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LARGER BASES AND 
MIXED ANALOGDIGITAL NEURAL NETS 

VALERIU B E N  
Los Alamos National Laboratory, Division NIS-I, MS 0466 
Los Alamos, New Mexico 87545, USA (e-mail: beiu8lanl. gov) 

ABSTRACT: 
The paper overviews results dealing with the approximation capa- 
bilities of neural networks, and bounds on the size of threshold gate 
circuits. Based on an explicit numerical algorithm for Kolmogorov’s 
superpositions we will show that minimum size neural networks- 
for implementing any Boolean function-have the identity function 
as the activation function. Conclusions and several comments on the 
required precision are ending the paper. 

INTRODUCTION 

In this paper a network is an acyclic graph having several input nodes, and some (at 
least one) output nodes. If a synaptic weight is associated with each edge, and each 
node computes the weighted sum of its inputs to which a nonlinear activation function 
is then applied: f ( X I ,  . . . , xA) = 0 ( C i t ,  wi xi + e), the network is a neural network 
(NN), with wi the synaptic weights, 8 known as the threshold, A being the fan-in, and 
CT a non-linear activation function. NNs are commonly characterised by: depth (i.e., 
number of layers), and size (i.e., number of neurons). 

The paper starts by overviewing results dealing with the approximation capabili- 
ties of NNs, and details upper and lower bounds showing that arbitrary Booleanfunc- 
tions (BFs) require exponential size threshold gate (TG) circuits (TGCs). Based on a 
constructive solution for Kolmogorov’ s superpositions, size-optimal NNs for imple- 
menting any BF, the nonlinear activation function of the neurons is the identity func- 
tion. Because both Boolean and TGCs require exponential size, it  follows that 
size-optimal implementations of BFs can be obtained only in analog circuitry. Conclu- 
sions, and several comments on the required precision are ending the paper. 

PREVIOUS RESULTS 

NNs have been experimentally shown to be quite effective in many applications (see 
Applications of Neural Networks in (Arbib, 1995), and Part F and G from (Fiesler & 
Beale, 1996)). This success has led researchers to undertake a rigorous analysis of 
their mathematical properties and has generated two directions of research for finding: 
( i )  existencekonstructive proofs for the ‘universal approximation problem ’; (ii) tight 
bounds on the size needed by the approximation problem. The paper will focus on 
both aspects, for the case when the functions to be implemented are BFs. 

On leave of absence from the “Politehnica” University of Bucharest, Computer Science Department, 
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Neural Networks as Universal Approximators 
The first line of research has concentrated on the approximation capabilities of NNs 
(Blum & Li, 1991; Ito, 1991). It was started by Hecht-Nielsen (1987), Lippmann 
(1987), and LeCun (1987), who were probably the first to recognise that the specific 
format in (Sprecher, 1965)f(x,, ..., x,) = I:::; { Q q  [xp21 a , ~ ( x , + q a ) ] }  of 
Kolmogorov’s superpositionsf (x 1, . . . , x,) = I: 2 n + 1  q = l  Q, (y q )  (Kolmogorov, 1957) can 
be interpreted as a NN with one hidden layer. This gave an existence proof of the ap- 
proximation properties of NNs. The first nonconstructive proof was given by Cybenko 
(1989) using a continuous activation function, and was independently presented by 
hie and Miyake (1988). Thus, the fact that NNs are computationally universal when 
modifiable connections are allowed, was established. Different enhancements have 
been later presented (for details see (Beiu, 1998~;  Scarselli & Tsoi, 1998)): 

Funahashi (1989) proved the same result in a more constructive way and re- 
fined the use of Kolmogorov’s theorem in (Hecht-Nielsen, 1987), giving an 
approximation result for two-hidden-layer NNs; 
Hornik et al. (1989) showed that the continuity requirement for the output 
function can partly be removed, and later (Hornik et al., 1990) proved that a 
NN can approximate simultaneously a function and its derivative; 
Park and Sandberg (1991) used radial basis functions in the hidden layer, 
and gave an almost constructive proof; 
Hornik (199 1) showed that the continuity requirement can be completely re- 
moved, the activation function having to be ‘bounded and nonconstant’; 
Geva and Sitte (1992) proved that four-layered NNs with sigmoid activation 
function are universal approximators; 
KCrkovA (1992) has demonstrated the existence of approximate superposi- 
tion representations within the constraints of NNs, i.e. y~ and Q, can be ap- 
proximated with functions of the form I: a, CJ (b, x + c,); 

0 Mhaskar and Micchelli (1992) approach was based on truncating the infinite 
sum of the Fourier series of the function to a finite set, and rewriting e ’& in 
terms of the activation function; 

0 Koiran (1993) presented a more general proof than (Funahashi, 1989), as it 
allows the use of units with ‘piecewise continuous’ activation functions; 

0 Leshno et al. (1993) relaxed the condition for the activation function to ‘lo- 
cally bounded piecewise continuous’ ; 

0 Hornik (1993) added to these results by proving that: (i) if the activation 
function is locally Riemann integrable and nonpolynomial, the weights and 
the thresholds can be constrained to arbitrarily small sets; and (ii) if the ac- 
tivation function is locally analytic, a single universal threshold will do; 

0 Barron (1993) described spaces of functions that can be approximated by 
the relaxed algorithm (Jones, 1992) using functions computed by single- 
hidden-layer networks of perceptrons; 

0 Attali and Pagh (1997) provided an elementary proof based on the Taylor 
expansion and the Vandermonde determinant, yielding bounds for the de- 
sign of the hidden layer and convergence results for the derivatives. 

All these results-except partly (Park & Sandberg, 1991; KiirkovB, 1992; Barron, 
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1993; Koiran, 1993))-were obtained provided that sufficiently many hidden units are 
available. More constructive solutions have been obtained in small depth (Nees, 
1994), but their size still grows fast with respect to the number of dimensions and/or 
examples, or with the required precision. Recently, an explicit numerical algorithm for 
superpositions has been detailed (Sprecher, 1996,1997). 

Threshold Gate Circuits 
The other line of research was to find the smallest size NN which can realise an arbi- 
trary function given a set of m vectors from R". Many results have been obtained for 
TGs (Minnik, 1961). The first lower bound on the size of a TGC for almost all n-ary 
BFs was size 2 2 (2 " /n)  'I2 (Neciporuk, 1964). Later a very tight upper bound was 
proven in depth = 4: size 5 2 (2 " /n )  x { 1 + 

For classification problems, it was known that a NN of depth = 3 and size = 
m - 1 could compute an arbitrary dichotomy. The main improvements have been: (i) 
Baum (1988) presented a TGC with one hidden layer having rm /nl neurons for a set 
of m points in general position in IR"; if the points are on the corners of the n-dimen- 
sional hypercube, m - 1 nodes are still needed; (ii) a slightly tighter bound of only 
rl + (m - 2) /nl neurons in the hidden layer for a set of m points which satisfy a more 
relaxed topological assumption was proven in (Huang & Huang, 1991); the m - 1 
nodes condition was shown to be the least upper bound needed; (iii) Arai (1993) 
showed that m - 1 hidden neurons are necessary for arbitrary separability, but im- 
proved the bound for the dichotomy problem to m / 3; (iv) Beiu and De Pauw (1997) 
have detailed lower and upper bounds by estimating the entropy of the data-set 
2m/(nlogn) < size < 1.44m / n  (see (Beiu et al., 1998)). 

Bulsari (1993) has tried to unify these two lines of research by first presenting ana- 
lytical solutions for the general NN problem in one dimension (having infinite size), 
and then giving practical solutions for the one-dimensional cases (i.e., upper bounding 
the size). Extensions to the n-dimensional case using three- and four-layers solutions 
were derived under piecewise constant and piecewise linear approximations. 

[(2 " /n)  1'2]} (Lupanov, 1973). 

Boolean Functions 
The particular case of BFs has been studied intensively (Parberry, 1994; Beiu, 1998~). 
Many results have been obtained for particular BFs (Siu et al., 1991), but a size-opti- 
mal result for BFs that have exactly m groups of ones in their truth table LFn, ,,, was de- 
tailed by Red'kin (1970): "The complexity realisation (i.e., number of threshold 
elements) of En, + 3. " This result is valid for unlimited fan-in 
TGs. Departing from these lines, Horne and Hush (1994) have detailed a solution for 
limited fan-in TGCs: "Arbitrary BFs of the form f :{O, 1)" + (0, l}" can be imple- 
mented in a NN of perceptrons restricted to fan-in 2 with a node complexity of 
0 { m 2 / (n + logm)} and requiring 0 (n) layers. " 

is at most 2 (2m) 

SIZE-OPTIMAL IMPLEMENTATIONS 

It is known that arbitrary BFs require exponential size AND-OR circuits. As has been 
seen, the known bounds for size are also exponential if TGCs are used. These bounds 
reveal exponential gaps, and suggest that TGCs with more layers might have a smaller 
size (Beiu, 1998b; Beiu & Makaruk, 1998). 
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Figure 1: The PARITY problem: (a) TG solution; (b) approximating a 4-input BF (see (Beiu, 1998a)). 

XI Yo Y1 

A different approach is to use Kolmogorov’s superpositions, which shows that 
there are NNs having only 2n + 1 (size-optimal) neurons which can approximate any 
function. We start from (Sprecher, 1996, 1997): “Define thefinction u, : €+ gssuch 

where that for each integer k E N: u, (C. 
i, = i, - (y - 2) {i,) and rn, = {i,) { 1 + C [is] X. . . x [i, - 1] } for r = 1, 2, . . . , k. ” Here 
y 2 2n -t- 2 is a base, G= [0, 11 is the unit interval, 9 is the set of terminating rational 
numbers dk = r : l  i, y-, defined on k E N digits (0 I i, I y- 1). Also, {il) = [ill = 0, 
while for r 2 2: (i,) = 0 when i, = 0, 1, ..., y-  2, (i,) = 1 when i, = y- 1, [i,] = 0 when 
i,=O, 1, ..., y-3,while[ir]=1 whenir=y-2,y-1.  

If the functions to be ‘approximated’ are BFs, one digit is enough u, (0.Q = O.il, 
i.e., the identity function u, (x) = x. Such a solution builds simple analog neurons. 
They have fan-in A 1 2 n  + 1, for which the known weight bounds are (Myhill & 
Kautz, 1961; Parberry, 1994): 2 (A- 1)/2 c weight < (A+  1) (A+1)/2/2A ( A 2 4 ) .  
Thus, aprecision of between A, and A 1ogA bits per weight would be expected. Unfor- 
tunately, the constructive solution for Kolmogorov’s superpositions requires a double 
exponential precision for y, and ap = C rzl  y-@-l)(ar-l)/(fl-l). For BFs, this preci- 
sion becomes (2n + 2) or 2nlogn bits per weight, while analog implementations are 
limited to just several bits of precision (Kramer, 1996). A possible solution are algo- 
rithms relying on limited integer weights (Draghici & Sethi, 1997; Beiu, 1998a). 

Let us consider the PARITY function of four bits. It is known that PARITY can be 
implemented with three 2-input XOR ates, or with five 4-input TGs (Fig. l(a)). In 
general, a 4-input BF requires 2 I$ 16 + 3 = 11 TGs (Red’kin, 1970). A classical 
Boolean solution requires eight AND gates. Another solution would approximate a 4- 
input BF (Fig. l(b)). We consider two analog inputs: K, and yo. Fig. 2(a) pre- 
sents the modified Karnaugh map, and Fig. 2(b) the solution. It has y = COMPARISON, 
and the inputs are “translated” with fixed constants. The 2n + 1 = 5 hidden functions 
are AND functions (@ = AND), while the addition is an OR function. 

- ( a ‘ - m r - l ) / ( n -  1) i, y-7 = C , _ k l  i, 2 -mr  y- 
u 

‘>OS ‘ ~ 2 5  

size = 10 

‘>0.5 ‘<2.5 k2.5 kO.5 

Figure 2: The PARITY problem: (a) modified Karnaugh map; (b) solution using COMPARISONS (C). 
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Due to the limited precision, an optimal should decompose the complex BFs in 
simpler BFs which can be implemented using Kolmogorov’s superpositions. The par- 
tial results from this first layer can be combined again using Kolmogorov’s superposi- 
tions. The final implementation will requires more than three layers. Thus, a 
systematic solution which would utilise silicon to the best advantage would be to re- 
write a given computation in a base larger than 2, and use Kolmogorov’s superposi- 
tions for the analog implementation of the digit-wise computations in this larger base. 

CONCLUSIONS 

Arbitrary BFs can be implemented using: (i) classical Boolean gates in exponential 
size; (ii) TGs in exponential size (still, there are exponential gaps between classical 
Boolean solutions and TG ones); (iii) analog building blocks in linear size (having lin- 
ear fan-in and polynomial precision weights and thresholds), the nonlinear activation 
function being the identity function. It follows that size-optimal hardware implemen- 
tations of BFs can be obtained only using analog (or mixed analog/digital) circuitry. 
The high precision required by Kolmogorov’s superpositions can be tackled by de- 
composing a complex BF into simpler BFs (equivalent to computing in a larger base). 
Due to the reduced number of inputs, Kolmogorov’s superpositions can be used to de- 
sign the analog implementations of the digit-wise computations in this larger base. 
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