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COMBINATORIAL ASPECTS OF REPRESENTATIONS OF U(n) 

James D.Louck 

Theoretical Division, Los Alamos National Laboratory 
Los Alamos, New Mexico 87545 USA 

(Dedicated to the memory of L. C. Biedenharn) 

Abstract. The boson operator theory of the representations of the unitary group, its 
Wigner-Clebsch-Gordan , and Racah coeffficients is reformulated in terms of the ring of 
polynomials in any number of indeterminates with the goal of bringing the theory, as 
nearly as possible, under the purview of combinatorial oriented concepts. Four of the 
basic relations in unitary group theory are interpreted from this viewpoint. 

1. INTRODUCTION 

It is convenient to formulate the theory of the family of unitary groups 
U(n), n = 1,2,. . . , in terms of the ring of all polynomials in any number of indeterminates 

(1.1) 
where we restrict our discusssion to the case in which the scalars are real or complex 
numbers. The inner product of two such polynomials P and P'is defined to be 

(1.2) 
where 

a / ~ ~ = ( a l ~ Z l , a l ~ ~ ~ ,  ..., alaz i ,  ...). (1.3) 

z = (21,22 ,... ,zi ,...), 

(V') = R a  I dz)P'(z)lz-, - , 
denotes the complex conjugate polynomial to P and 

For a comprehensive theory dealing with the unitary irreducible representations of 
. U(n) and its Wigner-Clebsch-Gordan (WCG) coefficients, there are two basic 

polynomials of interest together with the relationships that they satisfy. For the 
description of these results, it is convenient to introduce the following notations at the 
outset in which the variables xi and zd are commuting indeterminates: 

a = (al,a2 ,...,an), a! = nq! , q = nonnegative integer; 
i 

x = ( x ~ , x ~ Y . . . , x ~ ) ,  X =  = X I  =1 ~2 =2 ...xn an. 9 

A = (aU)l<i,j<,, , A! = nav!, ad = nonnegative integer; 

= (zd) ls , j<n 7 zA=n(zd )= i j  . 

(1.4) 
i j  

i j  
2 We also introduce an array T of n operators ti,r with i, z = 1,2,.-*,n, , where operators 

having the same column index z are commuting, but those of different column indices are 
noncommuting, in general: 

T = (ti,rki,r<n, T~ = n<ti,l)LI" n(ti,2lui2 * .*n( t i ,n)a in .  (1.5) 
i i i 

1 
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The first polynomial is denoted pmpmD(Z) and is a polynomial over the commuting 

indeterminates Z = (z~,~). The second polynomial is denoted WmpmD(T) and is a 
polynomial over the noncommuting operators T = (ti,z). Symbols such as 

m p m' =(% 1 and -..=(E 1 (1.6) 

denote double Gel'fand-Zetlin patterns, as explained below. It is the purpose of this paper 
to give precise meaning to each of the following relationships and give their 
interpretation in the context of the unitary group U(n) : 

0 

\e 4 
To explain these relations, we must first define the labeling symbols. 

2. COMBINATORIAL ENTITIES ENTERING INTO THE LABELING 
SCHEME 

Partition: 

Young frame of shape p = @l,p2, ...,pn) : An array of n rows of "boxes" of equal 
p = @l,p2 ,..., pn), p l 2  p2 2.2 J.Ln 2 0, pi an integer. (2.1) 

size with p1 boxes in the first (top) row, p2 in the second row, ...,p,, boxes in the 
n - th (bottom) row, where the boxes are justified to the left, and a 0 means no 
box. 

Standard Young-Weyl tableau: This is a Young frame with the boxes "filled in" 
with the integers 1,2, ..., n with repetitions such that the following rules are obeyed: 

The sequence of integers appearing in a given column is strictly increasing; 
The sequence of integers appearing in a given row is nondecreasing. 

contains the information for filling in every standard Young-Weyl tableau. It is 
written 

Gel'fand-Zetlin pattern: This is a triangular array of nonnegative integers that 

ml,3 '9,3 m3,3 
m1,2 ' 92  

ml,l 



e 

e 

e 
(2.3) 

row n: nmn,n 

We have the one-to-one relation expressed by 
{betweenness conditions} c) {standard tadeau conditions} 

n - tupleof nonnegative integers a = ( a 1 , a 2 , . . . , a n )  given by 
aj = number of j in tableau 

Content or weight of the standard tableau (Gel'fand pattern): This is the 

= (sum of entries in row j )  -(sum of entries in row j - 1) 

Kostka number K(p,a): This is the number of times weight a appears in all the 

Double-standard tableau / double Gel'fand pattern: The single triangular array 
standard tableaux of shape P .  

(Gel'fand pattern) (2.2) containing n rows is denoted by 

& which the single symbol m denotes a Gel'fand p a k m  of n-1 rows that "fits" 
below partition p . A double Gel'fand pattern is two patterns that share the same 
partition P :  

m' 
(2.6) Cr (E) and (L,): written: [ p ] with (z) inverted, or m m*' 

m 
It is these double Gel'fand patterns corresponding to partitions p, v, and A having n parts 
that appear in relations I-IV. 

Let us consider now in greater detail Relation I: 
Pmpm*(z)= x Cm p m* ( A ) z ~ / A ! .  (2.7) 

(a:Aa') 
The double Gel'fand pattern also labels the C-coefficients on the right, which is also 
labeled by the matrix arrary A of nonnegative integers: 

P 
m m  

C ,(A); A = (%j) , each aii a nonnegative integer. 

This coefficient is defined to be zero unless the array A has row sums a and column 
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sums a‘ as determined by the weights of the Gel’fand patterns (E) and ( :D);that is, 

row i:  xau =ai ; column j :  z a g  = aj . 
i i 

The summation 
c. 

(a:A:a’) 

(2.7) 

(2.9) 

is to be carried out over all such arrays A. 
The Knuth bijective algorithm ([l], [2]): This important result proves that the 

number of double Gel’fand patterns (double-standard tableaux) with given weights 
a and a‘ corresponding to all partitions p = (pl,p2, ...,pn) of a positive integer N 
equals the number of arrays A having fixed row sums a and fixed column sums a’: 

Mn (a, a’) = CK(p7 a)K(p, a’) (2.10) 
P+N 

It is this combinatorial identity that assures that the discretized functions 
(2.1 1) 

can be arranged into a square matrix of dimension Mn (a, a’), where row enumeration is 
given by the double patterns mpmD as p runs over all partitions of N, and for each such 
p , the patterns rn and rn’over all arrays having given weights a and a’,respectively; 
and column enumeration is given by the A running over all arrays having the row and 
columns sums corresponding to the given weights a and a’. 

These results complete the description of the meaning of the labels occurring in 
Relation I. We still must give the definition of the polynomials by defining the 
coefficients (2.8). We refer to these coefficients as discretized functions, since they may 
be viewed as follows: 

The CZmD are functions defined overthe nonnegative integers (au) 

We sometime refer to the C ’ (A)  as the discrete PmpmD(Z). Both of these objects 
carry labels that ate purely combinatoric in structure. 

satisfiing the square array conditions (a:A: a‘); 

m m‘ 
’ 

3. COMPLETE DEJ?INITION OF THE POLYNOMIALS P,,fmt 

We have described the meaning of the labels occurring in Relation I, but have still to 
define the objects themselves. We will not be able to do this explicitly, but only 
implicitly through a recursive definition of the discretized functions. But let us note 
that these polynomials are well-studied objects: They are the so-called boson 
polynomials discussed at great length in [2]-[9], where we have here renamed the boson 
operators a/ in those references to be the indeterminates zu. The natural boson inner 
product then gives exactly the same number as the inner product defined by (1.2), since 
the operator corresponding to the Hermitian conjugate boson (a!)* = ;{ is 3 / 3zu. The 
results we state here are transcriptions of themany of the known properties of the so- 
called boson polynomials, interpreted now in a new context. 
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Since we will be unable to give a fully explicit formula for the discretized functions, 

we state some of the many properties of the polynomials P t m t  and the Cm P mt , giving 

functions Pm P 
finally a recursive definition of the latter that defiies them uniquely, hence, also the 

3.1. Properties of the PmPmt(Z) 
.maximal polynomial: 

n 

k=l 
Pmax max (z)= n(detZk) P k - P k + l ,  pn+l = 0, (3.1) 

(3.2) 
where max denotes the Gel'fand pattern of weight p , and 

homogeneity: 
det Zk = k x k principal minor of Z. 

of degree ai in (zil,~i2,...,zin), 
of degree a; in (zlj,~2j,...,znj), 

2 of degree pl+p2+...+pn in all n variables. 
transposition and multiplication: 

P P  (zT> = (PP  (z)lT, T = matrixtransposition. 
P P  ( X ) P P  ( Y )  = P p  (XY); X and Y arbitrary. 

( P i  a P m mt = 6a,p6t , i6if ,mtM(A) 9 

.orthogonality in the inner product (1.2): 

where the normalization factor M ( A )  is given by 

(3.3) 

(3.4) 

M ( A )  = n(Ai + n- i ) !  n(Ai - A j  +pi)!. (3.5) 
i / i <  j 

This factor has a tableau interpretation in terms of hooks ( [ 31, Vol. 8. p. 236; 
Macdonald [lo], p.9). 

generating functions: 

fi[det(xTz)k]Pk-pk+l = ~ P m P m a x ( x ) P ~ m a ( z )  . 
k.=l m 

reduction property: 

(3.6) 
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3.2. Properties of the discretized functions C:m,(A) 

The first important property of these discretized functions is that in their normalized 
version 

they are the elements of a real orthogonal matrix and satisfy the following orthogonality 
relaltions: 

N (  m p m t ) ( ~ )  = [MU)] -1/2 ( A .  9-1/2c (mPmt) (A) ,  (3.10) 

(3.1 1) 

C, C , , N m  a m t ( A ) N m  a ,,(A')=6A,At,N=a1+...+an =a;+ ...+ a(,. (3.12) 
A W N  m,m 

These relations are a consequence of the known orthogonality relations for the boson 
polynomials. The fact that we are, indeed, dealing with a square, matrix is assured by the 
Knuth algorithm. 

The second important property of these discretized functions is that they may be 
generated recursively from the coefficients at level n - 1. We require some notations to 
given this recursive definition. Let p = 
partitions in which each part of p is at least as great as the corresponding part of 
v, that is, pi  2 vi. We define the abbreviated symbol on the left below in terms of the 
notation for a totally symmetric WCG-coefficient used in 21 and also in Section 5: 

,..., pn) and v = ( V I ,  v2 ,..., v,) denote 

(3.13) 

n 

i=l 
where k = I: ( p i  - vi ) . This WCG-coefficient is known explicitly (see [ 1 l]), although it 

is quite complicated. The notation on the left is complete in the sense that the pattern y 
and the pattern a are fully determined by the patterns 6) and (4') : 

(3.14) 

i al = C,(mii - qg), j = 1,2 ,..., n; and aii = 0,i = 2,3 ,..., j; j = 2,3,.-,n, 
i=l 
i 

Y l j  = C,& - vi), j = 1,2 ,..., n and yg = 0, i = 2,3 ,..., j; j = 2,3,--,n. 
i=l 

We also introduce an abbreviated notation for a totally symmetric reduced U(n):U(n - 1) 
WCG-coefficient. Let p and v denote partitions as in (3.13), and let p' and v' denote 
partitions satisfying p' 4 p and v' 4 v, where the symbol 4 denotes that the primed 
patrition lies between the unprimed one in the sense of row n - 1 and row n of a Gel'fand 
pattern. Then, we define the abbreviated symbol on the left below in terms of a standard 
notation ([6], [7]) for a reduced U(n):U(n - 1) coefficient by 

The operator patterns y and fare uniquely determined by the partitions 
p '+pandv'+v tobe 

(3.15) 
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i 

i 

yl = xui - vi), j = 1,2,- - , n; y~ = 0, i = 2,3,. . . , j ,  j = 2,3, .. . , n; 

Y i j  = x@i- vi),j=1,2,-.-,n; gj =O,i=2,3 ,..., j ; j=2,3 ,..., n-1. 
(3.16) i=l 

i=l . 
In terms of these notations, we have the following recurrence formula for the normalized n- 
coefficients defied by (3.10). This recurrence relation defines completely the general 
N -coefficient: 

For n = 2, this result re&ces to (using now thefirst (inverted) notation from (2.6)): 

in which the U(1) WCG-coefficients (vlllA1) and (Y;llA,) are both equal to 1, and the 
discrete coefficient for the representations of U(1) is N(Al)(all) = 6 ~ ~ , ~ ~ ~ .  Thus, we 
obtain 

where the C-coefficient to the right is an SU(2) WCG-coefficient (see [3] for this 
notation) with 

1 1 j = 71 vi, J = 2@1+ p2) - vi, j' = 

m = all - 71 vi, M = m'- m, m' = VI - 
- p2), 

(3.19) 
1 1 -p2). 

For n = 3, we have: 



8 

All C -quantities in these relations are SU(2) WCG-coefficients of the form in the right- 
hand side of (3.18). It is quite remarkable that the reduced U(3):U(2) WCG-coefficient in 
(3.20) is itself essentially an SU(2) quantity , at least for p3 = 0, where it may be shown 
to be a 6 - j symbol. This result may be regarded as the fundamental reason that SU(2) 
quanaities play an unexpected role in eqressions for the SU(3) WCG-comcients (see 
[ 121 and references therein). 

The genesis of the important recurrence relation (3.17 ), from which one builds all 
irreducibke unitary representations of U(n), indeed, the general polynomial (2.7), is an 
expression given in [2] ,eq. 2.28). It is only necessary in that result to identify the boson 
polynomial matrix with the matrix 2 of indeterminates. This relation gives a unique 
construction of all unitasy irreps of U(n) from those of U(n - 1). As pointed out in [ 121, 
this result is of fundamental importance. 
3.3. The unitary irreducible representations of U(n) 

As already indicated at the end of the last section, the significance of the polynomials 
P Z J Z ) ,  which are defined for all indeternates 2 = (zu) ,  is that when one chooses 
2 = U E U(n), one obtains the unitary irreducible representations of U(n) given by 

~~p~~ (u) = P,”,,(u), u E U(n); DP ( u ) D ~  (u’) = DP (VU’), 

All unitary irreps are then obtained &om these by multiplying by the appropriate power 
of detU. The structure of the unitary irreps (3.21) reflect the information encoded in the 
Gel’fand-Zetlin patterns that upon restricting U E U(n) to V E U(n - 1) by setting 

u=(; !$ (3.22) 

one obtains already in reduced form the unitary irreps of U(n - 1) given by 
Dv(V),  each v 4 p. (3.23) 

Since this paper is about connections with combinatorics, let us point out that there is 
a very nice relation between the totally symmetric unitary irreps of U(n) and 
MacMahon’s master theorem. This is developed in detail in [13]. 

4. REDUCTION OF THE KRONECKER PRODUCT 

Relation 11 given by 

has its origin in the reduction of the Kronecker product of two unitary irreps of U(n) into 
unitary irreps. The summation in this relation extends over all  partitions A that occur in 
the abstract Clebsch-Gordan series 

p x v = Z g p , n A ,  a (4.2) 
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and expressed explicitly by the matrix relation ( x denotes matrix direct product and 
matrix direct sum): 

c ~ ( D ~  (u) x D v ( ~ ) > ~  = zegpvaDa (VI. (4.3) 
a ,  

The quantities gp,,a are the Littlewood-Richardson numbers giving the number of 
occurrences of A in the Kronecker product p x v. The direct sum matrix on the right 
consists of the matrix D (U) repeated gpva times along the diagonal for each 
A that occurs in the direct product p x v, which we denote by A E p x v. The matrix C is 
of dimension dimp dim v and is real orthogonal. The balance of dimensions on each 
side of relation (4.3) requires the following identity between dimensions: 

a 

dimp dim v = xgpvA  dimA . 
a (4.4) 

In relation (4.3), we can also move the orthogonal matrix C to the right-hand side: 

D’ (u) x D ~ ( u )  = c xegpvaDa (u) cT. (4.5) L 1 
Setting2 = U E U(n) in this relation and writing it in matrix element form, we obtain 
(4.1). That this gives a valid identity for arbitrary 2 is a consequence of its known 
validity for bosons ([2], [6]). 

In the mathematics literature, relation (4.1) is often called the linearization of a 
product of polynomials. The fact that the extension is valid for general variables zg is 
quite significant. For example, one has the inner product relation 

which, in consequence of Relation I, dlows one to express the left-hand side of this 
relation explicitly in terms of the discretized coefficients leading to 

. .  

(4.7) 
Moreover, it is a consequence of relation (4.5) that the L -coefficients must be 
expressible as a sum over products of the elements (WCG-coefficients) of the matrix C : 

each A E p x v, where the elements of the matrix C are denoted by 

The columns and rows of C are enumerated as follows: 
columns: all and patterns, givingdimp dimvlabels; I 

rows: all A E p x v, and for each such A, by an index K 
which assumes values 1,2,*-.,gpv~, givingzgpva dim& labels. 

a 
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The left-hand side of relation (4.8) is known (at least in principle from (4.7), and the 

most important problem in unitary group theory for physics and chemistry is a procedure 
for determining the WCG-coefficients under the summation on the right. For the group 
U(2), there is no multiplicity in the Kronecker product, and no summation in relation 
(4.8). In this case, relations (4.8) may be used to determine the WCG-coefficients 
uniquely to within phase conventions as was done by Wigner (see, for example, [3]). 

Larry Biedenharn had the remarkable insight to realize that there is a universal label 
for the multiplicity for general U(n). This is achieved by introducing into the notation 
for a WCG-coefficient still another Gel'fand pattern y; it is associated with the partition 
p , and is in addition to the pattern m. For convenience of display, it is inverted over the 
partition p in the manner of the symbol (2.6 ): 

(4.10) 

There is, of course, a weight associated with the (inverted) pattern 
way, given by (2.4). But, because the role of the pattern y is conceptually different from 
that of a Gel'fand pattern, which has the Weyl group-subgroup interpretation, we call it an 
operatorpattern , denote its weight by A(y), and call this weight a shijt-weight.: 

= weight of (b) = (A~(~),A~(~),...,A,("/)). (4.1 1) 

in the standard (3 

One can prove that for every A E p x v there exists a unique shift-weight A of p 
such that A = v + A. Accordingly, we denote the WCG-coefficient (4.9) by 

(4.12) 

where the relation between the multiplicity index 
be explained. It appears, at first, that this notation is flawed, since, for a given shift- 
weight Aof p , the number of distinct operator patterns y, which numerically runs over 
the set of Gel'fand patterns, is given by the Kostka number 'K(p,A), while the index 
Icassumes g p  

and the operator pattern y is yet to 

v + ~  distinct values. Indeed, it is a well-known fact that the Littlewood- 
9 ,  

(4.13) 
Thus, in general, there are K ( p , A )  symbols on the right of (4.12), corresponding to all 
operator patterns y having shift-weight A ,  and g p  9 9  v + ~  symbols on the left 
corresponding to the values of K. It was Biedenham's idea that there should exist a 
canonical definition of the coefficients on the right such that these coefficients would 
automatically assume the value 0 for exactly 

of the operator patterns, thus achieving the correct number of families of WCG- 
coefficients. 

maximum value gP,v, ,,+A = K(p ,  A) of the Littlewood-Richardson is actually attained. 
In such cases, the operator pattern notation works exactly; in all other cases, we utilize 
some as yet undetermined subset of these operator patterns, but nonetheless it is always 
the same patterns entering into the enumeration of the multiplity, and for this reason these 

K@, *) - gp, v, v+A (4.14) 

It is imperative to realize here that there are denumerably many partitions v where the 
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patterns are universal labels. Going beyond this, one would like to find an intrinsic 
meaning of an operator pattern compaiable in significance to the Weyl group-subgroup 
property of a Gel'fand pattern; this is achieved fully for U(2) and U(3) through the 
notion of the null space of a unit tensor operator, which is defined in terms of the WCG- 
coefficients, but it is known from the work of Baclawski [ 141 that this only partially 
distinguishes the WCG-coefficients having the same shift-weight for U(n),n > 3. This is 
discussed further in Section 5. Independently of whether or not a natural or canonical . 
significance exists for an operator pattern, it is still an elegant device for labeling the 
multipliclty, and we use this notation henceforth. Rewritten in this form, relation (4.8) 
reads 

(4.15) 

where for each A E p x v, the summation is over all y with shift-weight A = 2, - v of p. 
We rewrite relation (4.8 ) in terms of this new notation, combining it with relation 

(4.7): 

M(v+A)  ally with [ (v+:)(9(;)][ (Y) I($)(;')]= 
A(Y)=A 

= c ,  c, >3m (B+C)! 6 (A,B +C)CT$b (A)C:ml(B)Cqvq.(C). 
(a:Aa')(P:B:P')( T.c:y') . .  

(4.16) 
In this relation, A is any selected shift-weight of p . The solution of this equation for the 
WCG-coefficients for general U(n) would be a major achievement for physics, not only 
because one would achieve the explicit reduction of the Kronecker product, but also 
because the WCG-coefficients are the essential ingredients needed in physical theory for 
the construction of composite systems having U(n) symmetry from more elementary 
systems possessing this symmetry. Indeed, this is their principal role. 

From the point of view of combinatorics, what one needs for addressing the structure 
of the complex relationship (4.15 ) is more detailed information on the properties of the 
Littlewood-Richardson numbers. For this, it is convenient to reformulate briefly their 
properties in a manner that focuses on the partitons corresponding to a fixed value in the 
set A(p,A)given by (4.13). 

For each partition p and each of its weights A (interpreted as a shift-weight in the 
context of WCG-coefficients), we associate a function, denoted I p , ~ ,  whose domain of 

definition is the set H"of n - tuples of integers (aU nonnegative except possibly hn): 

, . .. , h,, ) I hl> 
The range of I p , ~  is the set of integers A(p,A), so that 

Hn = {(hi, > . . .> h,, 2 0 } , (4.17) 

(4.18) 

We call the subset of Hnwhose image is g p  9 7  v + ~  a level subspace. The set of partitions 
{ v} corresponding to such a level subspace then gives those partitions for which 
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K ( P 9 A )  gp, v, v+A of the WCG-coefficients (4.12) are to be zero. 

the WCG problem. This study leads naturally to the use of barycentric coordinates 
associated with the regular simplex, but only partial results have been obtained (see 
[15] and the important work by Baclawski [14]). This is the purest of problems for 
combinatorics. 

The study of the functions I p , ~  and their associated level-subspaces is essential for 

5. UNIT TENSOR OPERATORS (ABSTRACT THEORY) 

The concept of a unit tensor operator was intoduced by Racah [15 ] for the group 
SU(2), and generalized to all U(n) by Biedenharn [4]. The definition is based on the 
WCG-coefficients. For the purpose of stating the definition, we assume that we have 
determined all the U(n) WCG-coefficients (4.12). We also assume that we have a set of 
finite-dimensional Hilbert spaces H,,  one for each partition v = ( V I ,  v2,---, vn) with n 
parts, including zeros as parts, and that each such space has an orthornonnal basis B,  of 
ket vectors given by 

B ,  = { 1 i) 1 q runs over all Gel' fand patterns . 1 (5.1) 

It is further assumed that there is an action TU,each U E U(n), of the unitary group 
defined on the space H, and that this action on the basis B,  is expressed by 

We next introduce-the model Hilbert space H to be the direct sum of the spaces H,, 

(5.3) 
each partition taken exactly once: 

n2O w n  
and extend, by linearity, the action Tu,each U E V(n),to the space H .  It is this space 
H in which an abstract unit tensor operator acts. 

Corresponding to each partition p = (p1,p2,***,pn),including zero as a part, and to 
each operator pattern y, each of which satisfies the betweenness conditions for a 
Gel'fand pattern with partition p , there exists a unit tensor operator: It is a collection of 
component operators, dim Hp = dimp in number as given by (3.21), and denoted by 

H =  E W H , ,  

enumerated by the Ge t  fand patterns m. (5.4) 

Thus, altogether there are dimp unit tensor operators, each having dimp components. 
Associated with each such tensor operator is a shift-weight A( 7). 

space by specifying their actions on an arbitrary basis vector, using the WCG- 
coefficients: 

The component operators are defined by their action on the basis vectors in the model 

Observe that this is a mapping from the space H ,  to the space H , + A ( ~ ) ,  or to the 0 
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vector should v + A(y) not be a partition. All properties of a unit tensor operator flow 
from this definition ([ 6],[7]), One of the most important is the transformation property 
of the components of each unit tensor operator under the action of T~ ,each  U E U(n): 

Unit tensor operatoisare also referred to as Wigner operators, since there definition is 
based on the WCG-coefficients. 

The simplest of all tensor operators are thefundamental tensor operators, n in 
number, each with n components, transforming according to the fundamental 
representation D(190"-*)(U) = Uof U(n). Each such tensor operator is denoted 

with components enumerated by m. (5.7) 
\ I \ I 

In this case, the lower (Gel'fand) pattern and the upper (operator) pattern have weight a 
and shift-weight A of the forms given by: a(m) = unit row vector ek of length n with 1 in 
position k ;  A(y)= unit row vector e, with k,ze {1,2,*..,n}. Since in this case, the 
weights uniquely determine the patterns, it isconvenient to introduce the simplified 
notation tk , for these operators: 

(5.8) 

Each of the n fundamental tensor operators t.,z with components tk,,,  k = 1,2,...,n, 
transforms under the unitary group action according to 

n 

j=k+l 
= n S(Zj-1-zj 

(5.10) 
'1  
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where 
ei ( z) = unit row vector of length i with 1 in position z and 0 elsewhere, 

(5.11) Zj = 1,2,. .. , j ;  pi, j = mi, j + j - i ,  
S( j - i )  = sign of j - i (1 for j = i).  

One can show [2] that the components tk,z,k = 1,2,..-,n,of a given fundamental tensor 
t 0, operator commute, but those corresponding to distinct z do not, in general [ 3. Thus, 
the transformation (5.9) is among commuting components of the tensor operator te ,z .  

We are now in position to explain Relation III: 
w$y(~)= C. I m  p y ( A ) T ~ / A ! .  (5.12) 

(a:AA( y)) 
The elements of the matrix T are the fundamental unit tensor operators: 

The elements in cohnn z are the components tk,z,k = 1,2,..-,n,of the unit tensor 
operator te,z, and these components mutually commute, while elements from distinct 
columns do not. The order of the unit tensor operator components in each of the products 

= (tk,.t)lSkSn,lSzSn* (5.13) 

n 

k=l 
(tzIa' = n(tk,zIak', tz = (tl,z,f2,z,'..,tntz),a, = (al,,a2z,'",anz) (5.14) 

is immaterial . According to (1.5), we have taken T A  in relation (5.12 ) to be 

But let us immediatley note that the order of the factors is important, and we can write the 
factors in this product in n! ways corresponding to the permutations 
n(T) = n(tl,t2,~*',tn) = (t9 ,tq ,.a. & ) o f  the columns tzof the matrix T. We write 

T A  = tal 1 2  ta2 . . . t: . (5.15) 

( z ( T > > ~  = t : t z  -..t:, n E Sn(symmetric group), 
and, correspondingly, 

(5.16) 

w: y("(T)) = C. In(: ,)(A)("(mA / A !  9 (5.17) 
(a:AA( y)) 

where, for n the identity permutation, this expression coincides with Relation III. The 
I-quantities in relations (5.17) are, as yet, undetermined invariant operators, that is, 
operators that commute with the action Tu. Finally, the left-hand side of expression 
(5.17) is a general unit tensor operator 

w:~(~(T)) = p x (invariant factor).. (5.18) (3 
The idea of the form (5.12) is quite simple: In analogy to the representation functions 

Dmpmt(U) being real homogeneous polynomial forms over the elements %j of U , the 
general tensor operator is a homogeneous polynomial form over the fundamental tensor 
operators, where the scalars are invariant operators, but one must deal with the 
noncommutivity of the fundamental tensor operators. This can be done for the unitary 
group U(2) (see [ 31, Vol. 9 for complete details). It may be shown [2] that the forms 
discussed above must exist for general U(n) , but the theory is far from 
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The Hermitian conjugate (the * operation) of (6.4) gives 

As examples of relations (6.4 and (6.5), we have the following identities expressing 
the indeterminates zii and their derivatives in terms of the fundamental unit tensor 
operators (shift operators): 

Z=1 
Let us conclude by noting one more nice relationship, which offers the possiblity of 

sorting out the various forms discussed above for Relation III. Using (6.4) and (6.6) in 
Relation I gives: 

n 
C P @ P = E , C m m  ' ,(A) fl (zti,Z @ tj,Z>" / q j !  . (6.8) 
Y (L) (L) (a:A:a) i.j=1 z 

We have now come full circle, beginning with an abstract definition of a unit tensor 
operator, giving it a realization in its action in polynomial space, and arriving at relation 
(6.8), which must hold abstractly, in the restricted tensor product (denoted 
@d , d for diagonal) model space defied by 
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