     |          |          |     |          |           |           |          |          |          |          |    |           |          |          |          |          |          | •        |          |            |     |            |          |          |            |            |           |              | Ι         |           | Γ          |              |          | 122  |
|    |          |          | Ò           |     |          |          |     |          |           |           |          |          |          |          |    |           |          |          |          |          |          |          |          |            |     |            |          |          |            |            |           |              |           |           |            |              |          | 12:  |
|    |          |          |             |     | 0        |          | 0   |          |           |           |          |          |          |          |    |           |          |          |          |          |          |          |          |            |     |            |          |          |            |            |           |              |           |           |            |              |          | 124  |
|    |          |          |             | •   |          |          |     | 0        |           |           | 0        |          |          |          |    |           |          |          |          |          |          | Re       | fle      | act        | or. |            |          |          |            |            |           |              |           |           |            |              |          | 125  |
|    |          |          | 0           |     |          |          | 0   |          | 0         |           |          |          | 0        |          |    |           |          |          |          |          |          |          |          |            |     |            |          |          |            |            |           |              |           |           |            |              |          | 12€  |
|    |          |          |             |     | 0        |          |     |          |           |           | 0        |          |          |          |    |           |          |          |          |          |          |          |          | l          |     |            |          |          | •          |            |           |              |           |           |            |              |          | 127  |
|    |          |          | 0           |     |          |          | 0   |          | 0         |           |          |          | 0        |          | 0  |           |          |          |          |          |          |          | - T      |            |     |            |          |          |            |            |           |              |           |           |            |              |          | 128  |
|    |          |          |             |     | 0        |          |     |          |           |           | 0        |          |          |          |    |           | 0        |          |          | 0        | ute      | er       |          |            |     |            |          |          |            |            |           |              |           |           |            |              |          | 125  |
|    |          |          |             |     |          |          |     |          | 0         |           |          |          | 0        | L        | 0  |           |          |          |          | B1       | anl      | ket      |          |            |     |            |          |          |            |            |           |              |           |           |            |              |          | 130  |
|    |          |          |             |     |          | II       | nte | rn       | a1_       |           | 0        |          |          |          |    |           | 0        |          | 0        |          |          |          |          |            |     |            |          |          |            |            |           |              |           |           |            |              |          | 131  |
|    |          |          | 0           |     | 0        | B        | Lan | ke       | t         |           |          |          | 0        |          | 0  |           |          |          |          |          |          |          |          | ŀ          |     |            |          |          |            |            |           |              |           |           |            |              |          | 132  |
|    |          |          |             |     |          |          | 0   |          |           |           |          |          |          |          |    |           | 0        |          | 0        |          | 0        |          |          |            |     |            |          |          |            |            |           |              |           |           |            |              |          | 133  |
|    |          |          | 0           |     | 0        |          |     | <u> </u> | 0         |           |          |          |          |          | •  | •         |          |          |          | •        |          |          |          |            |     |            |          |          |            |            |           |              |           |           |            |              |          | 134  |
|    |          |          |             |     |          |          | 0   |          |           |           | 0        |          |          |          | Ĺ  |           | 0        |          | 0        |          |          | 0        |          |            |     |            |          |          |            |            |           |              |           |           |            |              |          | 135  |
|    |          |          |             |     | 0        |          |     | L        | 0         |           |          |          | 0        |          |    |           |          |          |          | L        |          |          |          |            |     |            |          |          |            |            |           |              |           | L         | $\bot$     | $\bot$       | <u> </u> | 136  |
|    |          | In       | te          | rna | 1_       |          | 0   |          |           |           | 0        |          |          |          | _  | <b>_</b>  |          | 0        |          | 0        | ļ        | 0        | Ļ        | 0          |     |            |          |          |            |            |           |              |           | L         |            | $\downarrow$ | <u> </u> | 137  |
| L  |          | B1       | an)<br>'    | ket | :        |          | L   |          | 0         |           |          |          | [        | 0        |    |           |          |          |          |          |          |          |          | <u> </u>   | L   |            |          |          |            |            |           |              |           |           |            | 1            |          | 138  |
| L  |          |          | 0           |     | I        |          |     | ļ        |           |           | 0        |          | 0        | ļ        | 0  |           |          |          | 0        |          | 0        | <u> </u> | 0        | <b>.</b>   | 0   |            |          | <u> </u> |            |            |           |              | 4         | 1         | ┢          | <b>_</b>     | ╞        | 139  |
|    |          |          |             |     | 0        |          |     |          |           |           |          |          | <u> </u> | ļ        |    |           |          |          |          |          | <b> </b> | <u> </u> | ļ        | <u> </u>   |     | <b> </b>   | 1        |          |            | <b> </b>   |           | <u> </u>     |           | -         | ┺          | ┶            | _        | 140  |
|    |          |          | 0           |     |          |          | 0   |          |           |           |          | 0        |          | 0        |    | 0         |          |          | L        | 0        |          | 0        |          | 0          |     |            |          |          | <b>_</b>   | ļ          | L         | $\downarrow$ | 4         | ┶         | ┺          |              | <b>_</b> | 141  |
|    |          |          |             |     | 0        |          |     |          |           |           |          | <u> </u> |          | ļ.,      |    |           |          |          |          | L        |          |          | <b>_</b> |            | +   | -          |          | _        |            | L          |           |              | 4         | $\perp$   | +          | ┢            |          | 142  |
|    | L        |          | 0           |     |          | <u> </u> | 0   | L        | L         |           |          | <b>_</b> | 0        |          | 0  | 1         | 0        |          |          | ļ        |          | 0        | 4        | 0          |     | 10         | <b>I</b> |          | ╞          |            | <b> </b>  |              | +         | +-        | ╇          | ╇            | +        | 143  |
| L  | <u> </u> | L        |             |     | 0        | <b>_</b> | ļ   | ┢        |           |           |          | <u> </u> | ļ        |          | _  |           | Ļ        |          |          | <u> </u> |          |          |          |            | ╞   |            | ┣        | _        | –          | ╞          |           |              | +-        | +         | ┿          | 4-           |          | 144  |
|    |          | <u> </u> |             |     |          |          | 0   | L        |           | 0         |          | <b>_</b> |          | 0        |    | 0         |          | 0        |          |          | L        | 0        |          | 0          | 1   | 0          | ┞        | _        | _          | <u> </u>   | <u> </u>  | Ļ            | _         | 1         | ╇          | ╄            |          | 145  |
|    |          |          | 1           | 1   | !_       | <b> </b> |     | <u> </u> |           | <u> </u>  | Ļ        |          |          | Ļ        | -  |           | ļ        |          |          | _        | ┞        | -        | ╞        | ╇          |     | -          | Ļ        | -        | ┢          | _          | <b> </b>  | ┞            | +-        |           | ╇          | ╄            |          | 146  |
|    | ļ        |          | ent<br>I an | ra. | 1<br>+   |          | 0   |          | 0         |           | 0        | <b> </b> | <b> </b> | <b> </b> |    | 0         |          | 0        | _        | <b> </b> | ╞        | ļ        | 10       | -          | 10  | -          | 10       |          | ┢          | _          | <u> </u>  | ┡            | +-        | +-        | ╇          | ╄            | +        | 147  |
| ┝  | ļ        |          | t           | 1   | -<br>†   | _        |     | Ļ_       | <u> </u>  | 1-        | <b> </b> | ļ        | ╄──      |          |    | <u> </u>  | <u> </u> |          |          |          | <u> </u> | ļ        | +        | <u> </u>   | Ļ   | -          | +        | ╄        | ╆━         | ┿╸         | +         | ╀            | +-        | +         | +-         | ╇            | +        | 148  |
|    | <u> </u> |          | $\vdash$    |     | <b> </b> | <b> </b> | -   | <b> </b> | Fi<br>Pi- | iel       |          |          | _        | –        | Ļ. | Fu<br>Pi- | el       | <b>`</b> | ┝        | $\vdash$ |          |          | -        | Fu<br>Pir  | el  | <u>а</u> — | <u>∔</u> | ┢        | ┢          | ┝          | –         | +            | +         | +-        | +-         | ╇            | ╋        | 149  |
| L  |          |          | L           |     |          | ↓        | Ļ   | L        | 4         | +<br>- g- | +        | 1        |          | L        |    | 4         | ig-      | 4        | <b>I</b> | Ļ        |          | L        | 1        |            | .8- |            |          |          |            | 1          | L         |              |           |           | -          |              |          | 1120 |
|    |          | 1        | 0           | S   | in       | gle      | C   | 01u      | ımn       | Fı        | ıe1      | Dr       | aw       | er       |    |           |          |          |          |          |          | Ŧ        | ]        | Rep<br>dra | la  | ce<br>r f  | wi<br>or | th<br>su | sin<br>bci | ng]<br>rit | le<br>:ic | co<br>al     | lun<br>re | an<br>efe | fue<br>rer | :1<br>ice    |          |      |

Single Column Fuel - Poison Safety Rod for control rod experiments.

•

Fig. 3.4. XY Calculational Model for ZPPR-13A Critical Reference.

•

.

RADIAL 189.489 MATRIX 166.454 OUTER BLANKET 141.053 FUEL BLANKET AXIAL ABD INNER 109.046 副 BUASAM STAINLESS STEEL REFLECTOR BLANKET 94.127 AXIAL FUEL RING ABD BLOCK REFLECTOR INNER 69.695 80 E 0142XmH BLANKET 53.986 AXIAL FUEL ABD ABC IRON 30.539 CENTRAL BD E 106.800 73.736 45.796 91.516 78.816

Fig. 3.5. R-Z Calculational Model for ZPPR-13A Critical Reference (dimensions in cm)

<u>- 1</u>

1

1 1 ₩. 3

, Ì . .

l

Ì

İ

ŀ

ł

1 i

• .







# Fig. 3.13. Perturbation in <sup>235</sup>U fission rates in ZPPR-13A due to detector-drawers in blankets.

| 4 | 8 2          | 19 | 50 | 51 | 52           | 53  | 54       | 55       | 56                 | 57       | 58           | 59       | 60 | 61  | 62       | 63       | 64        | 65       | 66           | 67       | 68       | 69       | 70       | 71         | 72       | 73       | 74           | 75           | 76         | 77         | 78        | 79         | 80        | 81       | 82         | 83       | 84       | 85      |      |
|---|--------------|----|----|----|--------------|-----|----------|----------|--------------------|----------|--------------|----------|----|-----|----------|----------|-----------|----------|--------------|----------|----------|----------|----------|------------|----------|----------|--------------|--------------|------------|------------|-----------|------------|-----------|----------|------------|----------|----------|---------|------|
| [ |              | 1  |    |    |              |     |          |          |                    |          |              |          |    |     |          |          |           |          |              |          |          |          |          |            |          |          |              |              |            |            |           |            | T         | T        | <u> </u>   | 1        |          |         | 11.  |
| ĺ |              |    |    |    |              |     |          |          |                    |          |              |          |    |     |          |          |           |          |              |          |          |          |          |            |          |          |              |              |            |            |           |            |           |          |            |          |          |         | 11   |
|   |              |    |    |    |              |     |          |          |                    |          |              |          |    |     | ŀ        |          |           |          |              |          |          |          |          |            |          |          |              |              |            |            |           |            |           |          |            |          |          |         | 116  |
| L |              |    |    |    |              |     |          |          |                    |          |              |          |    |     |          |          |           |          |              |          |          |          |          |            |          |          |              |              |            |            |           |            |           |          |            |          |          | 1       | 11   |
|   |              |    |    |    |              |     |          |          |                    |          |              |          |    |     |          |          |           |          |              |          |          |          |          |            |          |          |              |              |            |            |           |            |           |          |            |          |          |         | 11   |
|   | _            |    |    |    |              |     | 1        |          |                    |          |              |          |    |     |          |          |           | L        |              |          |          |          |          |            |          |          |              |              |            |            |           |            |           |          |            |          |          |         | 119  |
|   |              |    |    |    |              |     |          |          |                    |          |              |          |    |     |          |          |           |          |              |          |          |          |          |            |          |          |              |              |            |            |           |            |           |          |            |          |          |         | 12   |
| L |              |    |    |    |              | 1.  |          |          |                    |          |              |          |    |     |          |          |           |          |              |          |          |          |          |            |          |          |              |              |            |            |           |            |           |          |            |          |          |         | 12   |
|   | $\downarrow$ | _  |    |    |              |     |          | <b> </b> |                    |          | ╞            | _        |    |     |          |          | L         |          |              |          |          |          |          |            |          |          |              |              |            |            |           |            |           |          |            |          |          |         | 122  |
| Ļ | _            | _  |    | 0  | Ļ            |     | ļ        |          |                    | L        | <b> </b>     | <b> </b> |    |     |          |          | Ļ         |          | L            |          | _        |          |          |            |          |          |              |              |            |            |           |            |           |          |            |          |          |         | 12   |
| Ļ | _            |    |    |    | <b> </b>     | 0   |          | 10       |                    | Ļ        | <u> </u>     |          |    |     |          |          |           |          |              |          |          |          |          |            |          |          |              |              |            |            |           |            |           |          |            |          |          |         | 12.  |
| Ļ | 4            | _  |    | _  |              |     |          |          | 0                  |          | <b> </b>     | 0        |    |     |          | ļ        | <u> </u>  | ļ        |              | ļ        |          |          |          |            | <b> </b> |          |              |              |            |            |           |            |           |          |            |          |          |         | 125  |
| ┝ | $\downarrow$ |    |    | 0  | ┞            |     | <u> </u> | 0        | ┣                  | 0        | <u> </u>     | L_       |    | 0   |          |          |           | <u> </u> | <u> </u>     | ļ        |          |          |          |            | <b> </b> | ļ        |              |              |            |            |           |            | ļ         | <b> </b> |            | ļ        |          |         | 12   |
| Ļ | $\downarrow$ | _  |    |    | <b> </b>     | 0   |          | Ļ        | <b> </b>           |          | <u> </u>     | 0        |    |     |          |          |           | L        | <u> </u>     |          | <u> </u> |          |          |            |          |          |              |              |            |            |           |            |           |          |            |          |          |         | 121  |
| Ļ |              | _  |    | 0  | ļ.,          |     | <u> </u> | 0        | ļ                  | 10       | ļ            | Ļ        |    | 0   |          | 0        | E)        |          |              |          |          | <b>_</b> | L        |            |          |          |              | <b> </b>     |            |            |           |            |           |          |            |          |          |         | 158  |
| ŀ | -            | 4  |    |    | ┢┙           | 0   | <u> </u> |          |                    |          | <u> </u>     | 0        |    |     |          |          | Ð         | Q        |              |          |          |          | <u> </u> | <b></b>    | <b> </b> | μ.,      |              | <b> </b>     |            |            |           | -          | ļ         | ļ        | ļ          | <u> </u> |          |         | 12   |
| ŀ | _            | _  |    |    | ╂            |     | <u> </u> | <b> </b> |                    | 0        |              |          |    | 0   |          | 0        | <b>B</b>  |          | <b>B</b> (   |          | -        |          |          | <b></b>    |          | $\vdash$ | ļ            |              |            |            |           |            | ╞         | <u> </u> |            | ļ        |          |         | 130  |
| ┞ | -            | _  | _  |    | <u> </u>     |     | L        | _        |                    | ┣        | -            | 0        |    |     | <u> </u> |          | Ð         | 0        | E H          | 0        |          |          |          |            |          | ╄──      | <b> </b>     |              |            |            |           | _          | -         | <b> </b> | ļ          | <b>_</b> |          |         | 13.  |
| ŀ | -            |    |    | 0  | _            | 0   | Ļ        |          |                    | -        | ┣            | ┼╌       |    | 0   | <u> </u> | 0        | 来         |          | EX.          |          |          |          |          | ┣—         | <u> </u> |          | <b> </b>     | ļ            |            |            |           | L          |           | -        | -          |          |          |         | 133  |
| ┝ | -+           | _  |    |    |              |     |          | Р        | $\left  - \right $ |          |              |          |    |     |          |          | 96        | 2        | U            | 2        |          | 9        | ÷        |            | ┢──      | ┢──      | ┨───         |              |            |            |           |            | ╂         |          | -          | ╂        |          |         | 130  |
| F | +            | -  |    | ٣  | 1            | Р   |          |          | ┢──                | Р        | <del> </del> |          |    |     |          | -        | 1A        | 6        | 6            |          |          |          |          | 0          |          | ┨        |              |              |            |            |           | -          | ┣         | ┡        | -          | ┢        |          |         | 13!  |
| ╞ | +            |    |    |    | ┢─           |     | +        | ۲        | ┝─                 | 5        | ┼──          | ۲        |    | 0   |          |          | Ľ         | Ĕ        | 送            | Ĕ        |          |          |          | Ba         | ┢─       | ┼─       | ┢──          | ╂──          |            |            |           |            | ╂         | ┢─       | -          | +        |          |         | 136  |
| ŀ | +            |    |    | -  |              | Ĕ   |          | 6        | ┢╼╴                | ۲        | $f^{-}$      | 6        |    | Ŭ   |          |          | ╞╌┙       |          | ŏ            | <u> </u> | Ь        | ┢──      | Б        | Ă          | 0        | †        | <b> </b>     | $\mathbf{t}$ |            |            | $\square$ |            |           | ┢╴       | ┢─         | ┢        |          |         | 137  |
| f | -+           |    |    |    |              | 1-  |          | Ť        |                    | 0        | $\vdash$     | F        |    |     | 0        |          |           | ┢╴       | Ē            |          | Ť        |          | F        | Ă          | 1        |          | <b>†</b>     | ┢──          |            |            |           |            | 1         |          |            |          |          |         | 131  |
| ŀ | +            |    |    | 0  |              |     |          | $\vdash$ | ┟─┙                |          | t-           | 6        |    | 0   |          | 0        |           |          | ┢╴           | 0        |          | 0        |          | 0          |          | 0        |              | $\vdash$     |            |            |           |            | 1         | ┢─       | ┢──        |          |          |         | 139  |
| t | -+           |    |    | Ē  | ┢            | 0   |          |          | t-                 |          | T            | Ē        |    |     | t        | Ē        |           |          | $\mathbf{t}$ |          |          | t-       |          | ē          |          | Ť        |              | $\mathbf{t}$ |            |            |           |            | t         | T        | ţ          | t        |          |         | 14(  |
| Ī | 1            |    |    | 0  | $\uparrow$   | Ð   |          | 0        |                    | 1        |              |          | 0  |     | 0        | <b>†</b> | 0         |          | T            |          | 0        |          | 0        | Ð          | 0        |          |              |              |            |            |           |            | 1         | ŀ        | F          | T        |          |         | 14.  |
| f |              |    |    |    | $\mathbf{T}$ | 0   |          | Ð        |                    |          |              | 1        |    |     | t        |          | Γ         |          | Γ            | Γ        |          |          |          | ē          |          |          |              |              |            |            |           |            | 1-        | t        | $\uparrow$ | T        |          |         | 142. |
| ľ | 1            |    |    | 0  |              | Ð   |          | O        |                    |          |              |          |    | 0   |          | 0        | $\square$ | 0        |              |          |          |          | 0        | Ð          | 0        |          | 0            |              |            |            |           |            |           | T        |            |          |          |         | 143  |
| ſ |              |    |    |    |              | 0   |          | Ð        |                    | •        | Ð            |          |    |     |          |          |           |          |              |          |          |          |          | e          |          |          |              |              |            |            |           |            |           |          |            |          |          |         | 144  |
|   |              |    |    |    |              |     |          | 0        |                    |          | 0            |          |    |     | 0        |          | 0         |          | 0            |          |          |          | 0        | Θ          | 0        |          | 0            |              |            |            |           |            |           |          |            |          |          |         | 145  |
|   |              |    |    |    |              |     |          | Ð        | L,                 |          | Ð            |          |    |     |          |          |           |          | Ð            |          |          |          |          | Θ          |          |          |              |              |            |            |           |            | L         |          |            |          |          |         | 146  |
| L |              |    |    |    |              |     |          | 0        |                    | 0        | Ð            | 0        |    |     |          |          | 0         |          | 0            |          |          |          |          | 0          |          | 0        | ļ            | 0            |            |            | Ĺ         |            |           | 1        |            | 1        | <b>I</b> |         | 147  |
| ļ |              |    |    | -  |              | ļ   | _        |          |                    |          | Æ            | 4        | -  |     |          |          |           | L        | E            | -        |          | -        | <b></b>  | e          | 4        | -        | -            | $\vdash$     | <b></b>    |            | -         | -          | -         | +-       | -          |          | Ļ        |         | 148  |
| F | _            |    |    |    |              |     | ļ        |          | ļ                  |          |              | -        |    |     |          | <b> </b> | -         | -        | -            | $\vdash$ | -        |          | <u> </u> |            | -        | -        |              | ŀ            |            | ļ          | <u> </u>  |            | -         | +        | -          | -        |          |         | 14:  |
| Ļ | -            | _  |    |    | <u> </u>     | L   | 1        | Ļ        | L                  | <b>I</b> |              |          | Ļ  | L   | L        | -        |           | L        | -            | ļ        |          |          | L        |            | L        | <b>_</b> | L.,          | Ļ            | Ļ          | Ļ          | Ļ         | L          | Ļ         | <u> </u> | 1          |          | Ļ        | <b></b> | 150  |
|   |              |    | 1  | 0  | S            | in  | gle      | Co       | olu                | m        | Fu           | e1       | Dr | awe | r        |          |           |          |              |          |          |          | 0        |            | Rep      |          | 18 '<br>r f. | wit<br>or    | h s<br>gul | sin<br>Scr | g1        | e (<br>10) | col<br>al | um<br>re | n f<br>fer | ue.      | L        |         |      |
|   |              |    |    |    |              | •   |          |          |                    |          | 22           | 9-       |    |     |          |          |           |          |              |          |          |          |          |            | for      |          | ont          | rol          | . r        | od         | ex        | pe         | rio       | len      | ts.        |          |          |         |      |
|   |              |    |    | Ð  | A            | .bo | ve       | ave      | era                | .ge      | 2.3          | ~Pt      | L  |     |          |          |           |          |              |          |          |          | Ð        | <b>j</b> , | Bel      | .ow      | av           | era          | ige        | 23         | 9p        | u          |           |          |            |          |          |         |      |

Fig. 3.14. ZPPR-13A: Locations of drawers with slightly greater or less than average fissile mass.



51 Fig. 3.15. Percent change in <sup>235</sup>U fission rate in ZPPR-13A using specific fuel drawer masters compared to homogenized masters

CONTOUR FROM -2.0000 TO 2.0000

CONTOUR INTERVAL OF 0.20000 PT(3.3)= 0.28992E-01



52 Fig. 3.16. Percent change in <sup>235</sup>U fission rate in ZPPR-13A using specific blanket drawer masters compared to homogenized masters.

TØ 1.4000 CØNTØUR INTERVAL ØF 0.10000 PT(3,3)= -2.2010 CØNTØUR FRØM -1.5000



Fig. 3.17. Percent change in <sup>235</sup> 53 U fission rate in ZPPR-13A using all-master model compared to homogeneous model.

CENTOUR FRE + -2.0000 TO 2.0000 CONTOUR INTERVAL OF 0.20000 PT(3.3)= -2.6320

| TABLE 3 | 3.1 | . Directional | Diffusion | Coefficient | Modifiers | for | ZPPR-13A: | D(Benoist) | )/D(Hetero | geneous) | a |
|---------|-----|---------------|-----------|-------------|-----------|-----|-----------|------------|------------|----------|---|
|---------|-----|---------------|-----------|-------------|-----------|-----|-----------|------------|------------|----------|---|

|      |        |        |        |        |        |        |        |        | Vo i   | d ed   | Voi    | d ed   | Voi    | ded    |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|      | Double | Column | Single | Column | Ra     | dial   | Ax i   | al     | Double | Column | Single | Column | Rad    | ial    |
|      | Fu     | el     | Fu     | el     | B1     | anket  | Bl an  | ket    | Fu     | el     | Fu     | el     | Bl a   | nket   |
| Grou | p X    | Υ,Ζ    | X      | Y,Z    | X      | Y,Z    | X      | Y,Z    | Χ.     | Y,Z    | Х      | Y,Z    | х      | Υ,Ζ    |
| 1    | 1.0178 | 1.0305 | 1.0212 | 1.0376 | 1.0028 | 1.0090 | 1.0133 | 1.0330 | 1.0193 | 1.0486 | 1.0208 | 1.0636 | 1.0021 | 1.0156 |
| 2    | 1.0161 | 1.0307 | 1.0193 | 1.0384 | 1.0018 | 1.0087 | 1.0107 | 1.0326 | 1.0182 | 1.0506 | 1.0195 | 1.0683 | 1.0014 | 1.0165 |
| 3    | 1.0110 | 1.0262 | 1.0139 | 1.0327 | 1.0015 | 1.0083 | 1.0078 | 1.0293 | 1.0118 | 1.0470 | 1.0137 | 1.0650 | 1.0013 | 1.0167 |
| 4    | 1.0069 | 1.0255 | 1.0081 | 1.0309 | 1.0004 | 1.0093 | 1.0049 | 1.0306 | 1.0087 | 1.0516 | 1.0100 | 1.0735 | 1.0004 | 1.0214 |
| 5    | 1.0063 | 1.0311 | 1.0064 | 1.0338 | 1.0008 | 1.0157 | 1.0066 | 1.0360 | 1.0066 | 1.0717 | 1.0066 | 1.0982 | 0.9999 | 1.0372 |
| 6    | 1.0030 | 1.0161 | 1.0031 | 1.0157 | 1.0007 | 1.0069 | 1.0036 | 1.0196 | 1.0041 | 1.0622 | 1.0045 | 1.0847 | 1.0009 | 1.0303 |
| 7    | 1.0042 | 1.0451 | 1.0045 | 1.0516 | 1.0011 | 1.0270 | 1.0055 | 1.0565 | 1.0067 | 1.0992 | 1.0076 | 1.1385 | 1.0020 | 1.0570 |
| 8    | 1.0034 | 1.0343 | 1.0035 | 1.0378 | 1.0016 | 1.0178 | 1.0047 | 1.0444 | 1.0066 | 1.0891 | 1.0075 | 1.1244 | 1.0031 | 1.0465 |
| 9    | 1.0035 | 1.0440 | 1.0040 | 1.0478 | 1.0016 | 1.0224 | 1.0058 | 1.0574 | 1.0059 | 1.0983 | 1.0074 | 1.1330 | 1.0028 | 1.0495 |
| 10   | 1.0046 | 1.0476 | 1.0056 | 1.0553 | 1.0021 | 1,0235 | 1.0079 | 1.0658 | 1.0076 | 1.0998 | 1.0097 | 1.1386 | 1.0035 | 1.0486 |
| 11   | 1.0043 | 1.0441 | 1.0052 | 1.0489 | 1.0020 | 1.0205 | 1.0077 | 1.0598 | 1.0081 | 1.1061 | 1.0108 | 1.1461 | 1.0039 | 1.0509 |
| 12   | 1.0054 | 1.0522 | 1.0093 | 1.0706 | 1.0032 | 1.0240 | 1.0118 | 1.0793 | 1.0079 | 1.1029 | 1.0133 | 1.1486 | 1.0049 | 1.0435 |
| 13   | 1.0027 | 1.0482 | 1.0039 | 1.0525 | 1.0021 | 1.0244 | 1.0062 | 1.0631 | 1.0068 | 1.1098 | 1.0102 | 1.1474 | 1.0045 | 1.0531 |
| 14   | 1.0029 | 1.0409 | 1.0068 | 1.0553 | 1.0025 | 1.0217 | 1.0090 | 1.0633 | 1.0056 | 1.0908 | 1.0125 | 1.1432 | 1.0044 | 1.0466 |
| 15   | 1.0035 | 1.0365 | 1.0142 | 1.0700 | 1.0049 | 1.0257 | 1.0143 | 1.0702 | 1.0076 | 1.0836 | 1.0252 | 1.1609 | 1.0080 | 1.0467 |
| 16   | 1.0032 | 1.0108 | 1.0054 | 1.0160 | 1.0027 | 1.0121 | 1.0094 | 1.0203 | 1.0061 | 1.0829 | 1.0209 | 1.1534 | 1.0075 | 1.0469 |
| 17   | 1.0168 | 1.0352 | 1.0213 | 1.0532 | 1.0401 | 1.1063 | 1.0182 | 1.0497 | 1.0060 | 1.0923 | 1.0209 | 1.1635 | 1.0074 | 1.0498 |
| 18   | 0.9955 | 1.0347 | 0.9999 | 1.0472 | 1.0001 | 1.0161 | 1.0030 | 1.0515 | 1.0063 | 1.1070 | 1.0161 | 1.1640 | 1.0060 | 1.0478 |
| 19   | 1.0001 | 1.0625 | 1.0076 | 1.0891 | 1.0033 | 1.0274 | 1.0114 | 1.0901 | 1.0055 | 1.1082 | 1.0161 | 1.1664 | 1.0060 | 1.0462 |
| 20   | 1.0000 | 1.0692 | 1.0080 | 1.0969 | 1.0038 | 1.0275 | 1.0131 | 1.0935 | 1.0038 | 1.1110 | 1.0143 | 1.1668 | 1.0058 | 1.0437 |
| 21   | 1.0006 | 1.0596 | 1.0151 | 1.1093 | 1.0064 | 1.0349 | 1.0178 | 1.1003 | 1.0041 | 1.0896 | 1.0224 | 1.1657 | 1.0083 | 1.0468 |
| 22   | 0.9956 | 1.0871 | 1.0072 | 1.1169 | 1.0050 | 1.0337 | 1.0183 | 1.1151 | 0.9999 | 1.1303 | 1.0141 | 1.1878 | 1.0071 | 1.0495 |
| 23   | 0.9934 | 1.0860 | 1.0044 | 1.1129 | 1.0044 | 1.0290 | 1.0151 | 1.1015 | 0.9977 | 1.1294 | 1.0107 | 1.1826 | 1.0063 | 1.0438 |
| 24   | 0.9857 | 1.0909 | 0.9979 | 1.1154 | 1.0041 | 1.0282 | 1.0134 | 1.0981 | 0.9918 | 1.1362 | 1.0050 | 1.1861 | 1.0065 | 1.0436 |
| 25   | 0.9820 | 1.1030 | 0.9934 | 1.1233 | 1.0039 | 1.0270 | 1.0137 | 1.0942 | 0.9895 | 1.1517 | 0.9996 | 1.1949 | 1.0057 | 1.0414 |
| 26   | 0.9998 | 1.0871 | 1.0097 | 1.1174 | 1.0047 | 1.0378 | 1.0172 | 1.1332 | 1.0068 | 1.1345 | 1.0178 | 1.1930 | 1.0078 | 1.0577 |
| 27   | 0.9497 | 1.1373 | 0.9753 | 1.1445 | 1.0046 | 1.0321 | 1.0114 | 1.1212 | 0.9657 | 1.2112 | 0.9856 | 1.2350 | 1.0082 | 1.0534 |
| 28   | 1.0029 | 1.0806 | 0.9959 | 1.1139 | 1.0037 | 1.0262 | 1.0136 | 1.0926 | 1.0059 | 1.1284 | 1.0034 | 1.1895 | 1.0055 | 1.0412 |

υı.

<sup>a</sup>In ZPPR, the x-direction is perpendicular to the plates in the unit cells. The y- and z-directions are parallel to the plates and are equivalent in the models used to represent the ZPPR cells. File MR3/B3,4

| Energy Boundary | 8-Group Number | 28-Group Number | 226-Group Number <sup>a</sup> | 2082-Group Number <sup>a</sup> |
|-----------------|----------------|-----------------|-------------------------------|--------------------------------|
| 14.191 MeV      |                |                 |                               |                                |
| 6.065           |                | 1               | 36                            | 102                            |
| 3.679           |                | 2               | 49                            | 162                            |
| 2.231           | 1              | 3               | 66                            | 222                            |
| 1.353           |                | 4               | 80                            | 282                            |
| 820.9 keV       | 2              | 5               | 93                            | 342                            |
| 497.9           |                | 6               | 105                           | 402                            |
| 302.0           |                | 7               | 116                           | 462                            |
| 183.2           | 3              | 8               | 128                           | 522                            |
| 111.1           |                | 9               | 140                           | 582                            |
| 67.38           |                | 10              | 144                           | 642                            |
| 40.87           | 4              | 11              | 150                           | 702                            |
| 24.79           |                | 12              | 157                           | 762                            |
| 15.03           |                | 13              | 164                           | 82.2                           |
| 9.119           | 5              | 14              | 168                           | 882                            |
| 5.531           |                | 15              | 172                           | 942                            |
| 3.355           |                | 16              | 178                           | 1002                           |
| 2.035           | 6              | 17              | 185                           | 1062                           |
| 1.234           |                | 18              | 191                           | 1122                           |
| 748.5 eV        |                | 19              | 193                           | 1182                           |
| 454.0           | 7              | 20              | <sup>·</sup> 195              | 1242                           |
| 275.4           |                | 21              | 197                           | 1302                           |
| 167.0           |                | 22              | 199                           | 1362                           |
| 101.3           |                | 23              | 201                           | 1422                           |
| 61.44           |                | 24              | 203                           | 1482                           |
| 37.27           |                | 25              | 205                           | 1542                           |
| 22.60           |                | 26              | 207                           | 1602                           |
| 13,71           |                | 27              | 209                           | 1782                           |
| Thermal         | 8              | 28              | 226                           | 2082                           |

TABLE 3.2. Energy Structure of the Cross Section Sets used for ZPPR-13 Analysis

<sup>a</sup>The MC<sup>2</sup>-II library used 2082 groups with a lethargy width of 1/120. The SDX intermediate 1 ibrary had 226 groups with a variable lethargy width. JAII2B14

|             |       |         | IN ZFFF             | (-IJA                   |                        |
|-------------|-------|---------|---------------------|-------------------------|------------------------|
| Master      | Type  | Numbera | Deviatio<br>from Av | on in Mass<br>Verage, % | Character <sup>b</sup> |
|             |       |         | 239 <sub>Pu</sub>   | 238 <sub>U</sub>        |                        |
| .101        | SCF   | 179/181 | +0.07               | + 0.05                  | V63 8-4-6              |
| 102         | SCF   | 178/182 | +0.01               | - 0.00                  | V63 7-5-6              |
| 103         | SCF   | 16/16   | +0.24               | + 0.02                  | V63 5-5-8              |
| 701         | SCF   | 3/1     | +0.07               | + 0.05                  | FC V63 8-4-6           |
| 705         | SCF   | 6/2     | +0.01               | - 0.00                  | FC V63 7-5-6           |
| 801(802)    | SCF   | 18/18   | -1.02*              | - 0.52                  | PSR V63 5-5-4-4        |
| 201         | DCF   | 111/111 | -0.08               | + 0.07                  | V65 7-5-6              |
| 202         | DCF   | 172/168 | +0.07               | + 0.18                  | V65 5-5-8              |
| 203         | DCF   | 250/252 | -0.00               | + 0.13                  | V65 8-4-6              |
| 207         | DCF   | 59/59   | +0.92*              | - 0.33                  | V63 5-5-8              |
| 208         | DCF   | 40/40   | +0.67*              | - 0.47                  | V63 7-7-4              |
| 20 <b>9</b> | DCF   | 40/40   | -1.18*              | - 1.08                  | V65 5-5-4-4            |
| 210         | DCF   | 31/30   | -0.05               | + 0.10                  | . V65 6-6-6            |
| 211         | DCF   | 86/85   | +0.07               | + 0.18                  | V65 5-5-8              |
| 212         | DCF   | 175/174 | -0.20               | - 0.01                  | V65 7-7-4              |
| 213         | DCF   | -56/56  | -0.08               | + 0.07                  | V65 7-5-6              |
| 218         | DCF   | 8/8     | -0.35*              | - 1.58                  | V63 5-5-4-4            |
| 702         | DCF   | 1/1     | -0.08               | + 0.07                  | FC V65 7-5-6           |
| 706         | DCF   | 1/1     | +0.92*              | - 0.33                  | FC V63 5-5-8           |
| 707         | DCF   | 1/2     | -0.05               | + 0.10                  | FC V65 8-6-6           |
| 708         | DCF   | 2/7     | +0.07               | + 0.18                  | FC V65 5-5-8           |
| 709         | DCF   | 6/4     | -0.00               | + 0.13                  | FC V65 8-4-6           |
| 711         | DCF   | 1/1     | -0.60*              | - 0.49                  | TC V65 7-7-4           |
| 712         | DCF   | 0/1     | -0.20               | - 0.01                  | V65 7-7-4              |
| 501         | IB/RB | 275/274 |                     | + 1.02                  | RB inner IB2(x)        |
| 502         | IB    | 72/71   |                     | + 1.03                  | CB edge 45°            |
| 503         | RB    | 278/280 |                     | + 0.91                  | Middle of RB           |
| 504         |       | 75/74   |                     | + 1.02                  | IB(y)                  |
| 505         | IB    | 172/169 |                     | - 0.63                  | B2 45°                 |
| 506         | IB    | 150/150 |                     | 0.63                    | Bl x and y             |
| 507         | IB    | 70/71   |                     | - 0.63                  | CB center & axes       |
| 508         | RB    | 167/168 |                     | - 0.63                  | RB outer zone          |
| 509         | RB    | 72/72   |                     | - 0.63                  | RB outside             |
| 510         | RB    | 16/16   |                     | - 0.63                  | RB outside             |
| 511         | RB    | 47/48   |                     | - 0.63                  | RB outside             |
| 703         | IB/RB | 12/13   |                     | - 7.71                  | FC distributed         |
| 803(804)    | IB    | 6/16    |                     | -25.72                  | PSR                    |

TABLE 3.3. Variation in Average Composition of Drawer Masters in ZPPR-13A

<sup>a</sup>Number in half-l and half-2.

<sup>b</sup>V63 = Vendor 63 fuel, V65 = Vendor 65 fuel, FC = Fission chamber drawer, PSR = Narrow drawer for PSR, TC = thermocouple drawer. a-b-c = fuel piece distribution a in., b in., c in. from midplane. \*Major deviation in <sup>239</sup>Pu. JAIIA15

| Control<br>Rods | Worth by<br>AMM Model, \$ <sup>a</sup> | Worth by<br>Homogeneous Model, \$ | Ratio<br>(Correction) | Estimated<br>Correction<br>from Fission Rates <sup>b</sup> |
|-----------------|----------------------------------------|-----------------------------------|-----------------------|------------------------------------------------------------|
| CR22            | 0.7406                                 | 0.7458                            | 0.993                 | 0.995                                                      |
| CR25            | 0.8537                                 | 0.8708                            | 0.980                 | 0.981                                                      |
| CR28            | 0.7466                                 | 0.7458                            | 1.001                 | 1.000                                                      |
| CR31            | 0.8462                                 | 0.8708                            | 0.992                 | 0 <b>. 990</b>                                             |
| 6 R3            | 7.363                                  | 7.385                             | 0.997                 | 0.997                                                      |

TABLE 3.4. Perturbation in Control Rod Worths in ZPPR-13A due to Variations in Master Loadings

<sup>a</sup>Calculations 28G XY IMPD WBD,  $\beta = 0.3294\%$ .

 $^{b}$ Square of  $^{235}$ U fission rate ratio in AMM to HMM.

JAII#2A7

| TABLE 3.5.  | Characterization of the  |
|-------------|--------------------------|
| Eigenvalue  | Spectrum in ZPPR-13      |
| Seri        | es of Assemblies         |
|             | % Separation Between     |
| Assembly    | <u>k</u> $u$ and $k_1^a$ |
| 13 <b>A</b> | 2.66                     |

<sup>a</sup>k<sub>eff</sub> of the fundamental mode solution (k<sub>0</sub>) and the first azimuthal harmonic solution (k<sub>1</sub>).

|          | Zero Flux | Subcritical | Con    | trol Rod Ban | nks <sup>a</sup> |
|----------|-----------|-------------|--------|--------------|------------------|
| Assembly | Axis      | Reference   | F1     | F 2          | F3               |
| zppr-13a | у         | 0.0266      | 0.0175 | 0.0147       | 0.0396           |
|          | X         | 0.0293      | 0.0205 | 0.019        | 0.0254           |
| ,        | x+y       | 0.0808      | 0.0653 | 0.0528       | 0.1041           |

TABLE 3.7. Eigenvalue Separation for ZPPR-13 Core

<sup>a</sup>Calculated for subcritical cores. The banks contained six control rods in Fl, twelve in F2 and twelve in F3

|      | Percent | Change | in  | Fission | Rate | for | 5% | Increase | in | 238 <sub>U</sub> | Capture <sup>a</sup> |
|------|---------|--------|-----|---------|------|-----|----|----------|----|------------------|----------------------|
| Zone | Z1      | PR-13A |     |         |      |     |    |          |    |                  |                      |
|      | y-axis  | Zone A | ver | age     |      |     |    |          |    |                  |                      |
| F1   | -1.2    | -1     | . 2 |         |      |     |    |          |    |                  |                      |
| F2   | -0.5    | -0     | .4  |         |      |     |    |          |    |                  |                      |
| F3   | +0.4    | +0     | . 5 |         |      |     |    |          |    |                  |                      |

TABLE 3.8. Sensitivity of Fission Rates in ZPPR-13A

<sup>a</sup>Calculations for design models, not the final configurations, normalized to same total power.

JAII#2A7

## 4.0 CRITICALITY PREDICTIONS, BETA, REACTIVITY COEFFICIENTS

## 4.1 Analysis of k-effective

The experimental values for  $k_{eff}$ , after adjustment to a core with all shim and safety rods removed and to a temperature of 293K, are given in Table 4.1. The estimated uncertainties (Table 2.1) are about 0.04%  $\Delta k$ , but several of the larger components are correlated among the assemblies.

The results of the diffusion theory calculations are given in Table 4.2. Several small corrections are applied to the reference results. The correction of -0.032%  $\Delta k$ , for streaming in the airgap above the plates in each drawer, was estimated for ZPPR-8 and has been used for all subsequent cores. Corrections for 239Pu, 240Pu, 241Pu and 238U loadings were derived by comparing the isotopic masses edited from the xyz model with those from the ZPPR fuel inventory system. The small differences in mass were converted to  $\Delta k$  using atom-density sensitivity coefficients calculated for ZPPR-13A (Section 4.3). The correction for 241Pu is shown separately since this is mainly due to having a fixed date for decay calculation in the cross section library.

The diffusion theory C/E results are similar for all phases and span a range of 0.976 to 0.979.

A number of transport calculations have been made for ZPPR-13A in xy, rz and r geometry. These used a fine mesh, equivalent to 27 mm in the xy plane (or four meshes per drawer). Axial buckling terms for xy models were derived from the reference xyz solution and buckling terms for r models were

derived from an rz solution. Two-dimensional models were calculated with  $S_4$  angular quadrature and one-dimensional models used, in addition,  $S_{16}$  quadrature with a finer mesh (equivalent to nine meshes per drawer). The mesh and transport corrections are given in Table 4.3.

The estimated transport correction for ZPPR-13A is relatively large in comparison with that for conventional cores. The xy and r models show that this results principally from the annular geometry. The results in the two geometries differ by 0.2%. The transport option of the DIF3D code was used for xy geometry and the ONEDANT code was used for r geometry. It is not clear at this stage that this difference is due wholly to the better geometric representation in the xy model. Effects due to insufficiently refined mesh size and angular quadrature, and in the application of the buckling terms, may be different in the two geometries and codes. The effects of finer mesh in the r dimension and of higher order quadrature in the transport calculations are fairly small.

Using the rz transport correction with the available mesh and angular refinements, the correction to the reference xyz diffusion solution is estimated to be +0.76%  $^{\Delta}k$ . The corrected C/E value for ZPPR-13A is then 0.9857.

Table 4.4 compares the  $k_{eff}$  results for a number of ZPPR cores. Diffusion calculations for the heterogeneous cores with no plutonium in the blankets (BOC cores) are about 0.5%  $\Delta k$  lower than for the EOC-cores or the conventional cores. After transport corrections are applied, the results for all cores fall in the range 0.984 to 0.987. The corrected result for ZPPR-13A, 0.986 is in good agreement.

4.2 Delayed Neutron Parameters

Delayed neutron parameters for ZPPR-13 were calculated with the ENDF/B-V delayed neutron data (with reactor fluxes calculated using ENDF/B-IV

cross sections). The original calculations used reactor models in rz geometry. The calculations were repeated using the three-dimensional models in xyz geometry using the VARI3D editor. Parameters from both models are shown in Table 4.5.

For ZPPR-13A, the  $\beta_{eff}$  values from rz and xyz models are in close agreement as would be expected from the cylindrical design of the core.

## 4.3 Reactivity Coefficients

Reactivity coefficients for the most important heavy isotopes were calculated for ZPPR-13A using the rz model. The reactivities were calculated for a 1% increase in density in each region of the core (mass or number-density sensitivity coefficients). These are shown in Table 4.6. The results have been used to make small corrections to  $k_{eff}$  for differences in masses between the calculations and the actual loadings.
| Assembly | Measured<br>Excess,<br>%δk | Temperature<br>Correction to 293K,<br>%δk | PSR<br>Correction <sup>a</sup><br>%δk | Corrected<br>keff |
|----------|----------------------------|-------------------------------------------|---------------------------------------|-------------------|
| 1 3A     | 0.0221                     | 0.0238                                    | 0.0040                                | 1.000499          |
| <b>.</b> |                            |                                           | - <del></del> -                       |                   |

TABLE 4.1. Experimental Values for keff in the ZPPR-13 Reference Core

<sup>a</sup>Estimated correction for B<sub>4</sub>C poison safety blades which were fully withdrawn. JAIIB7

TABLE 4.2.

| Reference Calculations          | ZPPR-13A |  |  |
|---------------------------------|----------|--|--|
| xyz 28 groups                   | 0.97891  |  |  |
| Correct ions                    |          |  |  |
| Uniform axial mesh <sup>a</sup> | -0.00003 |  |  |
| Air gap streaming               | -0.00032 |  |  |
| 241Pu decay                     | -0.00004 |  |  |
| Fuel loading                    | +0.00007 |  |  |
| Corrected Calculation           | 0.97859  |  |  |
| C/F                             | 0 9781   |  |  |

<sup>a</sup>The xyz models used a variable axial mesh to accommodate the ZPPR shim rods. A correction is made to a uniform mesh of 51 mm in the core region. JAIIB8

| Correction                                                                         | Source                        | Value, ∆k          |
|------------------------------------------------------------------------------------|-------------------------------|--------------------|
| Mesh in xy-plane                                                                   | xy models                     | -0.0016            |
| 55 mm to 27 mm                                                                     | r models                      | -0.0014            |
| Total transport:<br>diffusion to S4 with mesh<br>equivalent to 27 mm               | rz diffusion<br>and S4 models | +0.0087            |
| Transport in xy-plane:<br>diffusion to S4 with mesh<br>27 mm or equivalent         | xy models<br>r models         | +0.0073<br>+0.0051 |
| S <sub>4</sub> to S <sub>16</sub> quadrature with<br>mesh equivalent to 27 mm      | r models                      | +0.0002            |
| Transport mesh in xy-plane:<br>~27 mm to ~18 mm with<br>S <sub>16</sub> quadrature | r models                      | +0.0003            |

 TABLE 4.3.
 Mesh and Transport Corrections Derived

 for ZPPR-13A

|                                  | Diff | usion The | ory k <sub>eff</sub> | Transport Theory k <sub>eff</sub> |        |           |  |
|----------------------------------|------|-----------|----------------------|-----------------------------------|--------|-----------|--|
|                                  | No.  | Mean      | S.D.                 | No.                               | Mean   | S.D.      |  |
| Physics Benchmarks               |      |           |                      |                                   |        | · · · · · |  |
| ZPPR-2                           | 1    | 0.9828    |                      | . 1                               | 0.9854 |           |  |
| ZPPR-9                           | - 1  | 0.9827    |                      | 1                                 | 0.9842 |           |  |
| ZPPR-7A                          | 1    | 0.9761    |                      | 1                                 | 0.9855 |           |  |
| ZPPR-13                          | 5    | 0.9777    | 0.0010               | 1                                 | 0.9857 |           |  |
| Cores with CRPs                  |      |           |                      |                                   |        |           |  |
| Small conventional               | 3    | 0.9789    | 0.0007               | 3                                 | 0.9844 | 0.0007    |  |
| Large conventional               | 3    | 0.9794    | 0.0007               | 3                                 | 0.9846 | 0.0011    |  |
| Small heterogeneous <sup>a</sup> |      |           |                      |                                   |        |           |  |
| BOC                              | 6    | 0.9751    | 0.0022               | 3                                 | 0.9868 | 0.0023    |  |
| EOC                              | 4    | 0.9787    | 0.0008               | 2                                 | 0.9863 |           |  |
|                                  |      |           |                      |                                   |        | . •       |  |

TABLE 4.4. Comparison of k<sub>eff</sub> Results for a Range of ZPPR Cores

<sup>a</sup>Results from ZPPR-7 and ZPPR-11. Beginning-of-cycle (BOC) cores have no plutonium in blanket regions. The end-of-cycle (EOC) cores simulated plutonium buildup. JAIIB9

|          | rz Calculation                                      |                     | xyz Calculation  |
|----------|-----------------------------------------------------|---------------------|------------------|
| Assembly | Prompt Neutron<br>Lifetime (l),10 <sup>-7</sup> sec | <sup>β</sup> eff, % | <sup>B</sup> eff |
| ZPPR-13A | 4.049                                               | 0.3296              | 0.3294           |

TABLE 4.5. Calculations of  $\beta_{eff}$  and 2 for ZPPR-13

JAIIB9

| TABLE 4.6.   | Mass                            | Sensitiv | ity Co | effi | lcients fo                           | or ZPPR-1 | 3       |
|--------------|---------------------------------|----------|--------|------|--------------------------------------|-----------|---------|
| Assembly     | Isotope                         | Percent  | ∆k/k I | Per  | Percent                              | Increase  | in Mass |
| Z PPR - 1 3A | 239pu<br>240pu<br>241pu<br>238y |          |        |      | 0.541<br>0.0110<br>0.00780<br>-0.175 |           |         |

JAIIB7

## 5.0 ANALYSIS OF REACTION RATE MEASUREMENTS

Reaction rates were calculated with the xyz diffusion models and 28 group cross sections, as described in Section 3.4. The effects of the banked shim control rods were approximated in the model by adding boron to the fuel in the shim location, to the appropriate shim-insertion depth, and using a shielding factor derived to reproduce the measured shim reactivity to within 10%. This method was deemed sufficiently accurate since reaction rate perturbations at the midplane are generally less than 1%. The model is estimated to be accurate to 0.1% at the midplane.

Figure 5.1 shows the calculated perturbation in fission rates due to the shim rods in ZPPR-13A. In this case the effects are quite small with relative perturbations of 0.5% at the most. The calculated shim rod reactivity was  $5 \notin$ .

The effects due to anisotropic diffusion vary up to 1% as shown in Section 3.3. In the absence of other perturbations, comparison of C/E values for reaction rates at equivalent positions on the x and y axes of ZPPR-13A should provide a test of the accuracy of calculated shim rod and streaming effects. Other ZPPR-13 cores have more complex internal blanket geometry.

Corrections for the variations in drawer compositions have been applied by multiplying the reaction rates calculated with the xyz model, R (xyz), by the ratio of reaction rates from the all-master xy model, R(AMM) to the reaction rate for the homogenized-master xy model, R(HMM) as follows:

 $R(corrected) = R(xyz) \times R(AMM)/R(HMM)$ 

In the case of axial traverses, the result at each axial position is multiplied by the ratio calculated at the midplane from the xy models.

The experimental measurements are given in units of  $10^{-18}$  fissions or captures per atom per second at a reactor power of approximately 1 watt. However, the normalization of the measurements is accurate only to about 20%.

For comparison with experiment, the calculated values are normalized to give an average C/E value of unity for all available measurements of fission in <sup>239</sup>Pu within the fuel regions. The normalization is not quite equivalent between different cores because the number of measurements for plutonium fission is limited and different traverses may be chosen in each case. Further, the plutonium measurements are normally made in one quadrant only and do not allow for asymmetries in the cores. The actual C/E results cannot be compared from core to core to better than a few percent; only the comparisons of the reaction rate distributions and reaction rate ratios are relevant.

Two foil irradiations were made in each of the assemblies ZPPR-13A,

The two sets of data have been combined into one group for the present analysis. A number of  $^{235}$ U foils were irradiated in common locations for each pair of measurements. Except for 2PPR-13A, the results for the "common foils" were in satisfactory agreement with the experimental statistics. The results for 13A showed a small bias. The original data for the separate irradiations have been preserved in the monthly TM reports.

The cross sections used to calculate reaction rates are cell-averaged for each cell type. In the case of plutonium in blanket zones, special cross sections resonance shielded for the 0.13 mm thick foils are generated. These show improvements over infinitely-dilute cross sections of up to 1% in the internal blankets and several percent in the soft spectrum regions of the radial and axial blankets.

For convenience in displaying the results, the following abbreviations are used to show the distinctive reactor zones:

CB for center blanket

Fl, F2, F3, for fuel rings one, two and three

Bl, B2 for the first and second internal blanket rings

RB for the radial blanket

AB for the axial blanket

In addition, the single-fuel-column drawers in the fuel zones are designated as F1 S, etc. This distinction is useful since systematic differences in C/E results for reactions in  $^{238}$ U are evident between the single- and double-fuel-column drawers.

As an aid in visualizing the analysis of the reaction rates, the results in the summary tables and figures show mean C/E values for groups of adjacent measurements in the same zone. Very little loss of information is incurred by this condensation since any variation in C/E values over a range of several drawers is masked by experimental statistics. The detailed tables show the standard deviation of the C/E distributions for the chosen groups of foils. These data are not usually of statistical significance, due to the small number of results in the group, but are given as an indication of the spread in results. The standard deviations may be compared to the experimental statistics of 0.5% to 1% for the non-threshold reactions.

Radial reaction rate distributions along the x-axis of ZPPR-13A are shown in Figs. 5.2 and 5.3. The threshold fission rate,  $^{238}$ U(n,f), a monitor of the flux variations in the MeV range, varies quite dramatically between the fuel and blanket rings. This presents a definite challenge to analysis in heterogeneous cores. Its accurate prediction is sensitive to cell-processing methods and to transport effects. In contrast, the non-threshold reactions are quite benign. These variations are typical of the reaction rates in all phases of ZPPR-13 and similar to those in in other heterogeneous cores.<sup>(7)</sup>



Fig. 5.1. Percent change in <sup>235</sup> U fission rate in ZPPR-13A caused by partially inserted shim rods.





5.1 Diffusion Theory Analysis for ZPPR-13A

The locations of the foil measurements in ZPPR-13A are shown in Figs. 5.4 and 5.5. The data fall into several groups:

(i) Traverses along the principal axes in the upper left hand (ULH) quadrant for all four reaction types.

(ii) Axial traverses for the four reactions in three locations in fuel zones.

(iii) Extensive data for  $^{235}$ U fission in all four quadrants to test the symmetry of fission distributions.

(iv) A number of special measurements of <sup>235</sup>U fission including twelve axial traverses, measurements near the interface in the radial reflector and measurements in locations symmetric to fission chamber deposits for calibration purposes.

The two irradiations in ZPPR-13A were separated by an interval of over three months. Several other experiments took place between the two foil measurements, not the least of which were extensive sodium-void studies and "drawer-pushing" excercises.<sup>(9)</sup> There were 102 <sup>235</sup>U foils in the same locations for the two irradiations. The average of the ratios of the countrates in the first set divided by those in the second set (weighted with statistical uncertainties) was 1.0023  $\pm$  0.0008 (1 $\sigma$ ). This indicates a slight bias between the two measurements, but it is not considered too large to prohibit combination of the two sets of data.

The keff values for the xyz calculation models were:

| 3 | refer | tence | core   |          | 0.97890 | )8 |
|---|-------|-------|--------|----------|---------|----|
| 9 | with  | sh im | rods   | inserted | 0.97875 | 57 |
| 9 | shim  | rod   | reacti | ivity    | 0.015%  | Δk |

The measured shim reactivities were 0.015%  $\Delta k$  and 0.021%  $\Delta k$  for the two irradiations. The single calculation was regarded as adequate since perturbations to midplane reaction rates were less than 0.4% (Fig. 5.1).

The analysis of radial and axial reaction rate distributions is summarized in Tables 5.1 to 5.7. These results are a condensation of the detailed data in Appendix C. The conclusions are as follows:

 (i) Radial reaction rate distributions are obtained for all four reaction types only in the upper left hand quadrant. Table 5.1 shows the mean C/E results in each radial zone.

The three non-threshold reactions show a similar monotonic increase in C/E with increasing radius. Reaction rates in fuel ring two (F2) are overpredicted by 2% relative to Fl and reaction rates in F3 are overpredicted by between 4.5% and 5% relative to Fl.

The <sup>238</sup>U fission rates also show a radial misprediction. However, C/E results in adjacent fuel and blanket zones differ by about 15%. This result is entirely expected with diffusion theory calculations.

(ii) More than  $300\ ^{235}$ U foils were irradiated near to the midplane, covering all four quadrants of the reactor. These results are displayed in Table 5.2 to show the azimuthal variations in prediction. The results are also illustrated in Fig. 5.6. The azimuthal variation in C/E is about 3% in the third fuel ring (F3). The highest value is 1.066 on the negative x-axis and the lowest value is 1.036 near the top of the core. Results at the bottom of the core are about 1% higher than at the top and results on the RHS are generally lower than on the LHS.

(iii) Table 5.3 shows a summary of results for the 64 foils in locations symmetric to the in-core fission chambers. Results are averaged for each radial zone. These data are sufficient to identify the radial mispredictions of

fission rates as can be seen by comparison with the results from all  $^{235}U$  foils, shown in the last column of the table.

(iv) Axial traverses were made adjacent to or inside each of the twelve positions designated as control rod locations in the outer fuel ring. The average C/E results in these locations, shown in Table 5.4, provide data on the azimuthal variation covering all four quadrants. The results show a similar variation to those in Table 5.3 although values in the same regions tend to be higher by 0.5% to 1%.

(v) Tables 5.5, 5.6 and 5.7 give an analysis of axial reaction rate distributions. In order to remove biases in C/E values due to position in the core and reaction type, the tables show the C/E values at each z-position relative to a core average value. Since the foil locations are irregularlyspaced, an axially-weighted core-average is used (this is only a little different from the unweighted average (see results in Appendix C)). With this normalization, all results except <sup>238</sup>U fission show a similar trend.

The C/E results at the top of the core near the axial blanket interface are 1% low, on average, relative to the mean over the core height. The results in the axial blanket have consistent C/Es, within statistics, over the range 480 mm to 690 mm from the midplane. The results for  $^{238}$ U capture appear less consistent between the core region and the blanket. In the axial blanket above the single-fuel-column drawer (Table 5.5) the C/Es are about 2% higher, but above the double-fuel-column drawer (Table 5.6) the C/Es are about 5% lower than the core average. The  $^{238}$ U fission values across the core/axial blanket interface show a marked discontinuity of 5% to 10% in the same sense as found in the radial distributions.





<sup>235</sup>U Foil

Fig. 5.5. Foil Locations in ZPPR-13A Irradiation No. 2.

. .

**£** 83





Fig. 5.6. Ratios of calculation to experiment for <sup>235</sup>U fission rates in ZPPR-13A.

| TABLE | 5.1.              | ZPP                 | R-13A:                   | Summary of         | Radial R                           | eaction Rate | e Analys              | is       |                       |  |
|-------|-------------------|---------------------|--------------------------|--------------------|------------------------------------|--------------|-----------------------|----------|-----------------------|--|
|       |                   | 239 <sub>Pu</sub> ( | n,f)                     | <sup>235</sup> U(n | <sup>235</sup> U(n,f) <sup>a</sup> |              | $238$ U(n, $\gamma$ ) |          | <sup>238</sup> U(n,f) |  |
| Zone  | Number<br>of Data | Mean C/E            | <u>s.d.</u> <sup>b</sup> | Mean C/E           | s.d.b                              | Mean C/E     | <u>s.d.</u>           | Mean C/E | s.D.b                 |  |
| СВ    | 14                | 0.969               | 0.011                    | 1.005              | 0.007                              | 1.045        | 0.007                 | 0.961    | 0.089                 |  |
| F1    | 10                | 0.974               | 0.011                    | 1.008              | 0.009                              | 1.048        | 0.015                 | 0.908    | 0.029                 |  |
| Bl    | 6                 | 0.987               | 0.008                    | 1.013              | 0.006                              | 1.050        | 0.007                 | 1.060    | 0.019                 |  |
| F 2   | 8                 | 0.996               | 0.017                    | 1.027              | 0.013                              | 1.067        | 0.018                 | 0.913    | 0.031                 |  |
| B2    | 6                 | 1.022               | 0.018                    | 1.051              | 0.012                              | 1.077        | 0.011                 | 1.091    | 0.034                 |  |
| F3    | 12                | 1.020               | 0.023                    | 1.053              | 0.014                              | 1.099        | 0.025                 | 0.966    | 0.039                 |  |
| RB    | 8                 | 0.997               | 0.025                    | 1.058              | 0.014                              | 1.095        | 0.019                 | 1.003    | 0.092                 |  |

<sup>a</sup>Includes only results at the x-axis and y-axis in the ULH quadrant for consistency with the other reactions.

<sup>b</sup>Standard deviation of the C/E distribution.

JA112A24

| Azimuthal                               |                         | Mean                    | C/E by I                | Radial Zo               | one <sup>b</sup>        |                      |
|-----------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------|
| Position <sup>a</sup>                   | Fl                      | B1                      | F2                      | <u>B2</u>               | F3                      | RB                   |
| Negative x-axis $\pi/12$                | 1.011                   | 1.017                   | 1.035                   | 1.060                   | 1.066<br>1.057          | 1.069                |
| π/6<br>3π/12                            | 1.010                   | 1.020                   | 1.025                   | 1.037                   | 1.052                   |                      |
| π/3<br>5π/12                            | 1.004                   | 1.010                   | 1.021                   | 1.032                   | 1.044<br>1.039          |                      |
| Positive y-axis<br>2π/3<br>5π/6         | 1.005<br>1.014<br>0.993 | 1.009<br>1.022<br>1.011 | 1.019<br>1.020<br>1.013 | 1.042<br>1.035<br>1.039 | 1.040<br>1.039<br>1.036 | 1.048                |
| Positive x-axis                         | 1.011                   | 1.024                   | 1.031                   | 1.066                   | 1.055                   | 1.054                |
| Negative y-axis                         | 1.013                   | 1.029                   | 1.039                   | 1.062                   | 1.046                   | 1.061                |
| All Data:<br>Number<br>Mean C/E<br>S.D. | 38<br>1.008<br>0.011    | 29<br>1.018<br>0.012    | 43<br>1.024<br>0.013    | 31<br>1.045<br>0.014    | 140<br>1.046<br>0.014   | 22<br>1.061<br>0.014 |

TABLE 5.2.ZPPR-13A: Summary of Radial Fission RateAnalysis for $^{235}U$ 

<sup>a</sup>Approximate azimuthal positions with respect to the negative x-axis of ZPPR half 1.

<sup>b</sup>Mean C/E values for groups of three to six foils in fuel zone 1 (F1), blanket ring 1 (B1), etc. JAII2A25

| TABLE | 5.3. | ZPPR-13A: | Summary ( | of Ana | lysis | for | the | Fission |
|-------|------|-----------|-----------|--------|-------|-----|-----|---------|
|       |      | Cham      | ber Calib | ration | Foils | 3   |     |         |

| Zone | Number<br>of Results | Mean<br>C/E | <u>S.D.</u> | Mean C/E<br>Using all Foil Data |
|------|----------------------|-------------|-------------|---------------------------------|
| СВ   | 3                    | 1.004       | 0,002       | 1.005                           |
| F1   | 5                    | 1.000       | 0.013       | 1.008                           |
| B1   | 5                    | 1.018       | 0.014       | 1.018                           |
| F2   | 11                   | 1.019       | 0.010       | 1.024                           |
| B2   | 11                   | 1.039       | 0.011       | 1.045                           |
| F 3  | 23                   | 1.042       | 0.015       | 1.046                           |
| RB   | 6                    | 1.069       | 0.014       | 1.061                           |
|      |                      |             |             | JAII2A26                        |

| -                  | neur oonerer                     |              |                             |       |
|--------------------|----------------------------------|--------------|-----------------------------|-------|
| Matrix<br>Position | Control<br>Position <sup>a</sup> | Orientation  | Me an<br>C / E <sup>b</sup> | S.D.  |
|                    |                                  |              |                             | -     |
| 147-27             | 25                               | 0 (-x)       | 1.062                       | 0.012 |
| 137-31             | 26                               | π/6          | 1.045                       | 0.005 |
| 130-39             | 27                               | π/3          | 1.025                       | 0.010 |
| 126-48             | 28                               | $\pi/2$ (+y) | 1.035                       | 0.004 |
| 130-60             | 29                               | 2π/3         | 1.029                       | 0.006 |
| 137-68             | 30                               | 5π/6         | 1.041                       | 0.008 |
| 147-72             | 31                               | $\pi$ (+x)   | 1.051                       | 0.009 |
| 160-68             | 20                               | 7π/6         | 1.049                       | 0.006 |
| 167-60             | 21                               | $4\pi/3$     | 1.034                       | 0.007 |
| 171-48             | 22                               | 3π/2 (-y)    | 1.046                       | 0.004 |
| 167-39             | 23                               | 5π/3         | 1.033                       | 0.013 |
| 160-31             | 24                               | 11π/6        | 1.057                       | 0.013 |

TABLE 5.4.ZPPR-13A:Summary of Analysis of 235UFissionNear Control Positions in Fuel Ring 3

<sup>a</sup>Positions used for measurement of control rod worths in ZPPR-13A. Positions near the axes were adjacent to control positions, the remainder were inside the control positions.

<sup>b</sup>Mean result for seven or ten axial positions, depending on location. See detailed tables. JAII2A27

| TABLE | 5.5. | ZPPR-13A: A |
|-------|------|-------------|
|       |      | in Mate     |

|       |                      | in Mat:     |           |           |            |  |  |  |  |  |
|-------|----------------------|-------------|-----------|-----------|------------|--|--|--|--|--|
| Zone  | Z, mm                | F9          | F5        | <u>C8</u> | F8         |  |  |  |  |  |
| F1 S  | 77                   | 1.015       | 1.008     | 1.018     | 1.002      |  |  |  |  |  |
|       | 128                  | 1.009       | 1.002     | 1.001     | 1.008      |  |  |  |  |  |
|       | 204                  | 0.999       | 0.997     | 0.999     | 1.060      |  |  |  |  |  |
|       | 280                  | 0.998       | 1.002     | 1.003     | 1.004      |  |  |  |  |  |
|       | 331                  | 0.988       | 1.010     | 0.982     | 0.969      |  |  |  |  |  |
|       | 382                  | 0.979       | 0.984     | 0.991     | 0.971      |  |  |  |  |  |
|       | 433                  | 0.999       | 0.988     | 0.984     | 0.950      |  |  |  |  |  |
| AB    | 483                  | 0.991       | 1.006     | 1.027     | 0.998      |  |  |  |  |  |
|       | 534                  | 1.004       | 1.001     | 1.024     | 1.004      |  |  |  |  |  |
|       | 610                  | 0.981       | 0.986     | 1.017     | 0.89       |  |  |  |  |  |
|       | 687                  | 0.966       | 0.999     | 1.007     | 0.81       |  |  |  |  |  |
| Core  | Average <sup>a</sup> | 0.984       | 1.017     | 1.034     | 0.956      |  |  |  |  |  |
|       | S.D.                 | 0.012       | 0.010     | 0.013     | 0.035      |  |  |  |  |  |
| aweig | hted averag          | e over 0 to | 5 458 mm. |           | JATT 2A 26 |  |  |  |  |  |

ZPPR-13A: Axial Reaction Rate Analysis

|        | in Matrix 147-27     |           |                |            |          |  |  |
|--------|----------------------|-----------|----------------|------------|----------|--|--|
| Zone   | Z, mm                | <u>F9</u> | F5             | <u>C8_</u> | F8       |  |  |
| F3     | 77                   | 1.011     | 1.011          | 1.015      | 1.026    |  |  |
|        | 204                  | 1.005     | 1.010          | 1.008      | 1.000    |  |  |
|        | 280                  | 0.985     | 0.992          | 0.985      | 0.997    |  |  |
|        | 331                  | 0.988     | 0,990          | 0.990      | 0.980    |  |  |
|        | 433                  | 0.995     | 0.987          | 1.013      | 0.973    |  |  |
| AB     | 483                  | 0.982     | 1.014          | 0.952      | 1.105    |  |  |
|        | 534                  | 1.011     | 0 <b>. 995</b> | 0.945      | 1.113    |  |  |
|        | 610                  | 0.966     | 1.002          | 0.955      | 0.94     |  |  |
|        | 687                  | 0.972     | 0.998          | 0.952      | 0.67     |  |  |
| Core   | Average <sup>a</sup> | 1.028     | 1.059          | 1.124      | 0.956    |  |  |
|        | S.D.                 | 0.012     | 0.011          | 0.017      | 0.018    |  |  |
| aWe ig | ghted average        | over 0 to | o 458 mm.      |            | JAII2A28 |  |  |

TABLE 5.6. ZPPR-13A: Axial Reaction Rate Analysis

| Z, mm                    | 147-27                 | 137-31                  | 130-39                   | 126-48             | 130-60  | 137-68         |
|--------------------------|------------------------|-------------------------|--------------------------|--------------------|---------|----------------|
| 13                       | 1.014                  | 1.004                   | 0.997                    | 0.998              | 1.005   | 1.006          |
| 77                       | 1.010                  | 1.001                   | 1.004                    | 1.001              | 1.010   | 0.987          |
| 128                      | 1.009                  | 1.005                   | 1.023                    | 1.002              |         |                |
| 204                      | 1.006                  | 1.000                   | 1.003                    | 1.006              |         |                |
| 280                      | 0.992                  | 1.000                   | 0.997                    | 1.002              | 0.997   | 1.001          |
| 331                      | 0.990                  | 0.996                   | 0.993                    | 0.997              | 0.999   | 0.999          |
| 382                      | 0.992                  | 0.995                   | 0.994                    | 0.993              | 0.993   | 0.997          |
| 433                      | 0.987                  | 0.995                   | 0.982                    | 0.999              |         |                |
| Core                     |                        | •<br>•                  |                          |                    |         |                |
| Average <sup>a</sup>     | 1.059                  | 1.044                   | 1.026                    | 1.036              | 1.027   | 1.040          |
|                          | 147-72                 | 160-68                  | 167-60                   | 171-48             | 167-39  | 160-31         |
| 13                       | 1.005                  | 0.995                   | 1.007                    | 0.999              | 1.009   | 1.008          |
| 77                       | 1.005                  | 1.003                   | 1.008                    | 0.996              | 1.010   | 1.019          |
| 128                      | 1.008                  |                         |                          | 1.000              | *** -== |                |
| 204                      | 1.007                  |                         |                          | 1.004              |         |                |
| 280                      | 1.003                  | 1.003                   | 0.998                    | 1.001              | 1.000   | 0 <b>. 999</b> |
| 331                      | 0.992                  | 1.004                   | 0.995                    | 1.001              | 0.997   | 0.987          |
| 382                      | 0.994                  | 0.999                   | 0.994                    | 0.998              | 0.996   | 0.989          |
| 433                      | 0.980                  |                         |                          | 0.995              |         |                |
| Core                     |                        |                         |                          |                    |         |                |
| Average <sup>a</sup>     | 1.050                  | 1.050                   | 1.032                    | 1.047              | 1.030   | 1.054          |
| Average of<br>Average of | all resul<br>all resul | ts at 13 a<br>ts at 382 | nd 77 mm =<br>and 433 mm | 1.004<br>1 = 0.993 |         |                |
| <u></u>                  |                        |                         |                          |                    |         |                |

TABLE 5.7. Summary of Axial <sup>235</sup>U Fission Rate Analysis

<sup>a</sup>Weighted average over 0 to 458 mm.

JAII2A29



## 5.5 Reaction Rate Ratio Analysis

Reaction rate ratios relative to fission in  $^{239}$ Pu have been analyzed for all matrix positions in which all three foils were irradiated. Detailed results are given in the appendices. Note that the experimental values are <u>not</u> adjusted to a common location in the cell. The  $^{235}$ U foils are separated from the plutonium foils by 27.7 mm and the  $^{238}$ U foils are separated from plutonium foils by 13.8 mm. The adjustments would be about 1% for  $^{235}$ U and 0.5% for  $^{238}$ U(n, $\gamma$ ). Variations in  $^{238}$ U fission may be much larger. Calculations are interpolated to the given foil locations to obtain appropriate C/E values. The C/E values are insensitive to mispredictions of the global flux shapes in the core since these are similar for all reactions. For a given cell type, the standard deviations of the C/E distributions are only a little larger than the statistical uncertainties of the measurements.

A summary of the reaction rate ratio analysis for ZPPR-13A

is given in Table 5.13 Average results are given separately for single-fuel-column and double-fuel-column drawers and for blanket drawers since significantly different results may be obtained in different drawer types.

The conclusions are:

(i) Results are consistent between these cores and are similar to analysis of ZPPR-9 and ZPPR-10.

(ii) The average C/E for the  $^{235}$ U fission ratio is 1.03 and varies by only a few tenths of a percent between SC fuel drawers, DC fuel drawers and blanket drawers except for the axial traverses in 13B/4 which are singularly out of line (C/E = 1.044).

(iii) The results for the <sup>238</sup>U capture ratio are significantly different between the drawer types:

SC fuel drawers <C/E> = 1.06 DC fuel drawers <C/E> = 1.09 Internal Blankets <C/E> = 1.07

(iv) The results for the  $^{238}$ U fission ratios are also different. For radial traverses:

SC fuel drawers  $\langle C/E \rangle = 0.95$  to 0.97

DC fuel drawers  $\langle C/E \rangle = 0.92$  to 0.93

Internal Blankets  $\langle C/E \rangle = 1.07$  to 1.08

The  $^{238}$ U fission results are improved by fine mesh transport calculations.



| Ratio                                    | Traverse | Zone <sup>a</sup>           | Number of<br>Results | Mean C/E | Standard<br>Deviation |
|------------------------------------------|----------|-----------------------------|----------------------|----------|-----------------------|
| $\frac{235}{U(n,f)}/\frac{239}{Pu(n,f)}$ | Radial   | Fuel DC                     | 14                   | 1.027    | 0.012                 |
|                                          |          | Fuel SC                     | 16                   | 1.032    | 0.011                 |
|                                          |          | Internal Blankets           | 26                   | 1.033    | 0.014                 |
|                                          | Axial    | Fuel DC                     | 7                    | 1.028    | 0.007                 |
|                                          |          | Fuel SC                     | 7                    | 1.034    | 0.013                 |
| $238_{U(n,\gamma)}/239_{Pu(n,f)}$        | Radial   | Fuel DC                     | 14                   | 1.091    | 0.012                 |
|                                          |          | Fuel SC                     | 16                   | 1.060    | 0.014                 |
|                                          |          | Internal Blankets           | 26                   | 1.070    | 0.015                 |
|                                          | Axial    | Fuel DC                     | 7                    | 1.092    | 0.012                 |
|                                          |          | Fuel SC                     | 7                    | 1.049    | 0.010                 |
| $238_{U(n,f)}/239_{Pu(n,f)}$             | Radial   | Fuel DC                     | 14                   | 0.915    | 0.018                 |
|                                          |          | Fuel SC                     | 16                   | 0.953    | 0.024                 |
|                                          |          | Center Blanket <sup>b</sup> | 8                    | 0.921    | 0.032                 |
|                                          |          | Internal Blankets           | 18                   | 1.078    | 0.023                 |
|                                          | Axial    | Fuel DC                     | 7                    | 0.933    | 0.012                 |
|                                          |          | Fuel SC                     | 7                    | 0.970    | 0.033                 |

TABLE 5.13. ZPPR-13A: Summary of Reaction Rate Ratio Analysis

<sup>a</sup>DC = double-fuel-column drawers; SC = single-fuel-column fuel drawers. <sup>b</sup>Includes positions in interior of center blanket. Positions near the edge are averaged with the internal blanket rings. JAII2B13

## 5.6 Transport Calculation

Transport calculations using a fine mesh (4MPD) have been calculated for the midplane reaction rates in ZPPR-13A using an xy model. The results for the xyz diffusion calculations have been adjusted first by the ratio of diffusion calculations in 4MPD relative to 1MPD and second by the ratio of the S<sub>4</sub> calculation with 4MPD to the diffusion calculation with 4MPD.

The transport corrections along the x-axis are given in Tables 5.16 to 5.19. Corrections are quite similar for the three non-threshold reactions; reaction rates in blanket regions are reduced by between 2% and 3% while values in fuel regions change by less than 0.5%. (Note that the transport results preserve the normalization to  $^{239}$ Pu fission in the fuel zones). The mispredictions with radius are made marginally worse (0.3% to 0.5%) by transport corrections.

Transport corrections produce a marked improvement for  $^{238}U(n,f)$ . Calculated values in fuel regions are increased by between 1% and 3%, values in the internal blankets are decreased by between 6% and 13%. C/E results between the fuel zones Fl and F2 remain lower than those in blanket zones Bl and B2 by 5%.

Studies for ZPPR-7, using fuel/blanket coupled-cell models achieved agreement in predictions of <sup>238</sup>U fission between fuel and blanket drawers to within 2%.<sup>(7)</sup> Calculations for ZPPR-13 with multi-drawer models might also produce improved predictions.

|          |      |       |               |          | CORREC        | TIONS A |           |          |
|----------|------|-------|---------------|----------|---------------|---------|-----------|----------|
| MATRIX   | -    | 2112  | REFERENCE     | MEAN C/E |               |         | CORRECTED | MEAN C/E |
| POSITION | ZONE | EXP.  | C/E           | (S.D.)   | MESH          | 54      | C/E       | (S.D.)   |
|          |      |       |               |          |               |         |           |          |
| 147 49   | СВ   | 4.473 | 0.959         |          | 1.009         | 0.967   | 0,936     |          |
| 147 48   | СВ   | 4.588 | 0.966         |          | 1.009         | 0.966   | 0.940     |          |
| 148 47   | CB   | 4.669 | 0.980         |          | 1.008         | 0.966   | 0.954     |          |
| 148 46   | CB   | 5.095 | 0.979         |          | 1.007         | 0.964   | 0.951     |          |
| 148 45   | CB   | 5.610 | 0.975         | 0.973    | 1,005         | 0.969   | 0.949     | 0.948    |
| 148 44   | СВ   | 6.118 | 0.980         | (0.009)  | 1.003         | 0.974   | 0.958     | (0.008)  |
| 147 44   | Fl S | 6.146 | 0.958         |          | 1.003         | 0.988   | 0.949     |          |
| 147 43   | F1   | 6.434 | 0.971         |          | 1.001         | 1.003   | 0.975     |          |
| 147 41   | F1   | 6.895 | 0.974         | 0.968    | 1.002         | 1.001   | 0.978     | 0.965    |
| 147 40   | Fl S | 7.023 | 0.968         | (0.007)  | 1.004         | 0.984   | 0.957     | (0.014)  |
| 147 39   | B1   | 7.222 | 0.984         |          | 1.005         | 0.966   | 0.955     |          |
| 147 38   | B1   | 7.350 | 0.992         | 0.991    | 1.005         | 0.965   | 0.962     | 0.964    |
| 147 37   | B1   | 7.559 | 0 <b>.998</b> | (0.007)  | 1.003         | 0.974   | 0.975     | (0.010)  |
| 147 36   | F2   | 7.567 | 0.997         |          | 1.002         | 1.001   | 0.999     |          |
| 147 35   | F2 S | 7.709 | 1.015         |          | 1.000         | 1.003   | 1.018     |          |
| 147 34   | F2   | 7.654 | 1.007         | 1.009    | 1.001         | 1.006   | 1.014     | 1.010    |
| 147 33   | F2 S | 7.403 | 1.017         | (0.009)  | 1.002         | 0.990   | 1.008     | (0.008)  |
| 147 32   | B2   | 7.343 | 1.016         |          | 1.003         | 0.970   | 0.988     |          |
| 147 31   | B2   | 6.985 | 1.040         | 1.035    | 1.004         | 0.964   | 1.005     | 1.005    |
| 147 30   | B2   | 6.847 | 1.048         | (0.017)  | 1.002         | 0.973   | 1.022     | (0.017)  |
| 147 29   | F3   | 6.764 | 1.022         |          | 1.000         | 1.000   | 1.022     |          |
| 147 28   | F3 S | 6.611 | 1.045         |          | 0 <b>.997</b> | 1.006   | 1.048     |          |
| 147 26   | F3 S | 5.818 | 1.047         |          | 0.996         | 1.006   | 1.049     |          |
| 147 25   | F3   | 5.102 | 1.059         | 1.039    | 0.997         | 1.009   | 1.065     | 1.040    |
| 147 24   | F3 S | 4.388 | 1.023         | (0.016)  | 0 <b>.998</b> | 0.994   | 1.014     | (0.021)  |
| 147 23   | RB   | 3.628 | 1.037         |          | 1.000         | 0.973   | 1.009     |          |
| 147 22   | RB   | 2.911 | 1.016         |          | 1.002         | 0.968   | 0.985     |          |
| 147 21   | RB   | 2.339 | 1.009         | 1.007    | 1.005         | 0.972   | 0.986     | 0.984    |
| 147 20   | RB   | 2.095 | 0.967         | (0.029)  | 1.009         | 0.981   | 0.957     | (0.021)  |
|          |      |       |               |          |               |         |           |          |

TABLE 5.16. ZPPR-13A: TRANSPORT CORRECTED REACTION RATES FOR 239PU(N,F)

A CORRECTIONS WERE NOT CALCULATED IN POSITIONS 147-42 AND 147-27.

| MATRIX<br>POSITION | ZONE | CVD   | REFERENCE | MEAN C/F |                |       | CORRECTIONS A |          |  |  |  |  |
|--------------------|------|-------|-----------|----------|----------------|-------|---------------|----------|--|--|--|--|
| POSITION           | ZONE |       | - (-      |          | ******         |       | CORRECTED     | MEAN C/E |  |  |  |  |
|                    |      | EXP.  | C/E       | (S.D.)   | MESH           | S4    | C/E           | (S.D.)   |  |  |  |  |
|                    |      |       |           |          |                |       |               |          |  |  |  |  |
| 147 49             | СВ   | 5.306 | 1.000     |          | 1.009          | 0.968 | 0.977         |          |  |  |  |  |
| 147 48             | CB   | 5.429 | 1.003     |          | 1.008          | 0,968 | 0.979         |          |  |  |  |  |
| 148 47             | СВ   | 5.524 | 1.011     |          | 1.008          | 0.968 | 0.986         |          |  |  |  |  |
| 148 46             | СВ   | 5.981 | 0.996     |          | 1.006          | 0.968 | 0.970         |          |  |  |  |  |
| 148 45             | СВ   | 6.324 | 1.003     | 1.006    | 1.004          | 0,973 | 0.980         | 0.982    |  |  |  |  |
| 148 44             | CB   | 6.557 | 1.020     | (0.009)  | 1.002          | 0.977 | 0.999         | (0.010)  |  |  |  |  |
| 147 44             | F1 S | 6.492 | 1.021     |          | 1.003          | 0,986 | 1.010         |          |  |  |  |  |
| 147 43             | F1   | 6.684 | 1.004     |          | 1.003          | 0.998 | 1.005         |          |  |  |  |  |
| 147 41             | F1   | 7.235 | 0.996     | 1.008    | 1.004          | 0.996 | 0.996         | 1.003    |  |  |  |  |
| 147 40             | F1 S | 7.576 | 1.012     | (0.011)  | 1.003          | 0.984 | 0.999         | (0.006)  |  |  |  |  |
| 147 39             | B1   | 7.987 | 1.012     |          | 1.003          | 0.971 | 0.986         |          |  |  |  |  |
| 147 38             | B1   | 8.155 | 1.018     | 1.017    | 1.003          | 0.971 | 0.991         | 0.992    |  |  |  |  |
| 147 37             | B1   | 8,198 | 1.022     | (0.005)  | 1.002          | 0.977 | 1.000         | (0.007)  |  |  |  |  |
| 147 36             | F2   | 7.977 | 1.020     |          | 1.003          | 0.997 | 1.020         |          |  |  |  |  |
| 147 35             | F2 S | 7.970 | 1.045     |          | 1.000          | 0.997 | 1.042         |          |  |  |  |  |
| 147 34             | F2   | 7.942 | 1.029     | 1.035    | 1.002          | 1.001 | 1.032         | 1.033    |  |  |  |  |
| 147 33             | F2 S | 7.901 | 1.047     | (0.013)  | 1.002          | 0.988 | 1.037         | (0,009)  |  |  |  |  |
| 147 32             | B2   | 7.936 | 1.058     |          | 1.000          | 0.975 | 1.032         |          |  |  |  |  |
| 147 31             | B2   | 7.797 | 1.061     | 1.060    | 1.001          | 0.971 | 1.031         | 1.033    |  |  |  |  |
| 147 30             | B2   | 7.551 | 1.062     | (0.002)  | 0.999          | 0.977 | 1.037         | (0.003)  |  |  |  |  |
| 147 29             | F3   | 7.061 | 1.058     |          | 1.001          | 0.998 | 1.057         |          |  |  |  |  |
| 147 28             | F3 S | 6.765 | 1.069     |          | 0.997          | 1.002 | 1.068         |          |  |  |  |  |
| 147 26             | F3 S | 5.897 | 1.066     |          | 0.995          | 1.004 | 1.065         |          |  |  |  |  |
| 147 25             | F3   | 5.257 | 1.071     | 1.065    | 0.998          | 1.006 | 1.075         | 1.063    |  |  |  |  |
| 147 24             | F3 S | 4.646 | 1.062     | (0.005)  | 0 <b>.997</b>  | 0,993 | 1.051         | (0.009)  |  |  |  |  |
| 147 23             | RB   | 3.935 | 1.083     |          | 0 <b>. 998</b> | 0.978 | 1.057         |          |  |  |  |  |
| 147 22             | RB   | 3.255 | 1.069     |          | 1.001          | 0.973 | 1.041         |          |  |  |  |  |
| 147 21             | RB   | 2.667 | 1.065     | 1.069    | 1.005          | 0.974 | 1.042         | 1.047    |  |  |  |  |
| 147 20             | RB   | 2.321 | 1.057     | (0.011)  | 1.010          | 0.981 | 1.047         | (0.007)  |  |  |  |  |

TABLE 5.17. ZPPR-13A: TRANSPORT CORRECTED REACTION RATES FOR 235U(N,F)

A CORRECTIONS WERE NOT CALCULATED IN POSITIONS 147-42 AND 147-27 .

|          |                      |        |           | ·        | CORRECTIONS A |       |           |          |
|----------|----------------------|--------|-----------|----------|---------------|-------|-----------|----------|
| MATRIX   | <b>6</b> 00 <b>m</b> |        | REFERENCE | MEAN C/E |               |       | CORRECTED | MEAN C/E |
| POSITION | ZONE                 | EXP.   | C/E       | (5.0.)   | MESH          | 54    | C/E       | (S.D.)   |
|          |                      |        |           |          |               |       |           |          |
| 147 49   | СВ                   | 0.6268 | 1.050     |          | 1.010         | 0.966 | 1.025     |          |
| 147 48   | СВ                   | 0.6521 | 1.041     |          | 1.009         | 0.967 | 1.016     |          |
| 148 47   | СВ                   | 0.6649 | 1.053     |          | 1.009         | 0.968 | 1.028     |          |
| 148 46   | СВ                   | 0.7207 | 1.049     |          | 1.007         | 0.970 | 1.025     |          |
| 148 45   | СВ                   | 0.7739 | 1.057     | 1.050    | 1.005         | 0.976 | 1.036     | 1.027    |
| 148 44   | СВ                   | 0.8217 | 1.051     | (0.005)  | 1.003         | 0.980 | 1.034     | (0.007)  |
| 147 44   | Fl S                 | 0.8763 | 1.034     |          | 1.003         | 0.986 | 1.023     |          |
| 147 43   | Fl                   | 0.8544 | 1.067     |          | 1.005         | 0.993 | 1.065     |          |
| 147 41   | Fl                   | 0.9277 | 1.060     | 1.052    | 1.006         | 0.991 | 1.056     | 1.045    |
| 147 40   | Fl S                 | 1.0090 | 1.048     | (0.014)  | 1.004         | 0.984 | 1.035     | (0.019)  |
| 147 39   | B1                   | 1.0130 | 1.046     |          | 1,004         | 0.975 | 1.024     |          |
| 147 38   | B1                   | 1.0330 | 1.055     | 1.053    | 1.004         | 0.975 | 1.032     | 1.032    |
| 147 37   | B1                   | 1.0330 | 1.059     | (0.007)  | 1.003         | 0.980 | 1,040     | (0,008)  |
| 147 36   | F2                   | 1.0250 | 1.086     |          | 1.005         | 0.992 | 1.083     |          |
| 147 35   | F2 S                 | 1.0560 | 1.060     |          | 1.001         | 0.993 | 1.053     |          |
| 147 34   | F2                   | 1.0120 | 1.094     | 1.080    | 1.004         | 0.995 | 1.092     | 1.074    |
| 147 33   | F2 S                 | 1.0500 | 1.078     | (0.015)  | 1.003         | 0.988 | 1.068     | (0.017)  |
| 147 32   | B2                   | 1.0210 | 1.079     |          | 1.002         | 0.978 | 1.058     |          |
| 147 31   | B2                   | 1.0050 | 1.083     | 1.085    | 1.003         | 0.976 | 1.060     | 1.064    |
| 147 30   | B2                   | 0.9617 | 1.093     | (0.007)  | 1.000         | 0.982 | 1.074     | (0.009)  |
| 147 29   | F3                   | 0.9143 | 1.117     |          | 1.003         | 0.995 | 1.115     |          |
| 147 28   | F3 S                 | 0.8874 | 1.089     |          | 0.997         | 1.000 | 1.086     |          |
| 147 26   | F3 S                 | 0.7578 | 1.099     |          | 0.995         | 1.002 | 1.096     |          |
| 147 25   | F3                   | 0.6627 | 1.135     | 1.110    | 0.999         | 1.002 | 1.136     | 1.106    |
| 147 24   | F3 S                 | 0.6026 | 1.109     | (0.018)  | 0.997         | 0.993 | 1.098     | (0.020)  |
| 147 23   | RB                   | 0.4870 | 1.125     |          | 0.999         | 0.981 | 1.103     |          |
| 147 22   | RB                   | 0.3947 | 1.116     |          | 1.002         | 0.976 | 1.091     |          |
| 147 21   | RB                   | 0.3114 | 1.109     | 1.110    | 1.005         | 0.974 | 1.086     | 1.088    |
| 147 20   | RB                   | 0.2540 | 1.088     | (0.016)  | 1.009         | 0.977 | 1.073     | (0.012)  |
|          |                      |        |           |          |               |       |           |          |

TABLE 5.18. ZPPR-13A: TRANSPORT CORRECTED REACTION RATES FOR 238U(N,G)

\_\_\_\_\_

to to a second designed

A CORRECTIONS WERE NOT CALCULATED IN POSITIONS 147-42 AND 147-27 .

the provide the second se

æ

|                    |      |        |                  |                    | CORREC         | TIONS A        |                  |                    |
|--------------------|------|--------|------------------|--------------------|----------------|----------------|------------------|--------------------|
| MATRIX<br>POSITION | ZONE | EXP.   | REFERENCE<br>C/E | MEAN C/E<br>(S.D.) | MESH           | s4             | CORRECTED<br>C/E | MEAN C/E<br>(S.D.) |
|                    |      |        |                  |                    |                |                |                  |                    |
| 147 49             | СВ   | 0.0220 | 0.883            |                    | 1.009          | 0.981          | 0.874            |                    |
| 147 48             | СВ   | 0.0255 | 0.897            |                    | 1.010          | 0.935          | 0.847            |                    |
| 148 47             | СВ   | 0.0289 | 0.919            |                    | 1.014          | 0.940          | 0.876            |                    |
| 148 46             | СВ   | 0.0378 | 1.065            |                    | 1.021          | 0.866          | 0.942            |                    |
| 148 45             | CB   | 0.0612 | 1.052            | 0.977              | 1.027          | 0.900          | 0.972            | 0.911              |
| 148 44             | СВ   | 0.1006 | 1.045            | (0.086)            | 1.010          | 0.904          | 0.954            | (0.051)            |
| 147 44             | Fl S | 0.1421 | 0.948            |                    | 1.001          | 0.997          | 0.946            |                    |
| 147 43             | F1   | 0.2089 | 0.895            |                    | 0.989          | 1.036          | 0.917            |                    |
| 147 41             | Fl   | 0.2250 | 0.893            | 0.912              | 0.993          | 1.040          | 0.922            | 0.925              |
| 147 40             | Fl S | 0.1666 | 0.911            | (0.025)            | 1.006          | 0.997          | 0.914            | (0.015)            |
| 147 39             | B1   | 0.0951 | 1.054            |                    | 1.034          | 0.881          | 0.960            |                    |
| 147 38             | B1   | 0.0910 | 1.072            | 1.059              | 1.035          | 0.875          | 0.971            | 0.971              |
| 147 37             | B1   | 0.1267 | 1.050            | (0.012)            | 1.021          | 0.917          | 0.983            | (0.012)            |
| 147 36             | F2   | 0.2419 | 0.884            |                    | 0.992          | 1.036          | 0.909            |                    |
| 147 35             | F2 S | 0.2397 | 0.946            |                    | 1.005          | 1.024          | 0.974            |                    |
| 147 34             | F2   | 0.2618 | 0.919            | 0.920              | 0.995          | 1.046          | 0.957            | 0.942              |
| 147 33             | F2 S | 0.2020 | 0.931            | (0.026)            | 0.997          | 0.998          | 0.927            | (0.029)            |
| 147 32             | B2   | 0.1102 | 1.045            |                    | 1.037          | 0 <b>.90</b> 4 | 0.980            |                    |
| 147 31             | B2   | 0.0846 | 1.118            | 1.090              | 1.029          | 0.843          | 0.970            | 0.992              |
| 147 30             | B2   | 0.1028 | 1.106            | (0.039)            | 1.028          | 0.903          | 1.027            | (0.030)            |
| 147 29             | F3   | 0.2050 | 0.919            |                    | 0 <b>.98</b> 7 | 1.026          | 0.931            |                    |
| 147 28             | F3 S | 0.1988 | 1.032            |                    | 1.000          | 1.015          | 1.047            |                    |
| 147 26             | F3 S | 0.1838 | 1.030            |                    | 1.002          | 1.000          | 1.032            |                    |
| 147 25             | F3   | 0.1773 | 0 <b>.977</b>    | 0.987              | 0 <b>.991</b>  | 1.028          | 0.995            | 0.997              |
| 147 24             | F3 S | 0.1125 | 0.979            | (0.047)            | 0.998          | 1.002          | 0.979            | (0.046)            |
| 147 23             | RB   | 0.0493 | 1.112            |                    | 1.022          | 0.893          | 1.015            |                    |
| 147 22             | RB   | 0.0262 | 1.049            |                    | 1.011          | 0.853          | 0.905            |                    |
| 147 21             | RB   | 0.0141 | 1.004            | 1.029              | 1.000          | 0.922          | 0.926            | 0.945              |
| 147 20             | RB   | 0.0079 | 0.952            | (0.068)            | 0.986          | 0.994          | 0.933            | (0,048)            |

TABLE 5.19. ZPPR-13A: TRANSPORT CORRECTED REACTION RATES FOR 238U(N,F)

A CORRECTIONS WERE NOT CALCULATED IN POSITIONS 147-42 AND 147-27 .

## 6.0 ANALYSIS OF CONTROL ROD WORTHS

The initial calculations of control rod worths used homogeneous atomic densities for each cell type and  $\beta_{eff}$  values calculated with rz reactor models. These data are recorded in the monthly ZPR-TM reports. The analysis for ZPPR-13A has now been improved in several respects:

 (i) Corrections for variations in drawer loadings as described in Section 3.5.

(ii) Use of  $\beta_{\mbox{eff}}$  results from xyz calculations.

(iii) Revisions to experimental results following improvements to the effective source ratio in the McCRUNCH code (Section 2.3.4). This section gives an analysis of all results in ZPPR-13A together with transport-corrected values for rod banks.

The experimental control rods occupied four ZPPR matrix positions in which the drawers were filled with both clad and unclad natural  $B_4C$  platelets for the first 457 mm (core region) and with sodium-filled plates for the second 457 mm (axial blanket region). Control rod position (CRP) drawers were filled with sodium-containing plates over their 914 mm length.

All control rod worths were measured relative to fuel. A number of measurements of the worths of CRPs relative to fuel were made in 13A both for single positions and for banks.

(v) The mean C/E for the 12 rods in FR2 (1.008) agrees well with the C/E for the bank of rods (1.010) which was measured at 20\$ subcritical. Similarly the mean C/E for 12 rods in FR3 (1.038) compares with a C/E of 1.044 for the rod bank.

(vi) Control rod 13', which was adjacent to the blanket in FR2, has a worth lower than for CR13, by 5%, but the C/E results agree within 0.1%.

(vii) A remarkable discrepancy of 4% exists between predictions for rod 25 on the x-axis in FR3 and rod 28 on the y-axis. About 1% of this difference may be attributed to the ZPPR interface variation. The AMM model produced some improvement-from a 6% difference to a 4% difference.

(viii) The single rod measurements that were repeated in the second series, CR13, CR25 and CR28 gave worths that were higher than in the first measurements by 0.7%, 0.4% and 1.2% respectively. Comparison of the two subcritical references shows a difference of 2¢ after adjustment for relative  $^{241}$ Pu decay, interface separation and temperature. Thus an uncertainty of about 1% is apparent due to unknown changes in core configuration (piece positioning in drawers and precise drawer positioning in matrix).



CONTROL ROD POSITION BLANKET REFLECTOR ALTERNATE CRP

Fig. 6.1. Rod locations and C/E values for the worths of individual rods in ZPPR-13A.

| Case                      | Geometry | Number<br>of Groups | k-effect ive | Worth Relative<br>to Reference, \$ | Error in <sup>d</sup><br>Worth, % |
|---------------------------|----------|---------------------|--------------|------------------------------------|-----------------------------------|
| Reference                 | XYZ      | 28                  | 0.978324     |                                    |                                   |
| 12 CRP in F2              | xyz      | 28                  | 0.958703     | 6.349                              |                                   |
| 12 CR in F2               | xyz      | 28                  | 0.919767     | 19.750                             |                                   |
| Reference <sup>a</sup>    | XVZ      | 8                   | 0.979818     |                                    |                                   |
| 12 CRP in F2a             | XVZ      | 8                   | 0.960103     | 6.360                              | +0.2                              |
| 12 CR in F2 <sup>a</sup>  | xyz      | 8                   | 0.920769     | 19.864                             | +0.6                              |
| Reference <sup>b</sup>    | хy       | 8                   | 0.979760     |                                    |                                   |
| 12 CRP in F2 <sup>b</sup> | xv       | 8                   | 0.959992     | 6.379                              | +0.5                              |
| 12 CR in F2 <sup>b</sup>  | xy       | 8                   | 0.920399     | 19.979                             | +1.2                              |
| 6 CR in Fl                | XVZ      | 28                  | 0.961163     | 5.539                              |                                   |
| 6 CR in F1 <sup>c</sup>   | xy       | 8                   | 0.962359     | 5.601                              | +1.1                              |
| 12 CR in F3               | XVZ      | 28                  | 0.936091     | 13.996                             |                                   |
| 12 CR in F3 <sup>c</sup>  | xy       | 8                   | 0.936857     | 14.185                             | +1.4                              |

TABLE 6.1. ZPPR-13A Comparison of xyz and xy Calculations for Control Rod Worths

<sup>a</sup>The 8 group xyz calculations used data collapsed for the reference xyz model in all zones except CRs and CRPs.

<sup>b</sup>The 8 group xy calculations used bucklings derived from the reference xyz model in all zones except CRs and CRPs.

<sup>c</sup>These calculations used the data generated for CRs in fuel zone 2 (F2). <sup>d</sup>Error in worth relative to xyz calculation in 28 groups. File MR-A25

| Rods Inserted  | k <sub>eff</sub> a    | Calculated<br>Worth, \$ <sup>b</sup> | AMM<br>Correction <sup>c</sup> | Measured<br>Worth (E), \$ | Corrected<br>C/E |
|----------------|-----------------------|--------------------------------------|--------------------------------|---------------------------|------------------|
| Fuel Ring 1    |                       |                                      |                                |                           |                  |
| CR04           | 0.976385              | 1.071                                | 1.010                          | 1.097                     | 0.986            |
| 6 CRs          | 0.962359              | 5.603                                | 1.009                          | 5.725                     | 0.987            |
| Fuel Ring 2    |                       |                                      |                                |                           |                  |
| CR13           | 0.975954              | 1.208                                | 0.996                          | 1.176                     | 1.023            |
| CR13'          | 0.976142              | 1.149                                | 0.994                          | 1.118                     | 1.022            |
| 12 CRs         | 0.972077              | 19.984                               | 1.004                          | 19.869                    | 1.010            |
| 6 CRs + 6 CRPs | 0.938122              | 13.753                               | 1.004                          | 13.428                    | 1.028            |
| 5 CRs + 7 CRPs | 0.943729              | 11.830                               | 1.0)4                          | 11.522                    | 1.031            |
| Fuel Ring 3    | ;                     |                                      |                                |                           |                  |
| CR25           | 0.977044              | 0.861                                | 0.981                          | 0.796                     | 1.062            |
| CR28           | 0.977303              | 0.779                                | 1.000                          | 0.757                     | 1.029            |
| 6 CRs          | 0.956800 <sup>.</sup> | 7.436                                | 0.997                          | 7.082                     | 1.047            |
| 12 CRs         | 0.936857              | 14.190                               | 0.998                          | 13.559                    | 1.044            |
| 6 CRs + 6 CRPs | 0.949957              | 9.721                                | 0.998                          | 9.095                     | 1.067            |
| 5 CRs + 7 CRPs | 0.953322              | 8.593                                | 0.998                          | 7.980                     | 1.075            |

TABLE 6.2. Control Rod Worth Analysis for the First Series of Measurements in ZPPR-13A

<sup>a</sup>Calculation 8G XY DT IMPD WBD.  $k_{eff}$  for the reference subcritical core was 0.979760.

<sup>b</sup>Worth defined as  $|\Delta k|/(k_1k_2\beta)$ , with  $\beta = 0.3294\%$ .

<sup>c</sup>Correction for All-master model.

JAIIB14
|                                          | riea               | Sulemento In I                       |                                |                           |                  |
|------------------------------------------|--------------------|--------------------------------------|--------------------------------|---------------------------|------------------|
| CRPs Inserted                            | k <sub>eff</sub> ª | Calculated<br>Worth, \$ <sup>b</sup> | AMM<br>Correction <sup>c</sup> | Measured<br>Worth (E), \$ | Corrected<br>C/E |
| Fuel-Ring 1                              |                    |                                      |                                |                           |                  |
| CRP04                                    | 0.978483           | 0.404                                | 1.010                          | 0.382                     | 1.069            |
| 6 CRPs                                   | 0.973041           | 2.140                                | 1.009                          | 2.013                     | 1.072            |
| Fuel Ring 2                              |                    |                                      | :                              |                           |                  |
| CRP13                                    | 0.978145           | 0.512                                | 0.996                          | 0.449                     | 1.135            |
| CRP13'                                   | 0.978188           | 0.498                                | 0.994                          | 0.449                     | 1.103            |
| 12 CRPs                                  | 0.959992           | 6.381                                | 1.004                          | 5.739                     | 1.116            |
| Fuel Ring 3                              |                    |                                      |                                |                           |                  |
| CRP25                                    | 0.978566           | 0.378                                | 0.981                          | 0.313                     | 1.185            |
| 12 CRPs                                  | 0.965200           | 4.674                                | 0.998                          | 4.079                     | 1.144            |
| <sup>a</sup> Calculation 8G<br>0.979760. | XY DT 1MPD         | WBD. keff fo                         | or the referen                 | ce subcritical            | core was         |

TABLE 6.3. Worths of CRPs Relative to Fuel for the First Series of Measurements in ZPPR-13A

<sup>b</sup>Worth defined as  $|\Delta k|/(k_1k_2\beta)$ , with  $\beta = 0.3294\%$ .

<sup>c</sup>Correction for All-master model.

JAIIB15

| Control Rod  | k <sub>eff</sub> a | Calculated<br>Worth, \$ <sup>b</sup> | AMM<br>Correct ion <sup>c</sup> | Measured<br>Worth (E), \$ | Corrected<br>C/E |
|--------------|--------------------|--------------------------------------|---------------------------------|---------------------------|------------------|
| Fuel Ring 2  |                    |                                      |                                 |                           |                  |
| CR08         | 0.976087           | 1.166                                | 1.007                           | 1.156                     | 1.016            |
| CR09         | 0.976119           | 1.156                                | 1.006                           | 1.148                     | 1.013            |
| CR10         | 0.976157           | 1.144                                | 1.002                           | 1.130                     | 1.014            |
| CR11         | (CR09)             | 1.156                                | 0.998                           | 1.147                     | 1.006            |
| CR12         | (CR08)             | 1.166                                | 0.997                           | 1.148                     | 1.013            |
| CR13         | 0.975954           | 1.208                                | 0.996                           | 1.184                     | 1.016            |
| CR14         | (CR08)             | 1.166                                | 1.003                           | 1.159                     | 1.009            |
| CR15         | (CR09)             | 1.156                                | 1.006                           | 1.164                     | 0.999            |
| CR16         | (CR10)             | 1.144                                | 1.009                           | 1.154                     | 1.000            |
| CR17         | (CR09)             | 1.156                                | 1.012                           | 1.174                     | 0.996            |
| CR18         | (CR08)             | 1.166                                | 1.010                           | 1.175                     | 1.002            |
| CR19         | (CR13)             | 1.208                                | 1.003                           | 1.201                     | 1.009            |
| Mean C/E     | for 12 contr       | ol rods                              |                                 |                           | 1.008            |
|              |                    | S.D.                                 |                                 |                           | 0.007            |
| Fuel Ring 3  |                    |                                      |                                 |                           | -                |
| CR20         | 0.977139           | 0.831                                | 1.004                           | 0.794                     | 1.051            |
| CR21         | 0.977233           | 0.801                                | 1.006                           | 0.774                     | 1.041            |
| CR22         | 0.977303           | 0.779                                | 0.995                           | 0.745                     | 1.040            |
| CR23         | (CR21)             | 0.801                                | 0 <b>. 99</b> 1                 | 0.772                     | 1.028            |
| CR24         | (CR20)             | 0.831                                | 0.991                           | 0.789                     | 1.044            |
| CR25         | 0.977044           | 0.861                                | 0.981                           | 0.799                     | 1.057            |
| CR26         | (CR20)             | 0.831                                | 0.997                           | 0.794                     | 1.043            |
| CR27         | (CR21)             | 0.801                                | 1.001                           | 0.785                     | 1.021            |
| CR28         | (CR22)             | 0.779                                | 1.000                           | 0.766                     | 1.017            |
| CR29         | (CR21)             | 0.801                                | 1.011                           | 0.795                     | 1.019            |
| CR30         | (CR20)             | 0.831                                | 1.004                           | 0.801                     | 1.042            |
| CR31         | (CR25)             | 0.861                                | 0.990                           | 0.813                     | 1.048            |
| Mean C/E for | 12 control         | rods.                                |                                 |                           | 1.038            |
|              |                    |                                      |                                 |                           |                  |

TABLE 6.4 Single Control Rod Worths for the Second Series of Measurements in ZPPR-13A

0.979760. <sup>b</sup>Worth defined as  $|\Delta k|/(k_1k_2\beta)$ , with  $\beta = 0.3294\%$ .

<sup>c</sup>Correction for All-master model.

JAIIB16

|             | Ratio           | Ratio of C/E on RHS to C/E on LHS |                                       |                |  |  |  |  |  |
|-------------|-----------------|-----------------------------------|---------------------------------------|----------------|--|--|--|--|--|
| Rod Pair    | Reference Model | Narrow Drawers                    | Narrow Drawers<br>+ Blanket Detectors | All<br>Masters |  |  |  |  |  |
| Fuel Zone 2 |                 |                                   |                                       |                |  |  |  |  |  |
| 15, 17      | 0.989           | 1.002                             | 0.996                                 | 0.997          |  |  |  |  |  |
| 14, 18      | 0.984           | 1.003                             | 0.995                                 | 0.993          |  |  |  |  |  |
| 13, 19      | 0.985           | 1.005                             | 0.992                                 | 0.993          |  |  |  |  |  |
| 12, 8       | 0.993           | 1.012                             | 1.010                                 | 1.003          |  |  |  |  |  |
| 11, 9       | 0.999           | 1.010                             | 1.008                                 | 1.007          |  |  |  |  |  |
| Fuel Zone 3 |                 |                                   |                                       |                |  |  |  |  |  |
| 27, 29      | 0.986           | 1.002                             | 0.996                                 | 0.998          |  |  |  |  |  |
| 26, 30      | 0.990           | 1.011                             | 1.003                                 | 0.999          |  |  |  |  |  |
| 25, 31      | 0.982           | 1.001                             | 0.995                                 | 0.991          |  |  |  |  |  |
| 24, 20      | 0.992           | 1.013                             | 1.008                                 | 1.007          |  |  |  |  |  |
| 23, 21      | 0.998           | 1.014                             | 1.010                                 | 1.013          |  |  |  |  |  |
| Mean        | 0,990           | 1.007                             | 1.001                                 | 1.000          |  |  |  |  |  |
| σ           | 0.006           | 0.005                             | 0.007                                 | 0.007          |  |  |  |  |  |
|             |                 |                                   |                                       | JAIIB17        |  |  |  |  |  |

TABLE 6.5.Comparison of C/E Results for Single Control Rods in<br/>Left and Right Sides of ZPPR-13A

| TABLE 6.11.        | Comparison<br>ZPPR-13A | of Control            | Rod Wor     | ths in                |
|--------------------|------------------------|-----------------------|-------------|-----------------------|
| Control Rods       | Assembly               | Measured<br>Worth, \$ | <u>C/Eb</u> | Change<br>in Worth, % |
| Fuel Ring 1        |                        |                       |             |                       |
| 6 CRs <sup>a</sup> | 13A                    | 5.73                  | 0.987       |                       |
| Fuel Ring 2        |                        |                       |             |                       |
| CR 16              | 1 3A                   | 1.15                  | 1.000       | •                     |
| 12 CRs             | 13A                    | 19.87                 | 1.010       |                       |
| Fuel Ring 3        |                        |                       |             |                       |
| CR 25 <sup>c</sup> | 13A                    | 0.798                 | 1.060       |                       |
| CR 28 <sup>c</sup> | 13A                    | 0.762                 | 1.023       |                       |
| 6 CRs (odd)        | 1 <b>3A</b>            | 7.08                  | 1.047       |                       |
| 6CRs (even)        |                        |                       |             |                       |
| 12 CRs             | 1 3A                   | 13.56                 | 1.044       |                       |

<sup>a</sup>The inner ring rods were rotated by 30° in ZPPR-13B/1 relative to ZPPR-13A to align with blanket-ring gaps. <sup>b</sup>Reference diffusion calculations, 8 groups, xy geometry.

<sup>c</sup>Control rod 25 is on the x-axis and control rod 28 is on the y-axis (in line with blanket-ring gaps). These rods were measured twice in ZPPR-13A and the mean result is used. JAIIB23

## 6.3 Control Rod Interactions

The worths of rod banks in ZPPR-13A are compared with the sums of the individual rod worths in Table 6.12. The normalized interaction obtained by dividing by the average of the single rod worths is useful for comparison between different rings and between different cores. The normalized interaction of 37%/\$ in FR2 is well predicted. Interaction of 56%/\$ for 12 rods in FR3 and of 63%/\$ for 6 rods in FR3 are overpredicted by 2% and 3%.

ĩ,

| TABLE 6.12. Control Rod Inter             | action Eff | ects in ZPPI | R-13A |
|-------------------------------------------|------------|--------------|-------|
|                                           | Ea         | C            | C/E   |
| Fuel Ring 2                               |            |              |       |
| Worth of bank of 12 rods,\$               | 19.869     | 20.064       | 1.010 |
| Sum of individual rod worths,\$           | 13.940     | 14.049       | 1.008 |
| Interaction, %                            | 42.5       | 42.8         | 1.007 |
| Normalized interaction, %/\$ <sup>b</sup> | 36.6       | 36.6         |       |
| Fuel Ring 3                               |            |              |       |
| Worth of bank of 12 rods,\$               | 13.559     | 14.162       | 1.044 |
| Sum of individual rod worths,\$           | 9.427      | 9.783        | 1.038 |
| Interaction, %                            | 43.8       | 44.8         | 1.023 |
| Normalized interaction, %/\$              | 55.8       | 54.9         |       |
| Worth of bank of 6 rods, \$               | 7.082      | 7.414        | 1.047 |
| Sum of individual rods,\$                 | 4.738      | 4.908        | 1.036 |
| Interaction, %                            | 49.5       | 51.1         | 1.032 |
| Normalized interaction, %/\$              | 62.7       | 62.4         |       |
|                                           |            |              |       |

139/140

<sup>a</sup>The rod bank worths were measured in the first series and the individual rods in the second series. There are indications of a systematic difference between the results from the two series of about 0.7% (see text).

<sup>b</sup>Using the mean worth of a single rod in the bank. JAIIB25

# 6.4 Transport Calculations

Transport calculations have been made for rod banks in each of the three fuel rings in ZPPR-13A Transport calculations require a finer mesh than the 55 mm (1MPD) used in the reference diffusion calculations. The diffusion calculations were repeated with the number of mesh points doubled (4MPD). Calculations were then made with the S4 transport option of DIF3D. Since the S4 calculations used isotropic diffusions (NBD), the diffusion theory calculations were also repeated with this method. Results of these calculations are shown in Table 6.15

141/142

For ZPPR-13A the effects of a finer mesh and higher order quadrature were investigated in a one-dimensional r model using the lDANT code. This model, shown schematically in Fig. 6.4, modelled control-rod banks as annular regions. The rod-bank worths do not match those of the xy model very closely, as shown in Table 6.18, but transport corrections are similar. Table 6.19 shows the effects of  $S_{16}$  quadrature and fine mesh which are less than 0.5%.

The mesh and transport corrections are of opposite signs, but compensate one another to different degrees as a function of rod radius and blanket arrangement. In ZPPR-13A, the mesh and transport corrections increase the radial discrepancy between FR1 and FR3 by 2%,

Streaming effects are included in the reference calculations, but their effect can be seen from Table 6.15 These improve the results for the relative bank worths between FR1 and FR3 by 2% in 13A

Table 6.20 show the corrected results for the rod banks. The tables include corrections to 28 group xyz calculations for Table 6.14 to 6.15. The following conclusions are noted:

(i) For ZPPR-13A the corrected C/E results are 0.980 (FR1), 1.011
(FR2) and 1.059 (FR3). The discrepancy between the inner and outer rod positions is 8%.

• . .

• .

.

|               |           |          | Standard  | Calculation  | Fine Mesh Calculation |              |  |
|---------------|-----------|----------|-----------|--------------|-----------------------|--------------|--|
|               |           | Radius   | Number of | Mesh Spacing | Number of             | Mesh Spacing |  |
| Zone          |           | (cm)     | Intervals | (cm)         | Intervals             | (cm)         |  |
|               |           |          |           |              |                       |              |  |
|               | £         | 0.0      |           |              | ·····                 |              |  |
| (inner)       | Center    | 20 6750  | 8         | 2 5844       | 16                    | 1 2022       |  |
| <u>(Imer)</u> | Blanker   | 20.0750  | 0         | 2. 3044      | 10                    | 1.2922       |  |
| (outer)       |           | 30.5390  | 4         | 2.4660       | 8                     | 1 2330       |  |
|               |           |          |           |              |                       | 1.2550       |  |
|               | Fuel      | 43,1132  | 6         | 2,0957       | 12                    | 1 0479       |  |
| (CR) *        | Ring 1    | 45.7373  | 2         | 1,3121       | 4                     | 0.6561       |  |
|               |           |          | -         |              | 7                     | 0.0901       |  |
|               |           | 53.9860  | 4         | 2.0622       | 8                     | 1.0311       |  |
|               | Blanket   |          |           |              |                       | •<br>•       |  |
|               | Ring 1    |          |           |              |                       |              |  |
|               |           | 69.6950  | 6         | 2.6182       | 8                     | 1 3091       |  |
|               | ·         |          |           |              |                       |              |  |
|               | Fuel      | 81.5168  | 4         | 2,9555       | 8                     | 1.4778       |  |
| (CR) *        | Ring 2    | 84.3286  | 2         | 1.4059       | 4                     | 0.7030       |  |
|               |           |          |           |              |                       |              |  |
|               |           | 94.1270  | 4         | 2.4496       | 8                     | 1.2248       |  |
|               | B1 anke t |          |           |              |                       |              |  |
|               | Ring 2    |          |           |              |                       |              |  |
|               |           | 109.0460 | 6         | 2.4865       | 12                    | 1.2433       |  |
|               |           |          |           |              |                       |              |  |
|               | Fuel      | 120.4072 | 6         | 1.8935       | 12                    | 0.9468       |  |
| (CR) *        | Ring 3    | 122.3282 | 2         | 0.9605       | 4                     | 0.4803       |  |
|               |           | 125.6060 | 2         | 1.6389       | 4                     | 0.8195       |  |
|               |           | 141 0530 | · 8       | 1 9309       | 16                    | 0 9655       |  |
|               |           | 141.0550 |           | 1.7303       | 10                    | 0.9099       |  |
| (inner)       | Radial    | 154.7170 | 6         | 2.2773       | 12                    | 1.1387       |  |
|               | Blanket   |          |           |              |                       |              |  |
|               |           |          |           |              |                       |              |  |
| (outer)       |           | 166.4540 | 6         | 1.9562       | 12                    | 0.9781       |  |
| •             |           |          |           |              |                       |              |  |
|               | Radial    |          |           |              |                       |              |  |
|               | Reflector |          |           |              |                       |              |  |
|               |           | 189.4890 | 8         | 2.8794       | 16                    | 1.4397       |  |
|               | Mata in   |          |           |              |                       |              |  |
|               | Matrix    |          |           | · · · · ·    |                       |              |  |
|               |           | 205 0    | <i>h</i>  | 3 8779       | 8                     | 1 0380       |  |
| 7.1.7.7.7.    |           | 203.0    | 4         | 3.0//0       | 0                     | 1.7307       |  |

Fig. 6.4. One-dimensional Model for Study of Higher-order Transport Effects in ZPPR-13A.

XA-8

| Configuration <sup>a</sup> |     | Calc | ul at      | ion <sup>b</sup> |      | k-effective | Worth, \$° |
|----------------------------|-----|------|------------|------------------|------|-------------|------------|
| Reference                  | хy  | 8G   | DT         | 1 MPD            | WBD  | 0.979760    |            |
|                            | xy  | 8G   | DT         | 4MPD             | WBD  | 0.978267    |            |
| 9                          | xy  | 8G   | DT         | 4MPD             | NB D | 0.979207    |            |
|                            | xy  | 8G   | <b>S</b> 4 | 4MPD             | NBD  | 0.986457    |            |
|                            | xyz | 28G  | DT         | IMPD             | WBD  | 0.978324    |            |
| 6 CRs in Fl                | xy  | 8G   | DT         | 1MPD             | WBD  | 0.962359    | 5.601      |
|                            | xy  | 8G   | DT         | 4MPD             | WBD  | 0.960088    | 5.873      |
|                            | xy  | 8G   | DT         | 4MPD             | NBD  | 0.961348    | 5.748      |
|                            | xy  | 8G   | S4         | 4MPD             | NBD  | 0.969135    | 5.499      |
|                            | xyz | 28G  | DT         | 1MPD             | WBD  | 0.961163    | 5.539      |
| 12 CRs in F2               | xy  | 8G   | DT         | 1 MPD            | WBD  | 0.920399    | 19.979     |
|                            | xy  | 8G   | DT         | 4MPD             | WBD  | 0.915917    | 21.119     |
|                            | xy  | 8G   | DT         | 4MPD             | NB D | 0.917450    | 20.862     |
|                            | xy  | 8G   | S4         | 4MPD             | NBD  | 0.926485    | 19.915     |
|                            | xyz | 28G  | DT         | IMPD             | WBD  | 0.920769    | 19.864     |
| 12 CRs in F3               | xy  | 8G   | DT         | 1 MPD            | WBD  | 0.936857    | 14.185     |
|                            | xy  | 8G   | DT         | 4MPD             | WBD  | 0.933642    | 14.828     |
|                            | xy  | 8G   | DT         | 4MPD             | NBD  | 0.934578    | 14.801     |
|                            | xy  | 8G   | <b>S</b> 4 | 4MPD             | NBD  | 0.941992    | 14.522     |
|                            | xyz | 28G  | DT         | IMPD             | WBD  | 0.936091    | 13,996     |

TABLE 6.15. ZPPR-13A: Comparison of Diffusion and Transport Calculations for Control Rod Worths

<sup>a</sup>Subcritical reference, 6 CRs in Fl means six control rods in fuel zone one, etc.

<sup>b</sup>xy means two dimensional xy geometry model with group dependent axial buckling terms. (xyz means three dimensional xyz geometry). All calculations were made in quarter core model without inclusion of blanket narrow drawers in the model.

8G = eight energy groups, 28G = twenty-eight energy groups DT = diffusion theory, S4 = transport theory with S4 quadrature 1MPD = one mesh per matrix area (55 mm spacing) 4MPD = four meshes per matrix area WBD = with Benoist Diffusion coefficient NBD = Isotropic diffusion coefficients

<sup>c</sup>Worth relative to fuel (reference), using  $\beta_{eff} = 0.003314$ . JAIIB29

| ·····      | xy                                       | Model                             | r Model                                  |                                   |  |
|------------|------------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------|--|
| Rod Bank   | Transport (S <sub>4</sub> )<br>Worth, \$ | Worth Ratio <sup>a</sup><br>S4/DT | Transport (S <sub>4</sub> )<br>Worth, \$ | Worth Ratio <sup>a</sup><br>S4/DT |  |
| 6 CRs Fl   | 1.81                                     | 0.955                             | 1.93                                     | 0.968                             |  |
| 12 CRs F2  | 6.56                                     | 0.955                             | 7.26                                     | 0.965                             |  |
| 12 CRs F3  | 4.79                                     | 0.981                             | 5.76                                     | 0.979                             |  |
| 3ng - 1:00 |                                          |                                   |                                          |                                   |  |

| TABLE 6.18. | Comparison | of Transport Corrections in xy ar | id r-geometry |
|-------------|------------|-----------------------------------|---------------|
|             | for        | ZPPR-13A Control Rod Banks        | -             |

 $^{a}$ DT = diffusion theory calculation using the same mesh as in the transport S<sub>4</sub> calculation. MR2-A22

# TABLE 6.19.Higher Order Quadrature and Fine MeshEffects for Control Rod Worths in ZPPR-13A

|           |                                   | <u> </u>                                 |                                           |
|-----------|-----------------------------------|------------------------------------------|-------------------------------------------|
| Rod Bank  | s <sub>16</sub> /s <sub>4</sub> ª | Fine Mesh/<br>Standard Mesh <sup>b</sup> | Combined S <sub>16</sub><br>and Fine Mesh |
| 6 CRs Fl  | 0.998                             | 0.999                                    | 0.997                                     |
| 12 CRs F2 | 0.997                             | 0.997                                    | 0.994                                     |
| 12 CRs F3 | 0.996                             | 0.995                                    | 0.991                                     |
|           |                                   |                                          |                                           |

<sup>a</sup>With standard mesh.

bwith S16 quadrature.

MR2-A22

| 6 CRs in FR1   | 12 CRs in FR2                                                                   | 12 CRs in FR3                                         |  |  |  |
|----------------|---------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| 5.725<br>0.979 | 19.869                                                                          | 13.559                                                |  |  |  |
| Correction, %  |                                                                                 |                                                       |  |  |  |
| +0.9           | +0.4                                                                            | -0.2                                                  |  |  |  |
| -4.5           | -4.5                                                                            | -1.9                                                  |  |  |  |
| +0.1           | +0.5                                                                            | +1.1                                                  |  |  |  |
| 0, 980         | 1.011                                                                           | +1.1                                                  |  |  |  |
|                | 6 CRs in FR1<br>5.725<br>0.979<br>+0.9<br>+4.8<br>-4.5<br>-1.1<br>+0.1<br>0.980 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |

TABLE 6.20. The Effect of Calculational Improvements on Control Rod Worth C/E Values in ZPPR-13A

<sup>a</sup>8 group diffusion theory calculation in xy geometry in one mesh per ZPPR drawer (1MPD) using anisotropic diffusion coefficients.  $\beta_{eff} = 0.3294\%$ . <sup>b</sup>Comparison of full-plan xy model including all drawer masters with the

reference homogenized-master model.

<sup>c</sup>Correction from 1MPD to four meshes per drawer (4MPD).

 $^{d}S_{4}$  calculation made with 4MPD.

<sup>e</sup>Comparison of 28 group xyz calculations with reference results. JAII2A2

### 7.0 SODIUM-VOID REACTIVITY

Zone sodium-voiding experiments were done in phases 13A

#### 7.1 ZPPR-13A

The ZPPR-13A sodium-void experiments were designed principally to provide tests of calculated radial variations, which in the heterogeneous design include complex leakage effects between the fuel and blanket zones. Annular sectors in each fuel zone were voided of sodium over a length of 305 mm (12 in.) on each side of the midplane, with the outer fuel zone (F3) being voided in two radial segments. Symmetric void zones were introduced on each side of the core to permit analysis with a one-eighth core model of the assembly. The sectors in the inner fuel zone (F1) were voided in two steps, +203 mm (8 in.) and +305 mm from the midplane. In addition, the entire fuel zone 1 was voided (+305 mm) in order to compare with results from the sectors and also to permit analysis with an rz model for investigation of transport corrections. Following voiding of the fuel zones, contiguous sectors in the two internal blanket zones were voided over a height of +203 mm. In the last step in the series, sodium was replaced in zone 1 (+203 mm) with the other six zones remaining in the voided condition. This experiment has been variously described as an "inverse voiding" or a "reflood".

The reactor configuration at the start of the voiding sequence is shown in Fig. 7.1. This configuration differed from the reference critical configuration by the replacement of double-column fuel drawers with singlecolumn fuel drawers in locations 1,242-26; 1,255-26; 1,242-73; 1,255-73; 1,246-73; 1,251-73; 1,246-26; 1,251-26; 1,245-56; 1,252-56; 1,245-43; 1,252-43; 1,242-43; 1,255-43; 1,242-56; and 1,255-56. This configuration was 81¢ subcritical.

In the first voiding step, sodium was removed from the first 8 in. of each half in zone 1. In the second step, the axial half height of the void was increased to 12 in. In all subsequent steps in fuel zones, the axial extent of the voids was  $\pm$  12 in. In the blanket zones, the axial extent of the voids was  $\pm$  8 in. Differences between the lengths of sodium-containing cans in the fuel and blanket regions prompted the decision to have the difference in the axial extent of the voids. All steps were cumulative.

The results of the various voiding steps are presented in Table 7.1. All worth determinations were made using the 64 in-core fission counters and the subcritical-source-multiplication technique. The subcritical-sourcemultiplication measurements were calibrated by making a rod-drop reactivity measurement after voiding zone 7. With all seven zones voided, the reactor was 12¢ subcritical.

There were only two reflood steps. In the first step sodium was added back  $\pm 8$  in. in zone 1. All the remaining sodium was added back in the second step and the final subcriticality was 78¢. There is a discrepancy of 3¢ in subcriticality between the nominally equivalent configurations before voiding and after reflooding. The source of this discrepancy is not presently known, but the values for the step worths shown in Table 7.1 should still be used as the experiment values.

The uncertainties in the cumulative worths and in the step worths given in Table 7.1 were obtained by combining a 0.2¢ random uncertainty in any reactivity difference due to temperature and table-closure corrections with a 0.8% correlated uncertainty due to detector calibration. The uncertainty in the step worth per kg sodium removed was obtained from the uncertainty in the step worth and a 1% random uncertainty in sodium mass. Uncertainties due to counting statistics are very small compared to other uncertainties and are not included.

The change in steel mass was small for each step and its effect is included in the step worth.

The calculation methods used for analysis in ZPPR-13A are similar to those employed in previous calculations for heterogeneous cores. Processing of the ENDF/B-IV cross section for unit cell heterogeneity with the SDX code used impressed zone- and group-dependent bucklings which were obtained from the zone leakages in prior xyz calculations. For the reference core, these data were the same as those employed for the analysis of reaction rates described earlier. Cross sections for the voided cells were generated by the same method. The bucklings in this case were derived from a second xyz calculation in which all seven zones were voided. Separate macroscopic cross sections were thus produced for single-column and double-column fuel drawers in each of the three fuel zones. A single set of cross sections was used for the internal blanket zones.

An approximate treatment of streaming in the unit cells was included using the Benoist definition of anisotropic diffusion coefficients. Divergence of the diffusion coefficients in the voided region was avoided by smearing of the sodium plate claddings over the total plate thickness. This procedure is consistent with previous sodium-void analysis at ZPPR. However, in contrast to previous applications, for ZPPR-13A we have used the ratios D(Benoist)/ D(heterogeneous) as "diffusion coefficient modifiers" in the DIF3D code. This procedure corrects for the prescription of diffusion coefficients for the heterogeneous cell that is used in the SDX code, in addition to treating platecell streaming effects. Previous calculations used the ratio D(Benoist)/ D(homogeneous) in order to provide numerical values for the streaming effects themselves. Test calculations were run for the combined voiding steps 1 and 2 and for step 5 in order to determine the effect of the change in the definition

of the ratio. Negligible differences of less than 1% were found for the void reactivities using different definitions, although the diffusion coefficient modifiers differ appreciably in some energy groups.

The calculated void reactivities were obtained with an exact perturbation method using an xyz model with 28 group data. Following a calculation of the real flux for the subcritical reference core, an adjoint calculation was made for each of the void steps that were measured. The traditional "nonleakage" and "leakage terms" were obtained using the VARI3D perturbation code. The worths, in dollars, were defined as  $\Delta k/(k_1 k_2 \beta)$ , where 1 and 2 refer to the reference and perturbed states, respectively. The value of  $\beta_{eff}$  (0.3295%) was calculated using ENDF/B-V delayed neutron data and an rz model of the reference core. In the experiments, the detector drawers and drawers opposite detectors were not voided of sodium. Due to the asymmetric location of the detectors, those drawers were voided in the calculational model. The calculated results are given in Table 7.2. When comparing the calculated vs. experimental results, this difference was taken into account by normalizing to the mass of sodium that was removed.

The calculated and measured results for the ZPPR-13A sodium-void experiments were processed through the same data analysis code that was used for previous experiments.<sup>(15)</sup> The calculated reactivity of each step was split into a negative and a positive term; i.e., the sum of the leakage components and the sum of the non-leakage (reaction) components. Through a non-linear fitting procedure, separate leakage and non-leakage bias factors and their covariance matrix were determined. These factors are 0.94 for both terms when only the core void steps are included. Including the blanket void steps reduces the factors to 0.92. These are the factors by which one would multiply the leakage and non-leakage components of a calculated void reactivity in an LMFBR similar to ZPPR-13A, in order to improve the reactivity prediction.

The data were combined with data from smaller heterogeneous assemblies reported in Ref. 15 and the bias factors were re-fit. A leakage bias factor of 0.90 and a non-leakage bias factor of 0.94 were obtained. These are similar to the results reported in Ref. 15.

Table 7.3 compares the calculated (C) and biased calculated (P) results with the measured results (E). Also given are the 1 $\sigma$  uncertainties in the P/E ratios, where the covariance in the bias factors makes the principal contribution. In the fitting process, it is assumed that the approximate calculation procedures introduce net errors that are random on average over many regions of the reactor. Starting with only the contribution from the experimental errors, the covariance matrix is adjusted until a  $\chi^2$  test indicates that a reasonable fit is obtained. Note that six of the P/E values in Table 7.3 fall within 1 $\sigma$  of 1.0, and the other two values are within 2 $\sigma$ , even though the range of experimental results includes variations of more than an order of magnitude as well as a change in sign. Nevertheless, errors in the predictions are only about 6% for the major positive void steps.

. .



I PSR

O DETECTOR

- SINGLE COLUMN FUEL

Fig. 7.1. Interface diagram showing the reference configuration for the sodium-voiding experiments and showing the voiding zones in ZPPR-13A. Half 1.



| TABLE 7.     | 1.                 | ZPPR-13A Sod              | ium-void Zone                          | e Measurement          | Results             | <i>.</i>               |
|--------------|--------------------|---------------------------|----------------------------------------|------------------------|---------------------|------------------------|
| Zone         | Height, cm         | Mass of Na<br>in Step, kg | Mass of<br>Steel Added<br>in Step, kg  | Cumulative<br>Worth, ¢ | Step Worth,<br>¢    | Step Worth,<br>¢/kg Na |
| l<br>void    | + 20.3             | 21.82                     | 0.26                                   | 7.06 <u>+</u> 0.21     | 7.06 + 0.21         | 0.324 + 0.010          |
| l<br>void    | + 20.3 -<br>+ 30.5 | 10.65                     | 0.27                                   | 7.68 <u>+</u> 0.21     | 0.62 + 0.20         | 0.058 + 0.019          |
| 2<br>void    | + 30.5             | 93.46                     | 1.23                                   | 35.75 <u>+</u> 0.35    | 28.07 <u>+</u> 0.30 | 0.300 <u>+</u> 0.004   |
| 3<br>void    | <u>+</u> 30.5      | 54.14                     | 0.95                                   | 53.88 <u>+</u> 0.48    | 18.13 <u>+</u> 0.25 | 0.335 + 0.005          |
| 4<br>void    | + 30.5             | 34.28                     | 0.70                                   | 63.36 <u>+</u> 0.54    | 9.48 + 0.21         | 0.276 + 0.007          |
| 5<br>void    | <u>+</u> 30.5      | 50.10                     | 0.79                                   | 51.94 <u>+</u> 0.46    | -11.42 + 0.22       | -0.228 <u>+</u> 0.005  |
| 6<br>void    | <u>+</u> 20.3      | 10.85                     | 0.20                                   | 61.18 <u>+</u> 0.53    | 9.24 + 0.21         | 0.852 + 0.020          |
| 7<br>void    | <u>+</u> 20.3      | 9.45                      | 0.16                                   | 69.31 <u>+</u> 0.59    | 8.13 <u>+</u> 0.21  | $0.860 \pm 0.024$      |
| l<br>reflood | <u>+</u> 20.3      | 21.81                     | -0.30                                  | 60.88 <u>+</u> 0.53    | -8.43 <u>+</u> 0.21 | -0.387 + 0.008         |
|              |                    |                           | ······································ |                        |                     | EA-9                   |

۰.

163

,

| TABLE 7.2. |                       | (        |
|------------|-----------------------|----------|
|            |                       |          |
| Step/      | Vo id ed <sup>b</sup> | Na Mass, |

Calculated Sodium-void Reactivity in ZPPR-13A

|                              |                  |                     |          | Worth Components, ¢ ¢/kg |         |        |         | ·····  |        |      |
|------------------------------|------------------|---------------------|----------|--------------------------|---------|--------|---------|--------|--------|------|
| Step/ Voided <sup>b</sup>    |                  | Na Mass,<br>kg/Step |          |                          | Leakage |        | Non-    |        |        |      |
| Zone <sup>a</sup> Region, mm | k <sub>eff</sub> |                     | x        | у                        | Z       | Sum    | Leakage | Net    | C/E    |      |
| Reference                    |                  |                     | 0.975876 |                          |         |        |         |        |        |      |
| 1/1                          | 203              | 21.90               | 0.976104 | -0.095                   | -0.011  | -0.050 | -0.156  | 0.491  | 0.335  | 1.03 |
| 2/1                          | 203-305          | 10.28               | 0.976125 | -0.069                   | -0.008  | -0.234 | -0.311  | 0.374  | 0.063  | 1.09 |
| 3/2                          | 305              | 96.15               | 0.977017 | -0.018                   | -0.057  | -0.107 | -0.182  | 0.477  | 0.295  | 0.98 |
| 4/3                          | 305              | 55.51               | 0.977643 | -0.106                   | '-0.007 | -0.158 | -0.271  | 0.630  | 0.359  | 1.07 |
| 5/4                          | 305              | 35.26               | 0.978010 | -0.013                   | -0.003  | -0.133 | -0.149  | 0.477  | 0.331  | 1.20 |
| 6/5                          | 305              | 50.68               | 0.977632 | -0.419                   | -0.021  | -0.078 | -0.518  | 0.281  | -0.237 | 1.04 |
| 7/6                          | 203              | 11.01               | 0.977970 | -0.060                   | -0.004  | -0.048 | -0.112  | 1.084  | 0.972  | 1.14 |
| 8/7                          | 203              | 9.94                | 0.978249 | -0.071                   | -0.005  | -0.045 | -0.121  | 1.059  | 0.938  | 1.09 |
| 9/1d                         | (203)            | (21.90)             | 0.977982 | 0.092                    | 0.011   | 0.059  | 0.162   | -0.507 | -0.345 | 0.89 |

<sup>a</sup>The calculations followed the experimental sequence of steps. Refer to Figs. 7.1 and 7.2.

<sup>b</sup>Relative to midplane, depth into each half of the reactor.

 $c_{\beta_{eff}} = 0.003295.$ 

<sup>d</sup>In step 9, Na was re-inserted with all other zones voided.

JAII2B25

|                   |                         | •       |       |        |
|-------------------|-------------------------|---------|-------|--------|
| Step <sup>a</sup> | Measured<br>Worth, ¢/kg | C/E     | P/Eb  | σ(P/E) |
| 1                 | $0.324 \pm 0.010$       | 1.034   | 0.949 | 0.067  |
| 2                 | $0.058 \pm 0.019$       | 1.086   | 0.985 | 0.465  |
| 3                 | $0.300 \pm 0.004$       | 0.983   | 0.902 | 0.065  |
| 4                 | 0.335 ± 0.005           | 5 1.072 | 0.982 | 0.078  |
| 5                 | $0.276 \pm 0.007$       | 7 1.198 | 1.099 | 0.074  |
| 6                 | $-0.228 \pm 0.005$      | 5 1.039 | 0.960 | 0.125  |
| 7                 | $0.852 \pm 0.002$       | 1.141   | 1.048 | 0.057  |
| 8                 | $0.860 \pm 0.024$       | 1.091   | 1.001 | 0.057  |

TABLE 7.3. Comparison of Calculated and Measured Results for the ZPPR-13A Sodium-void Reactivity Experiments

<sup>a</sup>Refer to Figs. 8.1 and 8.2.

<sup>b</sup>Calculation adjusted by bias factors for leakage and non-leakage terms. MR-A20

## 8.0 ANALYSIS OF <sup>238</sup>U REACTIVITY DOPPLER MEASUREMENTS IN ZPPR-13A

The calculation of Doppler worth for the sample is based on first order perturbation theory. The sample is explicitly modelled in the reactor calculation and, the perturbation is defined as the change from reference temperature to elevated temperature cross sections for the sample. In order to normalize the perturbation denominator and integrate over sample length, the axial flux shape is represented as  $\phi(xyz) = \phi(xy) \cos B_z$ , where  $B_z$  is a constant buckling value chosen so that an xy calculation with constant buckling gives the same  $k_{eff}$  as the reference case with group- and region-dependent values.

Preparation of the Doppler sample cross section data is based on a pin cell model. A two region pin cell consisting of the Doppler sample at the center surrounded by structural steel, is processed in MC<sup>2</sup>-II/SDX for each temperature to produce resonance self-shielded cross sections in an intermediate (156) group structure. For group collapse to the 28 group level, a diffusion calculation is done for a one-dimensional cylindrical model consisting of sample, structure and reactor core. Cross sections are collapsed for each sample temperature.

The core configuration was that of the ZPPR-13A critical reference with the Doppler mechanism and an additional fuel "spike" inserted. Both of these were included in the calculational model. The axial bucklings were derived from the xyz diffusion calculation for the reference core, and anisotropic diffusion coefficients were used. The ZPPR shim rods were not modelled.

The measurements were performed near the center of fuel rings one and two, and toward the outer edge of fuel ring three, the latter dictated by available locations. The experimental values reported here differ slightly from those

reported earlier (16) because of adjustment to nominal temperatures for comparison with calculation. The adjustment is accomplished by means of a powerlaw fit.

The comparison between experiment and calculation for the Doppler reactivity is shown in Table 8.1. The mean C/E results of 0.84, 0.88 and 1.11 in the three fuel rings show the general variation with radius expected from analysis of other parameters. Sample worth data at the reference temperature are presented in Table 8.2. Again, the C/E values have the expected radial variation.

The radial variation of the reactivity Doppler C/E was found to follow the square of the  $^{238}$ U(n,Y) C/E in ZPPR-11. The ratio of Doppler C/E to the square of the reaction rate C/E was found to be  $0.732 \pm 0.033$  for ZPPR-11B, and 0.738 ± 0.017 for ZPPR-11C. The same analysis for the ZPPR-13A data yields the results shown in Table 8.3. The ratios in fuel ring one (0.77) and fuel ring two (0.78) are consistent and comparable to the results in ZPPR-11. Fuel ring three shows a significantly higher ratio which is inconsistent with the rest of the data. There are three reasons, in addition to the reaction rate comparison, why the fuel-ring three measurement is suspect. First, in installing the Doppler mechanism at that location, two shim rods had to be removed. Thus, during data acquisition, the reactor was held at power by balancing on six instead of eight shim rods. Experience with the large heterogeneous cores indicates that the resulting flux tilt could significantly influence the result. In addition, the magnitude of the measurement was very small, tending to increase the uncertainties and the flux gradient was very steep at the measurement location, introducing difficulties in modelling. In addition, there is a much larger variation in C/E values for the different temperatures in the fuel ring three measurement. For these reasons, the fuel ring three measurement is felt to be unreliable.

The C/E values in ZPPR-13A are generally comparable to those from ZPPR-11.<sup>(17)</sup> The results in ZPPR-11B were 0.77 and 0.93 in the inner and outer fuel zones. The results in ZPPR-11C (the EOC core) varied between 0.82 and 0.89. The value in fuel ring two is close to the value obtained at the center of the homogeneous ZPPR-9 core  $(0.935 \pm 0.007)$ .<sup>(1)</sup>

|                                                          | Specific Worth, a ¢/kg 238U                                                                                                     |                                                                 |                                                                                                                                   |  |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| Temperature, K                                           | Experiment <sup>b</sup>                                                                                                         | Calculation                                                     | C/E                                                                                                                               |  |
| Fuel Ring 1 (153-56)<br>500<br>650<br>800<br>950<br>1100 | $\begin{array}{r} -0.0119 + 0.0006 \\ -0.0214 + 0.0007 \\ -0.0263 + 0.0006 \\ -0.0312 + 0.0006 \\ -0.0358 + 0.0006 \end{array}$ | -0.0112<br>-0.0172<br>-0.0222<br>-0.0264<br>-0.0299<br>Mean C/E | $\begin{array}{r} 0.938 + 0.051 \\ 0.803 + 0.026 \\ 0.844 + 0.019 \\ 0.846 + 0.016 \\ 0.835 + 0.013 \\ 0.839 + 0.014 \end{array}$ |  |
| Fuel Ring 2 (163-52)<br>500<br>650<br>800<br>950<br>1100 | $\begin{array}{r} -0.0134 + 0.0006 \\ -0.0228 + 0.0006 \\ -0.0301 + 0.0006 \\ -0.0352 + 0.0006 \\ -0.0410 + 0.0006 \end{array}$ | -0.0134<br>-0.0205<br>-0.0264<br>-0.0314<br>-0.0355<br>Mean C/E | $\begin{array}{r} 1.000 + 0.045 \\ 0.899 + 0.023 \\ 0.877 + 0.017 \\ 0.892 + 0.015 \\ 0.866 + 0.013 \\ 0.884 + 0.012 \end{array}$ |  |
| Fuel Ring 3 (164-68)<br>500<br>800<br>950<br>1100        | $\begin{array}{r} -0.0044 + 0.0006 \\ -0.0128 + 0.0006 \\ -0.0130 + 0.0006 \\ -0.0167 + 0.0006 \end{array}$                     | -0.0070<br>-0.0138<br>-0.0164<br>-0.0186<br>Mean C/E            | $\begin{array}{r} 1.593 \pm 0.221 \\ 1.077 \pm 0.051 \\ 1.266 \pm 0.060 \\ 1.114 \pm 0.037 \\ 1.141 \pm 0.035 \end{array}$        |  |

Comparison of Measured and Calculated Doppler Reactivities for ZPPR-13A

<sup>a</sup>Relative to reference temperature of 300K.

<sup>b</sup>Uncertainties include equal contributions from both end points and 0.0003 temperature uncertainty (equivalent to +5K in average temperature). JAII2B18

TABLE 8.1.

|                         | for     | <sup>238</sup> U Doppler Samp | le Worth in Fuel Ring | gs of ZPPR-13A |
|-------------------------|---------|-------------------------------|-----------------------|----------------|
| Measurement<br>Location | nt<br>s | Experiment, ¢/kg              | Calculation, ¢/kg     | C/E            |
| Fuel Ring<br>(153-56)   | 1       | -0.457 ± 0.001                | -0.410                | 0.897 ± 0.002  |
| Fuel Ring<br>(163-52)   | 2       | -0.526 ± 0.001                | -0.491                | 0.933 ± 0.002  |
| Fuel Ring<br>(164-68)   | 3       | -0.0726 ± 0.001               | -0.0724               | 0.997 ± 0.018  |

TABLE 8.2. Comparison of Measured and Calculated Values

TABLE 8.3. Values of Average C/E for  $^{238}$ U Doppler Measurements Compared with Average (C/E)<sup>2</sup> for  $^{238}$ U(n,  $\gamma$ ) Foil Measurements in ZPPR-13A

| Fuel<br>Ring | $\overline{C/E}$ Doppler Exp. | $(\overline{C/E})^2 2^{38} U(n,\gamma)^a$ | Ratio $\frac{\text{Doppler}}{238}$ U(n, Y) |
|--------------|-------------------------------|-------------------------------------------|--------------------------------------------|
| 1            | $0.839 \pm 0.014$             | 1.084 ± 0.021                             | 0.774 ± 0.025                              |
| 2            | $0.884 \pm 0.012$             | 1.137 ± 0.030                             | $0.777 \pm 0.032$                          |
| 3            | 1.141 ± 0.035                 | $1.223 \pm 0.044$                         | $0.933 \pm 0.047$                          |
|              | Mean ratio<br>Mean ratio      | in ZPPR-11B<br>in ZPPR-11C                | 0.731 ± 0.033<br>0.738 ± 0.017             |

<sup>a</sup>Value quoted represents the average of all foils in that zone, and is squared for comparisons with the reactivity. JAII2B19

#### 9.0 SMALL SAMPLE REACTIVITIES

The reactivity worths of small samples of materials were measured in ZPPR-13A using the radial and axial tube method, the long-drawer oscillator and the shim-blade oscillator. Only the results from the radial tube have been analyzed at the present time.

The calculated reactivities were obtained from xyz calculations with 28 group data and included anisotropic diffusion. Homogeneous cell compositions were used in the model (HMM) and the ZPPR shim rods were not represented. Sample-size corrections were calculated with the SARCASM code<sup>(18)</sup> as a function of position, using the xyz fluxes and adjoints.

A description of the measurements and detailed results are given in Ref. 19. A description of the samples is given in Table 9.1. The calculated and experimental results are shown in Figs. 9.1 to 9.7. The curves shown in the figures are obtained by by a least squares fitting to the fourteen calculated and measured results in the fuel zones along the x-axis traverse. The results of two fittings are shown; the first adjusts the calculated non-leakage and leakage components and the second (dashed-curve) fits to the total worth. For the fissile samples and boron, where the leakage is a small component of the total worth, the two fits are indistinguishable and the bias factor for the non-leakage component is the same as the C/E for the sample worth. For scattering samples (carbon and iron) and DU-6 ( $^{238}$ U) the two-component fit produces much improved agreement. One may speculate that some of the large adjustments to the calculated leakage in these cases (40% to 80%) may be associated with streaming effects in the sample tube.

The bias factors for non-leakage components are summarized in Table 9.2. Results for fissile samples and boron are within a few percent of those obtained in ZPPR-9 and ZPPR-10 (also shown in the table). The C/E for  $^{239}$ Pu is 1.20.

The results for  $^{235}$ U, samples U-6 and KSS-1 (named after one of the more illustrious members of the ZPPR analysis group), are about 3% higher. The C/E for boron is much lower at 1.06. It is difficult to draw any conclusions from the results for  $^{238}$ U, iron and carbon because of the large adjustments required to the leakage components. Transport effects are expected to be significant in these cases, based on analysis of  $^{238}$ U fission rates and sodium void reactivity in the heterogeneous cores.

Corrections to the radial traverses for variations in master compositions will increase calculated sample worths (at least for those with small leakage components) in fuel ring 1 relative to fuel ring 3 about 2%. It is clear from Figs. 9.1, 9.2 and 9.3 that this will give some improvement in the fit to the experimental results for the fissile samples. However, the remaining discrepancies of 5% to 10% between the fuel zones are consistent with analysis of control rod worths and reaction rates.



the PU-30 sample in ZPPR-13A.



•

å

U-6 sample in ZPPR-13A.





B-1 sample in ZPPR-13A.






C-1 sample in ZPPR-13A.

184

|                      | Samı<br>Dimensio | ple<br>ons.mm | Sample     | Capsule              | Princi<br>Composi | pal<br>tion        |
|----------------------|------------------|---------------|------------|----------------------|-------------------|--------------------|
| Sample               | Length           | 0.D.          | Mass, g    | Mass, g <sup>a</sup> | Component         | wt. % <sup>t</sup> |
| KSS-1C               | 40.64            | 6.35          | 37.42      | 7.030                | 234U              | 0.95               |
| •                    |                  |               |            |                      | 235U              | 93.19              |
|                      |                  |               |            |                      | 236U              | 0.30               |
|                      |                  |               |            |                      | 238 <del>0</del>  | 5.57               |
| KSS-2                | 48.67            | 10.67         |            | 7.005                | Stainle           | ss Steel           |
| B-1                  | 55.22            | 10.19         | 4.193      | 10.521               | 10 <sub>B</sub>   | 87.12              |
|                      |                  |               |            |                      | 11 <u>B</u>       | 7.38               |
|                      |                  |               |            |                      | 0                 | 1.43               |
|                      |                  |               |            |                      | C                 | 0.96               |
|                      |                  |               |            |                      | Si                | 0.26               |
|                      |                  |               |            |                      | A1                | 0.05               |
|                      |                  |               |            |                      | · <b>H</b>        | 0.09               |
| Fe-l                 | 55.17            | 9.88          | 33.277     | 10.611               | Fe                | 99.99              |
| C-1                  | 55.22            | 9.93          | 8.027      | 10.672               | С                 | 99.99              |
| D-1                  | 66.50            | 10.75         |            | 10.668               | Stainle           | ss Steel           |
| Pu-30                | 55.19            | 7.62          | 38.091     | 11.600               | 239pu             | 97.20              |
|                      |                  |               |            |                      | 240Pu             | 1.01               |
|                      |                  |               |            |                      | <sup>241</sup> Pu | 0.04               |
|                      |                  |               |            |                      | A1                | 0.95               |
| U-6                  | 55.19            | 7.62          | 46.889     | 11.463               | 234U              | 0.95               |
|                      |                  |               |            |                      | 235 <del>1</del>  | 93.19              |
|                      |                  |               |            |                      | 236 <del>U</del>  | 0.26               |
|                      |                  |               |            |                      | 238 <del>U</del>  | 5.60               |
| DU-6                 | 55.19            | 7.62          | 47.427     | 11.417               | 235 <del>1</del>  | 0.21               |
|                      |                  |               |            |                      | 2 3 8U            | 99.78              |
| D-13                 | 66.59            | 10.77         |            | 11.653               | Stainle           | ss Steel           |
| <sup>a</sup> Materia | l is stai        | nless st      | eel.       |                      |                   |                    |
| Total o              | ompositio        | on less t     | han 100% n | means that           | some impurit:     | ies are            |

TABLE 9.1. Description of the Reactivity-Worth Samples Used in ZPPR-13A

<sup>c</sup>The uranium in this sample is a stack of 25 foils each 0.25 mm thick fitting inside a steel cylinder. MR3A-10

.

|                                                             | Pr inc ipal                                                                                                                                        | Non-leakage Adjustment Factor <sup>a</sup>               |                                                  |                                                      |                              |  |  |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|------------------------------|--|--|--|
| Sample                                                      | Isotope                                                                                                                                            | ZPPR-13A                                                 | ZPPR-9                                           | ZPPR-10A                                             | ZPPR-10B                     |  |  |  |
| Pu-30<br>U-6<br>KSS-1<br>B-1<br>DU-6<br>FE-1<br>SS-1<br>C-1 | 239 <sub>Pu</sub><br>235 <sub>U</sub><br>235 <sub>U</sub><br>10 <sub>B</sub><br>238 <sub>U</sub><br>56 <sub>Fe</sub><br>(Steel)<br>12 <sub>C</sub> | 1.20<br>1.23<br>1.23<br>1.06<br>1.05<br>1.07<br><br>1.34 | 1.16<br>1.20<br><br>1.06<br>1.14<br>1.37<br>1.30 | 1.17<br>1.20<br><br>1.06<br>1.14<br><br>1.19<br>1.55 | 1.17<br><br>1.05<br>1.13<br> |  |  |  |

| TABLE | 9.2.     | Analysis | of Rea  | ctivity | Samples  | from  | Radial  | Traverses  | in |
|-------|----------|----------|---------|---------|----------|-------|---------|------------|----|
|       | ZPPR-13A | and Com  | parison | with Re | sults fr | om ZE | PR-9 at | nd ZPPR-10 |    |

<sup>a</sup>See figures.

JAII2B23

#### 10.0 SUMMARY

#### Critical Mass

Diffusion theory calculations for ZPPR-13 give k-effective results in the range 0.976 to 0.979.

The results are within 0.2%  $\Delta k$  of those for the smaller heterogeneous cores, ZPPR-7 and ZPPR-11. The small differences may be due as much to changes in cross section processing methods for the unit cells as to differences in core size and configuration.

The diffusion theory k-effective values are between 0.3%  $\Delta k$  and 0.5%  $\Delta k$ lower than for conventional cores. Transport effects are larger in the heterogeneous cores and the corrected value of 0.986 for ZPPR-13A is in good agreement with ZPPR-9 and ZPPR-10.

#### Reaction Rate Distributions

A distinctive pattern of misprediction of reaction rates as a function of radius is found for all reactions in all cores. The C/E results in the inner zones are 3% to 5% lower than in the outer fuel zone.

The discrepancy is increased by

#### about 0.5% with transport calculations.

Axial distributions show lower values at the top of the core, near the axial blanket interface, by about 1% relative to the core average.

#### Reaction Rate Ratios

The results are similar to those in all other ZPPR analysis with ENDF/B-IV data. Relative to  $^{239}$ Pu fission,  $^{235}$ U fission is overpredicted by 3% and  $^{238}$ U capture is overpredicted by 6% to 9%.

Diffusion calculations for <sup>238</sup>U fission show differences of about 15% between fuel and internal blanket zones. The results are much improved by transport calculations, but a discrepancy of 5% persists in the present analyses.

### Control Rod Worths

Predictions of rod worths relative to fuel vary in the range 0.98 (F1), 1.00 (F2) 1.06 (F3).

The radial variations in C/E are about twice those observed for reaction rates. Transport corrections increase the radial discrepancies.

Control rod interaction effects are well predicted with simple diffusion theory calculations.

The worths of CRPs relative to fuel are grossly overpredicted by isotropic diffusion calculations, consistent with previous analyses in other cores.

Results for rod-size, pin geometry and boron enrichment variations are consistent to within 2% using heterogeneity corrections calculated with diffusion theory. Some improvement is anticipated from transport calculations.

### Sodium Void Reactivity

The diffusion theory results for zones in ZPPR-13A (C/Es in range 0.98 to 1.20) are reasonably consistent with results from other cores.

#### Doppler Reactivity

The C/E results in the first and second fuel rings (0.88) are fairly consistent with analyses in ZPPR-9 and ZPPR-11. The result in the the third fuel ring is singularly out of line with other data and is considered to be unreliable.

#### Sample Traverses

The C/E results for fissile samples of 1.2 are in line with other values from radial tube experiments. The reason for the large discrepancies compared with those from studies in the ANL "diagnostic" cores is presently unexplained and is of considerable interest. The present results for <sup>238</sup>U and scattering samples should not be treated seriously due to expectation of substantial transport corrections and possible problems due to leakage in the tube environment.

#### Cross Section Processing

All results obtained in ZPPR-13 are dependent on the viability of methods used to process cross sections for the cells in the complex environment of the heterogeneous criticals. At this stage it is not clear how much of the error in prediction of spatially-varying parameters is due to ENDF/B-IV data and how much is due to the cell-processing methods need. A Monte Carlo calculation using the VIM code will provide an essential test of the present methods.

#### Reactor Modelling

The enhanced sensitivities of the large heterogeneous cores has highlighted the need for consideration of fine details in the reactor loadings. Initial results with the "All-master-model" have produced improvements in consistency in the analysis. The first steps have been taken in the automated production of the calculational models from the detailed reactor loading files. • 

#### REFERENCES

- 1. The JUPITER Program: ANL Analysis of ZPPR-9, Report prepared for the First Meeting on JUPITER Program, September 11 and 12, 1980.
- 2. The JUPITER Program: Analysis of ZPPR-10, Report prepared for the Second Analysis Meeting on JUPITER Program, October 19-26, 1981.
- 3. M. J. Lineberry, H. F. McFarlane and P. J. Collins, "Physics Assessments of LMFBR Integral parameters," <u>Proc. of the Topical Meeting</u> on Advances in Reactor Physics and Core Thermal Hydraulics, Kiamesha Lake, New York, September 22-24, 1982 NUREG/CP-0034, Vol. <u>1</u>, p. 1 (1982).
- 4. T. Ikegami, internal report, (1980), "Relevant sections included in UKAEA/USDOE exchange package."
- 5. S. G. Carpenter, "Measurements of Control Rod Worths using ZPPR," Proc. of the Specialists Meeting on Control Rod Measurements Technique: Reactivity Worth and Power Distribution, Cadarache, France, 1976, NEACRP-U-75.
- 6. P. J. Collins and S. B. Brumbach, eds., internal report, (1984), "Relevant sections included in UKAEA/USDOE exchange package."
- 7. M. J. Lineberry, et al., "Physics Studies of a Heterogeneous Liquid-Metal Fast Breeder Reactor," Nuclear Technology, 44, p. 21 (1979).
- 8. S. B. Brumbach and P. J. Collins, eds., internal report, (1983), "Relevant sections included in UKAEA/USDOE exchange package."
- 9. S. B. Brumbach and S. G. Carpenter, internal report, (1983), "Relevant sections included in UKAEA/USDOE exchange package."
- 10. S. B. Brumbach and P. J. Collins, eds., internal report, (1983), "Relevant sections included in UKAEA/USDOE exchange package."
- 11. S. B. Brumbach and P. J. Collins, eds., internal report, (1984), "Relevant sections included in UKAEA/USDOE exchange package."
- 12. R. Avery, "Theory of Coupled Reactors," Proc. Second U.N. Intl. Conf. on Peaceful uses of Atomic Energy, 12, U.N. Publication, p. 186 (1958).
- 13. D. C. Wade and R. A. Rydin, "An Experimentally Measurable Relationship Between Asymptotic Flux Tilts and Eigenvalue Separation," Dynamics of Nuclear Systems, University of Arizona Press, Tuscon, Arizona (1972).
- 14. S. B. Brumbach and P. J. Collins, eds., internal report, (1984), "Relevant sections included in UKAEA/USDOE exchange package."

## REFERENCES (contd)

- 15. H. F. McFarlane, et al., "Experimental Studies of Radially Heterogeneous Liquid-Metal Fast Breeder Reactor Critical Assemblies at the Zero Power Plutonium Reactor," <u>Nucl. Sci. and Eng. 87</u>, p. 204 (1984).
- 16. P. J. Collins and S. B. Brumbach, eds., internal report, (1983), "Relevant sections included in UKAEA/USDOE exchange package."
- 17. R. E. Kaiser, et al., "Extrapolation of Small Sample Doppler Reactivity Measurements," <u>Proc. of the Topical Meeting on Advances in Reactor</u> <u>Physics and Core Thermal Hydraulics</u>, NUREG/CP-0034 p. 118 (1982).
- 18. P. J. Collins and R. G. Palmer, "Calculated Size Effects for Reactivity Perturbation Samples in ZPPR," Paper II-38 in Argonne National Laboratory Applied Physics Annual Report July, 1970 to June 30, 1971, ANL-7910, p. 247 (1972).
- 19. S. B. Brumbach and P. J. Collins, eds., internal report, (1983), "Relevant sections included in UKAEA/USDOE exchange package."

#### APPENDIX A

## Input Data for $MC^2$ and SDX

The input data for generation of the 226 group library in MC<sup>2</sup>-II is shown in Table A.1. The fine group spectrum is generated for the homogeneous composition of the double-fuel-column cells. A number of additional isotopes are added at negligibly low density for editing purposes. Isotopes labelled with an S (e.g. NA23 S) use special resonance shielding treatment for narrow resonances.

A specimen input for SDX is shown in Table A.2. The case shown is the double-fuel-column drawer in fuel ring three. Zone bucklings in 28 groups are applied (on the 09 cards) to the 2082 fine groups of A MCC2, to the intermediate 226 groups of A.INTR and to the 226 groups of A.SEFID for calculation of a spectrum for group collapse. The special "MODL1B" incorporates a scaling of the input bucklings by a constant factor so as to obtain a  $k_{eff}$  of 0.986 for the heterogeneous cell. The SDX runs for the other cells are similar.

DU4MCCD\_JOB\_(B);USER=B1363C;REGION=1400K;CLASS=Y;TIME=060;MS6CLASS\_A //\*#AIN ORG-RM010+LINES=030+CARDS=000+SYSTEM=S195 114 //\*\*\* B15632.CDV4MCC2 11\* //CD EXEC ARCSP015. VERSION=1,FORMAT=FHT5 11 //DUMMY1 DD SPACE=(CYL,100,,CONTIG) //DUMMY2 DD SPACE=(CYL;180;;CONTIG) //FT06F001 DD SYSDUT=# //SYSUDUMP DD DUMMY //FT18F001 DD UNIT=(WRIT6250), 11 DCB=(RECFH=VBS;LRECL=X;BLKSIZE=12280;DEN=4); 11 VOL=(PRIVATE;RETAIN;SER=178816);LABEL=(01;SL); 11 DISP=(NEW,KEEP), 11 DSN=C117.B15632.GFOEL //FT19F001 DD UNIT=(ALLPERM); 11 DCB=(RECFM=VBS,LRECL=X,BLKSIZE=6136), 11 SPACE=(TRK)(250,10),RLSE); 11 DISP=(OLD,KEEP), DSN=C117.B13632.CDV4226.ISOTXS 11 //FT37F001 DD UNIT=(SASCR);SUBALLOC=(CYL;(05;01);DUHHY1) //FT38F001 DD UNIT=(SASCR);SUBALLOC=(CYL;(30;01);DUMHY1) //FT39F001 DD UNIT=(SASCR);SUBALLOC=(CYL;(55;01);DUMMY1) //FT40F001 DD UNIT=(SASCR);SUBALLOC=(CYL;(05;01);DUMHY1) //FT41F001 DD UNIT=(SASCR);SUBALLOC=(CYL;(05;01);DUMMY1) //FT43F001 DD SUBALLUC=(CYL)(30)01),DUHMY2) //FT49F001 DD UNIT=(ALLPERM), 11 DCB=(RECFH=VBS;LRECL=X;BLKSIZE=6136); 11 SPACE=(TRK+(01+01))+ 11 DISP=(NEW,CATLG), DSN=C117.B15632.CDV42261 11 //FT50F001 DD UNIT=(WRIT6250)+ 11 VOL=(PRIVATE, RETAIN, SER=178952);  $^{\prime\prime}$ LABEL=(01,SL); 11 DCB=(RECFM=VBS,LRECL=X,BLKSIZE=6136), DISP-(NEW, KEEP), 11 DSN=C117.B15632.CDV42262 11 //FT52F001 DD SUBALLOC=(CYL, (30,01), DUMMY2) //FT53F001 DD SUBALLOC=(CYL,(30,01),DUMMY2) //FT54F001 DD SUBALLOC=(CYL)(30,01),DUHNY2) //FT55F001 DB SUBALLOC-(CYL+(30+01)+DUMMY2) //FT36F001 DD SUBALLOC-(CYL)(03,01), DUMMY2) //FT57F001 DB SUBALLOC=(CYL,(03,01),DUMMY2) //FT58F001 DD SUBALLOC=(CYL;(03;01);DUMMY2) //FT59F001 DD SUBALLOC=(CYL;(03;01);DUMMY2) //FT60F001 DD SUBALLOC=(CYL;(03;01);DUMMY2) //FT61F001 DD SUBALLOC=(CYL;(03;01);DUMMY2) //FT62F001 DD SPACE=(CYL+(50+5)) //SYSIN DD \* BLOCK-STP015 DATASET=A.STP015 000 000 001 001 001 000 000 000 000 000 000 01 DATASET = A. MCC2 VERSION 4, 226 GROUP LIBRARY GENERATION FOR SDX (ZPPR 12,13) 01 02 120000 000 000 000 000 03 000 000 000 020 001 001 000 010USS226 06 C-12 4 0.0000346 293.00 06 0.0098618 293.00 0 - 16 40.0086880 293.00 NA23 S 06

TABLE A.1. Input Data for MC<sup>2</sup>

à. 2

| -          | 4027 4      |                      | 293.00      |
|------------|-------------|----------------------|-------------|
| <u>ìs</u>  |             | 001840               | 293.00      |
| • •        | 05 E        | 11:59                | 293.00      |
| 0.5        | 5) 8) 🗍 👘   | Mys 3638             | 293.00      |
| 9 <b>4</b> | FE 3        | 22-179308            | 293.00      |
| 63         |             | 0.0014197            | 293.00      |
| 06         | 00 1        | 0.0000323            | 293.00      |
| 0.6        | au 311      | 0.0004643            | 293.00      |
| 0.6        | 0-2354      | 0.0000112            | 293.00      |
| 05         | 0-2384      | 0.0050197            | 293.00      |
| 06         | PU2394      | 0.0017662            | 293.00      |
| 05         | PU2404      | 0.0002338            | 293.00      |
| 06         | PU2414      | 0.0000208            | 293.00      |
| 06         | PU2424      | 0.0000038            | 293.00      |
| 0.5        | AH2414      | 0.0000153            | 293.00      |
| 00         |             |                      |             |
| 96         | CL A        | 0.0000003            | 293.00      |
| 93         | CA 4        | 0.0000020            | 293.00      |
| 0.5        | CC59 1      | 0.0000012            | 293.00      |
| 0.5        | PU2384      | 0.0000011            | 293.00      |
| 00         |             |                      |             |
| 06         | HYDRGN      | 1.000000-12          | 293.00      |
| 06         | HE1 4       | 1.000000-12          | 293.00      |
| 0 <b>5</b> | LI-6 4      | 1.000000-12          | 293.00      |
| 06         | LI-7 4      | 1-00000 <b>D-1</b> 2 | 293.00      |
| 06         | BE-9 3      | 1,000000-12          | 293.00      |
| 0.5        | 8-10 4      | 1.000000-12          | 293.00      |
| 06         | B-11 4      | 1.000000-12          | 293.00      |
| 06         | N-14 4      | 1.000000-12          | 293.00      |
| 06         | MG 4        | 1.00000B-12          | 293.00      |
| 05         | 11 4        | 1.000000-12          | 293.00      |
| 08         |             | 1.000000-12          | 293.00      |
| 08         | NB73 4      | 1.000000-12          | 293.00      |
| 95         | AGIV/4      | 1.000000-12          | 293.00      |
| 03         | 001074      | 1.000000-12          | 293.00      |
| 05         |             | 1.000008-12          | 273.00      |
| V8         | EU1014      | 1.0000000-12         | 273.00      |
| V6         | EU1534      | 1.0000000-12         | 273.00      |
|            | 101314      | 1.000000-12          | 273.00      |
| 96         |             | 1.000000-12          | 273.00      |
| V 6        | 182324      | 1.0000000-12         | 273,00      |
| .06        | 0-2334      | 1.0000000-12         | 293,00      |
| 04         | 0-2344      | 1 0000000-12         | 273400      |
| 04         | NP737A      | 1.0000000-12         | 293.00      |
| 0.6        | AMC434      | 1.0000000-12         | 293.00      |
| 199 - C    | 5.300000-03 | 3.35000F-03          | 2.000005-05 |
| 19         | 0 0 0       | 0 0                  | 2           |
| ×/         | , v v       | · · ·                | •••         |

TABLE A.1. Input Data for MC<sup>2</sup> (cont.)

.

```
TADADCESAN JOB (B) JUSER-B15632, REGION-1250K, TIME-008, CLASS: X, NSGCLASS: A
//*MAIN URG RN010, LINES=030, CARDS 000, SYSTEM- S195
11*
//*** B15632.DSDXLIB(ADCF34NF) *** DADCF34N
1.1*
//CX EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=(READ6250);
11
       VOL=(PRIVATE, RETAIN, SER=178952), LABEL=(01, SL),
11
       DCB=DEN=4,DISP=(OLD,KEEP);
11
       DSN=C117.B15632.CDV42262
//SYSUT2 DD UNIT=(SASCR),
11
       DCB=(RECFN=VBS;LRECL=X;BLKSIZE=6136);
11
       SPACE=(CYL, (30,05), RLSE),
       DISP=(NEW, PASS),
11
11
       DSN=11CDV42262
//SYSIN DD DUMMY
11
//ZDSDX EXEC ARCSP012,
//*
       FRELIB='C116.B09202.SDX.MODLIB',
11*
11*
11
       VERSION=4,FORMAT-FMT5,ACCT-N0322
//FT33F001 DD DISP=(SHR),DSN=C117.B15632.CDV42261
//FT33F002 DD DISP=(OLD,DELETE),DSN=28CDV42262
//FT36F001 DD UNIT=(ALLPERM),
11
       DCB=(RECFM=VBS,LRECL=X,BLKSIZE=6136),
11
       SPACE=(TRK+(1+1))+
11
       DISP=(NEW,CATLG),
11
       DSN=C117.B15632.DADCFF3N.V4281
//FT36F002 DD UNIT=(ALLPERM);
       DCB=(RECFH=VBS,LRECL=X,BLKSIZE=6136),
11
       SPACE=(TRK, (20,2), RLSE),
11
11
       DISP=(NEW+CATLG)+
11
       DSN=C117.B15632.DADCFF3N.V4282
//SYSIN DD *
BLOCK=OLD
DATASET-HCC2F1
DATASET=MCC2F2
DATASET-MCC2F3
DATASET=MCC2F4
DATASET=NCC2F5
DATASET=XS.ISO
BLOCK=STP012
DATASET=A.SDX
01
           1
                  1
                        0
                              1
02
     CORE
03
           1
DATASET=A.MCC2
            ZPFR ASSY 13 *** HOMOG DOUBLE COLUMN DRAWER ** B**2(G)<F3
01
02
       90000
                  ٥
                        0
                                                             20
03
                  0
                        0
                                                  0
                                                        ٥
                               ٥
                                     0
                                           1
                                                           1.35
                                                                        1.35
04
                      0.0
                                   0.0
                                                0.0
06
                            0.0000345
                                             293.000
            C-12 4
05
            0 - 16 4
                            0.0101694
                                             293,000
06
            NA23 S
                            0.0088144
                                             293.000
06
            AL27 4
                             0.0000063
                                             293.000
06
            SI
                             0.0001839
                  4
                                             293.000
                  S
06
            CR
                            0.0031620
                                             293.000
            MN55 S
                            0.0002685
06
                                             293.000
```

TABLE A.2. Input data for SDX.

÷

2

| 23       A:1       1       0.3011175       293.000         65       20       1.301324       293.000         75       0.000111       273.000         75       0.000112       273.000         75       0.000113       273.000         75       0.000131       273.000         75       0.000131       273.000         75       923.000       0.000131         76       FU2.74       0.0000175         77       273.000       0.0         78       FU2.74       0.0000175         79       40.007764       0.0       0.0         79       40.007764       0.0       0.0       0103         79       40.007774       0.0       0.0       0133       0122         79       40.00775       0.0       0.0       0133       0142         79       40.003721       0.0       0.0       0.033       0402         79       40.003721       0.0       0.0       0.033       0402         79       40.003731       0.0       0.0       0.0       0.0         79       40.00373       0.0       0.0       0.0       0.0                                                                                                                                                          | 25         |           | FE E                | 0/0181607    | 293.00      | 0            |                                        |          |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|---------------------|--------------|-------------|--------------|----------------------------------------|----------|----|
| 64       CU       0.0000111       293.000         63       H0       7       0.0000111       293.000         64       H-2354       0.0000133       293.000         65       FU2394       0.0000133       293.000         64       FU2394       0.000181       293.000         65       FU2394       0.0000181       293.000         66       AH2414       0.0000038       293.000         66       AH2414       0.0000175       293.000         67       H0.007704       0.0       0.0       0.0103         68       FU2194       0.000175       293.000         69       H0.006721       0.0       0.0       0.03342         69       H0.006721       0.0       0.0       0433         69       H0.001734       0.0       0.0       0433         69       H0.001734       0.0       0.0       0433         69       H0.001734       0.0       0.0       0.0333         69       H0.001734       0.0       0.0       0.0333         60       0.0       0.0       0.0       0.0       0.0         61       H0.00133       0.0       0.                                                                                                                               | 0.5        |           | 97 <sup>(</sup> 7   | 0.0011175    | 293.000     | 0            |                                        |          |    |
| 64       H0       1       0.1001444       293.000         06       H-2334       0.000143       293.000         05       FU2294       0.0017477       293.000         06       FU2294       0.000381       293.000         06       FU2294       0.000038       293.000         06       FU2294       0.0000175       293.000         06       FU2294       0.0000175       293.000         07       +0.007704       0.0       0.0       0103       0142         07       +0.007776       0.0       0.0       0133       0142         07       +0.007776       0.0       0.0       0133       0142         07       +0.007776       0.0       0.0       0133       0142         07       +0.00771       0.0       0.0       0133       0142         07       +0.00371       0.0       0.0       0163       0522         07       +0.00371       0.0       0.0       0433       0462         07       +0.00373       0.0       0.0       0433       0462         07       +0.001880       0.0       0.0       0533       0822                                                                                                                                        | 96         |           | CU /                | 1.0000322    | 297.000     | )            |                                        |          |    |
| 04       U-3354       0.0005143       293.000         05       FU2394       0.0017477       293.000         05       FU2394       0.000181       293.000         05       FU2394       0.000181       293.000         06       FU2394       0.000181       293.000         06       FU2394       0.0000175       293.000         06       FU2394       0.0000175       293.000         07       +0.00794       0.0       0.0       0.013         07       +0.00774       0.0       0.0       0.013       0.022         09       +0.006712       0.0       0.0       0.03       0.042         09       +0.006722       0.0       0.0       0.03       0.0         09       +0.00310       0.0       0.0       0.03343       0.0         09       +0.003734       0.0       0.0       0.0532       0.0         09       +0.00313       0.0       0.0       0.0533       0.0         09       +0.00032       0.0       0.0       0.0       0.0         09       -0.00032       0.0       0.0       0.0       0.0         09       -0.000313 <td>06</td> <td></td> <td>30 °</td> <td>22001644</td> <td>293.000</td> <td>0</td> <td></td> <td></td> <td></td>           | 06         |           | 30 °                | 22001644     | 293.000     | 0            |                                        |          |    |
| 06         HU2194         0.00501637         293.000           06         HU2194         0.000181         293.000           06         HU2194         0.0000181         293.000           06         HU214         0.0000181         293.000           06         HU214         0.0000175         293.000           07         H0.007764         0.0         0.00         0.0163           07         H0.007764         0.0         0.00         0.0163           07         H0.006721         0.0         0.0         0.023         0.222           07         H0.003510         0.0         0.0         0.033         0.462           07         H0.003510         0.0         0.0         0.033         0.462           07         H0.00352         0.0         0.0         0.0583         0.42           07         H0.000535         0.0         0.0         0.0583         0.42           07         H0.000535         0.0         0.0         0.0833         0.42           07         H0.000313         0.0         0.0         0.0833         0.42           07         H0.000535         0.0         0.0         0.0331                                  | 06         |           | U-2354              | 0.0000111    | 293.000     | о<br>С       |                                        |          |    |
| 86       FUC194       0.0017877       293.000         96       FUC14       0.0000181       293.000         96       FUC14       0.0000181       293.000         96       FUC14       0.0000175       293.000         97       +0.00774       0.0       0.0       0011       0102         97       +0.007774       0.0       0.0       0103       0162         97       +0.006722       0.0       0.0       0223       0282         97       +0.003721       0.0       0.0       0233       0342         97       +0.003721       0.0       0.0       0433       0462         97       +0.00371       0.0       0.0       0433       0462         97       +0.00371       0.0       0.0       0433       0422         97       +0.000595       0.0       0.0       0533       0642         97       +0.000538       0.0       0.0       0743       022         97       +0.000538       0.0       0.0       0833       0642         97       +0.000538       0.0       0.0       0833       0642         97       -0.000032       0.0                                                                                                                               | 0.6        |           | 1)-2394             | 0.0050163    | 293.00      | 0            |                                        |          |    |
| 85       FU214       0.000181       293.000         96       FU214       0.0000181       293.000         97       +0.007774       0.0       0.0       0101       0102         97       +0.007774       0.0       0.0       013       0122         97       +0.007774       0.0       0.0       013       0122         97       +0.006721       0.0       0.0       023       0342         97       +0.003511       0.0       0.0       0433       0462         97       +0.003510       0.0       0.0       0433       0462         97       +0.001734       0.0       0.0       0433       0462         97       +0.001734       0.0       0.0       0433       0462         98       +0.000555       0.0       0.0       0633       0462         99       -0.000313       0.0       0.0       0733       062         99       -0.000313       0.0       0.0       0833       0422         99       -0.003125       0.0       0.0       1033       1062         99       -0.003125       0.0       0.0       1033       1042 <tr< td=""><td>06</td><td></td><td>PU2394</td><td>0.0017677</td><td>293,000</td><td>&gt;</td><td></td><td></td><td></td></tr<>       | 06         |           | PU2394              | 0.0017677    | 293,000     | >            |                                        |          |    |
| 06       FU2:14       0.0000181       293.000         06       FU2:14       0.0000175       293.000         07       +0.007704       0.0       0.0       0001       102         09       +0.007704       0.0       0.0       0103       0162         09       +0.006722       0.0       0.0       0233       0342         09       +0.006722       0.0       0.0       0233       0342         09       +0.003510       0.0       0.0       0343       0402         09       +0.001734       0.0       0.0       0433       0462         09       +0.001880       0.0       0.0       0533       0442         09       +0.000575       0.0       0.0       06433       0762         09       +0.000538       0.0       0.0       073       0762         09       -0.000538       0.0       0.0       0833       0442         09       -0.000510       0.0       0.0       0832       0842         09       -0.003126       0.0       0.0       0.0       0.0         09       -0.003513       0.0       0.0       0.0       0.0       0.0 </td <td>03</td> <td></td> <td>PU2104</td> <td>0.0002349</td> <td>293.000</td> <td>)</td> <td></td> <td></td> <td></td>  | 03         |           | PU2104              | 0.0002349    | 293.000     | )            |                                        |          |    |
| 06       AI214       0.0000175       293.000         09       +0.00774       0.000175       293.000         09       +0.00775       0.0       0.0       0103       0142         09       +0.006721       0.0       0.0       023       0342         09       +0.006721       0.0       0.0       0233       0342         09       +0.003510       0.0       0.0       0433       0402         09       +0.001734       0.0       0.0       0433       0422         09       +0.001734       0.0       0.0       0433       0422         09       +0.001734       0.0       0.0       0533       0442         09       +0.001734       0.0       0.0       0533       0442         09       +0.000555       0.0       0.0       0533       0442         09       -0.000532       0.0       0.0       0833       042         09       -0.000533       0.0       0.0       0833       042         09       -0.00313       0.0       0.0       0833       042         09       -0.003142       0.0       0.0       1033       1042      <                                                                                                                              | 05         |           | FU2A14              | 0.0000181    | 293,000     | )            |                                        |          |    |
| 03       A1_214       0.00011/3       273.000         09       +0.007704       0.0       0.0       00103       0162         09       +0.006771       0.0       0.0       0103       0162         09       +0.006721       0.0       0.0       0123       0282         09       +0.003510       0.0       0.0       0233       0422         09       +0.003510       0.0       0.0       0433       0402         09       +0.003510       0.0       0.0       0433       0402         09       +0.001734       0.0       0.0       0433       0402         09       +0.000538       0.0       0.0       0523       0582         09       -0.000538       0.0       0.0       0583       0642         09       -0.003093       0.0       0.0       0883       0942         09       -0.003093       0.0       0.0       0633       1002         09       -0.001720       0.0       0.0       1123       1182         09       -0.001927       0.0       0.0       1123       1182         09       -0.001920       0.0       0.0       1123 </td <td>05</td> <td></td> <td>FU2/124</td> <td>0.0000038</td> <td>293.000</td> <td>)</td> <td></td> <td></td> <td></td> | 05         |           | FU2/124             | 0.0000038    | 293.000     | )            |                                        |          |    |
| 09         +0.00773         0.0         0.0         0.00         0.00         0.00           09         +0.006721         0.0         0.0         0.00         0.023         0.022           09         +0.006721         0.0         0.0         0.00         0.023         0.0223           09         +0.003510         0.0         0.0         0.0343         0.402           09         +0.001734         0.0         0.0         0.0343         0.422           09         +0.001734         0.0         0.0         0.0343         0.422           09         +0.001734         0.0         0.0         0.0583         0.422           09         +0.000595         0.0         0.0         0.0583         0.422           09         -0.000532         0.0         0.0         0.073         0.022           09         -0.000532         0.0         0.0         0.0823         0.882           09         -0.00393         0.0         0.0         0.0823         0.942           09         -0.00393         0.0         0.0         0.033         1.042           09         -0.003927         0.0         0.0         1.033                           | 06<br>Ag   |           | AM2414<br>10 007704 | 0.00001/5    | 293.000     | )            | A1 A3                                  |          |    |
| 09         +0.004731         0.0         0.0         0.03         0.023           09         +0.006721         0.0         0.0         0.223         0.222           09         +0.003721         0.0         0.0         0.233         0.422           09         +0.00371         0.0         0.0         0.0343         0.402           09         +0.001734         0.0         0.0         0.433         0.402           09         +0.001734         0.0         0.0         0.463         0.522           09         +0.001880         0.0         0.0         0.633         0.442           09         -0.000595         0.0         0.0         0.643         0.702           09         -0.000513         0.0         0.0         0.703         0.842           09         -0.000510         0.0         0.0         0.033         0.0           09         -0.000513         0.0         0.0         0.0         0.833         0.842           09         -0.000513         0.0         0.0         0.0833         0.822         0.0           09         -0.003023         0.0         0.0         0.0         0.0         0.0                         | 09         | •         | +0.007704           | 0.0          | 0.0         | 0107         | 0102                                   |          |    |
| 09         +0.006722         0.0         0.0         0223         0282           09         +0.003510         0.0         0.0         0223         0342           09         +0.003510         0.0         0.0         0343         0402           09         +0.003191         0.0         0.0         0443         0522           09         +0.001734         0.0         0.0         0523         0582           09         +0.000555         0.0         0.0         0583         0642           09         -0.000538         0.0         0.0         0703         072           09         -0.000538         0.0         0.0         0733         072           09         -0.000810         0.0         0.0         0233         0882           09         -0.00393         0.0         0.0         0833         0942           09         -0.00393         0.0         0.0         0.0         0.0         0.0           09         -0.00427         0.0         0.0         1123         1182           09         -0.01399         0.0         0.0         1333         1422           09         -0.021085                                              | 09         |           | +0.006931           | 0.0          | 0.0         | 0103         | 0222                                   |          |    |
| 09       +0.005721       0.0       0.0       0233       0342         09       +0.003510       0.0       0.0       0333       0462         09       +0.001734       0.0       0.0       0433       0522         09       +0.001575       0.0       0.0       0433       0522         09       +0.000575       0.0       0.0       0533       0542         09       -0.000032       0.0       0.0       0433       0722         09       -0.000538       0.0       0.0       0733       0742         09       -0.000513       0.0       0.0       0823       0822         09       -0.000513       0.0       0.0       0823       0822         09       -0.003093       0.0       0.0       0823       0822         09       -0.003093       0.0       0.0       0.0       1033       1062         09       -0.004827       0.0       0.0       1033       1342         09       -0.015285       0.0       0.0       1343       1422         09       -0.021858       0.0       0.0       1343       1452         09       -0.027990                                                                                                                                 | 09         |           | +0.006722           | 0.0          | 0.0         | 0223         | 0282                                   |          |    |
| 99       +0.003510       0.0       0.0       0343       0402         99       +0.003991       0.0       0.403       0462         09       +0.001734       0.0       0.403       0462         09       +0.00595       0.0       0.0       0433       0462         09       +0.000312       0.0       0.0       0583       0442         09       -0.000338       0.0       0.0       0703       0762         09       +0.00313       0.0       0.0       073       0822         09       -0.000810       0.0       0.0       0833       0942         09       -0.003093       0.0       0.0       0833       0942         09       -0.003093       0.0       0.0       0943       1002         09       -0.003093       0.0       0.0       1033       1122         09       -0.004927       0.0       0.0       1033       122         09       -0.007521       0.0       0.0       133       1422         09       -0.021085       0.0       0.0       1343       1422         09       -0.021085       0.0       0.0       1433                                                                                                                                   | 09         |           | +0,005721           | 0.0          | 0.0         | 0283         | 0342                                   |          |    |
| 99       +0.003191       0.0       0.0       0403       0422         09       +0.001734       0.0       0.0       0463       0522         09       +0.000595       0.0       0.0       0533       0642         09       -0.00032       0.0       0.0       0533       0642         09       -0.000538       0.0       0.0       072       09         99       +0.00313       0.0       0.0       0733       0822         09       -0.00032       0.0       0.0       0823       0882         09       -0.00312       0.0       0.0       0823       0882         09       -0.00312       0.0       0.0       0823       0882         09       -0.003093       0.0       0.0       0833       0842         09       -0.001920       0.0       0.0       1033       1042         09       -0.003893       0.0       0.0       1123       1182         09       -0.0047621       0.0       0.0       1233       1362         09       -0.021985       0.0       0.0       1333       1362         09       -0.023950       0.0 <td< td=""><td>09</td><td></td><td>+0.003510</td><td>0.0</td><td>0.0</td><td>0343</td><td>0402</td><td></td><td></td></td<>            | 09         |           | +0.003510           | 0.0          | 0.0         | 0343         | 0402                                   |          |    |
| 99       +0.001734       0.0       0.0       0443       0522         09       +0.001680       0.0       0.0       0523       0582         09       +0.000575       0.0       0.0       0583       0642         09       -0.000332       0.0       0.0       0583       0642         09       -0.000538       0.0       0.0       0763       0762         09       -0.000810       0.0       0.0       0763       0822         09       -0.003425       0.0       0.0       0883       0942         09       -0.00373       0.0       0.0       0943       1002         09       -0.00393       0.0       0.0       1043       1122         09       -0.004827       0.0       0.0       1183       1242         09       -0.013989       0.0       0.0       1343       1442         09       -0.021085       0.0       0.0       1343       1422         09       -0.021085       0.0       0.0       1343       1422         09       -0.021085       0.0       0.0       1483       1542         09       -0.023845       0.0                                                                                                                                   | <b>99</b>  |           | +0.003491           | 0.0          | 0.0         | 0403         | 0462                                   |          |    |
| 09       +0.001680       0.0       0.0       0523       0582         09       +0.000575       0.0       0.0       0583       0642         09       -0.000032       0.0       0.0       0703       0762         09       +0.000313       0.0       0.0       0743       0822         09       -0.00313       0.0       0.0       0743       0822         09       -0.00312       0.0       0.0       0743       0822         09       -0.00313       0.0       0.0       0743       0822         09       -0.00312       0.0       0.0       0743       0822         09       -0.00393       0.0       0.0       0883       0942         09       -0.00392       0.0       0.0       1063       1122         09       -0.004827       0.0       0.0       1133       1122         09       -0.013989       0.0       0.0       1133       1362         09       -0.021955       0.0       0.0       1433       1422         09       -0.052053       0.0       0.0       1443       1452         09       -0.10486       0.0 <td< td=""><td>09</td><td></td><td>+0.001734</td><td>0.0</td><td>0.0</td><td>0463</td><td>0522</td><td></td><td></td></td<>            | 09         |           | +0.001734           | 0.0          | 0.0         | 0463         | 0522                                   |          |    |
| 99       +0.000595       0.0       0.0       0583       0642         09       -0.000532       0.0       0.0       0443       0702         09       +0.000313       0.0       0.0       0743       0822         09       -0.003810       0.0       0.0       0743       0822         09       -0.003812       0.0       0.0       0883       0942         09       -0.003875       0.0       0.0       0883       0942         09       -0.003875       0.0       0.0       0883       0942         09       -0.003875       0.0       0.0       0883       0942         09       -0.003875       0.0       0.0       1063       1122         09       -0.001920       0.0       0.0       1163       1162         09       -0.004827       0.0       0.0       1133       1242         09       -0.013789       0.0       0.0       1133       1342         09       -0.021985       0.0       0.0       1343       1342         09       -0.100486       0.0       0.0       1483       1542         09       -0.100486       0.0                                                                                                                                 | 09         |           | +0.001580           | 0.0          | 0.0         | 0523         | 0582                                   |          |    |
| 09       -0.00032       0.0       0.0       043       0702         09       -0.000538       0.0       0.0       0703       0762         09       +0.000313       0.0       0.0       0703       0762         09       +0.0003126       0.0       0.0       0823       0882         09       -0.00373       0.0       0.0       0833       0942         09       -0.003073       0.0       0.0       0833       0942         09       -0.003073       0.0       0.0       0833       0942         09       -0.001920       0.0       0.0       1003       1042         09       -0.004827       0.0       0.0       1123       1182         09       -0.01789       0.0       0.0       123       1362         09       -0.021085       0.0       0.0       1303       1362         09       -0.047015       0.0       0.0       1433       1422         09       -0.047015       0.0       0.0       1433       1602         09       -0.036386       0.0       0.0       1783       2082         12       FU2404       12                                                                                                                                         | 09         |           | +0.000595           | 0.0          | 0.0         | 0583         | 0642                                   |          |    |
| 09       -0.000338       0.0       0.0       0763       0822         09       -0.000810       0.0       0.0       0763       0822         09       -0.003325       0.0       0.0       0833       0942         09       -0.003093       0.0       0.0       0883       0942         09       -0.003093       0.0       0.0       0933       1002         09       -0.001920       0.0       0.0       1003       1042         09       -0.004827       0.0       0.0       1123       1122         09       -0.004827       0.0       0.0       1183       1242         09       -0.007521       0.0       0.0       1183       1242         09       -0.013989       0.0       0.0       1303       1342         09       -0.028958       0.0       0.0       1483       1542         09       -0.100486       0.0       0.0       1483       1602         09       -0.072890       0.0       0.0       1463       1602         09       -0.036386       0.0       0       0       0       0         01       ZFR ASSY 13                                                                                                                                         | 09         |           | -0.000032           | 0.0          | 0.0         | 0643         | 0702                                   |          |    |
| 07       -0.000810       0.0       0.0       0.823       0822         09       -0.000810       0.0       0.0       0.823       0822         09       -0.003426       0.0       0.0       0833       0942         09       -0.003093       0.0       0.0       0933       1062         09       -0.0049027       0.0       0.0       1003       1062         09       -0.004827       0.0       0.0       1033       1362         09       -0.004827       0.0       0.0       1233       1322         09       -0.004827       0.0       0.0       1243       1302         09       -0.004521       0.0       0.0       1243       1302         09       -0.021085       0.0       0.0       1433       1422         09       -0.021895       0.0       0.0       1433       1422         09       -0.0420053       0.0       0.0       1433       1462         09       -0.047015       0.0       0.0       1603       1782         09       -0.033386       0.0       0       1783       2082         12       FU2404       12                                                                                                                                   | 09         |           | -0.000538           | 0.0          | 0.0         | 0703         | 0762                                   |          |    |
| 07       -0.003124       0.0       0.0       0.0       0883       0942         09       -0.003093       0.0       0.0       0.0       0942         09       -0.009027       0.0       0.0       1063       1122         09       -0.004827       0.0       0.0       1063       1122         09       -0.007621       0.0       0.0       1183       1242         09       -0.013989       0.0       0.0       1303       1342         09       -0.02185       0.0       0.0       1423       1302         09       -0.029858       0.0       0.0       1423       1422         09       -0.020875       0.0       0.0       1423       1422         09       -0.021870       0.0       0.0       1423       1442         09       -0.072890       0.0       0.0       1483       1542         09       -0.036386       0.0       0.0       1603       1782         09       -0.036386       0.0       0.0       1603       1782         09       -0.036386       0.0       0       0       0       0         01       ZFFR                                                                                                                                        | 09         |           | +0+000313           | 0.0          | 0.0         | 0/63         | 0822                                   |          |    |
| 07       -0.003073       0.0       0.0       0.0       0943       1002         09       -0.001920       0.0       0.0       1003       1122         09       -0.004827       0.0       0.0       1043       1122         09       -0.007621       0.0       0.0       1183       1242         09       -0.013989       0.0       0.0       1243       1302         09       -0.029858       0.0       0.0       1483       1442         09       -0.029858       0.0       0.0       1483       1442         09       -0.029858       0.0       0.0       1483       1442         09       -0.029858       0.0       0.0       1483       1542         09       -0.072890       0.0       0.0       1483       1542         09       -0.072890       0.0       0.0       1783       2082         12       U-2354       U-2354       U-2354       U-2354       U-2354         12       FU2404       U       U       U       U       U         01       ZFPR       0.0       0       0       0       0       0       0 <t< td=""><td>07<br/>00</td><td></td><td>-0.000810</td><td>0.0</td><td>0.0</td><td>V823<br/>A887</td><td>0882</td><td></td><td></td></t<>     | 07<br>00   |           | -0.000810           | 0.0          | 0.0         | V823<br>A887 | 0882                                   |          |    |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                              | 09         |           | -0.003093           | 0.0          | 0.0         | 0003         | 1002                                   |          |    |
| 09       -0.001920       0.0       0.0       1063       1122         09       -0.004827       0.0       0.0       1123       1182         09       -0.007621       0.0       0.0       1123       1182         09       -0.013989       0.0       0.0       1243       1302         09       -0.021855       0.0       0.0       1303       1362         09       -0.028958       0.0       0.0       1433       1482         09       -0.028958       0.0       0.0       1433       1482         09       -0.028958       0.0       0.0       1433       1482         09       -0.072890       0.0       0.0       1543       1602         09       -0.072890       0.0       0.0       1543       1602         09       -0.036386       0.0       0.0       1783       2082         12       U-2354       U-2354       U       2       2082         12       PU2404       U       U       2       67       3         01       Z6FR       ASY 13       *** DOUBLE COL FUEL       HITH       B#*(6) <f3< td="">         02       0</f3<>                                                                                                                          | 09         |           | -0.009027           | 0.0          | 0.0         | 1003         | 1062                                   |          |    |
| 09       -0.004827       0.0       0.0       1123       1182         09       -0.007421       0.0       0.0       1183       1242         09       -0.013989       0.0       0.0       1183       1242         09       -0.021085       0.0       0.0       1303       1362         09       -0.028958       0.0       0.0       1303       1362         09       -0.052053       0.0       0.0       1433       1422         09       -0.047015       0.0       0.0       1433       1542         09       -0.047015       0.0       0.0       1603       1782         09       -0.036386       0.0       0.0       1783       2082         12       U-2354       U-2354       U       12       1782         12       PU2404       U       12       1783       2082       0         12       PU2404       U       12       1783       2082       0         12       PU2414       U       12       1783       100000D       0       0       0       0         12       PU2404       U       100000D       0       0       <                                                                                                                                        | 09         |           | -0.001920           | 0.0          | 0.0         | 1063         | 1122                                   |          |    |
| 09       -0.007521       0.0       0.0       1183       1242         09       -0.013989       0.0       0.0       1243       1302         09       -0.021085       0.0       0.0       1363       1362         09       -0.028958       0.0       0.0       1423       1482         09       -0.028958       0.0       0.0       1483       1542         09       -0.047015       0.0       0.0       1483       1542         09       -0.072890       0.0       0.0       1603       1782         09       -0.036386       0.0       0.0       1783       2082         12       U-2354       12       U-2384       12       12       1282         12       FU2394       12       YU2414       12       12       10.000000 00       1.0000000 00       1.0000000 00       1.0000000 00       1.0000000 00       1.0000000 00       1.0000000 00       1.0000000 00       1.0000000 00       1.0000000 00       1.0000000 00       1.0000000 00       0.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                           | 09         |           | -0.004827           | 0.0          | 0.0         | 1123         | 1182                                   |          |    |
| 09       -0.013989       0.0       0.0       1243       1302         09       -0.021085       0.0       0.0       1303       1362         09       -0.028958       0.0       0.0       1363       1422         09       -0.052053       0.0       0.0       1483       1482         09       -0.047015       0.0       0.0       1483       1602         09       -0.072890       0.0       0.0       1543       1602         09       -0.072890       0.0       0.0       1783       2082         12       U-2354       0.0       0.0       1783       2082         12       FU2394       0.0       0.0       1783       2082         12       FU2404       0.0       0.0       0       0       0       0         12       FU2404       0.000000       0       0       0       0       0       0       0       0         12       FU2404       0.0       0.000000       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td>09</td> <td></td> <td>-0.007621</td> <td>0.0</td> <td>0.0</td> <td>1183</td> <td>1242</td> <td></td> <td></td>                              | 09         |           | -0.007621           | 0.0          | 0.0         | 1183         | 1242                                   |          |    |
| 09       -0.021085       0.0       0.0       1303       1362         09       -0.028858       0.0       0.0       1363       1422         09       -0.052053       0.0       0.0       1483       1542         09       -0.100486       0.0       0.0       1483       1542         09       -0.047015       0.0       0.0       1543       1602         09       -0.036386       0.0       0.0       1603       1782         09       -0.036386       0.0       0.0       1783       2082         12       U-2354       -       -       -       -         12       FU2394       -       -       -       -         12       FU2404       -       -       -       -         12       FU2414       -       -       -       -         12       FU2404       -       -       -       -       -         12       FU2404       -       -       -       -       -       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td>09</td> <td></td> <td>-0.013989</td> <td>0.0</td> <td>0.0</td> <td>1243</td> <td>1302</td> <td></td> <td></td>                                                 | 09         |           | -0.013989           | 0.0          | 0.0         | 1243         | 1302                                   |          |    |
| 09       -0.028858       0.0       0.0       1363       1422         09       -0.052053       0.0       0.0       1423       1482         09       -0.100486       0.0       0.0       1423       1482         09       -0.047015       0.0       0.0       1543       1602         09       -0.036386       0.0       0.0       1783       2082         12       U-2354       0.0       0.0       1783       2082         12       U-2354       0.0       0.0       1783       2082         12       FU2394       0.0       0.0       1783       2082         12       FU2404       0.0       0.0       1783       2082         12       FU2414       0.0       0.0       0.0       0.0         12       FU2424       0.0       0.0       0.0       0.0         12       O14       ZFFR ASSY 13       *** DOUBLE COL FUEL WITH B**(G) <f3< td="">       0.0       0.0         13       0       0       0       0       0.0       0.0       0.0         12       O10000       0       0.00000D 00       1.00000D-03       1.000000D 00       1.00000D 00       &lt;</f3<>                                                                                          | 09         |           | -0.021085           | 0.0          | 0.0         | 1303         | 1362                                   |          |    |
| 09       -0.052053       0.0       0.0       1423       1482         09       -0.100486       0.0       0.0       1483       1542         09       -0.047015       0.0       0.0       1543       1602         09       -0.072890       0.0       0.0       1603       1782         09       -0.036386       0.0       0.0       1783       2082         12       U-2354       0.0       0.0       1783       2082         12       U-2354       0.0       0.0       1783       2082         12       U-2384       0.0       0.0       1783       2082         12       FU2404       0.0       0.0       0.0       1603       1783         12       FU2424       0.0       0.0       0.0       0.0       0.0         03       0       0       0       0       0       0.0       0         03       0       0       0       0       0.0       1.00000D       0.0000D       0.0000D       0.0000D       0.0000D       0.0000D       0.0000D       0.0000D       0.00000D       0.0000D       0.0000D       0.0000D       0.0000D       0.0000D       0.0000D                                                                                                         | 09         |           | -0.028858           | 0.0          | 0.0         | 1363         | 1422                                   |          |    |
| 09       -0.100486       0.0       0.0       1483       1542         09       -0.047015       0.0       0.0       1543       1602         09       -0.036386       0.0       0.0       1403       1782         09       -0.036386       0.0       0.0       1783       2082         12       U-2354       0.0       0.0       1783       2082         12       U-2384       0.0       0.0       1783       2082         12       FU2394       0.0       0.0       1783       2082         12       FU2404       0.0       0.0       0.0       1783       2082         12       FU2424       0.0       0.0       0.0       0.0       0.0         01       ZFFR ASSY 13       *** DOUBLE COL FUEL WITH B**(G) <f3< td="">       0.0       0.0       0.0         02       0.70000       0.0       0.0000000       0.0000000       0.0000000       0.0000000         03       0       0       0       0       0       0       0         04       0.0000000       1.0000000-03       1.0000000-04       0.0000000       1.0000000       0         05       0       0</f3<>                                                                                              | 09         |           | -0.052053           | 0.0          | 0.0         | 1423         | 1482                                   |          |    |
| 09       -0.047015       0.0       0.0       1543       1802         09       -0.072890       0.0       0.0       1603       1782         09       -0.036386       0.0       0.0       1783       2082         12       U-2354       12       1783       2082         12       U-2384       12       FU2404       12       12       12       12       12       12       12       12       12       12       14       12       12       14       12       14       12       14       14       14       14       14       14       15       15       15       15       15       15       15       15       15       15       15       16       16       16       16       16       16       16       16       16       16       16       17       17       12       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17                                                                                                                          | 09         |           | -0.100495           | 0.0          | 0.0         | 1483         | 1542                                   |          |    |
| 07       -0.072870       0.0       0.0       1803       1782         09       -0.036386       0.0       0.0       1783       2082         12       U-2354       12       FU2394       12       FU2394         12       FU2404       12       FU2414       12       FU2424         12       FU2424       12       042414       14         12       FU2424       14       16       16000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09         |           | -0.04/015           | 0.0          | 0.0         | 1045         | 1602                                   |          |    |
| 12       U-2354         12       U-2384         12       FU2394         12       FU2404         12       FU2414         12       FU2424         12       AM2414         12       FU2424         12       Origonal State         01       ZFFR ASSY 13         ### DOUBLE COL FUEL WITH B##(G) <f3< td="">         02       0.70000         03       0       0         04       0.000000 00       1.00000D-03         05       0       0       0         05       0       0       0         07       +0.007704       001       036         09       +0.00776       037       049         09       +0.006731       050       066         09       +0.005721       081       093         09       +0.003510       094       105         09       +0.003510       094       105         09       +0.003491       106       116         09       +0.001734       117       128</f3<>                                                                                                                                                                                                                                                                                    | 09         |           | -0.072890           | 0.0          | 0.0         | 1707         | 1/82                                   |          |    |
| 12       U-2384         12       FU2394         12       FU2404         12       FU2404         12       FU2414         12       FU2424         12       AU2414         14       FATASET=A.INTR         01       ZFPR ASSY 13 *** DOUBLE COL FUEL WITH B**(G) <f3< td="">         02       0 70000       0         03       0       0       0       0         03       0       0       0       0       0         04       0.000000 00       1.00000D-03       1.00000D-04       0.00000D 00       1.00000D 00         05       0       0       0       0       0       0       0         05       0       0       0       0       0       0       0       0         05       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</f3<>                                                                                                                                                                                       | 10         | 11-2354   | -0.030300           |              | 0.0         | 1/03         | 2002                                   |          |    |
| 12       FU2394         12       FU2404         12       FU2404         12       FU2414         12       AU2414         12       AU2414         12       AU2414         14       ZFPR ASSY 13 *** DOUBLE COL FUEL WITH B**(G) <f3< td="">         02       0 70000       0       0       0       0         03       0       0       0       0       0       0       0         03       0       0       0       0       0       0       0       0         04       0.000000 00       1.00000D-03       1.00000D-04       0.00000D 00       1.00000D       0       0       0         05       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</f3<>                                                                                                                                                                        | 10         | 0 2004    |                     |              |             |              |                                        |          |    |
| 12       FU2404         12       PU2414         12       FU2424         12       AH2414         CATASET=A.INTR         01       ZFFR ASSY 13 *** DOUBLE COL FUEL WITH B**(G) <f3< td="">         02       0 90000       0       0         03       0       0       0       0       0         04       0.000000 00       1.00000D=03       1.00000D=04       0.00000D 00       1.00000D 00         05       0       0       0       0       0       0       0         05       0       0       0       0       0       0       0       0         07       +0.007704       001       034       037       049       04       04       00000D       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<td>12</td><td>FU2394</td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td></f3<>                                                          | 12         | FU2394    |                     |              | ,           |              |                                        |          |    |
| 12       PU2414         12       PU2424         12       AH2414         CATASET=A.INTR         01       ZFFR ASSY 13 *** DOUBLE COL FUEL WITH B**(G) <f3< td="">         02       0 90000       0         03       0       0       0       0         04       0.000000 00       1.00000B-03       1.00000D-04       0.00000D 00       1.00000D 00         05       0       0       0       0       0       0       0         05       0       0       0       0       0       0       0       0         09       +0.007704       001       036       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</f3<>                                                                                                                                                       | 12         | FU2404    |                     |              |             |              |                                        |          |    |
| 12       FU2424         12       AH2414         CATASETFA.INTR         01       ZFPR ASSY 13 *** DOUBLE COL FUEL WITH B**(G) <f3< td="">         02       0 90000       0         03       0       0       0       0         04       0.000000 00       1.00000D-03       1.00000D-04       0.00000D 00         05       0       0       0       0       0         09       +0.007704       001       036       037       049         09       +0.007704       001       036       037       049         09       +0.007704       037       049       040       050       066         09       +0.007721       081       073       094       05       067       081       073         09       +0.003510       094       105       094       105       09       106       116       09       +0.001734       117       128</f3<>                                                                                                                                                                                                                                                                                                                                   | 12         | PU2414    |                     | ,<br>,       |             |              |                                        |          |    |
| 12       AH2414         FATASET-A.INTR         01       ZFFR ASSY 13 *** DOUBLE COL FUEL WITH B**(G) <f3< td="">         02       0 90000       0       0         03       0       0       0       0       0         04       0.000000 00       1.00000D-03       1.00000D-04       0.00000D 00       1.00000D 00         05       0       0       0       0       0       0       0         05       0       0       0       0       0       0       0       0         09       +0.007704       001       036       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</f3<>                                                                                                                                               | 12         | FU2424    |                     |              |             |              |                                        |          |    |
| CATASET=A.INTR         01       ZFPR ASSY 13 *** DOUBLE COL FUEL WITH B**(G) <f3< td="">         02       0 70000       0       0       0       0         03       0       0       0       0       0       0       0         04       0.000000 00       1.00000D=03       1.00000D=04       0.00000D 00       1.00000D 00         05       0       0       0       0       0       0         05       0       0       0       0       0       0         07       +0.007704       001       036       037       049         09       +0.007976       037       049       050       066         09       +0.006722       067       081       073         09       +0.005721       081       073       094       105         09       +0.003510       094       105       094       105         09       +0.003491       106       116       16       16         09       +0.001734       117       128       117       128</f3<>                                                                                                                                                                                                                                     | 12         | 0112414   |                     |              |             |              |                                        |          |    |
| 01       ZFFR ASSY 13 *** DOUBLE COL FUEL WITH B**(G) <f3< td="">         02       0 90000       0       0         03       0       0       0       0       0         04       0.000000 00 1.00000D-03 1.00000D-04 0.00000D 00 1.00000D 00       0       0       0         05       0       0       0       0       0       0         05       0       0       0       0       0       0         07       +0.007704       001       036       037       049         09       +0.007976       037       049       050       066         09       +0.006931       050       067       080       093         09       +0.005721       081       093       094       105         09       +0.003510       094       105       094       105         09       +0.003491       106       116       16         09       +0.001734       117       128</f3<>                                                                                                                                                                                                                                                                                                               | GATA       | SET-A.INT | FR                  |              |             |              |                                        |          |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01         | 2         | IPPR ASSY 13        | *** DOUBLE C | OL FUEL WIT | H B**(       | G) <f3< td=""><td></td><td></td></f3<> |          |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02         |           | 0 90000             | 0 0          |             |              | -                                      | -        |    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03         |           | 0 0                 | 0 0          | 0 0         | 0            | 0                                      | 0        | 0  |
| 09       +0.007704       001       036         09       +0.007976       037       049         09       +0.006931       050       066         09       +0.006722       067       080         09       +0.005721       081       093         09       +0.003510       094       105         09       +0.003491       106       116         09       +0.001734       117       128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 04         |           | 0.000000 00         | 1.000000-03  | 1.000000-04 | 0.0000       | 00 00                                  | 1.000000 | 00 |
| 07       +0.007976       037       049         09       +0.006931       050       066         09       +0.006722       067       080         09       +0.005721       081       093         09       +0.003510       094       105         09       +0.003491       106       116         09       +0.001734       117       128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>0</u> 0 |           | +0 007704           | v v          | vv          | 001          | 074                                    |          |    |
| 07       +0.006731       050       066         09       +0.006722       067       080         09       +0.005721       081       093         09       +0.003510       094       105         09       +0.003491       106       116         09       +0.001734       117       128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 09         |           | +0.007976           |              |             | 037          | 049                                    |          |    |
| 09       +0.006722       067       080         09       +0.005721       081       093         09       +0.003510       094       105         09       +0.003491       106       116         09       +0.001734       117       128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09         |           | +0.006931           |              |             | 050          | 066                                    |          |    |
| 09         +0.005721         081         093           09         +0.003510         094         105           09         +0.003491         106         116           09         +0.001734         117         128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 09         |           | +0.006722           |              |             | 067          | 080                                    |          |    |
| 09         +0.003510         094         105           09         +0.003491         106         116           09         +0.001734         117         128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09         |           | +0.005721           |              |             | 081          | 093                                    |          |    |
| 09         +0.003491         106         116           09         +0.001734         117         128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 09         |           | +0.003510           |              |             | 094          | 105                                    |          |    |
| 09 +0.001734 117 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09         |           | +0.003491           |              |             | 106          | 116                                    |          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09         |           | +0.001734           |              |             | 117          | 128                                    |          |    |

TABLEA.2. Input data for SDX (cont.)'

| 09        |                | +0.00      | 1680  |                      |           | 1          | 29 140        |          |
|-----------|----------------|------------|-------|----------------------|-----------|------------|---------------|----------|
| 09        |                | +0.00      | 0595  |                      |           | 1          | A1 144        |          |
| 09        |                | -0.00      | 0032  |                      |           | -          | 45 150        |          |
| ~~        |                | -0.00      |       |                      |           | 4          | -0 100        |          |
| 07        |                | -0.00      | 0130  |                      |           | 1          | <u>ar tav</u> |          |
| 09        |                | +0.00      | 0313  |                      |           | 1          | 58 164        |          |
| 09        |                | -0.00      | 0810  |                      |           | 1          | 65 168        |          |
| 09        |                | -0,00      | 3426  |                      |           | 1          | 69 172        |          |
| 09        |                | -0.00      | 3093  |                      |           | 1          | 73 178        | •        |
| 09        |                | -0.00      | 9027  |                      |           | 1          | 79 185        |          |
| 09        |                | -0.00      | 1920  |                      |           | 1          | RA 191        |          |
| ΛO        |                | -0.00      | 1077  |                      |           | 1          |               |          |
| 07        |                | -0.00      | 7/02/ |                      |           | 1          | 72 173        |          |
| 09        |                | -0.00      | /821  | -                    |           | 1          | 79 193        |          |
| 09        |                | -0.01      | 3989  |                      |           | 1          | 76 197        |          |
| 09        |                | -0.02      | 1085  |                      |           | 11         | 78 199        |          |
| 09        |                | -0.028     | 3828  |                      |           | 20         | 0 201         |          |
| 09        |                | -0.05      | 2053  |                      |           | 20         | 2 203         |          |
| 09        |                | -0,100     | 0486  |                      |           | - 20       | 04 205        |          |
| 09        |                | -0.04      | 7015  |                      |           | 20         | 06 207        |          |
| 09        |                | -0.073     | 2890  |                      |           | 20         | 08 213        |          |
| 09        |                | -0.03      | 4384  |                      |           |            | 14 224        |          |
| 10        | 1 00           | 0100       | 4000  | 00-01                |           | · <b>·</b> | 19 220        |          |
| 10<br>101 | 1.00<br>ACCT-A | VVVU-V3 7  |       | 10-01                |           |            |               |          |
| 2011      | ASE I SA+A     | 117        |       |                      |           |            |               |          |
| 01        |                | ZPPR ASSI  | (13   | ** DOUBLE            | COLUMN    | FUEL DRAWE | ۲.<br>۲       |          |
| 03        |                | 10         |       |                      |           |            |               |          |
| 04        |                | 11         | 11    |                      |           |            |               |          |
| 06        | HPD1           |            | 0.0   | 0.4445               | 50 1      |            |               |          |
| 06        | NAQ1           | 0.44       | 1450  | 1.0795               | i0 1      |            |               |          |
| 06        | FOX1           | 1.02       | 7950  | 1.3970               | 0 1       |            |               |          |
| 04        | CL D1          | 1.39       | 2700  | 1.4351               | 0 1       |            |               |          |
| 0.4       | 70111          | 1 41       | 1510  | 1 9970               |           |            |               |          |
| 00        | C1 D2          | 1 + -/ \   | 7070  | 117737               |           |            |               |          |
| 00        | CLD2           | 1+73       | 1370  | 2+0320               |           |            |               |          |
| 06        | FUX2           | 2.03       | \$200 | 2.3495               | 50 1      |            |               |          |
| 06        | NAH1           | 2.34       | 1950  | 3,6195               | i0 1      |            |               |          |
| 06        | FOX3           | 3.61       | 1950  | 3.9370               | 0 1       |            |               |          |
| 06        | CLD3           | 3.93       | 3700  | 3,9751               | 0 1       |            |               |          |
| 03        | ZPU2           | 3.9        | 7510  | 4.5339               | 70 1      |            |               |          |
| 06        | CLD4           | 4.53       | 3390  | 4.5720               | 0 1       |            |               |          |
| 06        | FOX4           | 4.57       | 200   | 4.8875               | i0 1      |            |               |          |
| 0.6       | NA02           | 4.89       | 950   | 5.5245               | i0 1      |            |               | -        |
| 14        |                | 79117 9112 | ADZO  | 0.010200             | DUDADA    | 0.001757   | DUTATA        | 0 000147 |
| 1.4       |                |            |       | 0.010200<br>0.000007 | - FUZ 707 | 0.001337   | FU2717        | 0.000183 |
| 14        |                | ZFUX FUZ   | 424   | 0.000023             | 882414    | 0.000037   | 0=2334        | 0.000084 |
| 14        |                | ZPUX U-2   | 2384  | 0.0289/4             | MU S      | 0.002815   |               |          |
| 14        |                | NAUX CR    | 5     | 0.003105             | S IN      | 0.001485   | NN55 S        | 0.000244 |
| 14        |                | NAUX SI    | 4     | 0.000135             | NO S      | 0.000017   | CU 4          | 0.000026 |
| 14        |                | NAQX NA2   | 23 S  | 0.021902             | C-12 4    | 0.000019   | FE S          | 0.010747 |
| 14        |                | NAHX CR    | S     | 0.002129             | S IK      | 0.000993   | MN53 S        | 0.000174 |
| 14        |                | NAHX SI    | 4     | 0.000110             | MO S      | 0.000014   | CU 4          | 0.000021 |
| 14        |                | NAHX NAS   | 23 S  | 0.021902             | C-12 4    | 0.000019   | FE S          | 0.007391 |
| 14        |                | CLDX C-1   | 2 4   | 0.000019             | FE S      | 0,059971   | CR S          | 0.017428 |
| 14        |                | CLDY NT    | ç     | 0.008491             | ANSS C    | 0.001279   | ST A          | 0.000941 |
| 10        |                |            | c     | 0.000051             |           | 0.000100   | AL 77 A       | 0.000041 |
| 1.4       |                |            | 5     | 0.000033             |           | 0.000108   | 11L2/ 4       |          |
| 14        |                | FUXX U-1   | 24    | 0.000019             | U-16 1    | 0.046632   | FE S          | 0.033//0 |
| 14        |                | FUXX CR    | 5     | 0.001152             | NI S      | 0.000502   | MN35 5        | 0,000103 |
| 14        |                | FOXX SI    | 4     | 0.000063             | 8 OK      | 0.000012   | CU 4          | 0.000015 |
| 14        |                | MPDX C-1   | 12 4  | 0.000248             | FE S      | 0.053590   | CR S          | 0.015251 |
| 14        |                | MPDX NI    | S     | 0.006694             | HNS5 S    | 0.001360   | SI 4          | 0.000809 |
| 14        |                | MPDX HO    | S     | 0.000151             | CU 4      | 0.000210   |               |          |
| 15        | HPDX           | NPD1       | -     |                      | '         |            |               |          |
| 15        | EUXA           | E011 E01   | (2    |                      |           |            |               |          |
| 15        | FUXA           | FUAL FUA   | 4     |                      |           |            |               |          |
| 23        | FUXX           | PUA3 PU    | ~ 7   |                      |           |            |               |          |

TABLE A.2. Input data for SDX (cont.)

A.6

:

| LE CLEA CE                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                             |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------|--------------|----------|
|                                                                                                                                                                                                                                                                | ra curu                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 15 CEUX CE                                                                                                                                                                                                                                                     | DS CLUA                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 15 NAQX NA                                                                                                                                                                                                                                                     | 71                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 15 NAO7 HA                                                                                                                                                                                                                                                     | Q 2                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             |                                                                                    | ٠                                                                                                    |                                                                       | · · · ·                                                                                                                                                      |                                                                                                                                            |                                                                                         | •                  |              |          |
| 15 NAHX NA                                                                                                                                                                                                                                                     | Нl                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 17 7PHX 7P                                                                                                                                                                                                                                                     | 111                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 15 7FIX 7F                                                                                                                                                                                                                                                     | 112                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| DATASET A CROE                                                                                                                                                                                                                                                 | U &                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                             |                                                                                    | NOT CT                                                                                               | м                                                                     |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 91 EN-                                                                                                                                                                                                                                                         | -FLAIE FI                                                                                                                                                                                                                                                                                             | DK BENU                                                                                                                                                                     | 151 1-                                                                             | .400 05                                                                                              | N                                                                     |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 02 30000                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                           |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 C-12 4FUI                                                                                                                                                                                                                                                   | EL                                                                                                                                                                                                                                                                                                    | СН                                                                                                                                                                          |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 0-16 4FU                                                                                                                                                                                                                                                    | EL                                                                                                                                                                                                                                                                                                    | 0 Н                                                                                                                                                                         |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 NA23 SFUE                                                                                                                                                                                                                                                   | EL                                                                                                                                                                                                                                                                                                    | NAH                                                                                                                                                                         |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 AL27 4FUE                                                                                                                                                                                                                                                   | EL.                                                                                                                                                                                                                                                                                                   | ALH                                                                                                                                                                         |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 SI 4FUE                                                                                                                                                                                                                                                     | EL.                                                                                                                                                                                                                                                                                                   | SIH                                                                                                                                                                         |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 CR SEU                                                                                                                                                                                                                                                      | 74                                                                                                                                                                                                                                                                                                    | CRH                                                                                                                                                                         |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 07 WNSE GEHE                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                       | MAL                                                                                                                                                                         |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 . HRUU DEUD<br>07 EE DEUD                                                                                                                                                                                                                                   | - L<br>- 1                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
|                                                                                                                                                                                                                                                                | . L.                                                                                                                                                                                                                                                                                                  | FEH                                                                                                                                                                         |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 0.3 NI SFUE                                                                                                                                                                                                                                                    | . L                                                                                                                                                                                                                                                                                                   | NIH                                                                                                                                                                         |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 CU 4FUE                                                                                                                                                                                                                                                     | L                                                                                                                                                                                                                                                                                                     | СИН                                                                                                                                                                         |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 MD SFUE                                                                                                                                                                                                                                                     | L                                                                                                                                                                                                                                                                                                     | HOH                                                                                                                                                                         |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 U-2354FUE                                                                                                                                                                                                                                                   | Ľ                                                                                                                                                                                                                                                                                                     | USH                                                                                                                                                                         | ZPU1                                                                               | USZ1                                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 U-2384FUE                                                                                                                                                                                                                                                   | ΈL                                                                                                                                                                                                                                                                                                    | UBH                                                                                                                                                                         | ZPU1                                                                               | U871                                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 EH2394EUE                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                     | 89H                                                                                                                                                                         | 7P111                                                                              | 8971                                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 81124045115                                                                                                                                                                                                                                                 | · •                                                                                                                                                                                                                                                                                                   | 501                                                                                                                                                                         | 79111                                                                              | P071                                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
|                                                                                                                                                                                                                                                                | . <b>L.</b><br>* j                                                                                                                                                                                                                                                                                    | F V H                                                                                                                                                                       | 75114                                                                              | FVZI<br>0171                                                                                         |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
|                                                                                                                                                                                                                                                                | . L.<br>                                                                                                                                                                                                                                                                                              | P18                                                                                                                                                                         | 2501                                                                               | F121                                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 FU2424FUE                                                                                                                                                                                                                                                   | . <b>L</b>                                                                                                                                                                                                                                                                                            | P2B                                                                                                                                                                         | 2901                                                                               | P2Z1                                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 AN2414FUE                                                                                                                                                                                                                                                   | L.                                                                                                                                                                                                                                                                                                    | AIH                                                                                                                                                                         | ZPU1                                                                               | A1Z1                                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 U-2354FUE                                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                     | USH                                                                                                                                                                         | ZPU2                                                                               | USZ2                                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 U-2384FUE                                                                                                                                                                                                                                                   | Ľ                                                                                                                                                                                                                                                                                                     | U8H                                                                                                                                                                         | ZPU2                                                                               | U8Z2                                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 PU2394FUE                                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                     | P9H                                                                                                                                                                         | ZPU2                                                                               | P9Z2                                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 FILZADAFUS                                                                                                                                                                                                                                                  | '1                                                                                                                                                                                                                                                                                                    | POH                                                                                                                                                                         | 78112                                                                              | F072                                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                             |                                                                                    |                                                                                                      |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 PH2414EUE                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                     | PIH                                                                                                                                                                         | 78112                                                                              | F172                                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 PU2414FUE                                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                     | P1H<br>P2H                                                                                                                                                                  | ZPU2                                                                               | F1Z2                                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 PU2424FUE                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                     | P1H<br>P2H                                                                                                                                                                  | ZPU2<br>ZPU2                                                                       | F1Z2<br>F2Z2                                                                                         |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                       | P1H<br>P2H<br>A1H                                                                                                                                                           | ZPU2<br>ZPU2<br>ZPU2                                                               | F1Z2<br>F2Z2<br>A1Z2                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NOSORT=A.SEF1D                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                       | P1H<br>P2H<br>A1H                                                                                                                                                           | ZPU2<br>ZPU2<br>ZPU2                                                               | F1Z2<br>F2Z2<br>A1Z2                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT#A.SEF1D<br>100000 0                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                       | P1H<br>P2H<br>A1H                                                                                                                                                           | ZPU2<br>ZPU2<br>ZPU2                                                               | F1Z2<br>F2Z2<br>A1Z2                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1D<br>100000 0<br>18 226                                                                                                                                                                           | L<br>L<br>L<br>0<br>1                                                                                                                                                                                                                                                                                 | F1H<br>F2H<br>A1H                                                                                                                                                           | ZPU2<br>ZPU2<br>ZPU2                                                               | F1Z2<br>F2Z2<br>A1Z2                                                                                 |                                                                       |                                                                                                                                                              |                                                                                                                                            |                                                                                         |                    |              |          |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1D<br>100000 0<br>18 226<br>C-12 4 0-16 4                                                                                                                                                          | L<br>L<br>L<br>NA23 S                                                                                                                                                                                                                                                                                 | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4                                                                                                                                          | ZPU2<br>ZPU2<br>ZPU2<br>ZPU2                                                       | F1Z2<br>F2Z2<br>A1Z2<br>1                                                                            | R S P                                                                 | 1N55 S                                                                                                                                                       | FE                                                                                                                                         | 5 NI                                                                                    | S                  | CU           | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NOSORT=A.SEF1D<br>100000 0<br>18 226<br>C-12 4 0-16 4<br>MO S U-2354                                                                                                                                           | 0<br>1<br>NA23 S<br>U-2384                                                                                                                                                                                                                                                                            | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394                                                                                                                                | ZPU2<br>ZPU2<br>ZPU2<br>ZPU2                                                       | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>404 Pl                                                          | R S M                                                                 | 1N55 S<br>2U2424                                                                                                                                             | FE                                                                                                                                         | 5 NI<br>4                                                                               | S                  | CU           | <b>A</b> |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1D<br>100000 0<br>18 226<br>C-12 4 D-16 4<br>MD S U-2354<br>2 0 0                                                                                                                                  | 0<br>1<br>NA23 S<br>U-2384                                                                                                                                                                                                                                                                            | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0                                                                                                                         | ZPU2<br>ZPU2<br>ZPU2<br>ZPU2                                                       | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>404 Pl                                                          | R S M<br>U2414 F                                                      | 1N55 S<br>2U2424                                                                                                                                             | FE<br>AN241                                                                                                                                | 5 NI<br>4<br>0                                                                          | S                  | CU           | Ą        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1D<br>100000 0<br>18 226<br>C-12 4 D-16 4<br>MD S U-2354<br>2 0 0<br>0.0000345 0.01                                                                                                                | L<br>L<br>L<br>NA23 S<br>IJ-2384<br>0                                                                                                                                                                                                                                                                 | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 (0088144                                                                                                                  | ZPU2<br>ZPU2<br>ZPU2<br>ZPU2<br>SI<br>SI<br>PU2<br>0<br>0                          | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>404 Pl<br>00063                                                 | R S M<br>U2414 F<br>0                                                 | 1N55 S<br>2U2424<br>0 0                                                                                                                                      | FE<br>AN241<br>0                                                                                                                           | 5 NI<br>4<br>0                                                                          | S<br>O             | CU<br>0      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 224<br>C-12 4 D-16 4<br>MD S U-2354<br>2 0 0<br>0.0000345 0.01                                                                                                                | L<br>L<br>L<br>NA23 S<br>IJ-2384<br>0<br>01694 0,                                                                                                                                                                                                                                                     | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 (0088144                                                                                                                  | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>9 SI<br>9 PU2<br>0 0<br>1 0.000                      | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>404 Pl<br>0<br>00063 (                                          | R S N<br>U2414 F<br>0<br>0.000183                                     | 1N55 S<br>2U2424<br>0 0<br>39 0,003                                                                                                                          | FE<br>AN241<br>0<br>31620                                                                                                                  | 5 NI<br>4<br>0                                                                          | S<br>0             | CU<br>0      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 224<br>C-12 4 D-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01                                                                                              | L<br>L<br>NA23 S<br>IJ-2384<br>0<br>01694 0,<br>81607 0.                                                                                                                                                                                                                                              | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 (0<br>0088144<br>0014175                                                                                                  | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0<br>0.000<br>5 0.000                    | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>404 Pl<br>0<br>00063 (<br>00322 (                               | R S N<br>U2414 F<br>0<br>0.000183                                     | 1N55 S<br>2U2424<br>0 0<br>39 0.003                                                                                                                          | FE<br>AN241<br>0<br>31620<br>D0111                                                                                                         | 5 NI<br>4<br>0                                                                          | S<br>O             | CU<br>O      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 226<br>C-12 4 D-16 4<br>MD S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00                                                            | L<br>L<br>L<br>NA23 S<br>IJ-2384<br>0<br>01694 0,<br>81607 0,<br>17677 0,                                                                                                                                                                                                                             | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 (0<br>0088144<br>0014175<br>0002349                                                                                       | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>9 SI<br>9 PU2<br>0 0<br>0.00<br>5 0.00<br>9 0.00     | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>404 Pl<br>00063 (<br>00063 (<br>000322 (<br>00181 (             | R S M<br>U2414 F<br>0.000183<br>0.000444<br>0.000003                  | 1N55 S<br>PU2424<br>0 0<br>39 0,003<br>14 0.000                                                                                                              | FE<br>AN241<br>0<br>31620<br>00111<br>00175                                                                                                | 5 NI<br>4<br>0                                                                          | S<br>0             | CU<br>O      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 224<br>C-12 4 D-16 4<br>MD S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0                                                                       | U<br>U<br>U<br>NA23 S<br>U-2384<br>0<br>01694 0,<br>81607 0,<br>17677 0,<br>0,5                                                                                                                                                                                                                       | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 00<br>0088144<br>0014175<br>0002349<br>0.0001                                                                             | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0<br>0.00<br>5<br>0.00<br>0<br>0.00      | F1Z2<br>F2Z2<br>A1Z2<br>1<br>404 P1<br>00063 (<br>00322 (<br>00181 (<br>5.0                          | R S M<br>U2414 F<br>0.000183<br>0.000464<br>0.000003                  | 1N55 S<br>PU2424<br>0 0<br>39 0,003<br>14 0.000<br>38 0.000                                                                                                  | FE<br>AN241<br>0<br>31620<br>00111<br>00175<br>0.0                                                                                         | 5 NI<br>4<br>0                                                                          | s<br>0             | CU<br>O      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 224<br>C-12 4 D-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0                                                             | L<br>L<br>L<br>NA23 S<br>IJ-2384<br>0<br>01694 0,<br>81607 0,<br>17677 0,<br>0,5<br>10                                                                                                                                                                                                                | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 00<br>88144<br>0014175<br>0002349<br>0.0001<br>0 1                                                                        | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>9 SI<br>9 PU2<br>0 0<br>0 0.00<br>5 0.00<br>9 0.00   | F1Z2<br>F2Z2<br>A1Z2<br>1<br>404 P1<br>00063 (<br>00063 (<br>000322 (<br>00181 (<br>5.0<br>1         | R S M<br>U2414 F<br>0.000183<br>0.000464<br>0.000003<br>0.000003<br>3 | 1N55 S<br>PU2424<br>0 0<br>39 0.003<br>14 0.000<br>38 0.000<br>38 0.000<br>5 5                                                                               | FE<br>AN241<br>0<br>31620<br>00111<br>00175<br>0.0<br>3                                                                                    | 5 NI<br>4 0<br>0.0                                                                      | s<br>0<br>0.0<br>0 | CU<br>0      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 224<br>C-12 4 D-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09                                                       | L<br>L<br>L<br>NA23 S<br>IJ-2384<br>0<br>01694 0,<br>81607 0,<br>17677 0,<br>0,5<br>10<br>+0,00770                                                                                                                                                                                                    | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0<br>0088144<br>0014175<br>0002345<br>0.0001<br>0 1                                                                       | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0<br>0.00<br>5<br>0.00<br>0<br>0.00<br>1 | F1Z2<br>F2Z2<br>A1Z2<br>1<br>404 P1<br>00063 (<br>00063 (<br>000322 (<br>00181 (<br>5.0<br>1         | R S M<br>U2414 F<br>0.000183<br>0.000464<br>0.000003<br>0.000003<br>3 | 1N55 S<br>PU2424<br>0 0<br>39 0.000<br>38 0.000<br>38 0.000<br>5 5<br>001                                                                                    | FE<br>AN241<br>0<br>31620<br>00111<br>00175<br>0.0<br>3<br>036                                                                             | 5 NI<br>4 0<br>0.0<br>1                                                                 | s<br>0<br>0.0<br>0 | CU<br>0<br>1 | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 226<br>C-12 4 D-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09<br>07                                                 | L<br>L<br>L<br>NA23 S<br>IJ-2384<br>0<br>01694 0,<br>81607 0,<br>17677 0,<br>0,5<br>10<br>+0.00770<br>+0.00797                                                                                                                                                                                        | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 00<br>0088144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4                                                                 | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0<br>0.00<br>5<br>0.00<br>0<br>0.00<br>1 | F1Z2<br>F2Z2<br>A1Z2<br>1<br>404 P1<br>00063 (<br>00063 (<br>000322 (<br>00181 (<br>5.0<br>1         | R S M<br>U2414 F<br>0.000183<br>0.000464<br>0.000003<br>0.000003<br>3 | 1N55 S<br>PU2424<br>0 0<br>39 0.003<br>14 0.000<br>38 0.000<br>5 5<br>001<br>037                                                                             | FE<br>AN241<br>0<br>31620<br>00111<br>00175<br>0.0<br>3<br>036<br>049                                                                      | 5 NI<br>4 0<br>0.0<br>1<br>2                                                            | s<br>0<br>0.0<br>0 | CU<br>0<br>1 | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 226<br>C-12 4 D-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09<br>07<br>07                                           | L<br>L<br>L<br>NA23 S<br>IJ-2384<br>0<br>01694 0,<br>81607 0,<br>17677 0,<br>0,5<br>10<br>+0.00770<br>+0.00797                                                                                                                                                                                        | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 00<br>88144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4                                                                   | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0<br>0.00<br>5<br>0.00<br>0<br>0.00<br>1 | F1Z2<br>F2Z2<br>A1Z2<br>1<br>404 P1<br>00063 (<br>00063 (<br>000322 (<br>00181 (<br>5.0<br>1         | R S M<br>U2414 F<br>0.000183<br>0.000464<br>0.000003<br>0.000003<br>3 | 1N55 S<br>PU2424<br>0 0<br>39 0.000<br>38 0.000<br>5 5<br>001<br>037<br>050                                                                                  | FE<br>AN241<br>0<br>31620<br>00111<br>00175<br>0.0<br>3<br>036<br>049<br>044                                                               | 5 NI<br>4 0<br>0.0<br>1<br>2<br>3                                                       | s<br>0<br>0.0<br>0 | CU<br>0<br>1 | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 226<br>C-12 4 0-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09<br>07<br>09                                           | L<br>L<br>L<br>NA23 S<br>U-2384<br>0<br>01694 0,<br>81607 0,<br>17677 0,<br>0,5<br>10<br>+0.00770<br>+0.00797<br>+0.00693                                                                                                                                                                             | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0088144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4                                                                       | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0<br>0.00<br>0.00<br>0.00<br>0.00<br>1   | F1Z2<br>F2Z2<br>A1Z2<br>1<br>404 P1<br>00063 (<br>00063 (<br>000322 (<br>00181 (<br>5.0<br>1         | R S M<br>U2414 F<br>0.000183<br>0.000464<br>0.000003<br>0.<br>3       | 1N55 S<br>PU2424<br>0 0<br>39 0.000<br>38 0.000<br>5 5<br>001<br>037<br>050<br>047                                                                           | FE<br>AN241<br>0<br>31620<br>00111<br>00175<br>0.0<br>3<br>036<br>049<br>066                                                               | 5 NI<br>4 0<br>0.0<br>1<br>2<br>3                                                       | s<br>0<br>0.0<br>0 | CU<br>0<br>1 | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 226<br>C-12 4 0-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09<br>09<br>09                                           | L<br>L<br>L<br>L<br>NA23 S<br>U-2384<br>0<br>01694 0,<br>81607 0,<br>17677 0,<br>0,5<br>10<br>+0.00770<br>+0.00693<br>+0.00693                                                                                                                                                                        | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0088144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4                                                                       | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0<br>0.00<br>0.00<br>0.00<br>1<br>1      | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>404 Pl<br>00063 (<br>00063 (<br>000322 (<br>00181 (<br>5.0<br>1 | R S N<br>U2414 F<br>0<br>0.00018:<br>0.00044<br>0.00000<br>3          | 1N55 S<br>PU2424<br>0 0<br>39 0.000<br>38 0.000<br>5 5<br>001<br>037<br>050<br>067                                                                           | FE<br>AN241<br>0<br>31620<br>00111<br>00175<br>0.0<br>3<br>036<br>049<br>066<br>080                                                        | 5 NI<br>4 0<br>0.0<br>1<br>2<br>3<br>4                                                  | S<br>0<br>0.0<br>0 | CU<br>0<br>1 | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 226<br>C-12 4 0-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09<br>09<br>09<br>09<br>09                               | L<br>L<br>L<br>L<br>NA23 S<br>U-2384<br>0<br>01694 0,<br>81607 0,<br>17677 0,<br>0,5<br>10<br>+0.00770<br>+0.00797<br>+0.00693<br>+0.00672                                                                                                                                                            | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0088144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4<br>6<br>1                                                             | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0<br>0.00<br>0.00<br>0.00<br>1<br>1      | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>404 Pl<br>00063 (<br>00063 (<br>000322 (<br>00181 (<br>5.0<br>1 | R S M<br>U2414 F<br>0<br>0.00018:<br>0.00044<br>0.000003<br>3         | 1N55 S<br>PU2424<br>0 0<br>39 0.003<br>38 0.000<br>5 5<br>001<br>037<br>050<br>067<br>081                                                                    | FE<br>AN241<br>0<br>31620<br>00111<br>00175<br>0.0<br>3<br>036<br>049<br>066<br>080<br>093                                                 | 5 NI<br>4 0<br>0.0<br>1<br>2<br>3<br>4<br>5                                             | S<br>0<br>0.0<br>0 | CU<br>0<br>1 | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 226<br>C-12 4 0-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09<br>09<br>09<br>09<br>09                               | L<br>L<br>L<br>L<br>NA23 S<br>U-2384<br>0<br>01694 0,<br>81607 0,<br>17677 0,<br>0,5<br>10<br>+0.00770<br>+0.00797<br>+0.00693<br>+0.00672<br>+0.00351                                                                                                                                                | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0088144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4<br>6<br>1<br>1<br>2<br>2                                              | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0<br>0.00<br>0.00<br>0.00<br>1<br>1      | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>404 Pl<br>00063 (<br>00063 (<br>000322 (<br>00181 (<br>5.0<br>1 | R S M<br>U2414 F<br>0<br>0.00018:<br>0.00044<br>0.00000<br>3          | 1N55 S<br>2U2424<br>0 0<br>39 0.003<br>14 0.000<br>38 0.000<br>5 5<br>001<br>037<br>050<br>047<br>081<br>094                                                 | FE<br>AN241<br>0<br>31620<br>00111<br>00175<br>0.0<br>3<br>036<br>049<br>066<br>080<br>093<br>105                                          | 5 NI<br>4 0<br>0.0<br>1<br>2<br>3<br>4<br>5<br>6                                        | S<br>0<br>0.0<br>0 | CU<br>0      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 226<br>C-12 4 0-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09<br>09<br>09<br>09<br>09<br>09<br>09                   | L<br>L<br>L<br>L<br>NA23 S<br>U-2384<br>0<br>01694 0,<br>81607 0,<br>17677 0,<br>0,5<br>10<br>+0.00770<br>+0.00673<br>+0.00672<br>+0.00672<br>+0.00351<br>+0.00349                                                                                                                                    | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0088144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4<br>6<br>1<br>1<br>2<br>2<br>1<br>0<br>0                               | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0<br>0.00<br>0.00<br>0.00<br>1<br>1      | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>404 Pl<br>00063 (<br>00063 (<br>000322 (<br>00181 (<br>5.0<br>1 | R S M<br>U2414 F<br>0<br>0.00018:<br>0.00044<br>0.00000<br>3          | 1N55 S<br>2U2424<br>0 0<br>39 0.003<br>14 0.000<br>38 0.000<br>5 5<br>001<br>037<br>050<br>047<br>081<br>094<br>106                                          | FE<br>AN241<br>0<br>31620<br>00111<br>00175<br>0.0<br>3<br>036<br>049<br>066<br>080<br>093<br>105<br>116                                   | 5 NI<br>4 0<br>0.0<br>1<br>2<br>3<br>4<br>5<br>4<br>5<br>7                              | S<br>0<br>0.0<br>0 | CU<br>0      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 226<br>C-12 4 0-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>0  | L<br>L<br>L<br>L<br>NA23 S<br>U-2384<br>0<br>01694 0,<br>81607 0,<br>17677 0,<br>0,5<br>10<br>+0.00770<br>+0.00693<br>+0.00693<br>+0.00672<br>+0.00572<br>+0.00351<br>+0.00349<br>+0.00173                                                                                                            | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0088144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4<br>6<br>1<br>1<br>2<br>2<br>1<br>0<br>1                               | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0<br>0.00<br>0.00<br>0.00<br>1<br>1      | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>404 Pl<br>00063 (<br>00063 (<br>000322 (<br>00181 (<br>5.0<br>1 | R S N<br>U2414 F<br>0<br>0.00018:<br>0.000464<br>0.000003<br>3        | 1N55 S<br>2U2424<br>0 0<br>39 0.003<br>4 0.000<br>38 0.000<br>5 5<br>001<br>037<br>050<br>047<br>081<br>094<br>106<br>117                                    | FE<br>AN241<br>031620<br>00111<br>00175<br>0.0<br>3<br>036<br>049<br>066<br>080<br>093<br>105<br>116<br>128                                | 5 NI<br>4 0<br>0.0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                              | S<br>0<br>0.0<br>0 | CU<br>0      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 226<br>C-12 4 0-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>0  | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                                                                                                                                                                                           | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0088144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4<br>6<br>1<br>1<br>2<br>2<br>1<br>0<br>0                               | ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0<br>0.00<br>0.00<br>0.00<br>0.00<br>1   | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>404 Pl<br>00063 (<br>00063 (<br>000322 (<br>00181 (<br>5.0<br>1 | R S M<br>U2414 F<br>0<br>0.00018:<br>0.00044<br>0.000003<br>3         | 1N55 S<br>2U2424<br>0 0<br>39 0.003<br>4 0.000<br>38 0.000<br>5 5<br>001<br>037<br>050<br>047<br>081<br>094<br>106<br>117<br>129                             | FE<br>AN241<br>031620<br>00111<br>00175<br>0.0<br>3<br>036<br>049<br>066<br>080<br>093<br>105<br>116<br>128<br>140                         | 5 NI<br>4 0<br>0.0<br>1<br>2<br>3<br>4<br>5<br>4<br>5<br>4<br>7<br>8<br>9               | S<br>0<br>0.0<br>0 | CU<br>0      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 226<br>C-12 4 0-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>0  | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                                                                                                                                                                                           | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0088144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4<br>6<br>1<br>1<br>2<br>2<br>1<br>0<br>1<br>4                          | ZPU2<br>ZPU2<br>ZPU2<br>2PU2<br>3 SI<br>9 PU2<br>0 0<br>0.00<br>5 0.00<br>9 0.00   | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>4 Cl<br>00063 0<br>00063 0<br>00063 0<br>00081 0<br>5.0<br>1    | R S H<br>0<br>0.000183<br>0.000464<br>0.000003<br>3                   | 1N55 S<br>2U2424<br>0 0<br>39 0.003<br>4 0.000<br>38 0.000<br>5 5<br>001<br>037<br>050<br>067<br>081<br>094<br>106<br>117<br>129<br>141                      | FE<br>AN241<br>031620<br>00111<br>00175<br>0.0<br>3036<br>049<br>066<br>080<br>093<br>105<br>116<br>128<br>140<br>144                      | 5 NI<br>4 0<br>0.0<br>1 2<br>3 4<br>5 6<br>7 8<br>9 10                                  | s<br>0<br>0.0<br>0 | CU<br>0      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1B<br>100000 0<br>18 226<br>C-12 4 0-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>0  | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                                                                                                                                                                                           | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0088144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4<br>6<br>1<br>1<br>2<br>2<br>1<br>0<br>1<br>4<br>5<br>5<br>5<br>5      | ZPU2<br>ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0.00<br>5 0.00<br>5 0.00<br>1 1  | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>4 Cl<br>00063 0<br>00063 0<br>00063 0<br>00081 0<br>5.0<br>1    | R S H<br>0<br>0.000183<br>0.000464<br>0.000003<br>3                   | 1N55 S<br>2U2424<br>0 0<br>39 0.003<br>4 0.000<br>38 0.000<br>5 5<br>001<br>037<br>050<br>067<br>081<br>094<br>106<br>117<br>129<br>141                      | FE<br>AN241<br>031620<br>00111<br>00175<br>0.0<br>3036<br>049<br>066<br>080<br>093<br>105<br>116<br>128<br>140<br>144<br>150               | 5 NI<br>4 0<br>0.0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                   | S<br>0<br>0.0<br>0 | CU<br>0      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT A.SEF1D<br>100000 0<br>18 226<br>C-12 4 0-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>0  | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                                                                                                                                                                                           | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0088144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4<br>6<br>1<br>1<br>2<br>2<br>1<br>0<br>1<br>4<br>5<br>5<br>2<br>2      | ZPU2<br>ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0.00<br>5 0.00<br>5 0.00<br>1 1  | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>4 Cl<br>00063 0<br>00063 0<br>00063 0<br>00081 0<br>5.0<br>1    | R S N<br>0<br>0.000183<br>0.000464<br>0.000003<br>3                   | 1N55 S<br>2U2424<br>0 0<br>39 0.003<br>40.000<br>38 0.000<br>5 5<br>001<br>037<br>050<br>067<br>081<br>094<br>106<br>117<br>129<br>141<br>145                | FE<br>AN241<br>031620<br>00111<br>00175<br>0.0<br>3036<br>049<br>066<br>080<br>093<br>105<br>116<br>128<br>140<br>144<br>150               | 5 NI<br>4 0<br>0.0<br>1 2<br>3 4<br>5 6<br>7 8<br>9<br>10<br>11                         | S<br>0<br>0.0<br>0 | CU<br>0      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1D<br>100000 0<br>18 226<br>C-12 4 0-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.0050163 0.00<br>0<br>16 1 0<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>0  | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>D<br>NA23 S<br>IJ-2384<br>0<br>01694 0,<br>81607 0,<br>0,5<br>10<br>+0.00770<br>+0.00770<br>+0.00673<br>+0.00673<br>+0.00672<br>+0.00351<br>+0.00351<br>+0.00173<br>+0.00173<br>+0.00168<br>+0.00059<br>-0.00003 | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0088144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4<br>6<br>1<br>1<br>2<br>2<br>1<br>0<br>1<br>4<br>5<br>5<br>2<br>8<br>8 | ZPU2<br>ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0.00<br>5 0.00<br>5 0.00<br>1 1  | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>4 Cl<br>00063 0<br>00063 0<br>00063 0<br>00081 0<br>5.0<br>1    | R S N<br>U2414 F<br>0<br>0.000183<br>0.000464<br>0.000003<br>3        | 1N55 S<br>2U2424<br>0 0<br>39 0.003<br>4 0.000<br>38 0.000<br>5 5<br>001<br>037<br>050<br>067<br>081<br>094<br>106<br>117<br>129<br>141<br>145<br>151        | FE<br>AN241<br>031620<br>00111<br>00175<br>0.0<br>3036<br>049<br>066<br>080<br>093<br>105<br>116<br>128<br>140<br>144<br>150<br>157        | 5 NI<br>4 0<br>0.0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12       | S<br>0<br>0.0<br>0 | CU<br>0      | 4        |
| 03 PU2414FUE<br>03 PU2424FUE<br>03 AM2414FUE<br>NDSDRT=A.SEF1D<br>100000 0<br>18 226<br>C-12 4 0-16 4<br>MO S U-2354<br>2 0 0<br>0.0000345 0.01<br>0.0002685 0.01<br>0.00050163 0.00<br>0<br>16 1 0<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>09<br>0 | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                                                                                                                                                                                           | P1H<br>P2H<br>A1H<br>0 1<br>AL27 4<br>PU2394<br>0 0088144<br>0014175<br>0002345<br>0.0001<br>0 1<br>4<br>6<br>1<br>2<br>2<br>1<br>0<br>1<br>3<br>4<br>5<br>5<br>3<br>3      | ZPU2<br>ZPU2<br>ZPU2<br>ZPU2<br>SI<br>PU2<br>0<br>0.00<br>5 0.00<br>0.00<br>1 1    | F1Z2<br>F2Z2<br>A1Z2<br>1<br>4 Cl<br>4 Cl<br>00063 0<br>00063 0<br>00063 0<br>00081 0<br>5.0<br>1    | R S N<br>0<br>0.00018<br>0.000464<br>0.00000<br>3                     | 1N55 S<br>2U2424<br>0 0<br>39 0.003<br>4 0.000<br>38 0.000<br>5 5<br>001<br>037<br>050<br>067<br>081<br>094<br>106<br>117<br>129<br>141<br>145<br>151<br>158 | FE<br>AN241<br>031620<br>00111<br>00175<br>0.0<br>3036<br>049<br>066<br>080<br>093<br>105<br>116<br>128<br>140<br>144<br>150<br>157<br>164 | 5 NI<br>4 0<br>0.0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | S<br>0<br>0.0<br>0 | CU<br>0<br>1 | 4        |

TABLE A.2. Input data for SDX (cont.)

0

3

:

:

| -        |     |      |          | 0.003  | 4C £ |    |    |    |    |    | 157 |     | Ŧ   |  |
|----------|-----|------|----------|--------|------|----|----|----|----|----|-----|-----|-----|--|
| ुं २     |     |      |          | 0.007  | ÷⊋3  |    |    |    |    |    | 173 | 178 | 1.5 |  |
| ņε       |     |      |          | 0.00°∙ | 227  |    |    |    |    |    | 177 | 185 | 17  |  |
| Q Q      |     |      | -        | 0 001  | 920  |    |    |    |    |    | 186 | 191 | 112 |  |
| 69       |     |      | -        | 0.004  | 022  |    |    |    |    |    | 192 | 193 | 19  |  |
| () a     |     |      | -        | 0.007  | 521  |    |    |    |    |    | 194 | 195 | 20  |  |
| 0Q       |     |      | _        | 0.013  | 999  |    |    |    |    |    | 196 | 197 | 21  |  |
| 09       |     |      | -        | 0.021  | 085  |    |    |    |    |    | 173 | 199 | 20  |  |
| -<br>0.9 |     |      | ·<br>••• | 01028  | 958  |    |    |    |    |    | 200 | 201 | 23  |  |
| 0¢       |     |      | -        | 0.052  | 053  |    |    |    |    |    | 202 | 203 | 24  |  |
| 09       |     |      |          | 0.100- | 48A  |    |    |    |    |    | 204 | 205 | 25  |  |
| 09       |     |      | -        | 0.047  | 015  |    |    |    |    |    | 206 | 207 | 24  |  |
| 09       |     |      |          | 0.072  | B90  |    |    |    |    |    | 208 | 213 | 27  |  |
| 0 ¢      |     |      | -        | 0.035  | 386  |    |    |    |    |    | 214 | 226 | 28  |  |
|          | 28  | - 1  | Ľ        | 0      | 0    |    |    |    |    |    |     |     |     |  |
|          | 36  | 13   | 17       | 14     | 13   | 12 | 11 | 12 | 12 | 04 | 05  | 07  |     |  |
|          | 07  | 01   | 04       | 06     | 07   | 06 | 02 | 02 | 02 | 02 | 02  | 02  |     |  |
|          | 02  | 02   | 06       | 13     |      |    |    |    |    |    |     |     |     |  |
| FUE      | EL  |      |          |        |      |    |    |    |    |    |     |     |     |  |
| C [      | ŀ   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| 0        | ł   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| NAI      | 1   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| ALI      | 1   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| STI      | ł   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| 083      | i   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| MNI      | ۱.  |      |          |        |      |    |    |    |    |    |     |     |     |  |
| FE       | ı   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| NÍT      | I   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| Cυ·      | 1   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| MOI      | ł   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| U51      | 1   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| 18U      | ł   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| Fol      | l   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| P08      |     |      |          |        |      |    |    |    |    |    |     | 1.1 |     |  |
| P1:      | ì   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| F20      | i   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| 611      | 1   |      |          |        |      |    |    |    |    |    |     |     |     |  |
| PU2      | 394 | 0-23 | 84       |        |      |    |    |    |    |    |     |     |     |  |

TABLE A.2. Input data for SDX. (cont.)

## APPENDIX B

The homogenized atom densities used in the ZPPR-13 analysis are presented in this appendix. Tables B.1, B.2 and B.3 give the densities for ZPPR-13A,

The atom densities for the control-rod drawers and control-rod-position drawers are given in Table B.4. Drawers without buttons were used in all measurements in ZPPR-13A

| IABLE D             | <u></u>   | <u>n</u>        | omogenized D | rawer compos     |                  |                                       | At / cm <sup>-</sup> ) |           |
|---------------------|-----------|-----------------|--------------|------------------|------------------|---------------------------------------|------------------------|-----------|
|                     | Single    | Double          | I            | nternal and      | Radial Blank     | ets                                   | Radial                 | <b>`</b>  |
|                     | Col. Fuel | Col. Fuel       |              |                  |                  |                                       | Refl.                  | Matrix    |
|                     | 0-18 in.  | <u>0-18 in.</u> | 0-18 in.     | <u>18-28 in.</u> | <u>28-29 in.</u> | 29-31 in.                             | 0-36 in.               | Tubes     |
| С                   | 0.0000335 | 0.0000345       | 0.0000317    | 0.0000317        | 0.0000317        | 0.0000319                             | 0.0002481              | 0.0000186 |
| 0                   | 0.0139736 | 0.0101694       | 0.0222897    | 0.0222897        | 0.000003         | 0.000003                              |                        |           |
| Na                  | 0.0090188 | 0.0088144       | 0.0041382    | 0.0041382        | 0.0041814        | 0.0041335                             |                        |           |
| Si                  | 0.0001579 | 0.0001839       | 0.0001386    | 0.0001386        | 0.0001391        | 0.0001397                             | 0.0006011              | 0.0000676 |
| Al                  | 0.0000040 | 0.0000063       | 0.0000024    | 0.0000024        | 0.0000025        | 0.0000025                             |                        | ·         |
| Mn                  | 0.0002305 | 0.0002685       | 0.0001992    | 0.0001992        | 0.0001998        | 0.0002540                             | 0.0012705              | 0.0001048 |
| Cr                  | 0.0026941 | 0.0031620       | 0.0023224    | 0.0023224        | 0.0023337        | 0.0056522                             | 0.0135216              | 0.0011764 |
| Fe                  | 0.0131312 | 0.0181607       | 0.0082918    | 0.0082918        | 0.0083338        | 0.0207125                             | 0.0587994              | 0.0042335 |
| Ni                  | 0.0011794 | 0.0014175       | 0.0009994    | 0.0009994        | 0.0010043        | 0.0024565                             | 0.0058834              | 0.0004751 |
| Cu                  | 0.0000295 | 0.0000322       | 0.0000289    | 0.0000289        | 0.0000289        | 0.0000291                             | 0.0000320              | 0.0000171 |
| Мо                  | 0.0002407 | 0.0004644       | 0.0000137    | 0.0000137        | 0.0000137        | 0.0000137                             | 0.0000164              | 0.0000081 |
| 235 <sub>U</sub>    | 0.0000126 | 0.0000111       | 0.0000287    | 0.0000287        | 0.0000636        | 0.0000434                             |                        |           |
| 238 <sub>U</sub>    | 0.0058083 | 0.0050163       | 0.0131978    | 0.0131978        | 0.0291505        | 0.0193358                             |                        |           |
| 238 <sub>Pu</sub>   | 0.0000004 | 0.0000010       |              |                  |                  | · · · · · · · · · · · · · · · · · · · |                        |           |
| <sup>239</sup> Pu   | 0.0008898 | 0.0017677       |              |                  |                  |                                       |                        |           |
| <sup>240</sup> Pu   | 0.0001180 | 0.0002339       |              |                  |                  |                                       | ·                      |           |
| 241 Pu <sup>a</sup> | 0.0000082 | 0.0000181       |              |                  |                  |                                       |                        |           |
| <sup>242</sup> Pu   | 0.0000016 | 0.0000037       |              |                  |                  |                                       |                        |           |
| 241Am <sup>a</sup>  | 0.000089  | 0.0000175       |              |                  |                  |                                       |                        |           |
|                     |           | •               |              |                  |                  |                                       |                        | JAII 3A29 |

Homogenized Drawer Compositions for ZPPR-13A  $(10^{24} \text{ At/cm}^3)$ 

|                    | Ax ial                       | Axial                  | Ax ial                 | Axial                  | Axial                  |                        | Iron      |             |
|--------------------|------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------|-------------|
|                    | Blanket                      | Bl an ke t             | Blanket                | Blanket                | Blank r                |                        | Block     | Steel       |
|                    | <u>18-28 in.<sup>b</sup></u> | 18-28 in. <sup>c</sup> | 28-29 in. <sup>b</sup> | 28-29 in. <sup>c</sup> | 29-31 in. <sup>b</sup> | 29-31 in. <sup>c</sup> | Refl.     | Refl.       |
|                    |                              |                        |                        |                        |                        |                        |           |             |
| С                  | 0.0000332                    | 0.0000619              | 0.0000331              | 0.0000617              | 0.0000570              | 0.0000858              | 0.0005874 | 0.0002182   |
| 0                  | 0.0142813                    | 0.0088277              | 0.0054643              | 0.000006               | 0.0054449              | 0.0000006              | -         |             |
| Na                 | 0.0092968                    | 0.0090981              | 0.0094191              | 0.0089800              | 0.0093394              | 0.0089800              | ·         |             |
| Si                 | 0.0001444                    | 0.0002397              | 0.0001439              | 0.0002403              | 0.0002238              | 0.0003212              | 0.0001115 | 0.0008379   |
| Al                 | 0.000028                     | 0.0000027              | 0.000028               | 0.000028               | 0.000028               | 0.000028               |           |             |
| Mn                 | 0.0002061                    | 0.0003731              | 0.0002053              | 0.0003739              | 0.0003243              | 0.0004944              | 0.0006791 | 0.0014769   |
| Cr                 | 0.0024051                    | 0.0041119              | 0.0024004              | 0.0041313              | 0.0040282              | 0.0057751              | 0.0019487 | 0.0145968   |
| Fe                 | 0.0123703                    | 0.0147299              | 0.0123621              | 0.0147976              | 0.0184370              | 0.0209428              | 0.0768471 | 0.0517614   |
| Ni                 | 0.0010349                    | 0.0018039              | 0.0010325              | 0.0018140              | 0.0017752              | 0.0025642              | 0.0007863 | 0.0064583   |
| Cu                 | 0.0000279                    | 0.0000279              | 0.0000278              | 0.0000280              | 0.0000471              | 0.0000473              | 0.0000256 | 0.0000185   |
| Mo                 | 0.0000127                    | 0.0000128              | 0.0000127              | 0.0000127              | 0.0000226              | 0.0000227              | 0.0000127 | 0.0000090   |
| 235U               | 0.0000179                    | 0.0000179              | 0.0000320              | 0.0000318              | 0.0000217              | 0.0000217              |           |             |
| 238 <sub>U</sub>   | 0.0081644                    | 0.0081649              | 0.0145622              | 0.0145321              | 0.0096843              | 0.0097138              |           |             |
| 238Pu              |                              |                        |                        |                        |                        |                        |           | *** -** ~** |
| 239 <sub>Pu</sub>  | ·                            |                        |                        |                        |                        |                        |           |             |
| 240Pu              |                              |                        |                        | -000 0000              |                        |                        |           |             |
| <sup>24 I</sup> Pu |                              | *** ***                |                        |                        |                        |                        |           |             |
| <sup>242</sup> Pu  |                              |                        |                        |                        |                        |                        |           |             |
| 241Am              |                              |                        |                        |                        |                        |                        |           |             |

TABLE B.1. Homogenized Drawer Compositions for  $ZPPk-13A (10^{24} \text{ At/cm}^3)$  (cont.)

<sup>a</sup>Decayed to 6-1-82.

ŝ

<sup>b</sup>Axial blanket behind double column fuel.

<sup>C</sup>Axial blanket behind single column fuel.

• •

# APPENDIX C: Detailed Reaction Rate Analysis for ZPPR-13A

The results are grouped according to the different traverses, radial or axial and special experiments. For convenience, some results are duplicated among the tables.

| Tables C.1 and C.2:   | Traverses at the x and y axes for all four reactions.                                          |
|-----------------------|------------------------------------------------------------------------------------------------|
| Tables C.3 to C.6:    | Comparison of $235_{\rm U}$ in symmetric positions at the axes, at 30° and at 60° to the axes. |
| Table C.7:            | $^{235}$ U fission at 15°, 45°, 75° to the x-axis.                                             |
| Table C.8:            | Special measurements in the radial reflector.                                                  |
| Table C.9:            | $235_{\rm U}$ fission foil for fission chamber calibration.                                    |
| Tables C.10 and C.11: | Axial traverses in 147-42 and 147-27.                                                          |
| Tables C.12 to C.14:  | Axial traverses for $235_{\rm U}$ fission.                                                     |
| Tables C.15 and C.16: | Reaction rate ratios at the axes.                                                              |
| Tables C.17 and C.18: | Reaction rate ratios from the axial traverses.                                                 |

235U(N,F) 238U(N,G) 239PU(N,F) 238U(N,F) B -----\_\_\_\_\_ MATRIX C/E EXP. A C/E POSITION ZONE EXP. A EXP. A C/E EXP. A C/E \_\_\_\_\_ -----\_\_\_\_ \_\_\_\_\_ --------------149 50 4.260 0.973 5.131 1.006 CB 0.6138 1.036 0.0185 0.877 148 50 СВ 4.357 0.951 5.140 1.004 0.6111 1.041 0.0189 0.859 149 49 4.341 CB 0.954 5.180 0.995 0.6113 1.040 0.0185 0.878 4.248 148 49 СВ 0.975 5.164 0.999 0.6065 1.048 0.0189 0.860 147 49 4.473 СВ 0.959 5.306 1.000 0.6268 1.050 0.0220 0.883 147 48 CB 4.588 0.966 5.429 1.003 0.6521 1.041 0.0255 0.897 148 47 CB 4.669 0.980 5.524 1.011 0.6649 1.053 0.0289 0.919 148 46 CB 5.095 0.979 5.981 0.996 0.7207 1.049 0.0378 1.065 148 45 1.057 CB 5.610 0.975 6.324 1.003 0.7739 0.0612 1.052 148 44 CB 6.118 0.980 6.557 1.020 0.8217 1.051 0.1006 1.045 147 44 F1 S 0.958 6.146 6.492 1.021 0.8763 1.034 0.1421 0.948 147 43 F1 6.434 0.971 6.684 1.004 0.8544 1.067 0.2089 0.895 147 42 F1 S 6.717 0.999 6.915 1.022 0.9121 1.053 0.2009 0.958 147 41 6.895 7.235 0.996 F1 0.974 0.9277 1.060 0.2250 0.893 147 40 F1 S 7.023 0.968 7.576 1.012 1.0090 1.048 0.1666 0.911 147 39 7.222 0.984 7.987 B1 1.012 1.0130 1.046 0.0951 1.054 147 38 **B**-1 7.350 0.992 8.155 1.018 1.0330 1.055 0.0910 1.072 147 37 B1 7.559 0.998 8.198 1.022 1.0330 1.059 0.1267 1.050 147 36 F2 7.567 0.997 7.977 1.020 1.0250 1.086 0.2419 0.884 147 35 F2 S 7.709 1.015 7.940 1.045 1.0560 1.060 0.2397 0.946 7.942 147 34 F2 7.654 1.007 1.029 1.0120 1.094 0.2618 0.919 147 33 F2 S 7.403 1.017 7.901 1.047 1.0500 1.078 0.2020 0.931 0.1102 147 32 B2 7.343 1.016 7.936 1.058 1.079 1.045 1.0210 6.985 147 31 B2 7.797 1.083 1.040 1.061 1.0050 0.0846 1.118 147 30 B2 6.847 1.048 7.551 1.062 0.9617 1.093 0.1028 1.106 147 29 F3 6.764 1.022 7.061 1.058 0.9143 1.117 0.2050 0.919 1.032 147 28 F3 S 6.611 1.045 6.765 1.069 0.8874 1.089 0.1988 147 27 F3 C 6.431 1.039 6.315 1.070 0.7932 1.140 0.2261 0.981 147 26 0.7578 0.1838 1.030 F3 S 5.818 5.897 1.066 1.099 1.047 F3 5.102 147 25 1.059 5.257 1.071 0.6627 1.135 0.1773 0.977 147 24 F3 S 4.388 0.6026 1.109 0.1125 0.979 1.023 4.646 1.062 0.0493 147 23 RB 3.628 1.037 3.934 1.083 0.4870 1.125 1.112 147 22 2.911 3.255 1.069 0.3947 1.116 0.0262 1.049 RB 1.016 147 21 1.109 0.0141 1.004 RB 2.339 1.009 2.667 1.065 0.3114 147 20 RB 2.095 0.967 2.321 1.057 0.2540 1.088 0.0079 0.952

TABLE C.1. ZPPR-13A : REACTION RATES MEASURED ALONG THE X-AXIS

A UNITS OF 10-18 REACTIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT. THE 239PU FOILS WERE LOCATED AT 90.8 MM FROM THE MIDPLANE, THE 235U FOILS AT 63.1 MM AND THE 238U FOILS AT 77.0 MM.

B STATISTICAL UNCERTAINTIES FOR MEASUREMENT OF 238U FISSION RANGE FROM 3% TO 7% WITH PENETRATION IN THE CENTRAL BLANKET AND FROM 3% TO 20% WITH PENETRATION IN THE RADIAL BLANKET.

C AXIAL TRAVERSE LOCATION, ALL FOILS WERE AT 77.0 MM FROM THE MIDPLANE

TABLE C.2. ZPPR-13A : REACTION RATES MEASURED ALONG THE Y-AXIS

| MATRIX   |      | 239PU  | (N,F)          | 235U (1 | N,F)  | 2380(1 | 1,G)  | 238U (N | 1,F) B |
|----------|------|--------|----------------|---------|-------|--------|-------|---------|--------|
| POSITION | ZONE | EXP. A | C/E            | EXP. A  | C/E   | EXP. A | C/E   | EXP. A  | C/E    |
| 149 50   | СВ   | 4.260  | 0.973          | 5,131   | 1.006 | 0.6138 | 1.036 | 0.0185  | 0.877  |
| 149 49   | CB   | 4.341  | 0.954          | 5,180   | 0.995 | 0.6113 | 1.040 | 0.0185  | 0.878  |
| 148 50   | CB   | 4.357  | 0.951          | 5.140   | 1.004 | 0.6111 | 1.041 | 0.0189  | 0.859  |
| 148 49   | CB   | 4.248  | 0.975          | 5.164   | 0.999 | 0.6065 | 1.048 | 0.0189  | 0.860  |
| 147 49   | СВ   | 4.473  | 0.959          | 5.306   | 1.000 | 0.6268 | 1.050 | 0.0220  | 0.883  |
| 147 48   | CB   | 4.588  | 0.966          | 5.429   | 1.003 | 0.6521 | 1.041 | 0.0255  | 0.897  |
| 146 49   | СВ   | 4.802  | 0.953          | 5.523   | 1.011 | 0.6701 | 1.045 | 0.0284  | 0.940  |
| 145 49   | CB   | 5.145  | 0.967          | 5.894   | 1.008 | 0.7207 | 1.046 | 0.0382  | 1.056  |
| 144 49   | СВ   | 5.597  | 0.971          | 6.266   | 1.006 | 0.7858 | 1.033 | 0.0595  | 1.082  |
| 143 49   | CB   | 6.035  | 0.983          | 6.558   | 1.009 | 0.8195 | 1.042 | 0.1003  | 1.046  |
| 143 48   | Fl S | 6.002  | 0.970          | 6.511   | 1.008 | 0.8761 | 1.023 | 0.1443  | 0.926  |
| 142 48   | F1   | 6.376  | 0.971          | 6.643   | 1.001 | 0.8472 | 1.067 | 0.2124  | 0.873  |
| 141 48   | Fl S | 6.639  | 0.985          | 6.909   | 1.012 | 0.9130 | 1.035 | 0.2065  | 0.908  |
| 140 48   | F1   | 6.727  | 0.976          | 7.078   | 1.000 | 0.9152 | 1.056 | 0.2233  | 0.867  |
| 139 48   | F1 S | 6.807  | 0.972          | 7.439   | 1.004 | 0.9928 | 1.039 | 0.1631  | 0.900  |
| 138 48   | B1   | 6.954  | 0.992          | 7.820   | 1.003 | 0.9812 | 1.049 | 0.0891  | 1.084  |
| 137 48   | B1   | 7.202  | 0.978          | 7.922   | 1.012 | 1.0070 | 1.045 | 0.0886  | 1.069  |
| 136 48   | B1   | 7.413  | 0.979          | 7.960   | 1.012 | 1.0090 | 1.043 | 0.1247  | 1.031  |
| 135 48   | F2   | 7.459  | 0.972          | 7.699   | 1.011 | 1.0080 | 1.055 | 0.2407  | 0.873  |
| 134 48   | F2 S | 7.469  | 0.995          | 7.733   | 1.022 | 1.0170 | 1.048 | 0.2247  | 0.956  |
| 133 48   | F2   | 7.479  | 0.972          | 7.563   | 1.021 | 0.9811 | 1.068 | 0.2542  | 0.884  |
| 132 48   | F2 S | 7.142  | 0 <b>.989</b>  | 7.626   | 1.022 | 1.0250 | 1.043 | 0.1905  | 0.908  |
| 131 48   | B2   | 6.921  | 1.005          | 7.576   | 1.036 | 0.9715 | 1.061 | 0.0995  | 1.053  |
| 130 48   | B2   | 6.659  | 1.010          | 7.294   | 1.053 | 0.9422 | 1.074 | 0.0762  | 1.124  |
| 129 48   | B2   | 6.522  | 1.012          | 7.136   | 1.038 | 0.9074 | 1.069 | 0.0934  | 1.099  |
| 128 48   | F3 S | 6.407  | 0 <b>. 995</b> | 6.679   | 1.043 | 0.8988 | 1.054 | 0.1683  | 0.954  |
| 127 48   | F3   | 6.350  | 0.982          | 6.236   | 1.046 | 0.7929 | 1.104 | 0.2176  | 0.912  |
| 126 48   | F3 S | 5,952  | 1.009          | 5.962   | 1.043 | 0.7733 | 1.068 | 0.1915  | 0.969  |
| 125 48   | F3   | 5.434  | 1.009          | 5.475   | 1.030 | 0.6838 | 1.093 | 0.1954  | 0.953  |
| 124 48   | F 3  | 4.787  | 1.008          | 4.842   | 1.040 | 0.6163 | 1.092 | 0.1677  | 0.923  |
| 123 48   | F3 S | 4.071  | 1.002          | 4.323   | 1.040 | 0.5616 | 1.085 | 0.1032  | 0.964  |
| 122 48   | RB   | 3.382  | 1.013          | 3.667   | 1.060 | 0.4566 | 1.094 | 0.0471  | 1.037  |
| 121 48   | RB   | 2.768  | 0.975          | 3.034   | 1.047 | 0.3713 | 1.082 | 0.0230  | 1.068  |
| 120 48   | RB   | 2.215  | 0.978          | 2.506   | 1.041 | 0.2935 | 1.078 | 0.0129  | 0.990  |
| 119 48   | RB   | 1.933  | 0.979          | 2.187   | 1.045 | 0.2385 | 1.071 | 0.0084  | 0.812  |

A UNITS OF 10-18 REACTIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT. THE 239PU FOILS WERE LOCATED AT 90.8 MM FROM THE MIDPLANE, THE 235U FOILS AT 63.1 MM AND THE 238U FOILS AT 77.0 MM.

.

B STATISTICAL UNCERTAINTIES FOR MEASUREMENT OF 238U FISSION RANGE FROM 3% TO 7% WITH PENETRATION IN THE CENTRAL BLANKET AND FROM 3% TO 20% WITH PENETRATION IN THE RADIAL BLANKET.

|      | RIX  |       |        |       | MEAN C/E | MATRIX        |        |       | MEAN C/E |
|------|------|-------|--------|-------|----------|---------------|--------|-------|----------|
| POSI | TION | ZONE  | EXP. A | C/E   | (S.D.) B | POSITION ZONE | EXP. A | C/E   | (S.D.) B |
|      |      |       |        |       |          |               |        |       |          |
| ULH  | QUA  | DRANT |        |       |          | URH QUADRANT  |        |       |          |
| 147  | 44   | Fl S  | 6.492  | 1.021 |          | 147 55 F1 S   | 6.539  | 1.016 |          |
| 147  | 43   | Fl    | 6.684  | 1.004 |          | 147 56 F1     | 6.651  | 1.010 |          |
| 147  | 42   | Fl S  | 6.915  | 1.022 |          | 147 57 Fl S   | 7.024  | 1.015 |          |
| 147  | 41   | Fl    | 7.235  | 0.996 | 1.011    | 147 58 Fl     | 7.173  | 1.007 | 1.011    |
| 147  | 40   | Fl S  | 7.576  | 1.012 | (0.011)  | 147 59 F1 S   | 7.620  | 1.008 | (0.004)  |
| 147  | 39   | B1    | 7.987  | 1.012 |          | 147 60 B1     | 8.012  | 1.011 |          |
| 147  | 38   | B1    | 8.155  | 1.018 | 1.017    | 147 61 B1     | 8.017  | 1.038 | 1.024    |
| 147  | 37   | B1    | 8.198  | 1.022 | (0.005)  | 147 62 B1     | 8.211  | 1.023 | (0.014)  |
| 147  | 36   | F2    | 7.977  | 1.020 |          | 147 63 F2     | 8.016  | 1.018 |          |
| 147  | 35   | F2 S  | 7.940  | 1.045 |          | 147 64 F2 S   | 8.036  | 1.036 |          |
| 147  | 34   | F2    | 7.942  | 1.029 | 1.035    | 147 65 F2     | 7.933  | 1.033 | 1.031    |
| 147  | 33   | F2 S  | 7.901  | 1.047 | (0.013)  | 147 66 F2 S   | 8.025  | 1.035 | (0.008)  |
| 147  | 32   | в2    | 7.936  | 1.058 |          | 147 67 B2     | 7.929  | 1.063 |          |
| 147  | 31   | B2    | 7.797  | 1.061 | 1.060    | 147 68 B2     | 7.773  | 1.068 | 1.066    |
| 147  | 30   | B2    | 7.551  | 1.062 | (0.002)  | 147 69 B2     | 7.546  | 1.067 | (0.003)  |
| 147  | 29   | ·F3   | 7,061  | 1.058 |          | 147 70 F3     | 7,138  | 1.045 |          |
| 147  | 28   | F3 S  | 6.765  | 1.069 |          | 147 71 F3 S   | 6.894  | 1.058 |          |
| 147  | 27   | F3    | 6.315  | 1.070 |          | 147 72 F3     | 6.431  | 1.055 |          |
| 147  | 26   | F3S   | 5.897  | 1.066 |          | 147 73 F3 S   | 5,956  | 1,060 |          |
| 147  | 25   | F3    | 5 257  | 1.071 | 1 066    | 147 74 F3     | 5,334  | 1.060 | 1.055    |
| 147  | 24   | F3 9  | 4 646  | 1 062 | (0, 005) | 147 75 F3 S   | 4.718  | 1.050 | (0,006)  |
| 141  | 24   | r5 5  | 4.040  | 1.002 | (0.00)/  | 147 75 15 6   | 4.710  | 1.050 | (0.000)  |
| 147  | 23   | RB    | 3.934  | 1.083 |          | 147 76 RB     | 3.992  | 1.072 |          |
| 147  | 22   | RB    | 3.255  | 1.069 |          | 147 77 RB     | 3.321  | 1.052 |          |
| 147  | 21   | RB    | 2.667  | 1.065 | 1.069    | 147 78 RB     | 2.770  | 1.029 | 1.054    |
| 147  | 20   | RB    | 2.321  | 1.057 | (0.011)  | 147 79 RB     | 2.319  | 1.062 | (0.018)  |

TABLE C.3. ZPPR-13A: MEASUREMENTS OF 235U FISSION RATES IN SYMMETRIC POSITIONS ALONG THE X-AXIS

A UNITS OF 10-18 FISSIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT. THE 235U FOILS WERE LOCATED 63.1 MM FROM THE MIDPLANE.ULH QUADRANT=UPPER-LEFT-HAND QUADRANT OF THE ZPPR HALF-1, ETC. B STANDARD DEVIATION OF THE C/E DISTRIBUTION

. •

C.5

TABLE C.4 . ZPPR-13A: MEASUREMENTS OF 235U FISSION RATES IN SYMMETRIC POSITIONS ALONG THE Y-AXIS

|             | _        |       |          |               |        |       |          |  |  |  |  |
|-------------|----------|-------|----------|---------------|--------|-------|----------|--|--|--|--|
| MATRIX      | A        |       | MEAN C/E | MATRIX        | A      |       | MEAN C/E |  |  |  |  |
| POSITION ZO | ONE EXP. | C/E   | (S.D.) B | POSITION ZONE | EXP.   | C/E   | (S.D.) B |  |  |  |  |
|             |          | ·     |          |               |        |       |          |  |  |  |  |
| ULH QUADRA  | NT       |       |          | LLH QUADRANT  |        |       |          |  |  |  |  |
| 143 48 F1   | S 6.511  | 1.008 |          | 154 48 F1 S   | 6.419  | 1.019 |          |  |  |  |  |
| 142 48 F1   | 6.643    | 1.001 |          | 155 48 F1     | 6.589  | 1.006 |          |  |  |  |  |
| 141 48 F1   | S 6.909  | 1.012 |          | 156 48 F1 S   | 6.819  | 1.022 |          |  |  |  |  |
| 140 48 F1   | 7.078    | 1.000 | 1.005    | 157 48 F1     | 6.982  | 1.010 | 1.013    |  |  |  |  |
| 139 48 F1   | S 7.439  | 1.004 | (0.005)  | 158 48 F1 S   | 7.369  | 1.010 | (0.007)  |  |  |  |  |
| 138 48 B1   | 7.820    | 1.003 |          | 159 48 B1     | 7,623  | 1.025 |          |  |  |  |  |
| 137 48 B1   | 7.922    | 1.012 | 1.009    | 160 48 B1     | 7.809  | 1.022 | 1 029    |  |  |  |  |
| 136 48 Bl   | 7.960    | 1.012 | (0.005)  | 161 48 B1     | 7.722  | 1.039 | (0.009)  |  |  |  |  |
| 135 48 F2   | 7,699    | 1.011 |          | 162 48 F2     | 7.479  | 1 037 |          |  |  |  |  |
| 134 48 F2   | S 7.733  | 1.022 |          | 163 48 F2 S   | 7, 531 | 1.045 |          |  |  |  |  |
| 133 48 F2   | 7.563    | 1.021 | 1.019    | 164 48 F2     | 7.465  | 1.031 | 1.039    |  |  |  |  |
| 132 48 F2   | S 7.626  | 1.022 | (0.005)  | 165 48 F2 S   | 7.440  | 1.044 | (0.007)  |  |  |  |  |
| 131 48 B2   | 7, 576   | 1,036 |          | 166 48 B2     | 7.372  | 1,060 |          |  |  |  |  |
| 130 48 B2   | 7.294    | 1.053 | 1.042    | 167 48 B2     | 7.237  | 1.057 | 1.062    |  |  |  |  |
| 129 48 B2   | 7.136    | 1.038 | (0.009)  | 168 48 B2     | 6.901  | 1.070 | (0.007)  |  |  |  |  |
| 128 48 F3   | S 6.679  | 1.043 |          | 169 48 F3 S   | 6,694  | 1.037 |          |  |  |  |  |
| 127 48 F3   | 6.236    | 1.046 |          | 170 48 F3     | 6.260  | 1.040 |          |  |  |  |  |
| 126 48 F3   | S 5.962  | 1.043 |          | 171 48 F3 S   | 6.033  | 1.038 |          |  |  |  |  |
| 125 48 F3   | 5.475    | 1.030 |          | 172 48 F3     | 5.362  | 1.048 |          |  |  |  |  |
| 124 48 F3   | 4.842    | 1.040 | 1.040    | 173 48 F3     | 4.748  | 1.057 | 1,046    |  |  |  |  |
| 123 48 F3   | s 4.323  | 1.040 | (0.006)  | 174 48 F3 S   | 4.248  | 1.054 | (0.009)  |  |  |  |  |
| 122 48 RB   | 3.667    | 1.060 |          | 175 48 RB     | 3,656  | 1.059 |          |  |  |  |  |
| 121 48 RB   | 3.034    | 1.047 |          | 176 48 RB     | 2.987  | 1.060 |          |  |  |  |  |
| 120 48 RB   | 2,506    | 1.041 | 1.048    | 177 48 RB     | 2.455  | 1.058 | 1.061    |  |  |  |  |
| 119 48 RB   | 2.187    | 1.045 | (0.008)  | 178 48 RB     | 2.136  | 1.066 | (0.004)  |  |  |  |  |
|             |          |       |          |               |        |       |          |  |  |  |  |

A UNITS OF 10-18 FISSIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT. THE 235U FOILS WERE LOCATED 63.1 MM FROM THE MIDPLANE.ULH QUADRANT=UPPER-LEFT-HAND QUADRANT OF THE ZPPR HALF-1, ETC. B STANDARD DEVIATION OF THE C/E DISTRIBUTION

| NATRIXAMEAN C/EMATRIXAMEAN C/IPOSITION ZONEEXP.C/E $(S.D.)$ BPOSITION ZONEEXP.C/E $(S.D.)$ C/EULH QUADRANT145 44 F1 S6.6761.014145 55 F1 S6.6061.027144 43 F16.9231.0071.010144 56 F16.8631.0171.014143 42 F17.2331.008 $(0.004)$ 143 57 F17.3100.999 $(0.014)$ 143 41 B17.6881.022143 58 B17.7301.018143 40 B18.1620.9991.020143 59 B18.0141.0191.022142 39 B18.0531.038 $(0.020)$ 142 60 B18.1401.030 $(0.007)$ 142 38 F27.9901.014142 61 F28.0981.004141 37 F2 S7.9771.034141 62 F2 S7.9791.038141 36 F27.8541.0331.025141 63 F27.9641.0221.020140 35 F27.8651.020 $(0.010)$ 140 64 F27.9191.017 $(0.014)$ 139 34 B27.8841.0431.037139 65 B27.9981.0331.035139 33 B27.8031.031139 66 B27.7941.037138 32 F37.1931.028137 68 F3 S6.7261.027137 30 F36.2381.057137 69 F36.3841.037137 29 F3 S </th <th></th> <th></th> <th></th> <th></th> <th></th> <th colspan="6"></th>                                                                                                                                                                                                                                                             |                   |        |           |       |                      |                         |           |       |                      |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|-----------|-------|----------------------|-------------------------|-----------|-------|----------------------|--|--|
| ULH QUADRANT       URH QUADRANT         145 44 F1 S       6.676       1.014       145 55 F1 S       6.606       1.027         144 43 F1       6.923       1.007       1.010       144 56       F1       6.863       1.017       1.014         143 42 F1       7.233       1.008       (0.004)       143 57       F1       7.310       0.999       (0.014)         143 41 B1       7.688       1.022       143 58 B1       7.730       1.018         143 40 B1       8.162       0.999       1.020       143 59 B1       8.014       1.019       1.022         142 39 B1       8.053       1.038       (0.020)       142 60 B1       8.140       1.030       (0.007)         142 38 F2       7.990       1.014       142 61 F2       8.098       1.004         141 37 F2 S       7.977       1.034       141 62 F2 S       7.979       1.038         141 36 F2       7.865       1.020       (0.010)       140 64 F2       7.919       1.017       (0.014)         139 34 B2       7.884       1.043       1.037       139 65 B2       7.998       1.033       1.035         139 33 B2       7.803       1.031        139 66 B2       < | MATRIX<br>POSITIO | N ZONE | A<br>EXP. | C/E   | MEAN C/E<br>(S.D.) B | MATRIX<br>POSITION ZONE | A<br>EXP. | C/E   | MEAN C/E<br>(S.D.) B |  |  |
| ULH QUADRANT<br>145 44 F1 S<br>143 42 F1 $0.676$<br>$1.023$<br>$1.007$<br>$1.008$<br>$1.008$<br>$1.004$ URH QUADRANT<br>145 55 F1 S<br>$144 55$<br>$143 57$ F1 $0.606$<br>$1.0171.010143 57 F10.6061.0171.014143 57 F10.9990.9990.014143 41 B1143 42 F17.2337.2331.0081.0070.0041.43 57 F11.43 57 F17.3107.3100.9990.9990.014143 41 B1143 40 B11.43 40 B11.6227.6881.0221.0221.43 59 B11.0381.0181.0141.0221.0181.020142 39 B11.0331.0380.0200.020142 60 B1141 62 F2 S7.9791.0381.0041.004141 37 F2 S1.41 361.0227.8541.0201.0201.025141 63 F27.9641.0221.0221.0201.0221.020140 35 F21.937.8651.0201.0201.0371.0331.0251.39 651.39 66 B27.7941.0331.0371.037-139 66 B27.7941.0281.0331.037-139 66 B27.7941.0281.037-139 66 B27.7941.0281.037138 32 F31.71931.0281.031-139 66 B21.37 69 F31.37 69 F36.3841.0041.0441.044136 28 F31.6101.0681.0530.0141.35 71 F34.6991.039135 28 F34.6101.0681.0530.0141.35 71 F34.6991.039$                                                                                                                                                                                                             |                   |        |           |       |                      |                         |           |       |                      |  |  |
| 14544F16.6761.01414555F156.6061.02714443F16.9231.0071.01014456F16.8631.0171.01414342F17.2331.008 $(0.004)$ 14357F17.3100.999 $(0.014)$ 14341B17.6881.02214358B17.7301.01814340B18.1620.9991.02014359B18.0141.0191.02214239B18.0531.038 $(0.020)$ 14260B18.1401.030 $(0.007)$ 14238F27.9901.01414261F28.0981.00414137F2S7.9771.03414162F2S7.9791.03814136F27.8541.0331.02514163F27.9641.0221.02014035F27.8651.020 $(0.010)$ 14064F27.9191.017 $(0.014)$ 13934B27.8841.0431.03713965B27.9981.0331.03513933B27.8031.03113867F37.2241.02813731F36.5751.04513768F36.3841.03713729F35.784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ULH OU            | ADRANT |           |       |                      | URH OUADRANT            |           |       |                      |  |  |
| 14443F1 $6.923$ $1.007$ $1.010$ $144$ $56$ F1 $6.863$ $1.017$ $1.014$ $143$ 42F1 $7.233$ $1.008$ $(0.004)$ $143$ $57$ F1 $7.310$ $0.999$ $(0.014)$ $143$ 44B1 $7.688$ $1.022$ $143$ $58$ B1 $7.730$ $1.018$ $142$ 39B1 $8.162$ $0.999$ $1.020$ $143$ $59$ B1 $8.014$ $1.019$ $1.022$ $142$ 39B1 $8.053$ $1.038$ $(0.020)$ $142$ $60$ B1 $8.140$ $1.030$ $(0.007)$ $142$ 38F2 $7.990$ $1.014$ $142$ $61$ F2 $8.098$ $1.004$ $141$ 37F2 $5$ $7.977$ $1.034$ $141$ $62$ F2 $5$ $7.979$ $1.038$ $141$ 36F2 $7.854$ $1.033$ $1.025$ $141$ $63$ F2 $7.964$ $1.022$ $1.020$ $140$ 35F2 $7.865$ $1.020$ $(0.010)$ $140$ $64$ F2 $7.919$ $1.017$ $(0.014)$ $139$ 34B2 $7.884$ $1.043$ $1.037$ $139$ $65$ B2 $7.998$ $1.033$ $1.035$ $137$ 39F3 $6.238$ $1.057$ $137$ $69$ F3 $6.384$ $1.037$ $$ $138$ 32F3 $7.193$ $1.028$ $137$ $70$ F3 $5.914$ $1.044$ <                                                                                                                                                                                                                                                                                      | 145 44            | F1 S   | 6.676     | 1.014 |                      | 145 55 FL S             | 6 606     | 1 027 |                      |  |  |
| 14342F17.2331.008 $(0.004)$ 14357F17.3100.999 $(0.014)$ 14341B17.6881.02214358B17.7301.01814340B18.1620.9991.02014359B18.0141.0191.02214239B18.0531.038 $(0.020)$ 14260B18.1401.030 $(0.007)$ 14238F27.9901.01414261F28.0981.00414137F257.9771.03414162F27.9791.03814136F27.8541.0331.02514163F27.9641.0221.02014035F27.8651.020 $(0.010)$ 14064F27.9191.017 $(0.014)$ 13934B27.8841.0431.03713965B27.9981.0331.03513933B27.8031.03113966B27.7941.03713832F37.1931.02813766F37.2241.0281.03713729F35.7841.06313776F35.9141.04413628F34.6101.053 $(0.014)$ 13571F34.9451.0611.03913528F3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 144 43            | F1     | 6,923     | 1.007 | 1.010                | 144 56 F1               | 6,863     | 1.017 | 1.014                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 143 42            | FI     | 7.233     | 1.008 | (0.004)              | 143 57 F1               | 7.310     | 0.999 | (0.014)              |  |  |
| 143 $40$ $B1$ $8.162$ $0.999$ $1.020$ $143$ $59$ $B1$ $8.014$ $1.019$ $1.022$ $142$ $39$ $B1$ $8.053$ $1.038$ $(0.020)$ $142$ $60$ $B1$ $8.140$ $1.030$ $(0.007)$ $142$ $38$ $F2$ $7.990$ $1.014$ $142$ $61$ $F2$ $8.098$ $1.004$ $141$ $37$ $F2$ $7.977$ $1.034$ $141$ $62$ $F2$ $7.979$ $1.038$ $141$ $36$ $F2$ $7.854$ $1.033$ $1.025$ $141$ $63$ $F2$ $7.964$ $1.022$ $1.020$ $140$ $35$ $F2$ $7.865$ $1.020$ $(0.010)$ $140$ $64$ $F2$ $7.919$ $1.017$ $(0.014)$ $139$ $34$ $B2$ $7.884$ $1.043$ $1.037$ $139$ $65$ $B2$ $7.998$ $1.033$ $1.035$ $139$ $33$ $B2$ $7.803$ $1.031$ $$ $139$ $66$ $B2$ $7.794$ $1.037$ $$ $138$ $32$ $F3$ $7.193$ $1.028$ $137$ $68$ $F3$ $6.726$ $1.027$ $137$ $30$ $F3$ $6.238$ $1.057$ $137$ $69$ $F3$ $6.384$ $1.037$ $137$ $29$ $F3$ $5.784$ $1.068$ $1.052$ $136$ $71$ $F3$ $4.945$ $1.061$ $1.039$ $135$ $28$ $F3$ $4.610$ $1.053$ $(0.014)$ $135$ $71$ $F3$                                                                                                                                                                                                                                  | 143 41            | B1     | 7.688     | 1.022 |                      | 143 58 B1               | 7.730     | 1.018 |                      |  |  |
| 14239B1 $8.053$ $1.038$ $(0.020)$ $142$ $60$ B1 $8.140$ $1.030$ $(0.007)$ 14238F2 $7.990$ $1.014$ $142$ $61$ F2 $8.098$ $1.004$ 14137F2 $5$ $7.977$ $1.034$ $141$ $62$ F2 $5$ $7.979$ $1.038$ 14136F2 $7.854$ $1.033$ $1.025$ $141$ $63$ F2 $7.964$ $1.022$ $1.020$ 14035F2 $7.865$ $1.020$ $(0.010)$ $140$ $64$ F2 $7.919$ $1.017$ $(0.014)$ 13934B2 $7.884$ $1.043$ $1.037$ $139$ $65$ B2 $7.998$ $1.033$ $1.035$ 13933B2 $7.803$ $1.031$ $$ $139$ $66$ B2 $7.794$ $1.037$ $$ 13832F3 $7.193$ $1.028$ $138$ $67$ F3 $7.224$ $1.028$ 13731F3 $6.238$ $1.057$ $137$ $69$ F3 $6.384$ $1.037$ 13729F3 $5.784$ $1.063$ $137$ $70$ F3 $5.914$ $1.044$ 13628F3 $4.610$ $1.053$ $(0.014)$ $135$ $71$ $F3$ $4.699$ $1.039$ (0.012)                                                                                                                                                                                                                                                                                                                                                                                                            | 143 40            | B1     | 8.162     | 0.999 | 1.020                | 143 59 B1               | 8.014     | 1.019 | 1,022                |  |  |
| 142 $38$ $F2$ 7.9901.014 $142$ $61$ $F2$ $8.098$ 1.004 $141$ $37$ $F2$ $S$ 7.9771.034 $141$ $62$ $F2$ $7.979$ 1.038 $141$ $36$ $F2$ $7.854$ 1.033 $1.025$ $141$ $63$ $F2$ $7.964$ $1.022$ $1.020$ $140$ $35$ $F2$ $7.865$ $1.020$ $(0.010)$ $140$ $64$ $F2$ $7.919$ $1.017$ $(0.014)$ $139$ $34$ $B2$ $7.884$ $1.043$ $1.037$ $139$ $65$ $B2$ $7.998$ $1.033$ $1.035$ $139$ $33$ $B2$ $7.803$ $1.031$ $$ $139$ $66$ $B2$ $7.794$ $1.037$ $$ $138$ $32$ $F3$ $7.193$ $1.028$ $138$ $67$ $F3$ $7.224$ $1.028$ $137$ $31$ $F3$ $6.238$ $1.057$ $137$ $68$ $F3$ $6.384$ $1.037$ $137$ $29$ $F3$ $5.784$ $1.063$ $137$ $70$ $F3$ $5.914$ $1.044$ $136$ $28$ $F3$ $4.894$ $1.068$ $1.052$ $136$ $71$ $F3$ $4.945$ $1.061$ $1.039$ $135$ $28$ $F3$ $4.610$ $1.053$ $(0.014)$ $135$ $71$ $F3$ $4.699$ $1.039$ $(0.012)$                                                                                                                                                                                                                                                                                                                        | 142 39            | B1     | 8.053     | 1.038 | (0.020)              | 142 60 B1               | 8.140     | 1.030 | (0.007)              |  |  |
| 14137F2S7.9771.03414162F2S7.9791.03814136F27.8541.0331.02514163F27.9641.0221.02014035F27.8651.020(0.010)14064F27.9191.017(0.014)13934B27.8841.0431.03713965B27.9981.0331.03513933B27.8031.03113966B27.7941.03713832F37.1931.02813867F37.2241.02813731F36.5751.04513768F36.7261.02713730F36.2381.05713769F36.3841.03713729F3S5.7841.06313770F3S5.9141.04413628F34.8941.0681.05213671F34.6991.039(0.012)13528F34.6101.053(0.014)13571F34.6991.039(0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 142 38            | F2     | 7.990     | 1.014 |                      | 142 61 F2               | 8.098     | 1.004 |                      |  |  |
| 14136F27.8541.0331.02514163F27.9641.0221.02014035F27.8651.020 $(0.010)$ 14064F27.9191.017 $(0.014)$ 13934B27.8841.0431.03713965B27.9981.0331.03513933B27.8031.03113966B27.7941.03713832F37.1931.02813867F37.2241.02813731F36.5751.04513768F35.7261.02713730F36.2381.05713769F36.3841.03713729F3S5.7841.06313770F3S5.9141.04413628F34.8941.0681.05213671F34.9451.0611.03913528F34.6101.053(0.014)13571F34.6991.039(0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 141 37            | F2 S   | 7.977     | 1.034 |                      | 141 62 F2 S             | 7.979     | 1.038 |                      |  |  |
| $140 \ 35 \ F2$ $7.865$ $1.020$ $(0.010)$ $140 \ 64 \ F2$ $7.919$ $1.017$ $(0.014)$ $139 \ 34 \ B2$ $7.884$ $1.043$ $1.037$ $139 \ 65 \ B2$ $7.998$ $1.033$ $1.035$ $139 \ 33 \ B2$ $7.803$ $1.031$ $$ $139 \ 66 \ B2$ $7.794$ $1.037$ $$ $138 \ 32 \ F3$ $7.193$ $1.028$ $138 \ 67 \ F3$ $7.224$ $1.028$ $137 \ 31 \ F3 \ S$ $6.575 \ 1.045$ $137 \ 68 \ F3 \ S$ $6.726 \ 1.027$ $137 \ 30 \ F3$ $6.238 \ 1.057$ $137 \ 69 \ F3$ $6.384 \ 1.037$ $137 \ 29 \ F3 \ S$ $5.784 \ 1.063$ $1.052 \ 136 \ 71 \ F3$ $5.914 \ 1.044$ $136 \ 28 \ F3$ $4.894 \ 1.068 \ 1.052 \ 136 \ 71 \ F3$ $4.945 \ 1.061 \ 1.039$ $135 \ 28 \ F3$ $4.610 \ 1.053 \ (0.014)$ $135 \ 71 \ F3$ $4.699 \ 1.039 \ (0.012)$                                                                                                                                                                                                                                                                                                                                                                                                                                      | 141 36            | F 2    | 7.854     | 1.033 | 1.025                | 141 63 F2               | 7.964     | 1.022 | 1.020                |  |  |
| 139       34       B2       7.884       1.043       1.037       139       65       B2       7.998       1.033       1.035         139       33       B2       7.803       1.031        139       66       B2       7.998       1.033       1.035          138       32       F3       7.193       1.028       138       67       F3       7.224       1.028         137       31       F3       6.575       1.045       137       68       F3       6.726       1.027         137       30       F3       6.238       1.063       137       69       F3       6.384       1.037         137       29       F3       5.784       1.063       137       70       F3       5.914       1.044         136       28       F3       4.894       1.068       1.052       136       71       F3       4.945       1.061       1.039         135       28       F3       4.610       1.053       (0.014)       135       71       F3       4.699       1.039       (0.012)                                                                                                                                                                      | 140 35            | F 2    | 7.865     | 1.020 | (0.010)              | 140 64 F2               | 7.919     | 1.017 | (0.014)              |  |  |
| 139 33 B2       7.803       1.031        139 66 B2       7.794       1.037          138 32 F3       7.193       1.028       138 67 F3       7.224       1.028         137 31 F3 S       6.575       1.045       137 68 F3 S       6.726       1.027         137 30 F3       6.238       1.057       137 69 F3       6.384       1.037         137 29 F3 S       5.784       1.063       137 70 F3 S       5.914       1.044         136 28 F3       4.894       1.068       1.052       136 71 F3       4.945       1.061       1.039         135 28 F3       4.610       1.053       (0.014)       135 71 F3       4.699       1.039       (0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 139 34            | B2     | 7.884     | 1.043 | 1.037                | 139 65 B2               | 7.998     | 1.033 | 1.035                |  |  |
| 138       32       F3       7.193       1.028       138       67       F3       7.224       1.028         137       31       F3       6.575       1.045       137       68       F3       6.726       1.027         137       30       F3       6.238       1.057       137       69       F3       6.384       1.037         137       29       F3       5       5.784       1.063       137       70       F3       5.914       1.044         136       28       F3       4.894       1.068       1.052       136       71       F3       4.945       1.061       1.039         135       28       F3       4.610       1.053       (0.014)       135       71       F3       4.699       1.039       (0.012)                                                                                                                                                                                                                                                                                                                                                                                                                        | 139 33            | B 2    | 7.803     | 1.031 |                      | 139 66 B2               | 7.794     | 1.037 |                      |  |  |
| 137 31       F3 S       6.575       1.045       137 68       F3 S       6.726       1.027         137 30       F3       6.238       1.057       137 69       F3       6.384       1.037         137 29       F3 S       5.784       1.063       137 70       F3 S       5.914       1.044         136 28       F3       4.894       1.068       1.052       136 71       F3       4.945       1.061       1.039         135 28       F3       4.610       1.053       (0.014)       135 71       F3       4.699       1.039       (0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 138 32            | F3     | 7.193     | 1.028 |                      | 138 67 F3               | 7.224     | 1.028 |                      |  |  |
| 13730F36.2381.05713769F36.3841.03713729F35.7841.06313770F35.9141.04413628F34.8941.0681.05213671F34.9451.0611.03913528F34.6101.053(0.014)13571F34.6991.039(0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 137 31            | F3 S   | 6.575     | 1.045 |                      | 137 68 F3 S             | 6.726     | 1.027 |                      |  |  |
| 13729F35.7841.06313770F35.9141.04413628F34.8941.0681.05213671F34.9451.0611.03913528F34.6101.053(0.014)13571F34.6991.039(0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 137 30            | F3     | 6.238     | 1.057 |                      | 137 69 F3               | 6.384     | 1.037 |                      |  |  |
| 13628F34.8941.0681.05213671F34.9451.0611.03913528F34.6101.053(0.014)13571F34.6991.039(0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 137 29            | F3 S   | 5.784     | 1.063 |                      | 137 70 F3 S             | 5.914     | 1.044 |                      |  |  |
| 135 28 F3 4.610 1.053 (0.014) 135 71 F3 4.699 1.039 (0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 136 28            | F3     | 4.894     | 1.068 | 1.052                | 136 71 F3               | 4.945     | 1.061 | 1.039                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 135 28            | F3     | 4.610     | 1.053 | (0.014)              | 135 71 F3               | 4.699     | 1.039 | (0.012)              |  |  |

TABLE C.5. ZPPR-13A: MEASUREMENTS OF 235U FISSION RATES IN SYMMETRIC POSITIONS AT 30-DEGREES TO THE X-AXIS

A UNITS OF 10-18 FISSIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT. THE 235U FOILS WERE LOCATED 63.1 MM FROM THE MIDPLANE.ULH QUADRANT=UPPER-LEFT-HAND QUADRANT OF THE ZPPR HALF-1, ETC. B STANDARD DEVIATION OF THE C/E DISTRIBUTION

| MATRIX   |         | A     |       | MEAN C/E | MATRIX        | A      | - (-    | MEAN C/E |  |  |  |  |
|----------|---------|-------|-------|----------|---------------|--------|---------|----------|--|--|--|--|
| POSITION | ZONE    | EXP.  | C/E   | (S.D.) B | POSITION ZONE | EXP.   | C/E<br> | (S.D.) B |  |  |  |  |
|          |         |       |       |          |               |        |         |          |  |  |  |  |
| ULH QUA  | DRANI   | 6 610 | 0 000 |          | URH QUADRANT  |        |         |          |  |  |  |  |
| 143 46   | F1      | 6.010 | 0.999 | 1 00/    | 143 53 F1     | 0.00/  | 0.992   |          |  |  |  |  |
| 142 40   | FIS     | 0.880 | 1.010 | 1.004    | 142 53 FI S   | 6.934  | 1.003   | 0.993    |  |  |  |  |
| 141 45   | FI      | 7.070 | 1.004 | (0.006)  | 141 54 Fl     | 7.216  | 0.985   | (0.009)  |  |  |  |  |
| 140 44   | B1      | 7.730 | 1.008 |          | 140 55 B1     | 7.716  | 1.012   |          |  |  |  |  |
| 139 44   | B1      | 8.007 | 1.003 | 1.010    | 139 55 B1     | 7.934  | 1.013   | 1.011    |  |  |  |  |
| 138 43   | B1      | 8.071 | 1.018 | (0.008)  | 138 56 Bl     | 8.175  | 1.007   | (0.003)  |  |  |  |  |
| 137 43   | F2      | 7,844 | 1.011 |          | 137 56 F2     | 7, 986 | 0.995   |          |  |  |  |  |
| 136 42   | F2 S    | 7.807 | 1.035 |          | 136 57 F2 S   | 7,937  | 1.021   |          |  |  |  |  |
| 135 42   | F2      | 7.704 | 1.027 | 1.021    | 135 57 F2     | 7.720  | 1.028   | 1.013    |  |  |  |  |
| 134 41   | F2      | 7.745 | 1.009 | (0.013)  | 134 58 F2     | 7.791  | 1.007   | (0.015)  |  |  |  |  |
| 133 40   | B2      | 7.798 | 1.026 | 1.032    | 133 59 B2     | 7.759  | 1 036   | 1 039    |  |  |  |  |
| 132 40   | B2      | 7.507 | 1.037 |          | 132 59 B2     | 7.499  | 1.042   |          |  |  |  |  |
| 121 /0   | E3 C    | 7 969 | 1 016 |          | 121 50 52 6   | 7 29/. | 1 017   |          |  |  |  |  |
| 131 40   | 133     | 7.203 | 1.010 |          |               | 7.204  | 1.017   |          |  |  |  |  |
| 130 39   | r 3<br> | 0.515 | 1.030 |          | 150 59 F5     | 6.739  | 1.034   |          |  |  |  |  |
| 129 38   | F 3     | 6.028 | 1.052 |          | 129 61 F3     | 0.134  | 1.038   |          |  |  |  |  |
| 128 38   | F3 S    | 5.593 | 1.057 | ·        | 128 61 F3 S   | 5.6/3  | 1.04/   |          |  |  |  |  |
| 127 37   | F3      | 4.761 | 1.055 | 1.044    | 127 62 F3     | 4.837  | 1.044   | 1.036    |  |  |  |  |
| 127 36   | F3      | 4.446 | 1.055 | (0.017)  | 127 63 F3     | 4.538  | 1.037   | (0.011)  |  |  |  |  |

TABLE C.6. ZPPR-13A: MEASUREMENTS OF 235U FISSION RATES IN SYMMETRIC POSITIONS AT 60-DEGREES TO THE X-AXIS

A UNITS OF 10-18 FISSIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT. THE 235U FOILS WERE LOCATED 63.1 MM FROM THE MIDPLANE.ULH QUADRANT=UPPER-LEFT-HAND QUADRANT OF THE ZPPR HALF-1, ETC. B STANDARD DEVIATION OF THE C/E DISTRIBUTION.

MATRIXAMEAN C/EPOSITION ZONEEXP.C/E(S.D.) B \_\_\_\_\_ \_ -----------------ULH QUADRANT AT 15-DEGREES 

 142
 30
 F3
 7.082
 1.046

 140
 29
 F3
 6.487
 1.055

 141
 28
 F3
 6.256
 1.058

 141
 27
 F3
 5.723
 1.065

 141
 26
 F3
 5.174
 1.056
 1.057

 140
 26
 F3
 4.913
 1.060
 (0.006)

 (0.006)ULH QUADRANT AT 45-DEGREES 
 133
 36
 F3
 6.848
 1.050

 133
 35
 F3
 6.722
 1.044

 132
 35
 F3
 6.581
 1.027

 132
 34
 F3
 6.236
 1.040

 132
 33
 F3
 5.669
 1.049

 131
 33
 F3
 5.419
 1.048
 1.044

 131
 32
 F3
 5.042
 1.052
 (0.009)

 (0.009)ULH QUADRANT AT 75-DEGREES 129 44 F3 6.809 1.018 128 44 F3 S 6.520 1.034 127 43 F3 6.018 1.034 126 43 F3 5.559 1.037 125 42 F3 4.791 1.054 1.039 4.578 125 41 F3 1.054 (0.014)

A UNITS OF 10-18 FISSIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT. THE 235U FOILS WERE LOCATED 63.1 MM FROM THE MIDPLANE.ULH QUADRANT=UPPER-LEFT-HAND QUADRANT OF THE ZPPR HALF-1, ETC. B STANDARD DEVIATION OF THE C/E DISTRIBUTION.

|                                                                    |                                              | X-AXIS POSITIONS                             |                                                    |                                                    |                                                                    |                                              | Y-AXIS POSITIONS                             |                                                    |                                                    |
|--------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| POSITION                                                           | zone <sup>A</sup>                            | Z, MM                                        | EXP. <sup>B</sup>                                  | C/E                                                | POSITION                                                           | zone <sup>A</sup>                            | Z, MM                                        | EXP. <sup>B</sup>                                  | C/E                                                |
| 148 17<br>148 17<br>148 17<br>148 17<br>148 17<br>148 17<br>148 17 | RR T<br>RR T<br>RR T<br>RR B<br>RR B<br>RR B | 12.3<br>26.2<br>40.0<br>12.3<br>26.2<br>40.0 | 1.537<br>1.524<br>1.527<br>1.528<br>1.523<br>1.538 | 1.059<br>1.066<br>1.062<br>1.069<br>1.070<br>1.057 | 116 48<br>116 48<br>116 48<br>116 48<br>116 48<br>116 48<br>116 48 | RR T<br>RR T<br>RR T<br>RR B<br>RR B<br>RR B | 12.3<br>26.2<br>40.0<br>12.3<br>26.2<br>40.0 | 1.230<br>1.231<br>1.236<br>1.488<br>1.487<br>1.503 | 1.041<br>1.038<br>1.032<br>1.139<br>1.138<br>1.124 |
| 181 48<br>181 48<br>181 48<br>181 48<br>181 48<br>181 48<br>181 48 | RR T<br>RR T<br>RR B<br>RR B<br>RR B         | 12.3<br>26.2<br>40.0<br>12.3<br>26.2<br>40.0 | 1.598<br>1.590<br>1.581<br>1.350<br>1.330<br>1.333 | 1.072<br>1.076<br>1.080<br>0.955<br>0.968<br>0.964 | 148 82<br>148 82<br>148 82<br>148 82<br>148 82<br>148 82<br>148 82 | RR T<br>RR T<br>RR T<br>RR B<br>RR B<br>RR B | 12.3<br>26.2<br>40.0<br>12.3<br>26.2<br>40.0 | 1.554<br>1.549<br>1.552<br>1.553<br>1.551<br>1.548 | 1.053<br>1.054<br>1.050<br>1.056<br>1.056<br>1.055 |

TABLE C.8. ZPPR-13A: SPECIAL 235U(N,F) MEASUREMENTS IN THE RADIAL REFLECTOR

A ZONE RR =RADIAL REFLECTOR. T = IN FOIL HOLDER LOCATION NEAR TOP OF DRAWER (12.1 MM ABOVE DRAWER CENTRE). B = IN FOIL HOLDER LOCATION NEAR BOTTOM OF DRAWER (12.1 MM BELOW DRAWER CENTR B UNITS OF 10-18 FISSIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT.

|          |      |       |       |          |               |       | • • • • • • • • • • • • • |          |
|----------|------|-------|-------|----------|---------------|-------|---------------------------|----------|
| MATRIX   |      | А     |       | MEAN C/E | MATRIX        | A     |                           | MEAN C/E |
| POSITION | ZONE | EXP.  | C/E   | (S.D.) B | POSITION ZONE | EXP.  | C/E                       | (S.D.) B |
|          |      |       |       | *****    |               |       |                           |          |
| 150 51   | СВ   | 5.343 | 1.006 |          | 126 51 F3 S   | 5.793 | 1.045                     |          |
| 244 51   | СВ   | 6.391 | 1.005 | 1.004    | 226 57 F3 S   | 5.231 | 1.031                     |          |
| 250 45   | СВ   | 6.333 | 1.002 | (0.002)  | 232 63 F3 S   | 6.621 | 1.032                     |          |
|          |      |       |       |          | 132 69 F3     | 4.295 | 1.027                     |          |
| 143 56   | F1   | 7.133 | 1.000 |          | 238 69 F3     | 6.441 | 1.044                     |          |
| 250 57   | F1 S | 6.988 | 1.017 |          | 144 69 F3     | 7,277 | 1.019                     |          |
| 256 51   | F1 S | 6,797 | 1.009 |          | 150 75 F3 S   | 4.816 | 1.058                     |          |
| 156 45   | Fl   | 7.053 | 0.992 | 1.000    | 156 69 F3     | 6.960 | 1.037                     |          |
| 144 45   | F1   | 6.675 | 0.984 | (0.013)  | 262 69 F3     | 5.650 | 1.060                     |          |
|          |      |       |       |          | 268 63 F3     | 5.572 | 1.060                     |          |
| 138 51   | B1   | 7.846 | 1.002 |          | 168 57 F3     | 6.649 | 1.029                     |          |
| 156 57   | B1   | 7.668 | 1.035 |          | 174 51 F3 S   | 4.404 | 1.042                     |          |
| 150 39   | B1   | 8,003 | 1.007 |          | 168 45 F3     | 6.888 | 1.016                     |          |
| 244 39   | B1   | 8,035 | 1.026 | 1.018    | 268 39 F3     | 6.236 | 1.038                     |          |
| 238 45   | B1   | 7,903 | 1.021 | (0.014)  | 168 33 F3     | 4.493 | 1.041                     |          |
|          |      |       |       |          | 262 33 F3     | 6.694 | 1.039                     |          |
| 232 51   | F2 S | 7,660 | 1.009 |          | 256 27 F3 S   | 5.859 | 1.066                     |          |
| 238 57   | F2 S | 8,000 | 1.008 |          | 150 27 F3     | 6.319 | 1.068                     |          |
| 244 63   | F2   | 7,980 | 1.019 |          | 244 27 F3     | 6.058 | 1.051                     |          |
| 150 63   | F2   | 7,969 | 1.019 |          | 138 27 F3     | 4.888 | 1.057                     |          |
| 256 63   | F2   | 7.897 | 1.023 |          | 132 33 F3     | 5.669 | 1.049                     |          |
| 262 57   | F2   | 7,708 | 1.022 |          | 126 39 F3     | 4.692 | 1.027                     | 1.042    |
| 162 51   | F2   | 7.665 | 1.005 |          | 226 45 F3     | 5.586 | 1.033                     | (0.015)  |
| 262 45   | F2   | 7.614 | 1.018 |          |               |       |                           |          |
| 256 39   | F2 S | 8,065 | 1.016 |          |               |       |                           |          |
| 250 33   | F2 S | 7,905 | 1.040 | 1,019    |               |       |                           |          |
| 138 39   | F2   | 7,780 | 1.027 | (0.010)  |               |       |                           |          |
|          |      |       |       |          | 220 57 RB     | 2.138 | 1.093                     |          |
| 132 57   | В2   | 7,661 | 1.024 |          | 126 63 RB     | 3.820 | 1.060                     |          |
| 138 63   | B2   | 8,030 | 1.035 |          | 238 75 RB     | 3.050 | 1.056                     |          |
| 250 69   | B2   | 7,570 | 1.050 |          | 274 63 RB     | 2.464 | 1.059                     |          |
| 160 63   | B2   | 8.051 | 1.024 |          | 162 27 RB     | 4.033 | 1.074                     | 1.069    |
| 268 51   | B2   | 7.031 | 1.056 |          | 232 27 RB     | 2.764 | 1.069                     | (0.014)  |
| 162 39   | B2   | 7,800 | 1.041 |          |               |       |                           |          |
| 156 33   | B2   | 7,816 | 1.049 |          |               |       |                           |          |
| 144 33   | B2   | 7,977 | 1.047 |          |               |       |                           |          |
| 238 33   | B2   | 7,501 | 1.038 |          | Υ             |       |                           |          |
| 232 39   | B2   | 7,268 | 1.032 | 1.039    |               |       |                           |          |
| 132 45   | B2   | 7,665 | 1,030 | (0,011)  |               |       |                           |          |
|          |      |       |       |          |               |       |                           | ~~~~~    |

TABLE C.9. ZPPR-13A: 235U FISSION MEASURED IN POSITIONS SYMMETRIC TO IN-CORE FISSION CHAMBERS

A UNITS OF 10-18 FISSIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY

1 WATT. THE 235U FOILS WERE LOCATED 63.1 MM FROM THE MIDPLANE.

B STANDARD DEVIATION OF THE C/E DISTRIBUTION FOR THE SELECTED GROUPS.

# TABLE C.10. ZPPR-13A: AXIAL TRAVERSES IN MATRIX 147-42

|          |        |        | 239PU(N,F) |         | 235U(N,F) |         | 238U(N,G) |         | 238U(N,F) |         |
|----------|--------|--------|------------|---------|-----------|---------|-----------|---------|-----------|---------|
| POSITION | ZONE   | Z,MM   | EXP.A      | C/E     | EXP.A     | C/E     | EXP.A     | C/E     | EXP.A     | С/Е     |
|          |        |        |            |         |           |         |           |         |           |         |
| 147 42   | Fl S   | 63.1   |            |         | 6.918     | 1.029   |           |         |           |         |
| 147 42   | Fl S   | 77.0   | 6.717      | 0.999   | 6.915     | 1.022   | 0.9121    | 1.053   | 0.2009    | 0.958   |
| 147 42   | FIS    | 127.8  | 6,541      | 0.993   | 6.714     | 1.019   | 0.8990    | 1.035   | 0.1932    | 0,964   |
| 147 42   | F1 S   | 204.0  | 6.085      | 0.983   | 6.229     | 1.014   | 0.8317    | 1.033   | 0.1689    | 1.013   |
| 147 42   | Fl S   | 280.2  | 5.372      | 0.982   | 5.489     | 1.019   | 0.7355    | 1.037   | 0.1555    | 0,960   |
| 147 42   | F1 S   | 331.0  | 4.848      | 0.972   | 4.902     | 1.028   | 0.6783    | 1.015   | 0.1413    | 0.926   |
| 147 42   | Fl S   | 381.8  | 4.265      | 0.963   | 4.472     | 1.001   | 0.5987    | 1.025   | 0.1168    | 0.928   |
| 147 42   | Fl S   | 432.6  | 3.571      | 0.983   | 3.956     | 1.005   | 0.5364    | 1.017   | 0.0888    | 0.908   |
| 147 42   | AB     | 483.4  | 3.307      | 0.975   | 3.602     | 1.023   | 0.4450    | 1.062   | 0.0456    | 0.954   |
| 147 42   | AB     | 534.2  | 2.801      | 0.988   | 3.197     | 1.018   | 0.3860    | 1.059   | 0.0252    | 0,960 B |
| 147 42   | AB     | 610.4  | 2.169      | 0.965   | 2.517     | 1.003   | 0.2935    | 1.052   | 0.0122    | 0.851 B |
| 147 42   | AB     | 686.6  | 1.592      | 0.951   | 1.815     | 1.016   | 0.2107    | 1.041   | 0.0060    | 0.773 B |
| CORE REC | GION - | MEAN   |            | 0.982   |           | 1.017   |           | 1.031   |           | 0.951   |
|          |        | (S.D.) | · · ·      | (0.012) |           | (0.010) |           | (0.013) |           | (0.035) |

A UNITS OF 10-18 REACTIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT. B STATISTICAL UNCERTAINTIES ARE 3% TO 20% FOR 238U FISSION AT THESE LOCATIONS

|                    |          | 2, MM          | 239PU(N,F)     |                | 2350           | (N,F)          | 238U(N,G)        |         | 238U(N,F)        |                    |
|--------------------|----------|----------------|----------------|----------------|----------------|----------------|------------------|---------|------------------|--------------------|
| MATRIX<br>POSITION | ZONE     |                | EXP.A          | С/Е            | EXP.A          | C/E            | EXP.A            | C/E     | EXP.A            | C/E                |
| 147 27             | F3       | 77.0           | 6.431          | 1.039          | 6.315          | 1.070          | 0.7932           | 1.140   | 0.2261           | 0.981              |
| 147 27<br>147 27   | F3<br>F3 | 127.8<br>204.0 | 6.271<br>5.706 | 1.031<br>1.043 | 6.120<br>5.664 | 1.069          | 0.7729<br>0.7176 | 1.133   | 0.2244<br>0.2038 | 0.956<br>0.966     |
| 147 27             | F3<br>F3 | 280.2          | 5.167          | 1.012          | 5.074<br>4.564 | 1.050          | 0.6467           | 1.107   | 0.1801           | 0.953              |
| 147 27             | F3       | 381.8          | 3.984          | 1.016          | 4.025          | 1.050          | 0.5243           | 1.094   | 0.1324           | 0.938              |
| 147 27             | F3       | 432.6          | 3.301          | 1.023          | 3, 334         | 1.045          | 0.4474           | 1.138   | 0.0990           | 0.930              |
| 147 27<br>147 27   | AB<br>AB | 483.4<br>534.2 | 3.050<br>2.522 | 1.009<br>1.039 | 3.190<br>2.860 | 1.074<br>1.054 | 0.4117<br>0.3593 | 1.070   | 0.0445<br>0.0247 | 1.056 B<br>1.064 B |
| 147 27<br>147 27   | AB<br>AB | 610.4<br>686.6 | 1.983<br>1.419 | 0.993<br>0.999 | 2.204<br>1.625 | 1.061          | 0.2690<br>0.1925 | 1.073   | 0.0125           | 0.894 B<br>0.636 B |
| CORF RE            | CION -   | MFAN           |                | 1 026          |                | 1 057          |                  | 1,121   |                  | 0.952              |
| CORE RE            | (        | S.D.)          |                | (0.012)        |                | (0.011)        |                  | (0.017) |                  | (0.018)            |

# TABLE C.11. ZPPR-13A: AXIAL TRAVERSES IN MATRIX 147-27

A UNITS OF 10-18 REACTIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT. B STATISTICAL UNCERTAINTIES ARE 3% TO 20% FOR 2380 FISSION AT THESE LOCATIONS

|         | MATRIX<br>147 | POSITION<br>-27 | MATRIX<br>147 | MATRIX POSITION MATRIX POSIT<br>147-72 126-48 |         |         | TION MATRIX POSITION<br>171-48 |         |  |
|---------|---------------|-----------------|---------------|-----------------------------------------------|---------|---------|--------------------------------|---------|--|
| Z,MM A  | EXP. B        | C/E             | EXP. B        | C/E                                           | EXP. B  | C/E     | EXP. B                         | C/E     |  |
|         | ULH QUADRANT  |                 | URH QUADRANT  |                                               | ULH QUA | DRANT   | LLH QUADRANT                   |         |  |
| 12.9    | 6.437         | 1.069           | 6.556         | 1.054                                         | 5.971   | 1.033   | 6.121                          | 1.041   |  |
| 12.9    | 6.435         | 1.072           | 6.567         | 1.055                                         | 6.098   | 1.032   | 5.956                          | 1.053   |  |
| 12.9    | 6.398         | 1.080           | 6.566         | 1.057                                         | 6.173   | 1.036   | 5.882                          | 1.045   |  |
| 63.1    |               |                 | 6.478         | 1.056                                         | 5.962   | 1.043   | 5.923                          | 1.047   |  |
| 77.0    | 6.315         | 1.070           | 6.431         | 1.055                                         | 5.873   | 1.031   | 6.033                          | 1.038   |  |
| 127.8   | 6.120         | 1.069           | 6.211         | 1.058                                         | 5.647   | 1.038   | 5.789                          | 1.047   |  |
| 204.0   | 5.664         | 1.065           | 5.731         | 1.057                                         | 5.193   | 1.042   | 5.320                          | 1.051   |  |
| 280.2   | 5.074         | 1.050           | 5.082         | 1.053                                         | 4.611   | 1.038   | 4.721                          | 1.048   |  |
| 331.0   | 4.564         | 1.048           | 4.612         | 1.042                                         | 4.165   | 1.033   | 4.247                          | 1.048   |  |
| 381.8   | 4.025         | 1.050           | 4.065         | 1.044                                         | 3.705   | 1.029   | 3.774                          | 1.045   |  |
| 432.6   | 3.554         | 1.045           | 3.626         | 1.029                                         | 3.257   | 1.035   | 3.345                          | 1.042   |  |
| CORE RE | GION MEAN     | 1.062           |               | 1.051                                         |         | 1.035   |                                | 1.046   |  |
| (S.D.)  |               | (0.012)         |               | (0.009)                                       |         | (0.004) |                                | (0.004) |  |

TABLE C.12. ZPPR-13A: AXIAL TRAVERSES FOR 235U(N,F) IN FUEL RING 3 NEAR TO THE AXES 

0

A THE THREE MEASUREMENTS AT Z=12.9 MM WERE RESPECTIVELY 12.1 MM ABOVE THE DRAWER CENTRE, AT THE DRAWER CENTRE AND 12.9 MM BELOW THE DRAWER CENTRE ( ALONG THE Y-DIMENSION). MATRIX POSITIONS 126-48 AND 171-48 WERE SINGLE-FUEL-COLUMN DRAWERS.

B UNITS OF 10-18 FISSIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT. ULH QUADRANT = UPPER-LEFT-HAND QUADRANT OF ZPPR HALF-ONE ETC.
MATRIX POSITION MATRIX POSITION MATRIX POSITION MATRIX POSITION 137-31 137-68 160-68 160-31 -----------------------\_\_\_\_\_ EXP. B C/E EXP. B C/E Z.MMA EXP. B C/E EXP. B C/E -------------------~~~~~ ----URH QUADRANT 6.704 1.049 ULH QUADRANT LRH QUADRANT LLH QUADRANT 6.839 1.044 12.9 6.664 1.050 6.663 1.064 6.831 1.038 6.667 1.053 6.658 1.058 6.540 1.066 -----------------77.0 6.575 1.045 6.665 1.053 6.726 1.027 6.486 1.074 127.86.3411.049----204.05.8771.044----280.25.1901.0445.2301.041331.04.6791.0404.7031.039381.84.1341.0394.1611.037432.63.6301.039-------------------------------5.256 1.053 5.222 1.053 4.719 1.054 4.750 1.040 4.190 1.049 4.191 1.042 ---------CORE REGION MEAN 1.045 1.041 1.049 1.057 (S.D.) (0.005) (0.008)(0.006)(0.013)

A THE THREE MEASUREMENTS AT Z=12.9 MM WERE RESPECTIVELY 12.1 MM ABOVE THE DRAWER CENTRE, AT THE DRAWER CENTRE AND 12.9 MM BELOW THE DRAWER CENTRE ( ALONG THE Y-DIMENSION). MATRIX POSITIONS 126-48 AND 171-48 WERE SINGLE-FUEL-COLUMN DRAWERS.

B UNITS OF 10-18 FISSIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT. ULH QUADRANT = UPPER-LEFT-HAND QUADRANT OF ZPPR HALF-ONE ETC.

TABLE C.13. ZPPR-13A: AXIAL TRAVERSES FOR 235U(N,F) IN FUEL RING 3 AT 30-DEGREES TO THE X-AXIS

C.14

| MATRIX<br>130 |          | POSITION<br>-39 | MATRIX<br>130 | POSITION<br>-60 | MATRIX POSITION<br>167-60 |         | MATRIX POSITION<br>167-39 |              |
|---------------|----------|-----------------|---------------|-----------------|---------------------------|---------|---------------------------|--------------|
| Z,MM A        | EXP. B   | C/E             | EXP. B        | C/E             | EXP. B                    | C/E     | EXP. B                    | C/E          |
|               | ULH QUA  | DRANT           | URH QUA       | DRANT           | LRH QUADRANT              |         | LLH QUADRANT              |              |
| 12.9          | 6.853    | 1.018           | 6.762         | 1.036           | 6.606                     | 1.036   | 6.502                     | 1.045        |
| 63.1          | 6.652    | 1.025           |               |                 |                           |         |                           | - <u>`</u> - |
| 77.0          | 6.515    | 1.030           | 6.496         | 1.037           | 6.601                     | 1.040   | 6.592                     | 1.034        |
| 127.8         | 6.185    | 1.050           |               |                 | ~~                        |         |                           |              |
| 204.0         | 5.819    | 1.029           |               |                 |                           |         |                           |              |
| 280.2         | 5.177    | 1.023           | 5.195         | 1.024           | 5.264                     | 1.030   | 5.250                     | 1.025        |
| 331.0         | 4.669    | 1.019           | 4.658         | 1.026           | 4.747                     | 1.027   | 4.751                     | 1.018        |
| 381.8         | 4.122    | 1.020           | 4.147         | 1.019           | 4.195                     | 1.026   | 4.191                     | 1.020        |
| 432.6         | 3.673    | 1.008           |               |                 |                           |         | <b></b>                   |              |
| CORE REG      | ION MEAN | 1.025           |               | 1.029           | 1                         | 1.034   |                           | 1.033        |
| (S.D.)        |          | (0.010)         |               | (0,006)         |                           | (0.007) |                           | (0.013)      |

TABLE C.14. ZPPR-13A: AXIAL TRAVERSES FOR 235U(N,F) IN FUEL RING 3 AT 60-DEGREES TO THE X-AXIS

\_\_\_\_\_

A UNITS OF 10-18 FISSIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT. ULH QUADRANT = UPPER-LEFT-HAND QUADRANT OF ZPPR HALF-ONE, ETC.

.

TABLE C.15. ZPPR-13A : REACTION RATE RATIOS ALONG THE X-AXIS

\_\_\_\_\_

235U(N,F)/239PU(N,F) 238U(N,G)/239PU(N,F) 238U(N,F)/239PU(N,F)

| MATRIX   |            |          |       |        |       |         |       |
|----------|------------|----------|-------|--------|-------|---------|-------|
| POSITION | ZONE       | EXP.     | C/E   | EXP.   | C/E   | EXP.    | C/E   |
|          |            |          |       |        |       |         |       |
|          |            |          |       |        |       |         |       |
| 149 50   | CB         | 1 204    | 1 034 | 0 1441 | 1 065 | 0.00/35 | 0 901 |
| 148 50   | CB         | 1 180    | 1.056 | 0.1403 | 1 005 | 0.00435 | 0.001 |
| 140 40   | CB         | 1 100    | 1.050 | 0.1403 | 1.090 | 0.00434 | 0.903 |
| 149 49   |            | 1.195    | 1.045 | 0.1408 | 1.090 | 0.00426 | 0.920 |
| 148 49   | CB         | 1.216    | 1.025 | 0.1428 | 1.075 | 0.00444 | 0.882 |
| 14/49    | СВ         | 1.186    | 1.043 | 0.1401 | 1.095 | 0.00492 | 0.921 |
| 147 48   | CB         | 1.183    | 1.038 | 0.1421 | 1.078 | 0.00557 | 0.929 |
| 148 47   | СВ         | 1.183    | 1.032 | 0.1424 | 1.074 | 0.00619 | 0.938 |
| 148 46   | CB         | 1.174    | 1.017 | 0.1415 | 1.072 | 0.00742 | 1.088 |
| 148 45   | СВ         | 1.127    | 1.029 | 0.1380 | 1.084 | 0.01090 | 1.079 |
| 148 44   | СВ         | 1.072    | 1.041 | 0.1343 | 1.072 | 0.01644 | 1.066 |
|          |            |          |       |        |       |         |       |
| 147 44   | FLS        | 1.056    | 1.066 | 0.1426 | 1 079 | 0 02312 | 0 000 |
| 147 43   |            | 1 039    | 1 034 | 0 1328 | 1 099 | 0.03247 | 0.000 |
| 147 43   |            | 1 020    | 1 022 | 0.1259 | 1.05/ | 0.03247 | 0.922 |
| 14/ 42   |            | 1.029    | 1.025 | 0.1336 | 1.094 | 0.02991 | 0.959 |
| 147 41   | F1         | 1.049    | 1.025 | 0.1345 | 1.066 | 0.03263 | 0.917 |
| 14/ 40   | FIS        | 1.0/9    | 1.045 | 0.1437 | 1.083 | 0.02372 | 0.941 |
|          |            |          |       |        |       |         |       |
| 147 39   | B1         | 1.106    | 1.028 | 0.1403 | 1.063 | 0.01317 | 1.071 |
| 147 38   | B1         | 1.110    | 1.026 | 0.1405 | 1.064 | 0.01238 | 1.081 |
| 147 37   | B1         | 1.085    | 1.024 | 0.1367 | 1.061 | 0.01676 | 1.052 |
|          |            |          |       |        |       |         |       |
| 147 36   | F2         | 1.054    | 1.023 | 0.1355 | 1.089 | 0.03197 | 0.887 |
| 147 35   | F7 5       | 1 030    | 1 030 | 0 1370 | 1 044 | 0 03109 | 0 932 |
| 147 32   | FZ 3       | 1 029    | 1.022 | 0.1370 | 1.094 | 0.03109 | 0.952 |
| 1/7 00   | .52        | 1.038    | 1.022 | 0.1344 | 1.060 | 0.03420 | 0.913 |
| 14/ 33   | FZS        | 1.067    | 1.029 | 0.1418 | 1.060 | 0.02729 | 0.915 |
|          |            |          |       |        |       |         |       |
| 147 32   | B2         | 1.081    | 1.041 | 0.1390 | 1.062 | 0.01501 | 1.029 |
| 147 31   | B2         | 1.116    | 1.020 | 0.1439 | 1.041 | 0.01211 | 1.075 |
| 147 30   | B2         | 1.103    | 1.013 | 0.1405 | 1.043 | 0.01501 | 1.055 |
|          |            |          |       |        |       |         |       |
| 147 29   | F3         | 1.044    | 1.035 | 0.1352 | 1.093 | 0.03031 | 0.899 |
| 147 28   | F3 S       | 1.023    | 1.023 | 0.1342 | 1.042 | 0.03007 | 0.988 |
| 147 27   | F3 A       | X.XXX    | X XXX | X.XXXX | X.XXX | X.XXXXX | X.XXX |
| 147 26   | F3S        | 1.014    | 1 018 | 0 1303 | 1 050 | 0.03159 | 0.984 |
| 147 25   | E3 0       | 1 030    | 1 011 | 0.1200 | 1.072 | 0.03475 | 0.004 |
| 147 25   | r.)<br>r.) | 1.050    | 1.011 | 0.1277 | 1.072 | 0.03475 | 0.925 |
| 147 24   | 135        | 1.059    | 1.030 | 0.13/3 | 1.004 | 0.02504 | 0.937 |
|          |            |          |       |        |       |         |       |
| 147 23   | RB         | 1.084    | 1.044 | 0.1342 | 1.085 | 0.01358 | 1.072 |
| 147 22   | RB         | 1.118    | 1.052 | 0.1356 | 1.098 | 0.00901 | 1.032 |
| 147 21   | RB         | 1.140    | 1.056 | 0.1331 | 1.099 | 0.00605 | 0.995 |
| 147 20   | RB         | 1.108    | 1.093 | 0.1212 | 1.125 | 0.00379 | 0.984 |
| Δ ΔΥΤΔΙ  | TDAVEDCE   | IOCATION |       |        |       |         |       |
| A AATAL  | TUNNEROE   | POCKLION | 1 020 | 0 1000 | 1 007 | 0.02517 | 0.011 |
|          |            | 0.982    | 1.030 | 0.1233 | 1.09/ | 0.03510 | 0.944 |

٠.

| MATRIX<br>POSITION | ZONE | EXP.  | C/E   | EXP.   | C/E   | EXP.    | C/E   |
|--------------------|------|-------|-------|--------|-------|---------|-------|
|                    |      |       |       |        |       |         |       |
| 149 50             | СВ   | 1.204 | 1.034 | 0.1441 | 1.065 | 0.00435 | 0.901 |
| 149 49             | CB   | 1.193 | 1.043 | 0.1408 | 1.090 | 0.00426 | 0.920 |
| 148 50             | CB   | 1.180 | 1.056 | 0.1403 | 1.095 | 0.00434 | 0.903 |
| 148 49             | CB   | 1.216 | 1.025 | 0.1428 | 1.075 | 0.00444 | 0.882 |
| 147 49             | CB   | 1.186 | 1.043 | 0.1401 | 1.095 | 0.00492 | 0.921 |
| 147 48             | CB   | 1.183 | 1.038 | 0.1421 | 1.078 | 0.00557 | 0.929 |
| 146 49             | CB   | 1.150 | 1.061 | 0.1395 | 1.097 | 0.00592 | 0.986 |
| 145 49             | CB   | 1.146 | 1.042 | 0.1401 | 1.082 | 0.00743 | 1.092 |
| 144 49             | CB   | 1.120 | 1.036 | 0.1404 | 1.064 | 0.01063 | 1.114 |
| 143 49             | CB   | 1.087 | 1.026 | 0.1358 | 1.060 | 0.01662 | 1.064 |
| 143 48             | Fl S | 1.085 | 1.039 | 0.1460 | 1.055 | 0.02404 | 0.955 |
| 142 48             | Fl   | 1.042 | 1.031 | 0.1329 | 1.099 | 0.03331 | 0.899 |
| 141 48             | F1 S | 1.041 | 1.027 | 0.1375 | 1.051 | 0.03110 | 0.922 |
| 140 48             | F1   | 1.052 | 1.025 | 0.1360 | 1.082 | 0.03319 | 0.888 |
| 139 48             | Fl S | 1.093 | 1.033 | 0.1458 | 1.069 | 0.02396 | 0.926 |
| 138 48             | B1   | 1.125 | 1.011 | 0.1411 | 1.057 | 0.01282 | 1.093 |
| 137 48             | B1   | 1.100 | 1.035 | 0.1398 | 1.069 | 0.01230 | 1.093 |
| 136 48             | B1   | 1.074 | 1.034 | 0.1361 | 1.065 | 0.01682 | 1.053 |
| 135 48             | F2   | 1.032 | 1.040 | 0.1351 | 1.085 | 0.03227 | 0.898 |
| 134 48             | F2 S | 1.035 | 1.027 | 0.1362 | 1.053 | 0.03008 | 0.961 |
| 133 48             | F2   | 1.011 | 1.050 | 0.1312 | 1.099 | 0.03399 | 0.909 |
| 132 48             | F2 S | 1.068 | 1.033 | 0.1435 | 1.055 | 0.02667 | 0.918 |
| 131 48             | B2   | 1.095 | 1.031 | 0.1404 | 1.056 | 0.01438 | 1.048 |
| 130 48             | B2   | 1.095 | 1.043 | 0.1415 | 1.063 | 0.01144 | 1.113 |
| 129 48             | B2   | 1.094 | 1.026 | 0.1391 | 1.056 | 0.01432 | 1.086 |
| 128 48             | F3 S | 1.042 | 1.048 | 0.1403 | 1.059 | 0.02627 | 0.959 |
| 127 48             | F3   | 0.982 | 1.065 | 0.1249 | 1.124 | 0.03427 | 0.929 |
| 126 48             | F3 S | 1.002 | 1.034 | 0.1299 | 1.058 | 0.03217 | 0.960 |
| 125 48             | F 3  | 1.008 | 1.021 | 0.1258 | 1.083 | 0.03596 | 0.944 |
| 124 48             | F3   | 1.011 | 1.032 | 0.1287 | 1.083 | 0.03503 | 0.916 |
| 123 48             | F3 S | 1.062 | 1.038 | 0.1380 | 1.083 | 0.02535 | 0.962 |
| 122 48             | RB   | 1.084 | 1.046 | 0.1350 | 1.080 | 0.01393 | 1.024 |
| 121 48             | RB   | 1.096 | 1.074 | 0.1341 | 1.110 | 0.00832 | 1.095 |
| 120 48             | RB   | 1.131 | 1.064 | 0.1325 | 1.102 | 0.00581 | 1.012 |
| 119 48             | RB   | 1.131 | 1.067 | 0.1234 | 1.094 | 0.00432 | 0.829 |

235U(N,F)/239PU(N,F) 238U(N,G)/239PU(N,F) 238U(N,F)/239PU(N,F)

C.17

-----

TABLE C.16. ZPPR-13A: REACTION RATE RATIOS ALONG THE Y-AXIS

\_\_\_\_\_

..

| мафрту |                |     |     | 235U(N,F)/2                             | 39PU(N,F) | 238U(N,G)/2 | 239PU(N,F) | 238U(N,F)/ | 239PU(N,F) |         |
|--------|----------------|-----|-----|-----------------------------------------|-----------|-------------|------------|------------|------------|---------|
| POSI   | r i n<br>r i n | 201 | NE  | Z(MM)                                   | EXP.      | C/E         | EXP.       | C/E        | EXP.       | C/E     |
|        |                |     |     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |           |             |            |            |            |         |
| 147    | 42             | Fl  | S   | 77.0                                    | 1.029     | 1.023       | 0.1358     | 1.054      | 0.02991    | 0.959   |
| 147    | 42             | Fl  | S   | 127.8                                   | 1.026     | 1.026       | 0.1374     | 1.042      | 0.02954    | 0.971   |
| 147    | 42             | F 1 | S   | 204.0                                   | 1.024     | 1.032       | 0.1367     | 1.051      | 0.02776    | 1.033   |
| 147    | 42             | Fl  | S   | 280.2                                   | 1.022     | 1.038       | 0.1369     | 1.056      | 0.02895    | 0.978   |
| 147    | 42             | F 1 | S   | 331.0                                   | 1.011     | 1.058       | 0.1399     | 1.044      | 0.02915    | 0.953   |
| 147    | 42             | Fl  | S   | 381.8                                   | 1.049     | 1.039       | 0.1404     | 1.064      | 0.02739    | 0.964   |
| 147    | 42             | F1  | S   | 432.6                                   | 1.108     | 1.022       | 0.1502     | 1.035      | 0.02488    | 0.924   |
| 147    | 42             | AB  |     | 483.4                                   | 1.089     | 1.049       | 0.1346     | 1.089      | 0.01380    | 0.978   |
| 147    | 42             | AB  |     | 534.2                                   | 1.141     | 1.030       | 0.1378     | 1.072      | 0.00901    | 0.972   |
| 147    | 42             | AB  |     | 610.4                                   | 1.160     | 1.039       | 0.1353     | 1.090      | 0.00562    | 0.882   |
| 147    | 42             | AB  |     | 686.6                                   | 1.140     | 1.068       | 0.1323     | 1.095      | 0.00374    | 0.813   |
| CORE   | REG            | LON | - M | EAN                                     |           | 1.034       |            | 1.049      |            | 0.969   |
|        |                |     | (S  | .D.)                                    |           | (0.012)     |            | (0.010)    |            | (0.032) |

TABLE C.17. ZPPR-13A: REACTION RATE RATIOS IN MATRIX 147-42

| MATRIX<br>POSITION ZONE Z(MM) |                            | 235U(N,F)/2          | 39PU(N,F)                        | 238U(N,G)/2                      | 239PU(N,F)                       | 238U(N,F)/2                          | 239PU(N,F)                       |                                          |                                  |
|-------------------------------|----------------------------|----------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------|------------------------------------------|----------------------------------|
|                               |                            | Z01                  | NE Z(MM)                         | EXP.                             | C/E<br>                          | EXP.                                 | C/E                              | EXP.                                     | C/E                              |
| 147<br>147                    | 27<br>27                   | F3<br>F3             | 77.0<br>127.8                    | 0.983<br>0.979                   | 1.030<br>1.037                   | 0.1233<br>0.1232                     | 1.097<br>1.099                   | 0.03516<br>0.03578                       | 0.944<br>0.927                   |
| 147<br>147<br>147             | 27<br>27<br>27             | F3<br>F3<br>F3       | 204.0<br>280.2<br>331.0          | 0.997<br>0.986<br>1.000          | 1.021<br>1.038<br>1.031          | 0.1258<br>0.1252<br>0.1265           | 1.080<br>1.094<br>1.094          | 0.03572<br>0.03486<br>0.03488            | 0.926<br>0.942<br>0.922          |
| 147<br>147                    | 27<br>27                   | F3<br>F3             | 381.8<br>432.6                   | 1.008<br>1.055                   | 1.033                            | 0.1316<br>0.1331                     | 1.077<br>1.112                   | 0.03323<br>0.02945                       | 0.923<br>0.909                   |
| 147<br>147<br>147<br>147      | 27<br>27<br>27<br>27<br>27 | AB<br>AB<br>AB<br>AB | 483.4<br>534.2<br>610.4<br>686.6 | 1.046<br>1.134<br>1.111<br>1.137 | 1.064<br>1.014<br>1.068<br>1.058 | 0.1350<br>0.1425<br>0.1357<br>0.1347 | 1.060<br>1.022<br>1.081<br>1.071 | 0.01460<br>0.00981<br>0.00630<br>0.00538 | 1.047<br>1.024<br>0.900<br>0.637 |
| CORE                          | REG                        | ION                  | - MEAN<br>(S.D.)                 |                                  | 1.030<br>(0.007)                 |                                      | 1.093<br>(0.012)                 |                                          | 0.928<br>(0.012)                 |

 TABLE C. 18.
 ZPPR-13A:
 REACTION RATE RATIOS IN MATRIX 147-27

|                    |      |        | 235U(N,F) |         | 238U(N,G) |         | 238U(N,F) B |         |
|--------------------|------|--------|-----------|---------|-----------|---------|-------------|---------|
| MATRIX<br>POSITION | ZONE | Z,MM   | EXP. A    | C/E     | EXP. A    | C/E     | EXP. A      | C/E     |
|                    |      |        |           |         |           |         |             |         |
| 148 49             | СВ   | 77.0   | 6.300     | 1.019   | 0.7518    | 1.060   | 0.0214      | 0.934   |
| 148 49             | СВ   | 127.8  | 6.177     | 1.007   | 0.7356    | 1.049   | 0.0216      | 0.894   |
| 148 49             | СВ   | 204.0  | 5.698     | 1.012   | 0.6776    | 1.054   | 0.0167      | 1.058   |
| 148 49             | CB   | 280.2  | 4.983     | 1.034   | 0.6024    | 1.054   | 0.0147      | 1.047   |
| 148 49             | СВ   | 331.0  | 4.654     | 1.003   | 0.5496    | 1.043   | 0.0132      | 1.034   |
| 148 49             | CB   | 381.8  | 4.177     | 0.996   | 0.4845    | 1.048   | 0.0107      | 1.088   |
| 148 49             | СВ   | 432.6  | 3.647     | 0.997   | 0.4209    | 1.047   | 0.0111      | 0.857   |
| 148 49             | СВ   | 483.4  | 3.180     | 0.980   | 0.3601    | 1.040   | 0.0101      | 0.744   |
| 148 49             | CB   | 534.2  | 2.672     | 0.979   | 0.2989    | 1.042   | 0.0072      | 0.792   |
| 148 49             | CB   | 610.4  | 1.936     | 0.991   | 0.2215    | 1.020   | 0.0057      | 0.615   |
| 148 49             | CB   | 686.6  | 1.345     | 0.961   | 0.1516    | 1.000   | 0.0050      | 0.413   |
| 0 - 458            | MM   | MEAN   |           | 1.010   |           | 1.051   |             | 0.987   |
|                    |      | (S.D.) |           | (0.013) |           | (0.006) |             | (0.091) |
|                    |      |        |           |         |           |         |             |         |

TABLE D.12. ZPPR-13A: AXIAL TRAVERSES IN MATRIX 148-49

A UNITS OF 10-18 REACTIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT.

B STATISTICAL UNCERTAINTIES FOR 238U FISSION RANGE FROM 6% NEAR THE MIDPLANE TO 18% AT 687 MM.

|                                                                              |                                                              | 235U(                                                        | N,F)                                                        | 238U(N,                                                     | 238U(N,G)                                                            |                                                             | 238U(N,F) B                                                        |                                                               |
|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|
| MATRIX<br>POSITIO                                                            | N ZONE                                                       | 2, MM                                                        | EXP. A                                                      | C/E                                                         | EXP. A                                                               | C/E                                                         | EXP. A                                                             | C/E                                                           |
| 148 34<br>148 34<br>148 34<br>148 34<br>148 34<br>148 34<br>148 34<br>148 34 | F2 S<br>F2 S<br>F2 S<br>F2 S<br>F2 S<br>F2 S<br>F2 S<br>F2 S | 77.0 C<br>127.8<br>204.0<br>280.2<br>331.0<br>381.8<br>432.6 | 8.558<br>8.316<br>7.675<br>6.750<br>6.126<br>5.486<br>4.878 | 1.027<br>1.011<br>1.012<br>1.021<br>1.016<br>1.009<br>1.007 | 1.1510<br>1.1590 D<br>1.0330<br>0.9187<br>0.8422<br>0.7509<br>0.6620 | 1.045<br>1.006<br>1.043<br>1.043<br>1.029<br>1.029<br>1.036 | 0.2191<br>0.1949<br>0.1962<br>0.1677<br>0.1456<br>0.1267<br>0.0939 | 0.948<br>1.030 D<br>0.942<br>0.963<br>0.972<br>0.930<br>0.940 |
| 148 34<br>148 34<br>148 34<br>148 34<br>148 34<br>0 - 458                    | AB<br>AB<br>AB<br>AB<br>3 MM                                 | 483.4<br>534.2<br>610.4<br>686.6<br>MEAN<br>(S.D.)           | 4.408<br>3.888<br>3.057<br>2.187                            | 1.036<br>1.033<br>1.015<br>1.035<br>1.015<br>(0.007)        | 0.5521<br>0.4702<br>0.3658<br>0.2590                                 | 1.064<br>1.075<br>1.040<br>1.042<br>1.038<br>(0.007)        | 0.0448<br>0.0260<br>0.0147<br>0.0069                               | 1.064<br>1.034<br>0.798<br>0.763<br>0.949<br>(0.016)          |

TABLE D.13. ZPPR-13A: AXIAL TRAVERSES IN MATRIX 148-34

A UNITS OF 10-18 REACTIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT.

B STATISTICAL UNCERTAINTIES FOR 238U FISSION IN THE AXIAL BLANKET RANGE FROM 3% TO 20%.

C THE 235U FOIL WAS LOCATED AT Z=63.1 MM, THE 238U FOIL WAS LOCATED AT Z=77.0 MM.

D THESE FOILS WERE LOCATED AT THE END OF A FUEL PLATE. THE FOIL/CELL-AVERAGE FACTORS ARE NOT APPROPRIATE AND THE DATA SHOULD BE DISCARDED.

| MATRIX<br>POSITION ZO                  |                                        |                                        |                                                     | 235U(N                                             | ,F)                                                | 238U(N,                                                  | G)                                                 | 238U(N,F) B                                              |                                                    |
|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|
|                                        |                                        | ZONE                                   | Z,MM                                                | EXP. A                                             | C/E                                                | EXP. A                                                   | C/E                                                | EXP. A                                                   | C/E                                                |
| 148<br>148<br>148<br>148<br>148<br>148 | 31<br>31<br>31<br>31<br>31<br>31<br>31 | B2<br>B2<br>B2<br>B2<br>B2<br>B2<br>B2 | 77.0 C<br>127.8<br>204.0<br>280.2<br>331.0<br>381.8 | 7.820<br>7.681<br>7.122<br>6.281<br>5.595<br>5.001 | 1.043<br>1.023<br>1.021<br>1.030<br>1.045<br>1.040 | 0.9947<br>0.9696<br>0.8972<br>0.7925<br>0.7193<br>0.6358 | 1.076<br>1.069<br>1.067<br>1.072<br>1.064<br>1.065 | 0.0770<br>0.0761<br>0.0713<br>0.0618<br>0.0531<br>0.0460 | 1.124<br>1.099<br>1.077<br>1.081<br>1.097<br>1.051 |
| 148<br>148<br>148<br>148<br>148        | 31<br>31<br>31<br>31<br>31             | B2<br>B2<br>B2<br>B2<br>B2             | 432.6<br>483.4<br>534.2<br>610.4<br>686.6           | 4.379<br>3.910<br>3.285<br>2.456<br>1.700          | 1.042<br>1.010<br>1.020<br>1.017<br>1.014          | 0.5598<br>0.4744<br>0.3923<br>0.2895<br>0.1924           | 1.052<br>1.060<br>1.071<br>1.058<br>1.081          | 0.0356<br>0.0268<br>0.0185<br>0.0095<br>0.0063           | 1.042<br>0.963<br>0.907<br>0.884<br>0.643          |
| 0 -                                    | 458                                    | MM                                     | MEAN<br>(S.D.)                                      |                                                    | 1.035<br>(0.010)                                   |                                                          | 1.066<br>(0.008)                                   |                                                          | 1.082<br>(0.028)                                   |

TABLE D.14. ZPPR-13A: AXIAL TRAVERSES IN MATRIX 148-31

-

A UNITS OF 10-18 REACTIONS PER ATOM PER SECOND AT A REACTOR POWER OF APPROXIMATELY 1 WATT.

B STATISTICAL UNCERTAINTIES FOR 238U FISSION IN THE AXIAL BLANKET RANGE FROM 3% TO 20%.

C THE 2350 FOIL WAS LOCATED AT Z=63.1 MM, THE 2380 FOIL WAS LOCATED AT Z=77.0 MM.

|                                                                                                                                                                 | 235U(N,F)/239PU(N                                          |                                                                      | 9PU(N,F)                                                             | 238U(N,G)/2                                                                  | 39PU(N,F)                                                            | 238U(N,F)/239PU(N,F)                                                                 |                                                                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| MATRIX<br>POSITION                                                                                                                                              | ZONE                                                       | EXP.                                                                 | C/E                                                                  | EXP.                                                                         | C/E                                                                  | EXP.                                                                                 | C/E                                                                  |  |
| 148       43         148       42         148       41         148       40         148       36         148       35         148       34         148       33 | F1<br>F1<br>F1 S<br>F1<br>F2 S<br>F2<br>F2 S<br>F2 S<br>F2 | 1.073<br>1.009<br>1.050<br>1.052<br>1.098<br>1.079<br>1.088<br>1.084 | 1.016<br>1.063<br>1.043<br>1.055<br>1.030<br>1.013<br>1.012<br>1.019 | 0.1389<br>0.1317<br>0.1412<br>0.1406<br>0.1479<br>0.1380<br>0.1463<br>0.1416 | 1.074<br>1.109<br>1.059<br>1.097<br>1.055<br>1.090<br>1.030<br>1.082 | 0.03054<br>0.03237<br>0.02762<br>0.02727<br>0.02365<br>0.03196<br>0.02785<br>0.02879 | 0.917<br>0.938<br>0.949<br>0.944<br>0.956<br>0.877<br>0.934<br>0.918 |  |
| 148 29<br>148 28<br>148 27<br>148 26<br>148 25<br>148 24                                                                                                        | F3<br>F3<br>F3 S<br>F3<br>F3 S<br>F3 S<br>F3               | 1.060<br>1.015<br>1.040<br>1.030<br>1.019<br>1.067                   | 1.035<br>1.045<br>1.015<br>1.020<br>1.052<br>1.020                   | 0.1381<br>0.1290<br>0.1360<br>0.1279<br>0.1343<br>0.1394                     | 1.093<br>1.112<br>1.041<br>1.103<br>1.074<br>1.068                   | 0.02938<br>0.03347<br>0.03089<br>0.03292<br>0.02815<br>0.03060                       | 0.894<br>0.922<br>0.949<br>0.963<br>0.992<br>0.899                   |  |

TABLE D.15. ZPPR-13A: REACTION RATE RATIOS ALONG THE X-AXIS