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UNITARY SYMMETRY, COMBINATORICS, 
AND SPECIAL FUNCTIONS 

(Lawrence C. Biedenharn, Jr. Memorial Lecture) 

James D. Louck 

Los Alamos National Laboratory, Theoretical Division 
Los Alamos, New Mexico 87545, USA 

Abstract. From 1967 to 1994, Larry Biedenharn and I collaborated on 35 papers on various 
aspects of the general unitary group, especially its unitary irreducible representations and 
Wigner-Clebsch-Gordan coefficients. In our studies to unveil comprehensible structures in 
this subject, we discovered several nice results in special functions and combinatorics. The 
more important of these will be presented and their present status reviewed. 

1. Personal Remarks 

The following remark taken from the Preface of Angular Momentum in Quantum 
Physics [ 11, Vol. 8 characterizes, in my view, the spirit of Larry Biedenharn's approach to 
physics. It was part of his "bag of tricks," and I personally saw it in action over and over 
again, sparked by his great intuition for what was important. 

"The art of doing mathematics," Hilbert has said. "consists in finding that special case 
which contains all the germs of generality." in our view, angular momentum theory plays 
the role of that "special case" with symmetry--one of the most fruitful themes of modern 
mathematics and physics--as the 'generality'." We would only amend Hilbert's phrase to 
include physics as well as mathematics. 

George Mackey's comments in Introduction to The Racah-Wigner Algebra in 
Quantum Theory ([l], Vo1.9) capture the essence of Biedenharn's emergence as a 
prominent figure in theoretical physics. 

"The year 1949 is a significant one in the history of the development of angular 
momentum theory. First, it is the year in which Racah completed his celebrated series of 
four papers on angular momentum theory in atomic spectroscopy. Second, it is the year 
in which that same Racah, a chief advocate and developer or "purely algebraic" methods, 
reintroduced group theory and did it with a vengeance. Third, it is the year in which 
Racah's methods and concepts began to find applications to other parts of physics. 
Finally, it is the year in which L. C. Biedenharn, the senior author of the present volume, 
completed his doctorate and formally began his scientific career. 

"As mentioned above, Biedenharn, the senior author of this book, was just beginning 
his scientific career when Racah's paper IV appeared. Its publication coincided with and 
partly inspired a surge of interest in the theory and applications of Racah's methods. 
Biedenharn soon became deeply involved, and he is now one of the leading experts on all 
phases of angular momentum theory, ... 

"In searching for recursion relations for the Racah coefficients, Professor Biedenharn 
discovered a remarkable new identity between such coefficients. It immediately implies 
a useful recursion relation and was later found to have an elegant conceptual 
interpretation. This result was published in the Journal of Mathematics and Physics in 
1953. 
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For the next seven years or so, Professor Biedenharn concerned himself almost 

exclusively with other parts of theoretical physics, but he returned to angular momentum 
theory in 196 1. He has been a prolific and steady contributor ever since." 

To George Mackey's observations, I would add: Larry Biedenharn's search for and his 
success in elucidating comprehensible structure in complex physical and mathematical 
objects was a commitment that continued throughout his extraordinarily productive 
career. 

The versatility of Biedenharn's talents is well-illustrated by the following: 

*I A fact is discovered, a theory is invented; ... 'I J. Bronowski, The Creative Process, 
1958. (Cited from Scientific Genius and Creativity, Owen Gingerich, Readings from 
Scientific American, Freeman, New York, 1986.) 

Larry Biedenharn discovered: 
W(aab@; cy)w(siaZp; Zy) 

= (2X + 1) w (aixac; UE) w ( b k ;  b) w (TiXrb; u5) 
x 

This is Eq. (25) Erom [2] , the famous identity mentioned by Mackey ( Ellliott [3] 
discovered this relation at about the same time; it is generally known as the Biedenharn- 
Elliott identity). Who would have guessed that at the very time that the books cited in [ 11 
were being written Askey and Wilson ([4], [ 51) were using this relation as a guide to 
their comprehensive treatment of orthogonal polynomials? Who would have guessed that 
this relation would have an important role in knot theory and 3-manifolds (Tureav [SI). 

Larry Biedenhzp invented: 

The concept of a unit tensor operator in the general unitary group U(n)--a far- 
reaching generalization of the Racah and Wigner SU(2) (angular momentum) theory. 

1. Introduction 

I wish to review Larry Biedenharn's contributions to the theory of the general unitary 
group U(n) , which includes its representation functions, its Wigner-Clebsch-Gordan 
coefficients, its unit tensor operators, and the special functions that arise. This is because 
it is this part of his many-faceted career with which I am most familiar. Combinatorial 
aspects of the subject will be noted as well as some of the beautiful mathematics that has 
emerged and that is still developing. I believe this characterizes aptly the depth and 
impact of the scientific creativity of Lawrence C. Biedenharn, Jr., although his interests in 
and contributions to basic physics problems goes well beyond this limited arena and my 
ability to review it. 

In physical applications of symmetry, there are two basic problems to consider. Given 
a Lie groups G , which is a symmetry group of a physical system: 

I. Determine the unitary irreducible representations of G . 
II. Determine the Clebsch-Gordan coefficients of G . 

The first problem is important because the labels of these representations provide the 
labels of the quantum states of the physical observables associated with the symmetry. 
The second problem is important because it is the first step in building composite systems 
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possessing the symmetry group G from elementary systems possessing the same 
symmetry group G . We will restrict our attention here to the unitary group defined by 

U(n) = { U I U is n x n unitary; UUt = I } ,  t denotes Hermitian conjugation.(l) 

As we shall see, however, many of the results extend to the general linear group 
GL(n, C), indeed, to arbitrary matrix algebras. 

to applications to quantal systems, is carried out in the context of the boson calculus. 
This is because the creation-annihilation operator approach to the quantal states of a 
complex system has a wide range of applicability across many areas of physics. and 
chemistry. It is instructive to review briefly this algebra. 

Much of the work done by physicists in the development of group theory, with a view 

The main features of the boson operator calculus may be summarized as follows: 

basic operator algebra (Heisenberg) algebra: 

n commuting creation operators: (al,a2 ,...,an) (2) - 
n commuting annihilation operators: (al ,a2 , . . . ,a , )  
commutation relations: 

(3) 

*unitary group action: 

Ucol(al,a2 ,..., an) = col(ai,ai ,..., a;), each U E U(n), 
(5 )  - - I - ,  

U?col(i l ,a2 ,..., an)=col (a l  ,a2 ,...,;,I), eachUEU(n). 
invariance of commutation relations : 

- t  t - 1  I I- I [ai ,aj  1 = a i  ai -a j  ai  = Si j .  
n - n ,-, 

invariance of the operator: N = xaiai = Cai ai . (7) 
i=l i=l 

*group action on the set of polynomials over the creation operators: 

(TuPXal, a2 ,. .., an) = P'(a1, a2 ,..., a, ) = P(ai,ai ,... ,ah 1, (8) 
cof(a;,a;, ..., a i )  = UTcol(al,a2, ..., a,), ( T  denotes matrix transposition). (9) 

In general physical applications, N copies of the boson operator structure are used. For 
the general representation theory of the unitary group U(n), it is suffcient to take n such 
copies. Each of the n copies then undergoes the same transformation under the action of 
the unitary group U(n) , but the problem of determining those polynomials over the n2 
bosons that transform irreducibly under this action is far from trivial. 

In the lecture today, I will outline this theory in an isomorphic form by making the 
replacements 

where the zi are taken to be indeterminates. The reasons for this are a c o d t t m e n t  
ai +zi, & + d / d z i  , (10) 
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to carrying forward the ideas of L.C. Biedenharn, the personal belief that combinatorics 
has much to offer in this endeavor, and that what is already developed by physicists can 
be best communicated to mathematicians in that field by the use of indeterminates. 

2. Irreducible Unitary Representations of U(n) 

2.1. Basic definitions . 

.Hilbert space H: Ring of polynomials over the complex numbers in any number of 
variables (indeterminates) z = ( q , z 2 ,  ... ) with inner product: 

(P,P') = P * (a / dz)P '(z)Iz=o , P, P' E H .  (1 1) 

basis polynomials: 

where 2 is an n x n matrix of (commuting) indeterminates, 2 = (zQ), i, j = 1,2, . .A, 

andA is an n x n matrix of nonnegative integer exponents, A = (ao), i, j = 1,2, ... n. 
These polynomials are then orthogonal with respect to the inner product (1 1): 

.group action in H: The following actions of the unitary group U(n) in the Hilbert 
space H are important: 

Left action: (&P)(Z) = P(UTZ),  each U E U(n),each P E H. (14) 

Right action: (RvP)(Z) = P(ZV), each V E U(n),  each P E H. (15) 

These two actions commute: LuRv = R v k .  

.irreducible polynomials basis: The polynomial basis of H that transforms 
irrreduciblly under the action of U(n) are given in terms of the polynomial basis (12) by 

Pmpm,(Z) = C Cmpm,(A) ZA / A ! ,  
(a:Aa') 

where the notations in this relation have the following definitions: 
(1) partition: p = W1,~2, . . . ,pn) ,  ~ 1 2  p2 2...2 pn 2 0, 

each pi a nonnegative integer; 
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(2) Gel'fand-Zetlin pattern: 

(:)= m1,3 

... 

m2,3 

m1,2 m2,2 

m1,1 

mn,n 

m3,3 

Each row in this triangular array of integers is itself a partition, one that fits "between" 
the one above: 

(19) 
This rule of "betweenness" expresses the well-known Weyl group-subgroup rule 
that the irreducible representation of U( j  + 1) labeled by partition 
(ml.j+l,nt2,j+~,~~~,mj+l,j+l) reduces on restriction to U ( j )  to a direct sum of those 

ml,j+l I m1,j I m2,j+l I . . .5 m,,, I m,+l,j+l (1 I j I n - 1). 

irreducible representations of U ( j )  labeled by the partitions (ml j ,m2, j , - . . ,mj , j ) ,  each 
occurring once. 

(3) Double Gel'fand-Zetlin pattern: 

In the three-rowed notation, the one pattern is inverted over the other with the shared 
partition label in the middle, as illustrated by 

1 0) (2;i;0) 4+ foe, ( 1 ; )  . (21) 

(4) The weight (also called a content) of the Ge1"fand pattern (18) is the n-tuple defined 
by 

a = ( a 1 , a y . , a , ) ,  
ai = (sum of entries in row j )  - (sum of entries in rowj - 1) 

(5) The coefficients 
Cm'm' (A) 

may be considered as functions CmPm, labeled by the same double Gel'fand patterns that 
label the functions on the left-hand side in (16), which are defined over the elements of 
the n x n array A of exponents that occurs in (12 ), where the row and column sums of 
this array are the weights a and a'of the Gel'fand patterns (z) and ($): 
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row i: zad = ai ; column j :  zau = a>. (24) 

i i 
The "discretized" functions are the elements of an orthogonal matrix that transforms the 
orthogonal basis (12) of H to the new orthogonal (16) of H. This is discussed further 
below. 

(6) The summation 
c (25) 

(a:A:a') 
in (16) is over all n x n arrays A of nonnegative integers such that the row and column 
sum restrictions (24) are satisfied. 

(7) For fixed partition p , the Gel'fand patterns ( E )  and (9 , )  enumerate rows and 
columns, respectively, as rn and rn'run over all values allowed by the betweenness 
conditions, of the matrix, denoted 

of polynomials (16). In order to write out this matrix, we order the Gel'fand patterns by 
the following rule: Associate with each Gel' fand pattern (18) the sequence W defined 
by "stringing" together the rows: 

(27) 
We order lexicographicaly the sequences W corresponding to the various Gel'fand 
patterns having the same partition p , and then order the Gel'fand patterns by the rule: 

pp (2) 9 (26) 

w = (rnl,n-l,' * *,rnp1,n-1;* * +; q , 2 ,  rn2,2;m1.1). 

It is customary in physics to order the columns of the matrix (26) as read from left to 
right by the greatest to the least pattern, and the rows as read from top to bottom by the 
same rule. The dimension of the matrix (26) is given by the Weyl dimension formula: 

dimPP(Z)=dimp= ~ ~ i - ~ j + ~ - ~ ) / 1 ! 2 ! . . . ( n - l ) ! .  (29) 
ic j 

2.2. Basic properties of the polynomials P Z m ,  

We give here a partial list of important properties of the polynomials defined by (16). 
A more complete list may be found in [7]. It is, of course, the discretized functions (23) 
that must be given unique definition. We list first properties of the polynomials: 

homogeneity: The polynomials P,,fm,(Z) are homogeneous of degree ai in 
(zil,zi2 ,..., zin),of degree a; in (zlj,z2, ,..., zd),and of degre A1 +&+...+An in all 

n2variables. 

transposition and multiplication: 
PP (ZT) = (PP (Z)f, 

PP (X)Pp (Y) = Pp (XY), X and Y arbitrary. 
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inner product orthogonality: 

reduction property: 

maximal polynomial: 

n 

k=l 
pmar,mar ’ (2) = n(detZk)pk-pk+l, pn+1= 0, 

det Zk = k x k principal minor of 2, 
where (!*) denotes the Gel’fand pattern of weight p. 

(35) 

2.3 Basic properties of the discretized functions Cmpm, 

The coefficients C m p m , ( ~ )  entering into (16) are the primary objects. By definition, 
they are taken to be zero unless the weights of the double Gel’fand pattern and the row 
and column sums satisfy the restrictions (24). Some of their properties follow: 

.explicit orthogonality relations: 
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reduction property: 

This structure reflects the group-subgroup property of the Weyl U(n) 1 U(n - 1) rule. 
Formulas for these “discretized functions“ version of the representation functions are 

known , but are quite difficult [8],[9]. We also have given [7] an explicit recurrence 
formula for them in which the coefficients at level n are constructed in terms of those at 
level n-1, using property (38). This formula, in turn, is derived from a similar formula in 
[8] giving the construction of the polynomials (16). 

The nontrivial nature of these coefficients is already indicated by relation (33 ,  
involving a product of powers of determinants (see [ 101 for the expansion of the power of 
a determinant) and by the explicit result at level n= 2, which already is the WCG- 
coefficient of SU(2): 

c (il +i2 +iJl +i2 -i (jl +m1 j1-1)- - 
2h  3 h + ~ 2  +m j, + m2 j2 - m2 (39) 

=[(2j+Q(jl+ml>!(jl  -mi>!(J2+m2)!(J2-m2)!1- 112 Cmlm2m il h i 9 

where the C-notation on the right for an SU(2) WCG-coefficients is used in [l]. 
Formulas for these coefficients for n = 3 can be found in [9]. 

2.4. The irreducible representations of U(n) 

The irreducible representations functions of U(n) are just the functions (16) obtained 
by setting Z = U E U(n): 

Thus, we obtain the unitary irreducible representations of U(n) given by 

(D’(U) I U E U(n)} ,p an arbitrary partition of n .  

representation properties: 
DP (U) D’ (U’) = DP (UU’), 

D’(U)(P (U))’ = D’(In)=Z&mp - 
This gives all unitary irreducible representations, when multiplied by appropriate powers 
of detU. 

Under the right and left action of U(n) given by (14) and (15) the polynomials (16) 
undergo the transformations: 

(4/Pmpm,)(Z) = PmPm,(UTZ) = Z D Z  m(U)Pm! ,,(Z), 

(&PmPm,)(Z) = Pmpm,(ZU) = ZDm! ,,(U)PmPm,,(Z). 
m” 

m” 

(43) 
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2.5. Combinatorial and special function aspects of representation functions 

these connections: 
(1) The set of Gel'fand patterns corresponding to a given partition p are one-to-one 

with the set of standard Young tableaux corresponding to a Young frame of shape p 
(see [ 13 and [ 1 11). Objects having a definition in terms of Gel'fand patterns accordingly 
have a definition in terms of standard tableaux and conversely. Two examples of this are 
the classical Schur functions and the Yamanouchi orthogonal representations of the 
symmetric group (see [8],[12],[ 131): 

The result presented in Sections 2.1-2.3 abound with combinatorics. We list some of 

A 

il = ( i l l ,A2 ,..., &,O ,... 0), &+...+Ar = n,Lr > 0; 
0 repeated n - r times, n 2 r; 
weight a of rn = (1,1, ..., l), weight a' of rn = (1,1, ..., 1) 

Dm ,.(n), Z = = n x n permutation matrix, 

(45) 

(2) There is a close connection between the polynomials (16) and Rota's double 
tableau polynomials (see [14 ] and [15 I). 

(3) The special case of the polynomials (16) corresponding to the totally symmetric 
case with p = (k,O,...,O)occur in MacMahon's master theorem (see [ls]). The basic 
result here is 

00 

l/det(l-tXY)= a!P!Pj , , (X)PkB(Y)  , 
k=O a,/3 

P k p ( Z ) =  C Z A / A ! ,  
(47) (a:A:B) 

a = (a1,a2,---,an),P = @,&, . . . ,Pn) ,  Zai =ZPj = k- 
i i 

(4) The normalization factor M ( A )  in (32) is a "hook' function read off a standard 

(5) One obtains the Gel'fand-Graev [ 161 (see also [8]) generalized beta function by the 
tableau (see [l] and [13]). 

specialization 
f al 0 ... 0 0 

(6) The power of a determinant is an interesting combinatorial object giving rise to 
mappings between n x n arrays A with fixed row and column sums and partitions [lo 1. 
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It is also well-known( [l], [17],[18]) that the power of a 3 x 3 determinant is the 
generating function for the SU(2) WCG-coefficients. 

(7) The number of n x n arrays A with fixed row and column sums a and a’is 
denoted M, (a, a’) and the number of Gel’fand patterns with partition p having weight 
a by K ( p , a )  (Kostka number). The fact that the coefficients in (16) constitute an 
orthogonal transformation, hence square, between bases of the space H implies: 

~,(a,a’) = xqn,a)K(a,a’). (49) 
A-HN 

This basic relation in combinatorics was proved by Knuth [19] in the context of double 
standard tableaux. 

(8) The coefficients Cmpm, (A) are ”combinatorial” in every aspect of their labeling: 
double standard tableaux and square arrays of nonnegative integers having fixed row and 
column sume. A combinatorial interpretation and derivation would be major 
accomplishments for mathematics and physics. 

(9) Special function aspects of the SU(2) representation functions are well-known 
from the work of Wigner [20] and others [21]- [22], involving Jacobi polynomials, 
Gegenbauer polynomials, Laguerre polynomials, etc. Very little has been done along 
these lines for general U(n). 

3. Kronecker Products 

Given two partitions p = (,4,p2,.-.,pn) and v = ( V I ,  v2,.-+, vn) labeling two 
irreducible representations of U(n), the abstract Clebsch-Gordan series expressing the 
decomposition of the Kronecker product into irreducibles and the explicit form of this 
relation for the irreps (40) are given by 

c1 x v = Z g p , L  

CT(DC’(U) x DV(U))C = C.eg,,nDA(V). 
a 

(5 1) 
A 

In (51), x denotes the Kronecker of direct product of matrices; CB the direct sum, and C 
is a real orthogonal matrix whose elements are the WCG-coefficients of U(n). The 
matrix C is of dimension given by: 

dimC = dimp dim v = zgpvA dimA. (52) 
A 

The number gpva is the Littlewood-Richardson number and gives the number of 
Occurrences of irreducible representation A in the Kronecker product p x V .  

matrix 2 of indeterminates: 
It is quite significant that (51) is valid when U is replaced by the arbitrary n X n 
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It was Biedenharn's great insight that led him to the discovery of a universal labeling 
3.1. Biedenharn's operator pattern 

of the WCG-coefficients of U(n). He was lead to this discovery by considering the 
extension of the Wigner-Racah defintion of a tensor operator in SU(2) to a unit tensor 
operator in U(n).  This is discussed in the next section. Here we introduce at the outset 
this labeling directly into the symbol for a WCG-coefficient. The meaning of the 
notation requires some discussion. 

Notation for a WCG - coefficient: [: i :I; (54) 
Y 

are single Gel' fand patterns; p is a double Gel' fand pattern. f , rn 
The occurrence of these patterns is clear in that they enumerate the rows of C: 

It is the patterns ;, dimA in number, and the patterns y, dimp in number, that must 
provide the column labels of C . This is effected in the following manner, which takes 
into account two facts: The first fact is that for every partition a that occurs in p x v ,  
written A E p x v, in the Clebsch-Gordan series (50), there exists a unique weight A of 
the partition p such that ;3, = v + A; the second fact is that the maximum value of 
gp,v,v+A is the Kostka number K(p,A) .  These results are proved in [23] (see also [ll] 
and Kostant (241). Thus, tentatively, the columns of C are labeled by 

rows: all $ and patterns, dimp dim v labels. (55) 

a columns: all 1 patterns, dim A in number; 
all y patterns such that 2 = v + A, K ( p , A )  in number. (56) 

While the maximum value K W , A )  of g p , v , v + ~  is achieved for a denumerable number of 
partitions v ,  it is also true that gp . *  v + ~ <  K ( p ,  A) for a denumerable number of 
partitions v. Thus, we have 

dimp dimv=Cgp,v,v+~dim(v+A)ICK(p,A)dim(v+A). (57) 
A A 

In general, we have too many patterns y in the symbol (54). This is not a fatal flaw. It 
may be resolved as follows: Let us order the patterns p by the rule given in (28): 

Y 
(58) 

We now define the symbol (54) to be zero under the following conditions: 

(59) L=v+A, where A is a weight of p; 
A( ;)=A* Y = Y 1 ~ Y 2 2 r " ' . Y ~ ~ , v , v + ~  . 

By this definition, we now obtain the required number of WCG-coefficients. In the way 
of nomenclature, the patterns y are referred to as operator patterns because of their role 
in enumerating unit tensor operators, where all dimp patterns are essential, and the 
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weight A is called a shift-weight because of its role in shifting from the partition v to the 
partition A .  

The rule (59) for general n is ad hoc. Its merit rests on two points: For n=2,3, the 
concept of the characteristic null space of a unit tensor operator ( [l], [23], [25]-[28]) 
provides a natural ordering in agreement with (58); even if there is no natural ordering, 
the patterns are universal in the sense that it is aways a subset of the full set, the full set 
containing dimp patterns, that effects the labeling, and in denumerably many cases all 
are required. 

It was always Biedenharn's belief that there exists a natural definition of unit tensor 
operators such that the zeros would fall into place automatically. It is my position that 
even should this fail, the concept of operator pattern is the most important structural 
notion introduced into the delineation of the WCG-coefficients of U(n). When it comes 
to the definition of the Racah coefficients of U(n), operator patterns are indispensible. 

The following structural result, known as the factorization lemma [1],[25], [29], is 
among the most important general relations for V(n). The orthogonal matrix C is moved 
to the right-hand side in (53) to obtain 

where the square-bracket coefficient is a sum of double WCG-coefficients given by 
I' m' q' Y 

Using the inner product (1 1) gives: 
1' m' q' 

( P l ~ , , P ~ m . P q v q ' ) = M ( I )  

The left-hand side of this expression may be given in terms of the coefficients in the 
expansion (16), hence, the right-hand side of (62) may be considered known. The basic 
question is: Does there exist a natural structure, as discussed above, that allows one to 
take "apart" the summation over operator patterns in (61) to obtain the WCG-coefficients 
themselves? The answer is yes for n =2,3. 

3.1. Combinatorial and special function aspects 

(44) gives the classical Schur function identity: 
(1) Relation (60) is referred to in the mathematical litertaure as linearization. Use of 

s p ( ~ ) s v ( ~ )  = Xgpvasa (XI. (63) 
a 

(2) The Littlewood-Richardson numbers may be expressed in terms of the Kostka 
numbers 
in (57) by 
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where A is a shift-weight of p such that v+ A is a partition, and the action of A E S, on 
an n-tuple a = (a1,a2, ..., a,),denoted a 0 A ,  is defined by 

a 0 A = (az, - + l,az2 - n2 + 2 ,..., azn - A, + n), 
(65) n:(1,2 ,..., n) + (7q,A2 ,..., An). 

gP,,,,+A E {0,1, ..., K ( p , A ) } ,  each partition v. 

Relation (64) allows one to investigate the properties of the Littlewood-Richardson 
numbers. It is known that 

The determination of the set of all v such that gP,v,v+A = k, 0 I k I K(p,A)},is very 
important for the labeling problem of the WCG-coefficients of U(n), as discussed in 
(56)-(59) above. Only partial progress has been made so far in [23] and in the important 
work by Baclawski [30]. This is a fascinating problem in pure combinatorics. 

(3) For SU(2), the combinatorial problems and special function aspects of WCG- 
coeffcients and the associated 3n - j coefficients are almost boundless when one 
considers the reduction into heducibles of multiple Kronecker products. This leads to 
the Biedenharn-Elliott identity, which inspired Askey and Wilson toward their synthesis 
of orthogonal polynomials. One encounters here the fascinating relelationship between 
3n - j coefficients, labeled binary trees, Cayley trivalents trees, cubic graphs, triangle 
polynomials, and generating functions. There is no space here to discuss this, and we 
refer to [7] and [9] for a recent accounting. For U(n),there is almost nothing known 
about multiple Kronecker products. 

(66) 

5. Biedenharn’s Abstract Theory of Unit Tensor Operators 

Larry Biedenharn discovered many of the abovefacts, and used them to invent a 
comprehensive theory of tensor operators. We take a quite pedestrian approach here and 
regard the WCG-coefficients of U(n) as known, although this is not necessary. 
Biedenharn recognized that while the Gel’fand patterns encode a Weyl group-subgroup 
property, the patterns y encode an entirely different kind of information: these patterns 
encode a sh@ action associated with a weight of partition p in going from partition v to 
the partition A, = v+ A E p x v. In order to give an operator formulation of this, we 
assume as given a vector space H ,  of d i m H ,  = dim v, given by the Weyl dimension 
formula (29), on which there is defined an action of U(n) such that 

where an orthonormal basis of H v  is given by the set of ket vectors 

(68) I B,  = { I i) 1 q runs over all Gel’ fand patterns 

These are, in fact, not assumptions, since one already has at hand many such vector 
spaces as given by the normalized polyomials 

on which one fixes q’ and chooses Tu to be the left action & (see (14), (40), and (43)). 
One can interpret the right action in (43) similarly. 
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In order that the shift action intrinsic to the shift-weight A of a pattern y map a vector 

space into a vector space, we introduce the model Hilbert space as a direct sum of 
perpendicular spaces H,, each taken exactly once: 

H = Z @ H , , .  (70) 
V 

We now define shift operators mappings of H into H as follows: 

It is then a consequence of the definition of the WCG-coeficients that: 

A set of operators - 

{ ( E )  1 rn runs over all Gel' fand patterns (73) 

with the transformation property (72) constitute what physicists call an irreducible tensor 
operator of U(n).  Each pattern y, dim p in number, gives a tensor operator (73) with 
dim p components. The term unit tensor operator originates from the fact that the 
WCG-coefficients in the definition (7 1) are elements of an orthogonal matrix, and an 
arbitrary tensor operator with the transformation property (72) is a sum of such unit 
tensor operators with coefficients that are invariants under the action of U(n) . 

It cannot be emphasized too strongly that all operator patterns y, dim p in number, 
enter into definition (71), the seros of the WCG-coefficients being associated with entire 
vector spaces lying in the null space of such an operator. It was this approach, through 
tensor operators, that led Biedenharn to the introduction of operator patterns. 

It is not my intention here to go further into the properties of U(n) WCG- coefficients, 
except to note that all their properties flow from the definition (7 1). Some new ideas are 
presented in [31]. In the mid-seventies, attention shifted to the detailed construction of 
the U(3) WCG-~oefficients[32]-[36], since the characteristic null space classification was 
complete. It was at this point that Max Lohe joined the efforts and was instrumental in 
advancing this subject. Here I will describe one small aspect of these difficult 
calculations because of the richness of mathematical constructs that emerged from them. 

6. Combinatorial Mathematics Originating from the Study of U(3) Unit Tensor 
Operators 

The flavor of the mathematics encountered in constructing the WCG-coefficients for 
U(3),  in both its difficulty and elegance, can be sensed by describing some of the 
properties of a very special family of polynomials that arises from just one small piece of 
the WCG problem for U(3). These are the G~(A~,A~,A3;x~,x~,x~)polynomials which 
are defined for each nonnegative integer q and each t = O,l,...,q . The quantity 
A = (A1,A2,A3) is the shift -weight of a U(3) unit tensor operator, .and the real variables 
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x = (XI, x2, x3) are arbitrary. The properties of these polynomials are developed in a 
number of papers [32]-[36]. They have the astonishing property of vanishing on the 
points of the general weight space associated with irrep (4 - t,O,-t + 1) of U(3) with the 
multiplicity of a given zero being equal to the multiplicity of the weight space point. Such 
weight space points may be positioned in the Mobius plane (positive axes at 120" with 
coordinates determined by perpendicular projection onto the three axes) by the 
coordinates a = (a1 , a2, a3), 

(74) 
obtained by letting a = ( al, a2, a3)run over all weights of inep (4 - t, 0, -t + 1). The 
multiplicity of the weight space point a = 'al,a2,a3) is given by 

(75) 
where d,(a)is the "distance" from the lattice point a to the nearest boundary of the 
weight space diagram, measured along the appropriate coordinate axis (1 lattice spacing = 
1 unit of distance). We then have that 

a1 =A3 - t+ l -a1 ,a2  =-A2 -A3+q- l -a2 ,a3  =A2 - t + l - a 3 ,  

a )  = min(t,q - t + l,i + dt ( a ) ) ,  

Gi (6; a)  = 0, each point a of the weight space, (76) 
where the multiplicity of the zero a is Mi(6;a). The polynomial Gi(&x) also vanishes 
at some lattice points obtained from the weight space diagram by symmetries, but at no 
other lattice points in the Mobius plane. Moreover, each polynomial G;(A;x)is 
irreducible in that it cannot be factored over the lattice points of the Mobius plane. 

difficult subject here because it was the "source" of some quite nice combinatorial-like 
mathematics that arose from our studies of the symmetries and zeros of the G;(A;x) 
polynomials, which we now mention briefly. 

hypergeometric Schur functions: These functions combine certain hypergeometic 
coefficients with the classical Schur functions SA (x1,x2,...,xn): 

The polynomials Gi (A;x)  have been given explicitly [32]-[36]. We mention this quite 

where the hypergeometric coefficient depends on p numerator parameters 
a = (al ,a2,-- . ,ap) and 4 denominator parameters b = (lq,&,...,bq)and is defined by 

in which (z)k = z (z  + l)..-(z + k - l),k = 0,1,... with ( z ) ~  = 1, denotes a rising factorial. 
The functions 231(a;b;x) were introduced in [37] (It turns out they has been discovered 
in a completly different context by James [38]). These functions and their generalizations 
(77) have been studied extensively [39 I-[41]. 
*factorial Schur functions: These functions arose from our studies of the symmetries 
of the G;(&x)polynomials, and some of their properties are presented in [42]-[45]. The 
factorial Schur functions are polynomials in n indeterminates z = ( Z I , Z ~ , . . . , Z , )  and are 
defined in terms of the set of Gel'fand patterns 
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Ga = { (1)1 all m satisfying the betweenness conditions 

by the following formulas: 

(79) 

In this last relation, we have ;lj = mi,n. These functions may be written in a number of 
alternative forms paralleling the standard Schur functions and have turned out to be quite 
interesting for combinatorial mathematics [46]-[49]. 

7. Concluding Remarks 

I have reviewed (rather too quickly, I fear) one small corner of the many-faceted 
interests of Lawrence C. Biedenharn and tried to illustrate the unique viewpoints that he 
brought to all of his research, viewpoints deeply rooted in an intuitive geometrical and 
quantum world-view that guided him to the basic foundations of a subject, perspectives 
that often eluded others. 

I have not touched on his work, mostly in nuclear physics, prior to his moving into 
the field of symmetry and its applications, nor have I mentioned the papers with Le 
Blanc, Hecht, and Rowe, exploring the use of the coherent state approach to unitary 
groups and WCG-coefficients, his work with Gustafson and Milne on a class of U(n) 
generalizations, nor his work with Johndale Solem in gamma ray lasers, to mention a few 
omissions. 

I need also to remark that Larry, with the help of Max Lohe, and many colleagues 
present here today, have made enormous advances in recent years in giving the q- 
versions of much that I have mentioned in this lecture. 

Finally, I apologize to the numerous investigators whose contributions to unitary 
symmetry have been enormous, and whom I have not mentioned, since it was my 
intention not to review the field, but to try to give a coherent picture of the Biedenharn 
approach. 

foundation to the subject that I have just reviewed. 
One of my own goals is to continue Larry's work by bringing a f m  combinatorial 
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