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Development of an Integrated System for Estimating Human Error 
Probabilities 

Jack L. Auflick”, Heidi A. Hahn and Jerome A. Morzinski 

Abstract 

This is the final report of a three-year, Laboratory Directed Research and 
Development (LDRD) project at the Los Alamos National Laboratory 
(LANL). This project had as its main objective the development of a 
Human Reliability Analysis (HRA), knowledge-based expert system that 
would provide probabilistic estimates for potential human errors within 
various risk assessments, safety analysis reports, and hazard assessments. 
HRA identifies where human errors are most likely, estimates the error rate 
for individual tasks, and highlights the most beneficial areas for system 
improvements. This project accomplished three major tasks. First, several 
prominent HRA techniques and associated databases were collected and 
translated into an electronic format. Next, the project started a “knowledge 
engineering” phase where the expertise, i.e., the procedural rules and data, 
were extracted from those techniques and compiled into various modules. 
Finally, these modules, rules, and data were combined into a nearly 
complete HRA expert system. 

Background and Research Objectives 

Human reliability analysis (HRA) is defined as the prediction and evaluation of 
work-oriented human performance in probabilistic terms, using indices like error 
likelihood, probability of task accomplishment, or response time. As an empirical 
approach, HRA is applied to activities having a goal, a set of fixed procedures that 
personnel perform to accomplish that goal, and some consequence of the performance that 
can be used to determine success. Systematic HRAs allow analysts to examine human- 
machine relationships, identify error-likely situations, and provide estimates of relative 
frequencies for human errors on particular critical tasks, highlighting the most beneficial 
areas for system improvements. 

(HEPs) is generally combined with component reliabilities according to the configuration of 
the system and its operational flow. Functional sequences of events are then modeled by 

The output for a given HRA, Le., specific individual human error probabilities 
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failure paths through event or fault trees, where the HEPs are combined with the 
component failure probabilities to synthesize an estimated failure rate for the system of 
concern. 

Today HRA consists of at least 40 different methodologies that are used to analyze, 
predict, and evaluate human performance in probabilistic terms. The HRA practitioner is 
confronted with a bewildering set of choices arising from the different philosophical 
approaches of the various techniques. As a result of this confusing array, a majority of 
analysts tend to rely on the most common methods, such as the Technique for Human 
Error Rate Prediction (THERP) [ 11, two methods based on Human Cognitive Reliability 
(HCR) [2], or the four (pre-accident screening and nominal and post-accident screening 
and nominal) Accident Sequence Evaluation Program (ASEP) techniques [3] , despite the 
fact that the chosen technique may not be appropriate for that particular analysis. Lack of 
human performance data, unskilled analysts, and the poor selection or improper application 
of methodology all can produce invalid probabilistic estimates of human performance, 
which in turn could have severe consequences related to the occurrence of unanticipated 
accidents causing injury, death, or property damage. 

developed, HRA-centered, knowledge-based expert system that will help with the 
estimation of HEPs for specific human error actions during the quantification phase of a 
risk assessment. This expert system has several distinct advantages. First, the expert 
system combines the “expertise” of several HRA experts and associated data for human 
error rates. In doing this, it also helps disseminate that problem solving expertise to 
minimally trained HRA end users that have been tasked with doing HRA. In addition, this 
knowledge-based system helps improve the validity and reliability of a given HEP by 
standardizing the conclusions for a given set of data. Next, because the software already 
contains the various rules and data, it can free the end user from repetitive routine HRA 
quantification tasks (e.g., thumbing through numerous techniques and pages of data to find 
the most relevant HEP, given the situation of interest). Additionally, by combining the 
most common techniques, their rules, the human performance data, and HRA expertise, the 
expert system helps to codify HRA quantification techniques for future users. Finally, this 
knowledge-based expert system provides an effective training tool for less experienced 
HRA practitioners. 

To address these situations, Los Alamos National Laboratory (LANL) has a newly 

At this time, this expert system includes the well known core HRA techniques 
mentioned above, Le., HCR, ASEP, THERP, and a newly developed Bayesian method 
[4]. Using Bayes’ Theorem permits HRA analysts to combine expert opinions, 
probabilistic estimates, and real plant-specific failure data, producing a refined HEP that 
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captures the operational environment within the specified facility or system. This expertise 
is contained in approximately 1500 if/then rules with about 200 various qualifiers and 
variables. Additionally, this tool contains numerous hypertext links that will enable end 
users to access various HRA definitions, assumptions, and rules associated with a specific 
technique or the derivation of the final HEP. 

As each methodology was modeled and added to the core, it went through an 
extensive validation process that had several critical goals. First, it ensured that the 
knowledge engineering had extracted the correct rules from the various techniques. Next, 
the validation ascertained whether those rules were fired in a sequence that resulted in a 
valid HEP (based on the underlying assumptions within that technique). Finally, the 
validation process verified that the inference engine driving the expert system produced the 
mathematically and theoretically correct results. 

As the prototype system moves toward completion, this HRA quantification tool: 
(1) affords users the opportunity to access available HEPs relevant to their situation, (2) 
helps determine a best match between available data and specific situations, and (3) 
provides one or more relevant HEPs with subjective confidence estimates regarding their 
utility in the present circumstances. Finally, as envisioned, future improvements could 
incorporate other viable HRA techniques as well as various risk assessment tools, such as a 
graphical user interface capable of drawing fault and event trees. Exactly what that suite of 
tools should contain remains to be determined. 

Importance to LANL’s Science and Technology Base and National R&D 
Needs 

The development of this Human Reliability Assessment (hereafter referred to as 
H u m )  expert system interacts with several of LANL’s and DOE’S core competencies. 
Specifically, LANL’ s Analysis and Assessment core competency integrates basic theory 
and experimental data across multiple disciplines to allow independent and unbiased 
assessments of complex systems. HuRA’s creation addressed the development of new 
methods for performing a HRA, which was called out as a potential area of study in the 
Human-System Integration thrust area. In addition, HuRA’s evolution led to the creation 
of a new, validated Bayesian HRA technique [4]. 

scientific management of the United States’ stockpile of nuclear weapons requires 
assessing human performance in areas where “real” data are hard to find (e.g., weapon 
disassembly). Having a workable expert system to produce enhanced human performance 
estimates and the ability to use those estimates in modeling the human’s contribution to 

As a result, this system will be particularly useful to analysts at LANL where the 
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system performance can result in refined and defensible risk assessments, safety analysis 
reports, and hazard assessments within the LANL and DOE missions. This addresses the 
Laboratory’s core competency in Theory, Modeling, and High Pe$omnce  Computing . 
Because of its flexibility and ability to generalize this unique tool, HuRA also offers the 
same benefits to the United States Nuclear Regulatory Commission, the Department of 
Defense, or any other general industrial or manufacturing industry that uses risk and hazard 
assessments as part of our government’s regulatory process. 

Scientific Approach and Accomplishments 

1. 

2. 

3. 

4. 

5 .  

An increasing number of human factors experts around the world are reaching the 
same conclusion, Le., that human error is the principle cause of most catastrophic accidents 
within complex systems. As can be seen in Figure 1, these same experts estimate that in 
today’s complex operational environments, fully 90% of all accidents can be attributed to 
human error. Because these mistakes made by people are often the drivers for risk in 
complex systems, it is very important to be able to identify and model error-likely situations 
and to provide a quantitative estimate for the likelihood of human error actions. 

evaluate work-oriented human performance in complex systems. As a diagnostic tool, 
HRA can be used to identify those factors in the system that lead to less than optimal 
human performance and can estimate the error rate anticipated for individual tasks. In a 
given system or subsystem, HRA can also be utilized to determine where human errors are 
likely to be most frequent. While HRA had its beginnings in the reliability engineering 
paradigm of the 1950s, today’s HRA practitioner generally uses a basic eleven-step 
methodology [5] shown in Figure 2 and summarized below. 

HRA then, is the collection of methodological tools used to analyze, predict, and 

Select the risk analysis team (usually composed of risk assessment and HRA analysts) 
and train them on relevant plant functions and systems. 
Familiarize the risk assessment team with the plant through the use of system 
walkdowns, simulator observations, etc. 
Ensure that the full range of potential human actions and interactions is considered in 
the analysis. 
Construct the initial model (using event and fault trees) of the relevant systems and 
interactions. 
Identify and screen specific human actions that are significant contributors to the safe 
operation of the plant. This is done with task analyses, time-line analyses, observations 
of operator performance in the plant and in the simulator, evaluations of the human- 
machine interface and quantitative screening analyses. 
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6. 

7. 

8. 

9. 

Develop a detailed description of the important human interactions and associated key 
factors necessary to complete the plant model. This description should include the key 
failure modes, an identification of errors of omissiodcommission, and a review of 
relevant performance shaping factors. 
Select and apply appropriate Hl2A techniques for modeling the important human 
actions. 
Evaluate the impact on system performance using the significant human actions 
identified in Step 6. 
Estimate error probabilities for the various human actions and interactions, determine 
sensitivities, and establish uncertainty ranges. 

10. Review results (for completeness and relevance). 
1 1. Document all information necessary to provide an audit trail and to make information 

understandable. 
Accurate identification, modeling, and quantification of human error actions can 

identify root causes of human error and point to measures to improve system safety and 
performance. Such improvements may reduce system risk by several orders of magnitude. 
Given this, HuRA (LANL’s HRA-centered expert system) was designed to be an effective 
tool for analysts during steps five through nine of the HRA process described above. 
Depending on the way a user answers queries from HuRA, the expert system’s inference 
engine helps analysts describe, characterize, and quantify individual human error actions as 
well as determines an appropriate HRA technique (based in part on the amount of available 
human factors data and the expertise of the analyst). HuRA’s resulting human error 
probability (HEP) also considers the operational characteristics of the system, the task to be 
performed, operator characteristics, and various performance shaping factors that either 
increase or decrease the likelihood of human error in situations of interest. 

HUM’S expertise derives from its extensive HRA knowledge base and the data that 
was derived during the knowledge engineering phase of development. As mentioned 
earlier, this knowledge engineering activity collected seven of the most common and widely 
used HRA techniques, as well as creating the new Bayesian method, and then extracted the 
various procedural rules, assumptions, and human error data from each technique. This 
information was then reformed into the assorted qualifiers and variables within the 
knowledge base. As it exists today, that knowledge base has approximately 1500 if-then 
rules that generate the queries which are, in turn, inputs that drive the inference engine. 

HuRA’s reasoning ability stems from the interaction between user input, the 
knowledge base, and the internal inference engine. In the existing prototype, the inference 
engine uses answers from queries (i.e., the if-then rules derived from the qualifiers and 
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variables) to select a technique and calculate an acceptable HEP. Drawing inferences, or 
reasoning, is driven in a backward chaining mode. This simply means that the inference 
engine first tries to reach one of eight goal states, e.g., the correct calculation of a HEP for 
each of HUM’S eight techniques. If there is insufficient information to reach a goal, then 
HURA “backs up” @e., backward chains) to the first qualifier and begins to sequentially 
fire each of the 1500 rules using the answers from the queries to collect data. When 
sufficient information can be extracted from the answers to the queries, H U M  reaches a 
conclusion where it calculates a practicable HEP and provides an estimate of “confidence” 
in the result. As used here, confidence is a subjective measure of correctness or accuracy 
ranging on a scale of 0 (no confidence) to 10 (very high confidence from almost perfect 
data), given the operational characteristics of the system, the task to be performed, operator 
characteristics, and various performance shaping factors. When a user has more human 
performance data coupled with human factors and risk assessment expertise, confidence in 
the result is higher (in a range from 7-9) than when the analyst has little data and little or no 
human factors and risk assessment experience. In the event that the qualifiers don’t 
provide sufficient information, HuRA asks the user for specific input, which will then be 
used to reach a goal state. 

In the development of this knowledge-based expert system, HuRA also had to deal 
with several problem areas within the domain of HRA. In the past, HRA has been 
criticized with respect to questions about its predictive validity [6], i.e., that HRA is able to 
predict, within tolerable margins of uncertainty, the actual number of accidents that could 
occur in specific situations. This criticism stems in part from the many of the HRA 
techniques’ lack of operational data from real situations. On the other hand several reports 
show that the use of THERP-based techniques (i.e., THEW and ASEP) and carefully 
structured sessions of expert elicitation can produce acceptable levels of predictive validity 
[7,8]. HuRA deals with this situation by including the new approach that utilizes Bayes’ 
Theorem in conjunction with 1) a derived HEP using one of the seven core techniques, 2) 
the data from expert elicitation, and 3) real, plant-specific, operational failure data [4]. 

Bayes’ Theorem uses deductive reasoning to weigh prior information with 
empirical evidence allowing HuRA users to calculate probabilities of causes based on the 
observed effects. Specifically, Bayes’ Theorem states that the odds in favor of a given 
hypothesis, after a piece of data is acquired (the posterior probability), should be equal to 
the prior odds (our knowledge about the “hypothesis” before obtaining plant-specific 
knowledge), multiplied by the likelihood ratio (the conditional probability of the additional 
data given the hypothesis). Using Bayes’ Theorem within the context of HRA and HuRA 
provides an optimal model of how revisions to probabilistic HEP estimates should be 
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carried out as plant specific operational data are factored into the analysis. HuRA’s 
Bayesian approach has been validated and presented at the Energy Facility Contractors and 
Owners Group (EFCOG) Conference [9] and at the International Probabilistic Safety 
Assessment and Management Conference [4], as well as in a prototype demonstration at the 
40” Annual Meeting of the Human Factors and Ergonomics Society [lo]. 

about HRA’s convergent validity, a measure of correlation between the results of a HRA 
carried out by using different methods or between different analysts using the same 
methods. For example, The Human Factors Reliability Benchmark Exercise [ 1 11 found 
that quantitative results from its validation exercise differed by a factor of 10 or more 
between teams using the same technique or between teams using different HRA methods. 
Apparently, unskilled analysts and the poor selection or improper application of 
methodology can produce invalid or questionable probabilistic estimates of human error. 
In its review of HRA convergent validity studies. The European Advisory Committee on 
the Safety of Nuclear Installations (ACSNI) addresses this problem by stating: “It seems 
likely that the discrepancies between different assessors could be reduced by training, 
practice, and feedback.. .” [6]. 

contains a large number of hypertext links that will, in the case of questions, take users to 
moderately detailed explanations of underlying assumptions, methodology, warnings, 
limitations, or HRA jargon. In addition, most of the confusing assumptions and differing 
HRA philosophies for each technique were extracted during the knowledge engineering 
phase of development and were then incorporated into the qualifiers, variables, and the 
1500 if-then rules in the knowledge base. This functionality was intended to provide 
essential information, if needed, for the less-than-experienced end user that may not have 
the requisite training and experience to be using a particular HRA technique. Although not 
yet implemented, HuRA has the ability to develop context-sensitive Help screens for each 
variable and rule in the knowledge base. When implemented, this functionality could 
provide further on-line guidance with respect to the information required to answer specific 
queries generated by the inference engine. Finally, as part of the implementation phase, 
most of the confusing assumptions and bewildering sets of rules were implicitly 
incorporated into the qualifiers, which in turn are often explicitly presented to the user in a 
simple binary Yes-No fashion or in various tables. As the user answers the Yes-No 
questions, or selects an alternative from a list of choices, the inference engine begins to 
“reason”, based on the user’s inputs. 

In addition to worries about predictive validity, there are also generic concerns 

HuRA’s design and implementation also address these issues. Specifically, H U M  
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In its essence then, the expert system combines the “expertise” of several HRA 
experts and passes that problem solving ability to minimally trained (or even expert) HFU 
end users that have been tasked with doing HRA. Depending on the way that users answer 
the queries, HuRA determines which technique is appropriate and proceeds toward the goal 
of deriving an appropriate HEP. If the user answers “I don’t know”, i.e., indicating that 
they have insufficient task analysis and human factors information to answer the query, 
HuRA by default, tells the user that they don’t have the requisite information to be using 
the selected technique and then returns a screening HEP &e., a very conservative, high 
numeric value of 0.005,0.05, or 0.5) depending on whether the human error action was 
either skill-, rule-, or knowledge-based behavior [ 12, 131. By trying to reduce end user 
confusion and error, and by providing implicit HRA expertise, this knowledge-based 
system helps to improve the validity and reliability of a given HEP by standardizing the 
conclusions for a given set of data. Additionally, because the software already contains the 
various rules and data, it frees the end user from repetitive, error prone, HRA 
quantification tasks (e.g., thumbing through numerous techniques and pages of data, trying 
to understand the rules and assumptions, then applying those rules and assumptions with 
the various performance shaping factors from the situation of interest to find the most 
appropriate HEP). Additionally, by combining the most common techniques, their rules, 
the human performance data, and HRA expertise, HuRA helps to codify its core HRA 
quantification techniques for future users and as a result of this, it provides an effective 
training tool for less experienced HRA practitioners. 

unique, flexible, generalizable, state-of-the-art risk assessment tool within the risk 
assessment and human factors community. This HRA quantification tool provides end 
users with the ability to access available HEPs relevant to their situation, providing 
pertinent HEPs with confidence estimates regarding their utility in the present 
circumstances. In doing so, HuRA also helps determine a best match between available 
data, specific situations, and an appropriate HRA methodology. As a result, this system 
will be particularly useful to analysts at LANL where the scientific management of the 
United States’ stockpile of nuclear weapons requires assessing human performance in areas 
where “real” data are hard to find (e.g., weapon disassembly). Having a useable expert 
system to produce enhanced human performance estimates and the ability to use those 
estimates in modeling the human’s contribution to system performance augments the 
validity and reliability of estimates of human error within a system. As a result of this, 
HuRA will enhance, refine, and help defend various risk assessments, safety analysis 
reports, and hazard assessments within LANL and DOE as well as in other general 

At this point H u m ,  LANL’s knowledge-based HRA expert system appears to be a 
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industrial or manufacturing industries that are required to use risk and hazard assessments 
as part of our government’s regulatory process. 
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