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Abstract

General features of highest-weight representations of Borcherd’s al-
gebras are described. To show their typical features, several represen-
tations of Borcherds eztensions of finite-dimensional algebras are ana-
lyzed. Then the example of the extension of affine-su(2) to a Borcherds
algebra is ezamined. These algebras provide a natural way to extend a
Kac-Moody algebra o include the hamiltonian and number-changing
operators in a generulized symmelry struclure.

1 Introduction

This talk examines the highest-weight representation theory of Borcherd’s
algebras with the goal of giving some rather primitive notions on how these
algebras might be used in quantum field theory. Borcherd’s algebras were
proposed in a 1988 paper by Richard Borcherds. Ref. [1]. They are extensions




of Kac-Moody algebras, a topic to which J. Patera has contributed signifi-
cantly, e.g., Rel. [2]. The work I am reporting today is derived from results
that Patera and I have explored together.

The physics setting of this work is the energy operator of a quantum field
theory, which is associated with the time-translation invariance of the La-
grangian. Its role in the overall symmetry structure of the Lagrangian varies:
in 4-dimensional theories it belongs to the Lie algebra of the Poincaré group,
which is a contraction of noncompact SO(5). In two-dimensional conformal
field theories the hamiltonian is a member of the infinite-dimensional Vira-
soro algebra. If the symmetry is further extended by a finite-dimensional Lie
algebra, the conformal theory is a representation of a Kac-Moody algebra (the
vertex construction), and is a solution to the corresponding two-dimensional
current algebra.

The usual construction of a Lie algebra and its representation theory re-
quires a nondegenerate bilinear form that is derived from the Cartan matrix.
In the affine Kac-Moody case, this nondegenerate form can be obtained if
the Cartan subalgebra is extended by an independent diagonalizable opera-
tor, which is the hamiltonian — Ly in simple two-dimensional conformal field
theories. However. it does not have the full status of the other members of
the Cartan subalgebra of a Kac-Moody algebra. since from one point of view
its role is defined through this extension. but.from another. point of view,
it is contained in the Virasoro algebra. and the full algebra is a semi-direct
product of the Virasoro algebra with the affine Kac-Moody algebra.

[t is the purpose of this talk to show how the number operator and the
hamiltonian are promoted to full fledged members of the Cartan subalgebra
of a Borcherds algebra. and to study a few simple representations of these
Lie algebras. Ref. [3]. There is an interesting twist in this construction when
applied to affine Kac-Moody algebras: the extended representations contain
states of all numbers of particles. The original hamiltonian becomes a mem-
ber of the Cartan subalgebra. as does the operator that measures the level
(or number of particles). By explicit construction we show these diagonal
operators are in the Cartan subalgebra. The highest-weight representations
of the extended affine Kac-Moody algebra contain affine representations of
all levels. A possible shortcoming of this construction is that states of all
statistics are in the representations. There is is no restriction to Bose or
Fermi statistics only.

The important problem not solved here is 10 construct a field theory
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in some number of space-time dimensions where this extended symmetry
structure emerges. lnstead. we use quantum mechanical and conformal field
theory examples to motivate the interpretation of representations of these
algebras. It may be useful to have particle-number changing operators as
part of the symmetry structure.

One goal of this talk is to explore several representations of Borcherds
algebras. (In practical terms. this means that the branching rules of var-
ious highest-weight representations are “sliced™ or organized as a function
of the eigenvalue of the number operator.) Section 2 is a brief summary
of results concerning Borcherds algebras, including a summary of the the-
ory of its highest-weight representations. These algebras are extensions of
Kac-Moody algebras. and miost of the representation theory of Kac-Moody
algebras directly applies to Borcherds algebras, Ref. {1]. The review of Sec. 2
is completed by computing the roots of several simple Borcherds algebras
and the weights and multiplicities of several highest-weight representations.

The solution to the problem of constructing the extended Cartan subal-
gebra that includes the hamiltonian in an affine Kac-Moody algebra, Ref. [2]
is summarized in Sec. 3. In this construction the natural choice of the linear
functional of the hamiltonian with itself is zero: if this bilinear form were used
as a Cartan matrix for some new algebra. it would violate the rule that the
diagonal elements of the Cartan matrix all be 2. However. this construction
is interesting from the point of view of this talk because the nondegenerate
bilinear form defines a Borcherds Lie algebra. It may be useful to analyze
the representations in terms of this new algebra. The Borcherds algebras
extend and generalize Kac-Moody algebras by adding an imaginary root to
the set of simple roots. so a zero-valued diagonal element of the symmetrized
Cartan matrix is possible.

Section 4 explores how a two-dimensional current algebra is extended to
include number changing operators. Adding an imaginary simple root to
an affine algebra leads to two infinite directions. one hamiltonian-like and
the other counts the number of particles in the state. Both operators are
constructed as sums of the diagonal operators that correspoiid to the simple
roots of the extended algebra. Results and speculations are briefly restated
in Sec. 5.

This introduction concludes with a brief review of those aspects of Kac-
Moody algebras that are of greatest importance to the Borcherds general-
ization. Speaking rather roughly, the approach to Lie algebra theory that
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has been the most fruitful for generalization starts from an analysis of the
space P spauned by the eigenvalues of a set of independent simultaneously
diagonalizable operators in the Cartan subalgebra. In the finite-dimensional
case P is a Euclidean space with a positive definite metric and of dimension
equal to the rank € of the Lie algebra. The vectors in this space are the roots
of the Lie algebra and the weights of its representations.

The basis of the Cartan subalgebra is a set of ¢ linearly independent
diagonalizable operators h;. 1 = 1..... €. conveniently chosen. A root a is an
¢-component vector in P whose components are the eigenvalues of h; in the

sense of the Lie bracket:
fhi.e,] = alh;)e,. (1)

where ¢, is one of the ladder operators that increases a Hilbert space repre-
sentation vector with weight A to one with weight A+« (if is A+ ¢ in the rep-
resentation: the functional a(h,) is the i-th component of the ¢-dimensional
root a.

For a vector |r. A} in the Hilbert space of a representation r, the ¢-
dimensional vector A in P is called a weight. The comnponents of the weight
A are defined by

hilr. A) = A(h;)|r, A). (2)

Additional labels of the vector |r.\) when the multiplicity of A is greater
than unity have been suppressed.

The Cartan subalgebra is dual to the space of roots. so a{h;) and A(k;)
are linear functionals. The weight or root component A(#,) is defined by

Alh.) = (Mas). (3)

where this definition of A(h;) differs from the usual one by a normalization
factor m see Refs. [2. 4]. The simple root a, in P corresponds to the
diagonal operator &, in the Cartan subalgebra. and the component of «;
associated with h, is a,(h,) = (a;la;). where (a,Ja,) is the natural scalar
product in P of the simple roots.

The commutation relations that define the Lie algebra are defined in
terms of a set of ~generators.” that generate the full Lie algebra through
multiple commutators. For a rank ( algebra there are 3( generators. ¢;, f;,
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and h;. 1 =1..... €. The “presentation™ of the Lie algebra is then

[h,‘.(:‘j] = (OJIO‘,')EJ'.

[hi- Ji] = ~(a,la:) ;- (4)
2%

[C,. L] = ’(a_.l'al_.)'hiv
The values of the scalar products {a;]e;) are specified by the Cartan matrix
that defines the Kac-Moody algebra. The presentation Eq. (4) normalizes
the Cartan subalgebra somewhat differently from the usual conventions, but

is convenient for Borcherds algebras.

Equation (4) does not completely define the Lie algebra. The “Serre
relations™ impose the requirciment that certain multiple commutators vanish:

l_.’c'-a,l-) ’
(ad ¢} " Py
2, ja,

=0. -
! (3)
(ad [,)' ™= f, = 0.
where. for example. (ad ¢,)%¢, means [¢,.[e,. €,]]. The presentation of the Lie
algebra. Egs. (4) and (3). agrees with the usual one up to the normalization
of the Cartan subalgebra. Equation (3) makes sense if (a,]a;) > 0. but this
is always the case for the simple roots of Kac-Moody algebras.

Any straight line in P that crosses more than one root defines an su(2)
subalgebra. so the Cartan matrix indicates all the nontrivial ways that ¢
“independent” su(2)s can be connected and yield a Lie algebra. This relation
is characterized by the angles and relative lengths of the simple roots in P.

Kac-Moody algebras are defined by the geometrical relations (scalar prod-
ucts) among the eigenvalues (roots) of the diagonalizable operators. The first
steps of the theory are dedicated 1o finding the best strategy for defining these
relations from the axiows for Lic algebras. The method then requires proving
that the construction of the eigenvalues may be lifted to a definition of the
Lie algebra through its connmutation relations. The geometry is defined by a
matrix 4,, = (a,|a,). where the (-component euclidean vectors q; are called
the simple roots. and the matrix A, is called the symmetrized (‘artan ma-
trix. where the Cartan matrix itself for symmetrizable Kac-Moody algebras
is defined by

-
¢, = 2o, (6)

B (a,la,) .

ey,




Kac-Moody algebras and the Borcherds generalization are completely de-
fined by this matrix of scalar products of simple roots. The list of rules for
C;; that characterizes a Kac-Moody algebra is quite simple. The Cartan
matrix is an integer matrix with diagonal elements ('; = 2 and non-positive
integers for the off diagonal elements with zeros matching pairwise. If C
has positive determinant. then the algebra is finite-dimensional. If C has
zero determinant, then the algebra is an infinite-dimensional affine algebra;
this is the case of interest in a two-dimensional current algebra. Finally, if
the determinant is negative. the vesulting algebra is one of the hyperbolic or
other Kac-Moody algebras. which are not casily listed but are rather easily
studied at the level ol description of this paper.

As the notation in Egs. (3) and (6) suggests. only “symmetrizable” Cartan
matrices are cousidered here. The svmmetrized Cartan matrix A = CD is

.'l,_l = (('D),'J = (O,‘lﬂj).
/),J = %(",J(nllnj).

(7)

A generalization of Kac-Moody algebras by modifving the definition of
the Cartan matrix was discovered by Borcherds: for symmetrizable Cartan
matrices the requirement that (', = 2 may be dropped by introducing a sim-
ple root a; of zero length. A, = (a;]a;) = 0. The next section summarizes
an example of Borcherds™ resulis [1].

2 Borcherds Algebras

The extension frotn KNac-Moody algebras to Borcherds algebras is accom-
plished by relaxing the rules for forming the C'artan matrix. The simplest
statement of the extension is: the set of simple roots a,. 7 = 1.....¢ may
include imaginary roots. Qur discussion is restricted to the case of just one
imaginary simple root. selected to be ay and to have zero length. (The choice
of zero length turns out to be a convention so long as a, is imaginary.)

The new rules for the Cartan matrix must be supplemented with new
rules for the presentation of the Lie algehra: the presentation given in Eq. (4)
and (5) generalizes to Borcherds alsebras except where tajlay) = 0 causes
nonsense. This includes the last relation ol Eq. (4). where the right hand
side of the equation is zero for 7 = 1. and the Serre relations Eq. (5), where
the relation is simply ignored for /7 = 1. Note that this is a very strong
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assumption since {(ad ¢;)"c, # 0 for j # 1| and any positive integer n. Thus,
the Lie algebra places no constraints on the =17 direction. For all other
simple roots. the presentation is unchanged. and the Cartan matrix Cjj,
7 # 1 satisfies the usual rules to be a Cartan matrix. which continues to be
a symmetrizable integer matrix with nonpositive off-diagonal elements and
Cii =2fori # 1. Rel. [1}.

The Borcherds paper summarizes the algebraic structure and representa-
tion theory of these extended algebras [l]. The focus in this section is the
root and weight multiplicity formulas for Borcherds algebras and their rep-
resentations. The representation theory of highesi-weight representations is
almost identical to the Kac-Moody case: the Weyl-Kac character formula is
valid for Borcherds algebras. Rel. [1]. Thus, the root and weight multiplici-
ties can be computed in a manner identical to those of Kac-Moody algebras.
In particular, the Peterson formula [4] is valid and provides a computational
method for determining root and weight multiplicities.

The derivation of the Peterson formula for Kac-Moody algebras is worked
out in detail in Sec. 22 of Rel. [2]. It ix an iterative formula for the multi-
plicities of positive roots .3 = 3, n,a;. in terms of the multiplicities of lower
positive roots. These are nonzero roots with components 0 < m, < n;:

(33 = 2p)es = Z (F]3")c.ncam (8)

303

where the sum is over all positive roots .3 and 3" with 3'+ 3" = 3, and p is
defined by (plo;)=1.i=1..... (. The quantity ¢4 is defined by

ci=y. lmult(i). (9)

=on n

where “mult”™ is the nmltipliciy of the root. which is nouzero only when 3/n
is a root. This sut necessarily terminates at some finite » for any root 3.
The iteration formula Fq. (8) requires several “boundary conditions™ to
be defined. The multiplicity of a simple root is always unity. If 3 is a real
simple root. Eq. (8) reads 0 = 0. so we set ¢, and nult(.3) to unity. If
(3] = 2p) = 0. then mult(9) = (. Fquations {8} and (9) can be used to
calculate thie root multiplicities of any INac-Moody or Borcherds algebra.
Table I gives the root multiplicities for the Borcherds algebra defined by




the symmetrized ("artan matrix.

Asu(2)p) = ( --[l) —_l) ) . (10)

The simple root «, is imaginary and a, is real. The scalar product of roots
a =nja; + nap and 3 = mya, + myay is

(a]3) = —nym; — nym; + 2ngm,. (11)

The root syvstem is characterized by a set of su(2) representations for each
value of ny. and ny behaves like a number-operator cigenvalue. The name
“su(2)g" refers to the Lic algebra with svmmetrized C'artan matrix Eq. (10).

Table 1: Positive roots of Borcherds algebra with synunetrized Cartan matrix
given in Eq. (10) for su(2)g. The imaginary simple root a, has zero norm.
The positive root system is listed here. except at 1y = 0. where one negative
and two zero roots are included. (Recall that if « is a root. so is —a.)
The su(2) represcutation is indicated by its highest weight \(h;) = 2j; for
example (3) is the spin or isospin 3/2 representation of dimension 4.

ny;  su(2) content

0 (2) +(0)

1 (1)

2 (0)

3 (1)

1 (2)

5 (3)+ (1)

6 (4)+ (2) + (0)

T(3) + 203 + 2(1)

S (6) + 20D 4+ 12 + (1)
9 (T) + 3(5) + 5(3) + 5(1)

The adjoint representation is not a highest-weight representation, since
if a is a root. su is —a. aud there is an infinite set of roots. Nevertheless,
the weight multiplicities of highest-weight representations can also be con-
structed from the Peterson formmla for an enlarged algebra. In particular,




the Freudenthal formula for Kac-Moody algebras is derived from the Peter-
son formula for an extended algebra with simple root ay appended to the
simple roots. ay..... ar: the additional scalar products needed to define the
extended algebra are (aglay) = 2 and (agla;) = —(\|e;). 1 =1,...,¢, where
A is the highest weight of the representation.

The results are illustrated by calculations of the (1,0) representation of
the algebra with symmetrized Cartan matrix Eq. (10). In order to calculate
the weight multiplicities for the (1.0) representation. onc uses the Peterson
formula Eqs.(8) and (9). but in conjunction with the extended Cartan matrix,

2 -1 0
AN su2)p)=§ -1 0 -1 |. (12)
0 -1 2

The weight multiplicities of the highest weight representation (1,0) are the
root multiplicities computed from A" (su(2)g) of the form.

a = Qg+ nya; + a0, (13)

The Freudenthal formula follows [rom this extension. as derived in Refs. [2,
4, 3] The weight multiplicities of the (1.0} and {0.1) (using a different ex-
tended (‘artan matrix. A (su{2)y) in this latter case) representations are
listed for the first 10 values of ny in Table 2. Note the infinity of weights start-
ing from the highest weight extending in the a, direction: k; is an operator
with a semi-tufinite spectrum.

It is possible to unravel the Borcherds representation in terms of Fock
space operators. just as can he done for the affine Kac-Moody highest weight

representations. The structure of the (1.0) representation of su(2)p is ex-.

tremely simple: it is possible to build this representation with an su(2) dou-
blet of creation operators "(ll/g.m that carries Any = 1. All products of agl/y'm
acting on the ground state are lincarly independent in this construction; the
lack of statistics is a problem for physical particles and is likely due to the
assumption of no Serre relation. Fq. (5) for # = 1. The 2u(2) structure at
slice n; = n is the tensor product ol the (1) representation of su(2) with
iself 1 times.

From a direct analysis of the (1.0) representation. it is simple to transform
from the (h;.hy) basis of simple roots to the (N.2[;) basis of the Cartan

9
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Table 2: Branching Rules of the (1.0) and (0.1) representations of the
Borcherds algebra ~u(2)g of Table 1. Again. we slice the representation
with a;. The su(2) representation is given by its highest weight. \(hg) = 2.
The results for the (1.0) are derived from the Peterson formula with Eq. (12)
for the bilinear form.

ny  su(2) content of (1.0) su(2) content of (0.1)

0 (0) (1

1) (0)

2 (2) +(0) (1)

3 (3)+2(1) (2) + (0)

4 (1) + 3(2) + 2(0) (3) +2(H

5 (5) +43) + 5(1) (4) + 3(2) + 20)

6 (6) +5(4) +92) + 5(0)  (5) + 4(3) + 3il)

T (T) 4 6(3) + H(3) + (1) (6) + 5(4) + 9(2) + 5(0)

3 (8) 4 7(6) + 20(4) (7) 4+ 6(3) + H(3) + 14(1)
+ 23(2) + 11(0)

Y (9) + S(T) + 27(3) + 43(3)  (8) + T(6) + 20(4) + 23(2)

+ -I8(3) + 42(1) + 28(2) + 14(0;

subalgebra (14 is the third component of isospin). I the weights are written
in terms of simple roots.
A =m0, + n30s. (14)

then a glance at the (1.0) representation in Table 2 reveals the following

definitions: )
AN =0y,

A2L5) = =y + 2,
where .\ is the number operator aud /y is the diagonalized operator of su(2).
It follows from Eq. (10) and (15) that

N ==2l — |,
ol (16)
_)/:; = Ilr_».
Thus. the number operator is in the Cartan subalachra: it corresponds to the
root.
.\. —_— (1N = —2()1 — (1. (17)
10

(15) -
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with ax (V) = (axlay) = -2

The next example is a Borcherds extension of su(3). done in a manner
similar to the extension of sa(2). where we show by example that the features
of the (1.0) representation of Table 2 generalizes to a Borcherds extended
su(3) defined by the Cartan matrix.

0 -1 0
Alsu(g) = | -1 2 -1 (18)
0 -l 2

Table 3: Positive roots and weights ol the (1.0.0) representation of Borcherds
algebra with C'artan matrix Eq. (I8). The imaginary simple root is a.
Except for ny = 0. only positive roots are listed.

nyp su(3) content of roots =su(3) content of (1.0.0)

0 (l1.1) + (0.0) 10.0)

1 (U.1) (U.1)

2 {1.0) (0.2) + (1.0)

3 (L.1) (0.3) + 2(1.1) + (0.0)

4 (1.2) 4+ (0.1) (0.1) + 3(1.2) + 2(2.0) + 3(0,1)

5 (1.3) 4+ (2.1) + (0.2) + (1.0) (0.3) + 1(1.3) + 35(2.1) + 6(0.2)

+ 5(1.0)

6 (1.1) 4+ (2.2) + 2(0.3) + (3.0 (0.6) + 5(1.1) + 9(2.2) +10(0,3)
+ 3(1.1) + 5(3.0) + 1601.1) + 3(0.0)

T (LS) 4 2(2.3) + 203.0) + 2001y (0.7) + 6(1.5) + 11{2.3) + 15(04)
+ 5(1.2) + 3(2.0) + 3(0.1) PHE.L) 4+ 35(1.2) + 21(2.0) + 35(0,1)

In the case of Eq. (18) only the number operator is added to the Cartan
subalgebra,  The routs can be written in the form. a = ua; + ngap +
ngas. Table 3 gives the root system of this algebra in terms of the su(3)
representations for cach value of . Only positive roots (except at n; = 0)
are listed and are given in tevms of sutd) representations. The su(3) weights
are derived I)_\' converting, the {1 ol the 1oot basis to W('ighl basis. so
(1.0) is the 3.(0.0) is the 3. 0111 is the 8. and <o on.

The Peterson formula gives weight multiplicities. which are then con-
verted into sa{3) irreducible representations using the Tables of Ref. [6]. The
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weight system of the (1.0.0) representation is also given in Table 3. As in the
su(2)g case. the fundamental representation (1.0.0) can be constructed from
a triplet of creation operators with Auy = | acting on an ~u(3) singlet ground
state. The trick of adding the imaginary root to a finite dimensional Lie al-
gebra gives a representation that provides the entire Fock space of a set of
operators transforniing as one of the representations of the finite-dimensional
Lie algebra.

Thus. the (1.0.0) of su{3jg of L. (13) has a structure similar to the (1,0)
representation of su(2)g. The representation at 1y = n is the tensor product
of the su(3) representation (0.1) with itself n times. with no symmetry or
antisvmmetry constraints.  Once again the represemation of a Borcherds
extended algebra adjoins to the finite dimensional representation its entire
Fock space. including the singlet ground state. The representation is shown

in Table 3.

3 Cartan Subalgebra of an Affine Kac-Moody
Algebra

The group theoretical role of the hamiltonian in conformal field theory and
two-dimensional current aleebra arises from the need to define a nondegener-
ate bilinear form for the algebra. Finite-dimensional Lie algebras are charac-
terized by positive-definite Cartan matrices. and so the definition of the Lie
algebra by its presentation Eqgs. (1) and (3) has no ambiguity. However. for
affine algebras the determinam of (Vs zero. so the Cartan matrix cannot be
selected naively to be the bilinear form that defines the Lie algebra. A non-
degencrate bilinear form is constructed by extending the Cartan subalgebra,
and consequently extending the space of roots by adding a linearly indepen-
dent vector corresponding to this new operator. The extension sketched here
is worked out in more detail in See. 5 of Ref. [2].

The problem of the presentation given in Fq. (1) and (3) for an affine
INac-Moody algebra is that the Tunctional a;(l,) = (a,a,) is degenerate,
so that for each root a. there is an infinite number of operators €, and f,
with no immediate way 1o distinguish among then, The problem of labeling
the roots is trivially solved for those alhne algebras constructed as central
extensions of loop alechbras. as is reviewed in See. 3 and Sec. 16 of Ref. [2].
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The gencral solution focuses on the geometry of P. which is now outlined.

The solution to the labeling problem is to extend the { x € Cartan matrix
to an ({4 1) x (¢ + 1) nonsingular bilinear form by introducing the operator
LO:

{[.u. (u] = ﬂ([.u)f,_,.

{Lo. o] = —a(Lo) [ (19)

[1.(). h,] - 0

Lo closes with the remaining operators of the algebra and can be added to
the Cartan subalgebra. An example of Eq. (19) is provided by the vertex
construction. Our interest in Borcherds algebras was aroused by the result
that the resulting nondegencrate bilinear form is the Cartan matrix of a
Borcherds algebra.

It is required that o,(h,) = (a,a,) not he changed by the extension,
which adds a,(Ly). Lo(h,) and Ng(Ly). where Ay is the vector in P that
corresponds to Ly, The extension of P 1o P is (£ 4+ 1)-dimensional. The
symmetry structure imposes several conditions. First the bilinear form must
be symmetric:

a(ly) = (nil-\n) = (-\ulnl) = [-n(l':)- (20)

The linear dependence in the alfine Cartan matrix must be treated in a

consistent fashion. This linear dependence is expressed in terms of a root 6

defined by
=) ca,. (21)

where the integer cocllicients ¢, {called “marks™) depend only on the algebra.
Before the extension. & is literally zero and Fe. (21) simply expresses the
linear dependence among the rows of the Cartan matrix:

&h,) = (&fa,) = 0. (22
The whole point of extending the Cartan subalgebra by Ly is to be able to

require 8( Ly) # 0 in P, and avoid the degeneracy in P implied by Eq. (22).
The eritical definition is

M Ly) = (V) = (O o) = =L (23)

=]

This provides an extended bilincar forin that completely labels the opera-
tors in the affine Lic algelira. In cases where the Cartan matrix is symmetrical

13




(¢; = 1). the simplest solution 1o Fq. (20) and (23) is 10 add a zeroth row
(and column) of the form (0. —1.0..... 0) to the Cartan matrix.

Finally. the value of \y(/Ly) is not very important so long as it is not 2.
The natural choice is to set (\g].\g) = 0.

The extended Cartan subalgebra is selected to include Ly along with &;,
i = 1,....C. The basis vectors of the extended root space corresponding to

these operators are then A\, and a,. 1 = 1..... (. Then the bilinear form is
defined as A,, = (a,Ja,)fori.j =1..... [ plus a zeroth row and column. The
zeroth row is constrained by (8].\q) = ~1: for the algebras analyzed here, we
take {a|\g) = =1 {a)\y) = 0. 7 = 2..... [ and (o] Ao} = 0. In making

the extension of the (‘artan matrix to a Borcherds algebra. it is necessary to
identify the operators corresponding 1o the simple roots.

4 Adding Energy and Number Operators to
the Cartan Subalgebra

In Sec. 2 it was suggested from a simiple quantuni-mechanical example that a
number operator appears in the (‘artan subalgebra of a Borcherds extended
finite-dimensional Lie algebra. [u this section the hamilivnian and number
operators are explicitly constructed from the simple roots of the Borcherds
algebra by constructing the Borcherds extension of alline-su(2).

As noted in Sec. 3. the addition of an hmaginary simple root to an affine
algebra accordiug 1o the constraints Fgs. (20) - (23) gives a symmetrized
Cartan matrix of a Borcherds algebra. Thus. we obtain the Borcherds alge-
bra. affine-su(2)g. (In affine-~a(2). o, and a, subtend 130* in P and have
equal lengths.) The Cartan matrix is

0 -1 0
Afalfine-su(2)g)=1 -1 2 =2 |. (24)
n -2 2

The root svstem s caledated from the Peterson formula Eq. (3) with the
scalar product in P delined by Jq. (21). Roots are of the form

a =y + sy + o, (25)
The root svstem can be broken up into representations of affine su(2)

by computing the nultiplicities of roots of the form Eq. (25). The roots

I}




at n; = 0 correspond precisely to the root system of affine su(2). which
is a series of su(?2) triplets at each integer multiple of & = a2 + 3. The
positive roots for ny = | are those of the (1.0} representation of affine-su(2).
The n, = 2 slice is a reducible sequence of alline-su(2) representations, each
starting at a specilic multiple of a. n.:

(2-0)11,=U + (2‘0)11,\=l + (2-0)1),;:2 + (2-0)n1.=3+
22.0) =g + 202.0),22 + 32.0), 26 + 12.0) =1 (26)
N TRLIN | F P 6(2.0), .20 + .. ..

where the multiplicity of the affine-su(2) representation eventually grows
exponentially like a typical partition function found in the theory of Kac-
Moody representations. In particular. these multiplicities are the coefficients
in the expansion of the partition hinction of the ¢ = 3 (c is the central
charge) representation of the Virasoro algebra with highest weight A(Lg) = %
These numbers correspond to the dimensions of the Hilbert subspaces gotten
from applying an odd number of the Neveu-Schwarz (half-odd integer moded,
anticommuting) operators to the ground state.

The weight-system multiplicities of the (1.0.0) representation of affine-
su(2) is given by the Peterson formula with the bilinear form

2 -1 0 0
AT G line-su(2) g = _(l) —-(l) —; —3 (27)
v 0 -2 2
The weights of the (1.0.0) represemation are of the form
O = Gy v degtey By 3 N0 (238)

A detailed discussion of alfine su(2i representations is contained in Ref. 21,

puted from Eq. (27) into alfine su(?) representations.

For the (1.0.0) representation. the uy = 0 weight is a singlet at np =
iy = 0 and corresponds 1o the vacmnn, The 1wy = 1 weights are in the
(1.0} representation of afline-su(2). s with the roots for this algebra. the
1y = 2 weights are reducible under affine-su(2). and can be decomposed into
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affine-su(2) irreducible representations as

[(2.0) + (0,2))up=0 + (0-2) =1 + [(2.0) + (0,2)]n,=2
+[(2.0) + (0.2)}pzn + 2[(2.0) + (0.2)]n, =4 (29)
+2[(2.0) + (0.2)]pams + ...

This sequence is the set of representations in the tensor product (1.0) x
(1,0) of affine-su(2). which is computed in Sec. 6 of Rel. [2). The n; =3
slice has the representations of (1.0) x (1.0) % (1.0). It appears obvious
that this structure gencralizes 1o all larger 11y, Thus. a gencralization of
a two-dimeusional current algebra that includes multiparticle states, where
the single-particle states are in the (1.0) representation of affine-su(2). is the
(1.0.0) representation of alfine-su(2)g. [t includes a vacuum at n, = 0, single
particle states at n, = . two-particle states at n; = 2. three-particle states
at n; = 3. and s0 on. Thus. the full multiparticle space of states is included in
this sinsle representation of extended alline->ut2). and the algebra contains
operatars that change munber ol particles.

The final task is to work out the relation of the operators by, by and hg,
which correspond to the simple roots a;. a, and a;. to the operators .V, Lo
and I3. The calculation follows the same path that was followed in Sec. 3.
From a direct analyvsis of the (1.0.0) representation. it is a simple matter
to make the transformation from the (A, Iy hy) basis. corresponding to the
simple roots. to the (\. /Ly.2/4) basis of the Cartan subalgebra. In terms of

\ = N + 1,01 5 + TR RN (30)

the following definitions are casily identilied:

MNY =0
MLot = 1y + 1. (31)
4\(2/3, = —In =+ 2”_) = 2“:;.

where .V is the number operator and /g is the diagonal operator in su(2).
The energy uperator /-U is defined 1o be O for the ||ij.',||(‘.\l \\‘vighl state. and
is normalized to unity for the lowest doublet state at #y = 1. From the
definition of the Cartan matrix and Feg. 300 i1 follows that

.\- = —ll_: = I);q,.
Lo=—hy =l - %/':;- (32)

2[:{ = /I-_).
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Since either as or ary can be chosen as the root defining 2/5. it is also pos-
sible to set 2/3 = hy. which correspondingly rearranges the rest of Egs.(30)
and (32). Thus. both wumber and hamiltonian operators are in the Cartan
subalgebra. although neither corresponds 1o a <simple root. The correspon-

dence is _ )
N—ayv=-a;,—-a3=-¢

1.() — 0y =—0) — Q) — %(\3. (33)

21:0, — Q.

with N(ay) = (ax]ay) = 0 and (aylay) = =3/2. Although ay is 2 null
root. it is not the simple null root.

5 Conclusions

It can be interesting to survey new mathematical siructures for applications
in physics. In this paper we have proposed the nse of Borcherds algebras
and their representations to deseribe multiparticle states. It is an algebraic
structure that extends quantum mechanics. as in the example of Sec. 3 and
the first example in Sec. 1. or simple ficld theories. as the second example
in Sec. 1. from a single particle deseription to a structure that unifies all
numbers of particles. Thus. there is an mieresting Fock space structure
of the simplest representations of the <implest algebra ~a{2)g. where the
representation space (101 is the Foek space of an ~o23 doublet of quantum
mechanical operators. Similarly the analogous extension of affine su(2) asa
function of ny is a vacuum for ny = U. single particle for 1y = 1. two particle
for n; = 2. and so on. We have not discussed how 1o construct such a theory
in detail. but it seems physically clear that multiparticle states are natural in
the representation theory of Borcherds algebras. One might speculate that
such a structure is useful for second quantization of a single particle theory.
More particularly. we have shown that the representation theory of these
algebras is computationally tractable, aud have examined several examples.
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