la-ur.56. 4589

TITLE:
HIGHEST-WEIGHT REPRESENTATIONS OF BROCHERDS ALGEBRAS

AUTHORS):
Richard Slansky
Los Alamos National Laboratory
Theoretical Division Office

SUBMITTED TO:
Preceedings of the CRM Series in Mathematical Physics

Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by the University of CaFomia for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Highest-Weight Representations of Borcherds Algebras

Richard Slansky
Theoretical Division, MS B210
Los Alamos National Laboratory
Los Alamos. NM 87545. USA
LAUR-96-
For publication in Preceedings of the CRM Series in Mathematical Physics

December 2, 1996

Abstract

General features of highcst-rreight representations of Borcherd's algebras are described. To show their typical fentures, several representations of Borcherds extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine-su(2) to a Borcherds algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generadieed symmetry struchure.

1 Introduction

This talk examines the highest-weight representation theory of Borcherd's algebras with the goal of giving some rather primitive notions on how these algebras might be used in quantum field theory: Borcherd's algebras were proposed in a 1988 paper by Richard Borcherds. Ref. [1]. They are extensions
of Kac-Moody algebras, a topic to which J. Patera has contributed significantly, e.g., Ref. [2]. The work I am reporting today is derived from results that Patera and I have explored together.

The physics setting of this work is the energy operator of a quantum field theory, which is associated with the time-translation invariance of the Lagrangian. Its role in the overall symmetry structure of the Lagrangian varies: in 4-dimensional theories it belongs to the Lie algebra of the Poincare group, which is a contraction of noncompact $S O(5)$. In two-dimensional conformal field theories the hamiltonian is a member of the infinite-dimensional Virasoro algebra. If the symmetry is further extended by a finite-dimensional Lie algebra, the conformal theory is a representation of a Kac-Moody algebra (the vertex construction), and is a solution to the corresponding two-dimensional current algebra.

The usual construction of a Lie algebra and its representation theory requires a nondegenerate bilinear form that is derived from the Cartan matrix. In the affine Kac-Moody case, this nondegenerate form can be obtained if the Cartan subalgebra is extended by an independent diagonalizable operator, which is the hamiltonian - L_{0} in simple two-dimensional conformal field theories. However. it does not have the full status of the other members of the Cartan subalgebra of a Kac-Moody algebra. since from one point of view its role is defined through this extension but from another point of view, it is contained in the Virasoro algebra. and the full algebra is a semi-direct product of the Virasoro algebra with the affine Liac-Moody algebra.

It is the purpose of this talk to show how the number operator and the hamiltonian are promoted to full fledged nembers of the Cartan subalgebra of a Borcherds algebra, and to study a few simple representations of these Lie algebras. Ref. [3]. There is an interesting twist in this construction when applied to affine Lac-Moody algebras: the extended representations contain states of all numbers of particles. The original hamiltonian becomes a member of the Cartan subalgebra, as does the operator that measures the level (or number of particles). By explicit construction we show these diagonal operators are in the C'artan subalgebra. The highest-weight representations of the extended affine liac-:loody algebra contain affine representations of all levels. A possible shortcoming of this construction is that states of all statistics are in the representations. There is is no restriction to Bose or Fermi statistics only.

The important problem not solved here is to construct a field theory
in some number of space-time dimensions where this extended symmetry structure emerges. Instead, we use quantum mechanical and conformal field theory examples to motivate the interpretation of representations of these algebras. It may be useful to have particle-number changing operators as part of the symmetry structure.

One goal of this talk is to explore several representations of Borcherds algebras. (In practical terms. this means that the branching rules of various highest-weight representations are "sliced" or organized as a function of the eigenvalue of the number operator.) Section 2 is a brief summary of results concerning Borcherds algebras, including a summary of the theory of its highest-weight representations. These algebras are extensions of Kac-Moody algebras. and most of the representation theory of Kac-Moody algebras directly applies to Borcherds algebras, Ref. [1]. The review of Sec. 2 is completed by computing the roots of several simple Borcherds algebras and the weights and multiplicities of several highest-weight representations.

The solution to the problem of constructing the extended Cartan subalgebra that includes the hamiltonian in an affine Kac-Moody algebra, Ref. [2] is summarized in Sec. 3. In this construction the natural choice of the linear functional of the hamiltonian with itself is zero: if this bilinear form were used as a Cartan matrix for some new algebra. it would violate the rule that the diagonal elements of the Cartan matrix all be 2 . However. this construction is interesting from the point of view of this talk because the nondegenerate bilinear form defines a Borcherds Lie algebra. It mas be useful to analyze the representations in terms of this new algebra. The Borcherds algebras extend and generalize Kac-Moody algebras by adding an imaginary root to the set of simple roots. so a zero-ralued diagonal element of the symmetrized Cartan matrix is possible.

Section 4 explores how a two-dimensional current algebra is extended to include number changing operators. Adding an imaginary simple root to an affine algebra leads to two infinite directions. one hamiltonian-like and the other counts the number of particles in the state. Both operators are constructed as sums of the diagonal operators that correspond to the simple roots of the extended algebra. Results and speculations are briefly restated in Sec. 5.

This introduction concludes with a brief review of those aspects of KacMoody algebras that are of greatest importance to the Borcherds generalization. Speaking rather roughly, the approach to Lie algebra theory that

DISCLAIMER

> Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
has been the most fruitful for generalization starts from an analysis of the space \mathcal{P} spanned by the eigenvalues of a set of independent simultaneously diagonalizable operators in the Cartan subalgebra. In the finite-dimensional case \mathcal{P} is a Euclidean space with a positive definite metric and of dimension equal to the rank ℓ of the Lie algebra. The vectors in this space are the roots of the Lie algebra and the weights of its representations.

The basis of the Cartan subalgebra is a set of 8 linearly independent diagonalizable operators $h_{i}, i=1 \ldots \ldots \ell$. conveniently chosen. A root α is an ℓ-component vector in \mathcal{P} whose components are the eigenvalues of h_{i} in the sense of the Lie bracket:

$$
\begin{equation*}
\left[h_{i}, \epsilon_{\omega}\right]=a\left(h_{i}\right) \varepsilon_{\alpha} \tag{1}
\end{equation*}
$$

where ϵ_{α} is one of the ladder operators that increases a Hilbert space representation vector with weight λ to one with weight $\lambda+\alpha$ (if is $\lambda+\alpha$ in the representation: the functional $a\left(h_{t}\right)$ is the i -th component of the ℓ-dimensional root α.

For a vector $|\mathbf{r} . \lambda\rangle$ in the Hilbert space of a representation \mathbf{r}, the ℓ dimensional vector λ in \mathcal{P} is called a weight. The components of the weight λ are defined by

$$
\begin{equation*}
h_{i}|\mathrm{r} . \lambda\rangle=\lambda\left(h_{i}\right)|\mathrm{r}, \lambda\rangle \tag{2}
\end{equation*}
$$

Additional labels of the rector $|\mathrm{r} . \lambda\rangle$ when the multiplicity of λ is greater than unity have been suppressed.

The Cartan subalgebra is dual to the space of roots. so $a\left(h_{i}\right)$ and $\lambda\left(h_{i}\right)$ are linear functionals. The weight or root component $\lambda\left(h_{1}\right)$ is defined by

$$
\begin{equation*}
\lambda\left(h_{t}\right)=\left(\lambda \mid a_{i}\right) . \tag{3}
\end{equation*}
$$

where this definition of $\lambda\left(h_{i}\right)$ differs from the usual one by a normalization factor $\frac{2}{\left(w_{1} \mid a_{1}\right)}$. see Refs. [2.4$]$. The simple root a, in \mathcal{P} corresponds to the diagonal operator h_{i} in the Cartan subalgebra. and the component of α_{i} associated with h, is $a_{i}\left(h_{j}\right)=\left(a_{i} \mid \alpha_{j}\right)$. where $\left(a_{i} \mid \alpha_{j}\right)$ is the natural scalar product in \mathcal{P} of the simple roots.

The commutation relations that define the Lie algebra are defined in terms of a set of "genemors." that generate the full lie algebra through multiple commutators. For a rank $/$ algebra there are $3 i$ generators, e_{i}, f_{i},
and $h_{i} . i=1 \ldots \ldots \ell$. The "presentation" of the lie algebra is then

$$
\begin{gather*}
{\left[h_{i} \cdot \epsilon_{j}\right]=\left(o_{3} \mid \alpha_{i}\right) \varepsilon_{j}} \\
{\left[h_{i} \cdot f_{j}\right]=-\left(a_{3} \mid \alpha_{i}\right) f_{J}} \tag{4}\\
{\left[\epsilon_{1} \cdot f_{J}\right]=\frac{2 i_{j}}{\left(\alpha_{i} \mid \alpha_{i}\right)} h_{i} .}
\end{gather*}
$$

The values of the scalar products $\left(\alpha_{j} \mid \alpha_{i}\right)$ are specified by the Cartan matrix that defines the Kac-Moody algebra. The presentation Eq. (4) normalizes the Cartan subalgebra somewhat differently from the usual conventions, but is convenient for Borcherds algelbras.

Equation (4) does not completely define the Lie algebra. The -Serre relations" impose the requirement that certain multiple commutators vanish:
where. for example. $\left(\operatorname{ad} \epsilon_{2}\right)^{2} \epsilon_{,}$, means $\left[\epsilon_{,},\left[\epsilon_{1}, \epsilon_{\jmath}\right]\right]$. The presentation of the Lie algebra. Eqs. (4) and (j). agrees with the usual one up to the normalization of the C'artan subalgebra. Equation (j) makes sense if $\left(a_{,} \mid a_{i}\right)>0$. but this is always the case for the simple roots of liac-Moody algebras.

Any straight line in \mathcal{P} that crosses more than one root defines an $s u(2)$ subalgebra. so the Cartan matrix indicates all the nontrivial ways that ℓ "independent" $s u(2) s$ can be connected and yield a Lie algebra. This relation is characterized by the angles and relative lengths of the simple roots in \mathcal{P}.

Kar-Moody algebras are defined by the geometrical relations (scalar products) among the eigemalues (roots) of the diagonalizable operators. The first steps of the theory are dedicated to linding the best st rategy for defining these relations from the axioms for Lic algel)ras. The method then requires proving that the construction of the eigemalues may be lifted to a definition of the Lie algebra through its commutation relations. The geometry is defined by a matrix $A_{1 j}=\left(a_{1} \mid a_{j}\right)$. where the $\left(\right.$-component euclidean vectors α_{i} are called the simple roots. and the matris $t_{\text {, }}$ is called the symmerized ('artan matrix. where the C'artan matrix itself for simmetrizable Vac-Moody algebras is defined be:

$$
\begin{equation*}
c_{i,}=\frac{-2\left(a_{1} \mid \Omega_{\jmath}\right)}{\left(a_{1} \mid a_{ر}\right)} . \tag{6}
\end{equation*}
$$

Kac-Moody algebras and the Borcherds generalization are completely defined by this matrix of scalar products of simple roots. The list of rules for $C_{i j}$ that characterizes a Kac-Moody algebra is quite simple. The Cartan matrix is an integer matrix with diagonal elements $C_{i i}=\boldsymbol{O}$ and non-positive integers for the off diagonal elements with zeros matching pairwise. If C has positive determinant, then the algebra is finite-dimensional. If C has zero determinant, then the algebra is an infinite-dimensional affine algebra; this is the case of interest in a two-dimensional current algebra. Finally, if the deternimat is negative. the resulting algebra is one of the hyperbolic or other Kac-Moody algebras. which are not casily listed but are rather easily studied at the level of description of this paper.

As the notation in Eys. (3) and (6) suggests. only "symmetrizable" Cartan matrices are considered herr. The symmetrized (artan matrix $A=C D$ is

$$
\begin{gather*}
A_{1,}=\left(\left({ }^{\prime} D\right)_{i j}=\left(\alpha_{i} \mid \alpha_{j}\right) .\right. \\
D_{i j}=\frac{1}{2} i_{, j}\left(\Omega_{j} \mid \alpha_{j}\right) . \tag{7}
\end{gather*}
$$

A generalization of Kac-. Moody algcbras br modifying the definition of the Cartan matrix was discomered be Borcherds: for symmetrizable Cartan matrices the requiremem that $C_{"}=2$ may be dropped by introducing a simple rool a_{1} of zero lenglh. $f_{11}=\left(a_{1} \mid \alpha_{1}\right)=0$. The next section summarizes an example of Borcherds resulis [1].

2 Borcherds Algebras

The extension from Kac-Moody algebras to Borcherds algebras is accomplished by relaxing the rules for forming the Cartan matrix. The simplest statement of the extension is: the set of simple roots $a_{1} . i=1 \ldots . . \ell$, may include imaginary roots. Our discussion is restricted to the case of just one imaginare simple root sclected to ler n_{1} and to have zero length. (The choice of zero length turns out to be a convention so long as n_{1} is imaginary.)

The new rukes for the ('artan matrix mus be supplemented with new rules for the presemtation of the Lie algebra: the presemtation given in Eq. (4) and (5) gemeralizes to Borchords algobras except where $\left.!\cap_{1} \mid \cap_{1}\right)=0$ causes nonsense. This includes the last relation of Eq. (t), where the right hand side of the equation is zero for $i=1$. and the Sorre relations Eq. (5), where the relation is simply ignored for $i=1$. Notc that this is a very strong
assumption since $\left(\operatorname{ad}_{c_{1}}\right)^{n} c_{j} \neq 0$ for $j \neq 1$ and any positive integer n. Thus, the Lie algebra places no constraints on the ${ }^{-1}$ - direction. For all other simple roots, the presentation is unchanged. and the Cartan matrix $C_{i j}$, $j \neq 1$ satisfies the usual rules to be a Cartan matrix, which continues to be a symmetrizable integer matrix with nonpositive off-diagonal elements and $C_{i i}=2$ for $i \neq 1$. Ref. [1].

The Borcherds paper summarizes the algebraic structure and representation theory of these extended algebras [1]. The focus in this section is the root and weight multiplicity formulas for Borcherds algebras and their representations. The representation theory of highest-weight representations is almost identical to the Kac-Hoorly case: the Weyl-Kac character formula is valid for Borcherds algelsras. Ref. [1]. Thus, the root and weight multiplicities can be computed in a manmer idemical to those of hac-Moody algebras. In particular, the Peterson formula $[H]$ is valid and provides a computational method for determining root and wright mulliplicities.

The derivation of the Peterson formala for liace Moods algebras is worked out in detail in Sec. 2) of Ref. $[\because]$. It is an iterative formula for the multiplicities of positive roots $. ~ \beta=\sum, n_{1} \Omega_{i}$, in terms of the multiplicities of lower positive roots. These ate nonzero roots with componemts $0 \leq m_{2} \leq n_{i}$:

$$
\begin{equation*}
(.3 \mid \cdot s-\underline{-g}) c: s=\sum_{.3^{\prime} \cdot 3^{\prime \prime}}\left(.3^{\prime} \mid s^{\prime \prime}\right) c_{3^{\prime \prime}} c_{3^{\prime \prime}} \tag{8}
\end{equation*}
$$

where the sum is over all positive roots. $3^{\prime \prime}$ and $f^{\prime \prime}$ with $.^{\prime \prime}+3^{\prime \prime}=3$, and ρ is defined by $\left(\rho \mid a_{i}\right)=1 . i=1 \ldots \ldots 1$. The quantity $c_{.}$is defined by

$$
\begin{equation*}
c_{. s}=\sum_{n>1} \frac{1}{n} \text { mult }\left(\frac{3}{n}\right) . \tag{9}
\end{equation*}
$$

where "mult" is the mulhiplicity of the rovt. Which is nomzero only when $3 / n$ is a root. This sum noresarily teminates at some finite n for any root $\mathbf{3}$.

The iteration formula F.g. (S) requires scveral "boundary conditions" to be defined. The multiplicity of a simple root is always unity: If β is a real simple root. Eq. (S) reads $0=0$. so wo sel c, and mult (.3) to unity. If $(3 \mid \beta-2 \rho)=0$. hon mull $(3)=0$. Fipuations ((3) and (9) ran be used to calculate the root mulniplicitios of any liac-Moody or Borcherds algebra.

Table 1 gives the root multiplicities for the Borcherds algebra defined by
the symmetrized ('artan matrix.

$$
A\left(\cdots u(\underline{2})_{B}\right)=\left(\begin{array}{rr}
0 & -1 \tag{10}\\
-1 & \underline{0}
\end{array}\right) .
$$

The simple root α_{1} is imaginary and α_{2} is real. The scalar product of roots $\alpha=n_{1} a_{1}+n_{2} \alpha_{2}$ and $3=m_{1} a_{1}+m_{2} \alpha_{2}$ is

$$
\begin{equation*}
(\alpha \mid 3)=-n_{1} m_{2}-n_{2} m_{1}+2 n_{2} m_{2} . \tag{11}
\end{equation*}
$$

The root system is characterized be a set of su(2) representations for each value of π_{1}. and $n_{\text {, }}$ behaves like a momberoperator cigenvalue. The name "su(2) $)_{B}$ refers to the Lie algoh with symmetrized C'artan matrix Eq. (10).

Table 1: Pusitive roots of Burcherds algebra with symmetrized Cartan matrix given in Fig. (10) for su($(\underline{2})_{B}$. The imaginary simple root a_{1} has zero norm. The positive root system is listed here. except at $n_{1}=0$. where one negative and two zero roots are included. (Recall that if α is a root. so is $-\alpha$.) The $s u(\underline{2})$ representation is indicated ber its highest weight $. l\left(h_{2}\right)=2 j$; for example (3) is the spin or isuspin 3 , 2 represemtation of dimemsion 4.

```
\(n_{1} \quad s u(2)\) content
\(0(\underline{2})+(0)\)
    1 (1)
    \(2 \quad(0)\)
    3 (1)
    \(+(2)\)
    \(5 \quad(3)+(1)\)
    \(6 \quad(t)+(2)+(0)\)
    \(7 \quad(5)+2(3)+2(1)\)
    \(\therefore \quad(\) (i) \(+2(1)+1(2)+(0)\)
    \(9 \quad(i)+3(5)+5(3)+5(1)\)
```

The adjoint representation is not a highest-weight representation, since if a is a roul. so is -a. and there is an infinite set of roots. Nevertheless, the weight multiplicities of highest-weight representations can also be constructed from the Pelerson formula for an enlargerl algelbra. In particular,
the Freudenthal formula for Kac-Moody algebras is derived from the Peterson formula for an extended algobra with simple root a_{u} appended to the simple roots. $a_{1} \ldots$. . ar: the additional scalar products needed to define the extended algebra are $\left(\alpha_{0} \mid \cap_{0}\right)=\underline{0}$ and $\left(\alpha_{0} \mid \alpha_{i}\right)=-\left(.| | \alpha_{i}\right) . i=1, \ldots, \ell$, where Λ is the highest weight of the representation.

The results are illustrated by calculations of the (1,0) representation of the algebra with symmetrized ('artan matrix Eq. (10). In order to calculate the weight multiplicities for the (1.0) representation. one uses the Peterson formula Fiqs.(8) and (9). but in ronjunction with the extended Cartan matrix,

$$
A^{(1,0)}\left(s u(2)_{B}\right)=\left(\begin{array}{rrr}
2 & -1 & 0 \tag{12}\\
-1 & 0 & -1 \\
0 & -1 & 2
\end{array}\right) .
$$

The weight multiplicities of the highest weight representation $(1,0)$ are the root multiplicities computed from. $\left.1^{(1.0)}(*,(2))_{B}\right)$ of the form.

$$
\begin{equation*}
a=a_{0}+\mu_{1} a_{1}+n_{2} a_{2} . \tag{13}
\end{equation*}
$$

The Freudenthal formula follows from this extension. as derived in Refs. [2 , 4, 5]. The weight multiplicitios of how (1.0) and (0.1) (using a different extended ('artan matrix. .f $f^{(0,1)}\left(* u(\underline{2})_{B}\right)$ in this latter case) representations are listed for the first 10 values of n_{1} in lable 2 . Note the infinity of weights starting from the highest weight extonding in the α_{1} direction: h_{1} is an operator with a semi-infinite spectrmm.

It is pensible w muravel the Burcherds represemation in terms of Fock space operators. just as can be done for the affine Kac- Moody highest weight represemations. The st ructure of the (1.0) representation of $s u(2)_{B}$ is extremely simple: it is possible 10 build this representation with an $s u(2)$ doublet of creation operators $u_{1 / 2, \ldots,}^{(1) 1}$, hat carries $\lambda n_{1}=1$. All products of $a_{1 / 2, m}^{(1) t}$ acting on the ground state are lincarly independent in this construction; the lack of statistics is a problem for physical particles and is likely due to the assumption of no Serre relation. R.q. (5) for $i=1$. The su(2) structure at slice $n_{1}=\|$ is the tensor product of the (1) representation of $s u(2)$ with itself 11 limes.

From a direct analysis of the (1.0) mpremention, it is simple to transform from the (h_{1}, h_{2}) basis of simple roots to the (N.2 I_{3}) basis of the Cartan

Table 2: Branching Rules of the (1.0) and (0.1) representations of the Borcherds algebra $* u(\underline{2})_{H}$ of Table 1. Again. we slice the representation with a_{1}. The su(2) represemtation is given by its highest weight. $I\left(h_{2}\right)=2$. The results for the (1.0) are derived from the Peterson formula with Eq. (12) for the bilinear form.

n_{1}	su(2) content of (1.0)	su(${ }^{(2)}$) contellt of (0.1)
0	(0)	(1)
1	(1)	(0)
2	$(2)+(0)$	(1)
3	$(3)+2(1)$	$(2)+(0)$
4	$(4)+3(2)+2(0)$	$(3)+2(1)$
5	$(5)+4(3)+5(1)$	$(-4)+3(2)+2(0)$
6	$(0)+5(4)+9(2)+.5(0)$	$(3)+4(3)+3(1)$
7	$(5)+6(5)+1.1(3)+14(1)$	$(6)+5(-1)+9(2)+5(0)$
s	$\begin{aligned} & (8)+7(6)+20(-1) \\ & +28(-2)+11(0) \end{aligned}$	$(1)+6(5)+14(3)+14(1)$
9	$\begin{aligned} & (9)+s(i)+2(3)+4 s(3) \\ & +4 s(3)+42(1) \end{aligned}$	$\begin{aligned} & (s)+i(0)+20(4)+2 s(2) \\ & +2 s(2)+14(0 j \end{aligned}$

subalgelta ($1:$ is the lhird componem of isospin). If the weights are written in terms of simple roots.

$$
\begin{equation*}
\lambda=\mu_{1} n_{1}+n_{2} \alpha_{2} . \tag{14}
\end{equation*}
$$

then a glance at the (1.0) represemation in Table -2 reveals the following definitions:

$$
\begin{gather*}
\lambda(\lambda)=m_{1} \\
\lambda(\underline{I}: 3)=-m_{1}+\underline{2} n_{2} . \tag{1.5}
\end{gather*}
$$

where .1 is the number operator and I_{3} is the diagonalized operator of $s u(2)$. It follows from E.g. (10) and (1.)) that

$$
\begin{align*}
& I=-2 h_{1}-h_{1} . \tag{16}\\
& \underline{I}: 3=l_{1} .
\end{align*}
$$

Thus, the number operator is in the (artan mbalod ta: it corresponds to the root.

$$
\begin{equation*}
x \rightarrow u a_{1}=-2 a_{1}-a_{2} \tag{17}
\end{equation*}
$$

The next example is a Borcherds extension of su(3). done in a manner similar to the exteusion of au(-2). where weshow be example that the features of the (l.0) representation of Table \supseteq generalizes to a Borcherds extended su(3) defined by the ('artan matrix.

$$
A\left(s u(3)_{B}\right)=\left(\begin{array}{rrr}
0 & -1 & 0 \tag{18}\\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Table 3: P'ositive roots and weights of the (1.0.0) represemation of Borcherds algebra with ('artan matrix Eq. (N). The imaginary simple root is α_{1}. Except for $n_{1}=0$. only positive roots are listed.

n_{1}	su(3) content of roots	sul(3) content of (1.0.0)
0	$(1.1)+(0.0)$	(0.0)
1	(0.1)	(0.1)
2	(1.0)	$(0.2)+(1.0)$
3	(1.1)	$(0.3)+2(1.1)+(0.0)$
4	$(1.2)+(0.1)$	$(0.4)+3(1.2)+2(2.0)+3(0,1)$
5	$(1.3)+(\underline{2})+(0.2)+(1.0)$	$\begin{aligned} & (0.5)+1(1.3)+.5(2.1)+6(0.2) \\ & +.7(1.0) \end{aligned}$
6	$\begin{aligned} & (1.1)+(2.2)+2(0.3)+(3.0) \\ & +3(1.1) \end{aligned}$	$\begin{aligned} & (0.6)+5(1.1)+9(2.2)+10(0,3) \\ & +5(3.0)+16(1.1)+.5(0.0) \end{aligned}$
7	$(1.5)+2(2.3)+2(3.1)+2(10.1)$	$(10.5)+(611.5)+11(0.3)+1.5(0.4)$
	$+5(1.2)+3(2.0)+3(0.1)$	$11(3.1)+35(1.3)+21(2.0)+3.5(0,1)$

In the case of Eig. (1N) only the mumber operator is added to the Cartan subalgelta. The rools all he writen in the form. $a=\mu_{1} a_{1}+n_{2} \alpha_{2}+$ $n_{3} a_{3}$. Table 3 gives the root systom of this algebra in terms of the $s u(3)$ representations for cach ralue of π_{1}. ()nle position roots (except at $n_{1}=0$) are listed and are given in terms of ow (3) repremtations. The su(3) weights
 (1.0) is the 3. (0.1) is 1 loc $\overline{3}$. 11.11 i- 1 lie 8 . and wom.

The Pederson formula gives weight multiplicitios. which are then converted into ac(3) irreducible represemations using the Tables of Ref. [6]. The
weight system of the (1.0 .0) representation is also given in Table 3. As in the $s u(2)_{B}$ case. the fundamental representation (1.0.0) can be constructed from a triplet of creation operators with $\Delta n_{1}=1$ acting on an su(3) singlet ground state. The trick of adding the imaginary root to a finite dimensional Lie algebra gives a represemation that provides the centire Fock space of a set of operators transforming as one of the represemtations of the finite-dimensional Lie algelsa.

Thus. the (1.0.0) of sui $3 j_{H}$ of líq. (18) has a structure similar to the (1,0) representation of $s u(-3)_{B}$. The representation at $\mu_{1}=n$ is the tensor product of the su(3) representation (0.1) with itsolf n times. with no symmetry or antisymmetry constraims. Once again the represemation of a Borcherds extended algebra adjoins to the finite dimensional representation its entire Fock space. including the singlet gromed state. The representation is shown in Table 3.

3 Cartan Subalgebra of an Affine Kac-Moody Algebra

The group theoretical role of the hamitonian in conformal field theory and two-dimensional current algetha arise from the ued to define a nondegenerate bilinear form for the algchra. Finitcorlimensional Lie algebras are characterized by positive-definitc ('artan matrices. and so the definition of the Lie algebra by its presemation lisp. (1) and (i) has no ambiguity. However. for affine algoliras the delerminam of I is aro. so the ('atan matrix cannot be selected naisely to be the bilinear form that defines the lie algebra. A non-
 and consequently extending the space of roots by adding a linearly independent vector corresponding whin wew opator. The extension sketched here is worked out in more detail in Sere. is of Ref. [2]

The problen of the prenemation given in F:q. (1) and (5) for an affine Kac-Moody algebra is that the lunctional $a_{i}\left(h_{,}\right)=\left(\Omega_{.} \Omega_{j}\right)$ is degenerate, so that for each root a. Here is an infinite mumber of operators ϵ_{α} and f_{α} with no immediate way to disimenish among them. The :nvolem of labeling the roets is trivially swod lior thene allume algethras comes ructed as central extensions of loop alorbras. as is mermerl in Sre. 3 and her. 16 of Ref. [2].

The gencral solution focuser on the gemetry of \mathcal{P}. which is now outlined.
The solution to the labeling problem is to extend the 1×1 ('artan matrix to an $(l+1) \times(\ell+1)$ nonsingular bilinear form be introducing the operator L_{0} :

$$
\begin{gather*}
{\left[I_{0} \cdot \epsilon_{0}\right]=n\left(L_{0}\right) \epsilon_{0}} \\
{\left[L_{0} \cdot I_{0}\right]=-n\left(L_{0}\right) f_{0 \cdot}} \tag{19}\\
{\left[L_{0} \cdot h_{i}\right]=0}
\end{gather*}
$$

L_{0} closes with the remaining operators of the algebra and can be added to the Cartan subalgebra. An example of Eq. (19) is provided by the vertex construction. Our interest in Borcherds algel)ras was aroused by the result that the resulting nondegrocrate bilinear form is the Cartan matrix of a Borcherds algebra.

It is recuived that $a_{1}\left(h_{:}\right)=\left(a, a_{1}\right)$ not lo changed be the extension, which adds $a_{1}\left(L_{0}\right) . L_{0}\left(h_{1}\right)$ and $I_{0}\left(I_{0}\right)$. where I_{0} is the vector in $\mathcal{P}^{\text {ext }}$ that comesponds to l_{1}. The extomion of P w $P^{\prime s t}$ is $(l+1)$-dimensional. The symmetre structure imposes sencral conclitions. First the bilinear form must be symmetric:

$$
\begin{equation*}
n_{1}\left(I_{0}\right)=\left(n_{i} \mid \Lambda_{11}\right)=\left(I_{0} \mid n_{i}\right)=I_{-10}\left(L_{1}\right) . \tag{20}
\end{equation*}
$$

The linear dependence in the alfine (artan matrix must be treated in a consistenf fashon. This limear dependence is expressed in terms of a root δ defined by

$$
\begin{equation*}
\lambda=\sum_{1} c_{1} n, . \tag{21}
\end{equation*}
$$

where the integer coceliciconts c, (called "marks") depend only on the algebra. Before the extension. δ is litcrally \%ro and F.!. (21) simply expresses the linear dependence among the rows of the ('atan matrix:

$$
\begin{equation*}
\delta\left(h_{1}\right)=\left(\delta \mid a_{1}\right)=0 . \tag{22}
\end{equation*}
$$

The whole point of extmpling lice ('arlan sulatgebra be L_{0} is to be able to require $\delta\left(L_{0}\right) \neq 0$ in $\mathcal{P}^{\prime \prime t}$. and asoid the degencrace in \mathcal{P} implied by Eq. (22). The railical definition is

$$
\begin{equation*}
r\left(l_{0}\right)=\left(r \mid \Lambda_{11}\right)=\left(\sum_{i=1}^{1} c_{i}\left(1_{1} \mid \Lambda_{0}\right)=-1 .\right. \tag{23}
\end{equation*}
$$

This provides an extended lilinear form that completely labels the operators in the aftine licealgel)ra. In cases where ithe (artan matrix is symmetrical
($c_{1}=1$). the simplest solntion to $\mathfrak{E q}(\underline{(2)}$) and $(\because 3)$ is to add a zeroth row (and column) of the form ($0 .-1.0 \ldots .0$) to the Cartan matrix.

Finally: the value of $l_{11}\left(I_{-1}\right)$ is not very important solong as it is not 2 . The natural choice is to sct $\left(. I_{0} \mid \lambda_{0}\right)=0$.

The extended (artan subalgohra is solected to include L_{0} along with h_{i}, $i=1, \ldots . \ell$. The basis vectors of the extended root space corresponding to these operators are then Λ_{0}. and $a_{1}, i=1 \ldots . . /$. Then the bilinear form is defined as $A_{1,}=\left(a_{1} \mid o_{\mu}\right)$ for $i . j=1 \ldots .$. plus a zeroth row and column. The zeroth row is constrained be $\left(\delta \mid \Lambda_{0}\right)=-1$: for the algebras analyzed here, we take $\left(\alpha_{1} \mid \Lambda_{0}\right\}=-1 .\left\{a_{1} \mid \Lambda_{0}\right)=0 . i=2 \ldots . . \mid$ and $\left(. \Lambda_{0} \mid \cdot \Lambda_{10}\right)=0$. In making the extension of the (artan matrix io a Borcherds algel)ra. it is necessary to identify the operators corvesponding to the simple roots.

4 Adding Energy and Number Operators to the Cartan Subalgebra

In Sec. $\cdot 2$ it was suggested from a simple quantum-mechanical example that a number operator appears in the ('artan subalgebra of a Borcherds extended finite-dimensional Lie algelra. In this section the hamilunian and number operators are explicity constructed from the simple roots of the Borcherds algebra by constructing the Bordherds extension of alline-su((2)).

As noted in Sere. 3. the addition of an imaginary simple root to an affine
 Cartan matrix of a Borcherds algehra. Thus. we obtain the Borcherds alge-
 equal lengthe.) The (artan matrix is

$$
A\left(\operatorname{affinc} \cdot \operatorname{su}(\underline{-})_{B}\right)=\left(\begin{array}{rrr}
0 & -1 & 0 \tag{24}\\
-1 & -2 & -\underline{2} \\
0 & -\underline{2} & -2
\end{array}\right) .
$$

 scalar product in \mathcal{P} delined by $\mathrm{F}: \mathrm{q}$. (2) 1). Roots are of the form

$$
\begin{equation*}
n_{1}=\|_{1} u_{1}+u_{2} u_{2}+n_{3} a_{3} . \tag{25}
\end{equation*}
$$

The root system can be broken up inlo represcotations of affine su(2) by computing the multiplicitios of roons of the form Eq. (2.5). The roots
at $n_{1}=0$ correspond precisely to the root sistem of affine $s u(2)$. which is a series of $s u(\underline{2})$ triplets at each integer multiple of $\lambda=\alpha_{2}+\alpha_{3}$. The positive roots for $\pi_{1}=1$ are huse of the (1.0) represemtation of affue-su(2). The $n_{1}=\underline{\underline{y}}$ slice is a redurible secquence of alline-su($(\underline{)})$ representations, each starting at a specitic multiple of $\delta . n$:

$$
\begin{align*}
& (2.0)_{n_{n}=0}+(2.0)_{n_{r}=1}+(2.0)_{n_{A}=2}+(\underline{2} .0)_{n_{t}=3}+ \\
& 2(2.0)_{n_{A}=1}+\because(2.0)_{n_{i}=-}+3(\underline{2} .0)_{n_{x}=6}+1(2.0)_{n_{x}=-} \tag{26}
\end{align*}
$$

where the multiplicity of the alline-su($-\underline{2}$) represontation eventually grows exponentially like a ispical partition function found in the theory of liacMoody representations. In patticular. these multiplicitios are the coefficients in the expansion of the partition fanction of the $c=\frac{1}{2}$ (c is the central charge) represemation of the \irasoru algelbra with highest weight $. ~\left(L_{0}\right)=\frac{1}{2}$. These numbers correspond to the dimensions of the llilleret subspaces gotten from applying an odd numiser of the Neven-Schwarz (half-odd integer moded, anticommuting) operators to the gromed state.

The weight-system multiplicitic: of the (1.0.0) representation of affine$s u(2)$ is given by the Peterson formala with the bilinear form

$$
f^{(1.1 u, 0)}\left(a \mid l i n \cdots \cdots u(\underline{2})_{H}\right)=\left(\begin{array}{rrrr}
\underline{2} & -1 & 0 & 0 \tag{27}\\
-1 & 0 & -1 & 0 \\
0 & -1 & \underline{0} & -\underline{0} \\
0 & 0 & -\underline{y} & \underline{2}
\end{array}\right) .
$$

The weights of the (1.0.0) represomation are of the form

A detailed discussion of affine sul2i represemations is contained in Ref. [2], and the tables gisen there are und to untavel the weight multiplicities com-

For the (1.0.0) represemation. the $u_{1}=0$ weight is a singlet at $n_{2}=$ $10:=0$ and corropond 10 ilue tamm. The $\|_{1}=1$ wights are in the (1.0) represcmation of afline $-\cdots n(-2)$. . S. wilh the roots for this algebra. the $n_{1}=\underline{2}$ weights ate reducible muder aflime-su(-2). and can be decomposed into
affine-su(2) irreducible represemations as

$$
\begin{gather*}
{[(2.0)+(0,2)]_{n_{2}=0}+(0.2)_{n_{k}=1}+[(2.0)+(0,2)]_{n_{k}=2}} \\
+[(2.0)+(0.2)]_{n_{n}=3}+2[(2.0)+(0.2)]_{n_{f}=-} \tag{29}\\
+2[(2.0)+(0.2)]_{n_{A}=5}+\ldots
\end{gather*}
$$

This sequence is the set of represemtations in the tensor product (1.0) x $(1,0)$ of affine-su(2). which is compuned in Ser. 6 of Ref. [2$]$. The $n_{1}=3$ slice has the representations of $(1.0) \times(1.0) \times(1.0)$. It appears obvious that this structure gencralizs 10 all larger π_{1}. Thus. a gencralization of a two-dimensional current algosa that includes multiparticle states, where the single-particle states are in the (1.0) representalion of affine-su(2), is the $(1,0,0)$ representation of alfine-su(2$)_{B}$. It includes a tacuum at $n_{1}=0$, single particle states at $\mu_{1}=1$. |wo-particle states at $n_{1}=2$. three-particle states at $n_{1}=3$. and so on. Thus. the full miniparticle space of states is included in
 opratons that chather momber of partiches.

The fimal task is to work oul the relation of the uperators h_{1}, h_{2} and h_{3}, which correspond to the simple roots n_{1}. n_{2} and n_{3}. to the operators N, L_{0} and I_{3}. The calculation follows the same path that was followed in Sec. 3. From a direct analysis of the (1.0.0) representation. it is a simple matter to make the transformation from the (h_{1}, h_{2}, h_{3}) basis. corresponding to the simple rools. to the ($N . I_{11}, \geqslant /$: basis of the ('artan subalgebra. In terms of

$$
\begin{equation*}
\lambda=n_{1} n_{1}+n_{2} n_{2}+n_{3} n_{3} n_{3} \tag{30}
\end{equation*}
$$

the following definitions are rasily identilied:

$$
\begin{gather*}
M(V)=\mu_{1} \\
\left.M l_{11}\right)="_{1}+\mu_{:} \tag{31}\\
\lambda\left(2 I_{3}\right)=-\mu_{1}+2 \mu_{2}-2 n_{3} .
\end{gather*}
$$

where I is the mumber operator and l_{3} is the diagonal operator in su(2). The emergy operator l_{0} is dedined to be 10 for the highes weight state. and is normalized to mity for the lowest domber state at $n_{1}=1$. From the definition of the (artall matrix and lig. 130) is followis hat

$$
\begin{gather*}
N=-h_{2}-h_{3} . \\
l_{0}=-h_{1}-h_{1}, \frac{1}{2} h_{3} . \tag{32}\\
\because l_{3}=h_{2} .
\end{gather*}
$$

Since either n_{2} or α_{3} cat be chosen as the root defining $2 / 3$. it is also possible to set $2 I_{3}=h_{3}$. which comrespondingly rarranges the rest of Eqs.(30) and (32). Fhns. boilh mumber and hamihomian operators are in the Cartan subalgelpa. although moilher correponds to a simple reon. The correspondence is

$$
\begin{gather*}
\dot{r} \rightarrow n_{1}=-n_{2}-n_{3}=-\delta . \\
I_{0} \longrightarrow n_{1}=-n_{1}-n_{2}-\frac{1}{2} n_{3 .} . \tag{33}\\
2 I_{3} \longrightarrow n_{2} .
\end{gather*}
$$

with $. V\left(a_{y}\right)=\left(a_{x} \mid \alpha_{x}\right)=0$ and $\left(a_{I \prime} \mid \cap_{\|}\right)=-3 / 2$. Although a_{X} is a null root. it is not the simple mull root.

5 Conclusions

It can be interesting to surver mex mathematical structures for applications in phesios. In this paper we have propested the ner of Borcherds algebras
 structure that extends quammm mochanics. as in the ceample of Sec. 3 and the first example in Sice. 1. or simple lidh theures. as the second example in Sec. 1. from a single particle dexeripion tw a tructure that unifies all numbers of partickes. Thus. Here is an interesting Fock space structure

 mechanical operators. Similarly the anakgons extension of affine $s u(2)$ as a function of n_{1} is a tacuun for $n_{1}=0$. single particle for $n_{1}=1$. two particle for $n_{1}=\varrho$, and so on. We have not discussod how to const ruct such a theory in detail. but it seems phesicalle clear that multipaticle states are natural in the represimation lheory of Burchords algebras. One might speculate that such a structure is uscful for second gramization of a single particle theory. More partionlarly: we have shown that the repremention theory of these

Acknowledgments: Rowert Moorly explained the gencral structure of Borchords algeb)ras to me wery carty on. Panl (iinspare for provided a number
 might play in secome guamioation in Rer.

- Work performed in part under the auspices of the I'. S. Department of Energy: under Contract No. $\mathbb{H}-7-405-1 i N\left(i-4 \delta^{\circ}\right.$.

References

[1] R. F.. Borchords. Goucraliad Kac-Moody. Mgebras. J. of Algebra 115, .501 (1! N N$).$
[2] S. Kass. R. I. Moody: J. Palora. R. Slansk: Affine lie Algebras. Height Muhiplicities and Branching Rules ('niversit! of C'alifornia Press, Los Angeles. 1990).
[3] K. Slansk: An . Mgehaic Role lor lincrgy and Ximber Operators for

[t] V. G. Kac. Infinite Dinumsional Iic Agebras ('ambridge I'niversity Press. (ambridge. 1! (i:)).
[5] A review of this notation can be found in R. Slansky. (iroup Theory for [Giliorl Model Buiding. Plas. Raports 79. I (l!sil).
[6] M. R. Bremuer. R. I: Mued!: J. Patcra. Tables of Dominant Weight Multiplicitios for Represonations of Simple I.i- Aggebras (Marcel Dekker. lac.. Sow Sork. I!ar:

