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Abstract 

General fentiires of highest-weight repvsPniniioiw of Borrhed's al- 
gebms ure described. To shota their typical fentires, sereml represen- 
tations of Borcherds ezteisions of finite-dimensional algebras are ana- 
1y:ed. Then the example of the erleiLsion of cifine-sti(2) lo  a Borcherds 
ulgtbm is exuiiiiiied. l'hese i i l p b r m  piuuirlc- (1 ircilurrrl m y  to eztend a 
ria c- Mood y a lge b in to incl ii de 'the hn m ilt o ninn n lid nu m k r- cha ng ing 
operators in a geiieiwlixd sytiiiielry s t r i i c b i ~ .  

1 Introduction 
This talk examines the highest-weight rel>reseiit.at,an theory of Borcherd's 
algebras with the goal of giving some rathcr primitive notions on how these 
algebras might h e  used in quarit.irni ficld theory. Borclierd's algebras were 
proposed in a 19SS paper by Richard Borchercls. Ref. [l]. They are extensions 



of Kac-Moody algebras, a topic to which J. Patera has contributed signifi- 
cantly, e.g., Ref. [2]. The work I am reporting today is derived from results 
that Patera and I have explored together. 

The physics setting of this work is the energy operator of a quantum field 
theory, which is associated with the time-translation intariance of the La- 
grangian. Its role in the overall symmetry structure of the Lagrangian varies: 
in 4-dimensional theories it belongs to the Lie algebra of the Poincar6group, 
which is a contraction of noncornpact SO(5). In two-dimensional conformal 
field theories the hamiltonian is a member of the infinite-djmensional Vira- 
soro algebra. If the symmetry is further extended by a finite-dimensional Lie 
algebra, the conformal theory is a representation of a Kac-Moody algebra (the 
vertex construction), and is a solution to the corresponding two-dimensional 
current algebra. 

The usual construction of a Lie algebra and its representation theory re- 
quires a nondegenerate bilinear forrn that is derived from the Cartan matrix. 
In the affine Iiac-Moody case, this nondegenerate form can be obtained if 
the Cartan subalgebra is extended by an independent diagonalizable opera- 
tor, which is the haiiiiltoiiiaii - LO in simple two-dimensional conformal field 
theories. However. it does not have the full status of t h e  other members of 
the Cartan subalgebra of a Kac-Moody algebra. since from one point of view 
its role is defined through this estension. .but.froni uiottier. point of view, 
it is contained in the Virasoro algebra. and the full aIgebra is a semi-direct 
product of the Virasoro algebra. with the affine Lac-Jloodq. algebra 

It is the purpose of this talk to show how the riuiiiber operator and the 
haniiltonian are proinoted to fu l l  flc~lged meinl>ers of the  Cartan subalgebra 
of a Borcherds algebra. and to strid_\- a few simple representations of these 
Lie algebras. Ref. [3]. There is an interesting txist. in this constmction when 
applied to affine Iiac-.\Iood_v algebras: t-he extended representations contain 
states of all numbers of iiarticles. The original hanziltonian becomes a mem- 
ber of the Cartan subalgebra: as does the operator that measures the level 
(or number of particles). By explicit construction we show these diagonal 
operators are in the C'artan si1 balgebra. The highest-weight representations 
of the estended affine Iiac-Llood? algchra contain affine representations of 
all levels. A possible short.coniing of this construction is that states of all 
statistics are in the rcpreseiit.atioiis. There is is no  restriction to Bose or 
Fermi statistics only. 

The iniportaiit. probleiii riot solved here is to coiistmct a. field theory 
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in some number of space-time dimensions where this extended symmetry 
structure eiuerges. Iiistead. we use quantum iiiechanical and coiifornial field 
theory examples to motivate the interpretation of representations of these 
algebras. It may be useful to have particle-number changing operators as 
part of the symmetry structure. 

One goal of this talk is to explore several representations of Borcherds 
algebras. ( In  practical terms. this means that. the branching rules of var- 
ious highest-weight representations are -*slicedy or organized as a function 
of the eigenvalue of the number operator.) Section 2 is a brief summary 
of results concerniiig Borcherds algebras, includiiig a suiimiary of the the- 
ory of its highest-weight represeiitations. These algelxas are extensions of 
Kac-Mood5 algebras. and riiost of tlic rcpreseiitat ioii t heor? of Kat-Moody 
algebras directly applies to Borcherds algebras. Ref. [l]. The review of Sec. 2 
is completed by computing the roots of several simple Borcherds algebras 
and the weights and multiplicities of several highest-weight. representations. 

The solution to the problem of constructing the ext.ended Cartan subal- 
gebra that includes the hamiltonian in a n  affine Kat-Moody algebra, Ref. [2] 
is summarized in Sec. 3. In this construction the natural choice of the linear 
functional of the hamiltonian with itself is zero: if this bilinear form were used 
as a Cartan niatris for some iiew algebra. it \voulcl violare the rule that the 
diagonal elements of the Carla11 riiatris all be 2. However. this construction 
is interesting from the poilit of view of this t-alii I)cca.iise the  nondegenerate 
bilinear form defines a. Borcliercls Lie algebra. It may be iiseful to analyze 
the represeittatioiis iii terins of this iiew a.lgel>ra. The Borcherds algebras 
extend and generalize liac-Mood_v algebras b! adding an imaginary root to 
the set of siiiiple roots. so a zc*ro-valued cliagonal clement of the symmetrized 
Cartan niatrix is possitlle. 

Section 1 esplorcs how a L\\.o-(liiiieiisioiial currelit algebra is extended to 
include number changing operators. Adding an imaginary simple root to 
an affine algebra leads to two infinite clirect.ioris. one hamiltonian-like and 
the other coiuits t t i c  r i u i i i l ~ c ~ r  of particles i n  t l i e  st ate. Bot Ii operators are 
constructecl as suilis of t I i v  cliagoiial opc~a~ors  1 hat corrcymid to the siiiiyle 
roots of the esteiitled algebra. Results and speciilat-ions are briefly restated 
in Sec. 5.  

This introductioii coiiclucles with a hief review of those aspects of 1l;ac- 
Moody algebras t h a t  are of greatest importance to the Borcherds general- 
ization. Speaking rather roughly, the approach to Lie alsebra theory that 
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has been the most fruitful for generalization starts from an analysis of the 
space T' spatined b! the eigenvalues of a set of independent simultaneously 
diagonalizable operators in the Cartan subalgebra. In the finitedimensional 
case P is a Euclideati space with a positive definite nietric and of dimension 
equal to the rank 4 of the Lie algebra. The vectors in this space are the roots 
of the Lie algebra and the  weights of its representations. 

The basis of the Cartan subalgebra is a set of B linearly independent 
diagonalizable operators hi.  i = 1.. . . . e .  conveniently chosen. .A root o is an 
!-component vector in P whose components are the eigenvalues of h; in the 
sense of the Lie bracket: 

[h.i. fL,] = a( h ; ) ~ , .  (1) 
I where ea is one of t.he ladder opera.t.ors that increases a Hilbert space repre- 

sentation vector with weight A to one with weight X+a (if is X+a in the rep 
resentation: the functiotial a( h , )  is the i-t.h conipoiient. of t h e  [-dimensional 
root a. 

For a. vector 1r.A) iii the Hilbert space of a rcpresentation r, the e- 
dimensional vector ,\ in 'P is called a weight. The components of the weight 
X are defiiied by 

h;Jr. A) = A(hi)]r, A). (2) 
Additional lalxls of I lit- .vc*c-tor lr. A) \vlic*ir t.he niult iplicity of X is greater 
than unity have been suppressed. 

The Cartan subalgebra is dual to the space of roots. so a(h.i) and ,!(hi) 
are linear functioiials. The weight or root coiiipoiieiit. A (  11,) is defiiied by 

X ( h , )  = (Ala;). 

where this definitioii of ,\(/I;) differs froiii the iisual one by a normalization 
factor -. see Refs. 12. 41. Th* siiiiplc root (1, i i i  F' c-orrespotids to the 
diagonal operator h ,  in the Cartail subalgebra. and the component of ai 
associated with h, is a , (hJ)  = (ctila,). where (a , l~,)  is the natural scalar 
product in P of the siiiiple roots. 

The coiiiiiiutatioii relat ioiis t Iiat. clefiiie the Lie algebra are defined in 
tertiis of a SCI of -gcw~ratws . -  t l i a ~  gc*iic*rat.c t l i v  fi i l l  I.ic algebra through 
multiple commutators. F-or a rank algebra there are :3i generators. ei, ft:, 
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and hi. i = 1.. . . . t. The "presentation- of t h e  Lie algebra is then 

The values of the scalar pr0duct.s (~;JQ;)  are specified b_v the Cartan matrix 
that defines the Lac-Moody algebra. The presentatiori Eq. (4) normalizes 
the Cartan subalgebra soniewliat differentl_\. frotii the usual conventions, but 
is convenient for Borchertls a Igc4xas. 

Equation (4 )  does not completc4y define the Lie algebra. The 5erre 
relations" i iiipose I Iir rcqui rcii ieii t t 1 1  at c-crt aiii iiiul t i pie coiiiniutators vanish 

where. for example. ( n d  c,)lt, iiieaiis IC,. It,. c J ) ] .  T h e  presentation of t.he Lie 
algebra. Eqs. (4) and (-5). agrets with the usual otic u p  t.o the normalization 
of the Cartari subalgebra. Kquatioii (3) inakes s(wse i f  (a,la;) > 0. but this 
is a1wa.p the case for t h e  sii i iplc roots of I.iac-3Ioocl?- algebras. 

Any st.raight line in  T' that ~ r o s s e ~  iiiore thaii one root defiiies an su(2) 
subalgebra. so Ihe t'artan iiiat.ris indicates all t h e  nontrivial \va_\:s that I 
"independent" szr(2)s can be connected and yield a Lie algebra. This relation 
is characterized by the angles mid relative lengths of the  simpIe roots in P. 

Kac-Moody algebras are tlefi~ietl hy the geomet r i d  relations (scalar prod- 
ucts) aniong the eigviivaliic?; (rootz)  of I l i e*  (liagoiializablc~ operators. The first 
steps of the ~ l i e o r ~  arc. tlcilic-atetl to l i i ic l i i ig  t lie hest st rates- for defining these 
relat.ions from the asioiiw for L i e -  algcl)raz. The- iiictIio<l I l ic i i  requires proving 
that the constructioii of tlic cigciivaluc?; may hv lifted to a definit.ion of the 
Lie algdjra t Irrougli its c - o i i i i i i i i t a l i o i i  r-c.lat iorts. -1'11~-  gt-oiiielry is defined by a 
matrix A,, = (a,l(i ). \vlic*rc t h e  (-c-oiiiponent. euclitlcan vectors a; are called 
the siniplc roots. and I l i e  iitat i-is is c.aII(4 t I I P  s_\.nimct r i z d  ('artan rna- 
trjx. where the Cartan mat ris itsclf for sxmmetxizable Iiac-Moody algebras 
is defiiied I>\.  

(6) 



Kac-Moody algebras aiitl I l i e  Borchertls generalization are completely de 
fined by this matrix of scalar products of siinplrb roots. 'The list. of rules for 
Cij that. characterizes a Iiac-.\loody algchra is quite sinipIe. The Cartan 
matrix is an integer matris with diagonal elemelits C*;i = 2 and non-positive 
integers for the off diagonal eleineiits 1vit.h zeros matching pairwise. If C 
has positive determinant. then the alg&ra is finite-dimensional. If C has 
zero determinant, then the algebra is an infinite-dimensional affine algebrq 
this is the case of interest ill a t.\\.o-tIiolensiorlai current. algebra. Finally, if 
tlie detcriiiiriarit is wgativc.  ttw rcuultiirg algebra is one of the hyperbolic or 
other Iiac-Moody algebras. \\.hicli arc. iiot easily listed but are rather easily 
studied at the level of description o f  this paper. 

As the iiotatioii ii i  Lys. ( 3 )  airtl ( 6 )  suggests. uiily .-s?.iiiiiictrizable" Cartan 
matrices arc corisiderc-tl I t c w 9 .  l ' l i c *  syiiiti~ct rixcd C'artaJi matrix ,-I = CD is 

A geiieralizat ion o f  liar- Jlootly algc+ras by modifying the definition of 
the Cartan inat rix was tlisrovc-rcd I)? Horchcwls: for synmet rizable Cartan 
matrices the requireriicw~ tlrat I . , ,  = 2 ilia?. be dropped by introducing a sim- 
ple root c l l  of zero leiigt ti. . A l 1  = [ollcrl) = 0. The nest section summarizes 
an example of Borclierds' results [I]. 

2 Borcherds Algebras 
The extension froin Iiac-lfoody algebras 1.0 Rorcherds algebras is accom- 
plished by relaxing the rules for forming t.he C'artan matrix The simplest 
statcnieiit of t l i c -  c b s t c * t i s i o i i  is: I I I P  sc.1 i ~ f  siiiiplc roots 0,. i = 1.. . . .4, may 
iiiclutlc iiiiagiiiary roots. O i i r  disc-iiAJii is rcst rictcd t o  tlic case of just one 
imaginary siiiiple root. s&c-tc*tl I O  I W  n I aiitl to Ira\-c zcro Iciigt 11. (The choice 
of zero leiigt h t uriis out to Iw a c-oiivciit ion so long as CI I is imaginary.) 

'I'liv IKW riilc-s for I I I C .  ( 'ariwii ilia1 ris  t i i i i s i  I)[* sup$t*iiit.wted with new 
rules for the preseritat ion o f  I Iic. I,ics algdwa: t.lit- presciitaiion given in Eq. (4) 
aiid ( 5 )  gcwralizczs I O  Horc-lic*rcls wl!yl)ras c-scc*pi \rIicw ! n l  InI ) = 0 causes 
nonsense. l'liis includes i he last rclaiioii of E(]- (-4). \\.liere h e  right hand 
side of tlic equatioii is zvro for ; = 1.  a i d  11w Scwc rclatioris Eq. ( 5 ) ,  where 
the relation is siniply igiiord for i = 1 .  %)I(*  that this is a very strong 



assumption since (ad C ~ ) ~ ' C ,  # 0 for j # 1 and an? positive integer n. Thus, 
the Lie algebra places iio coltstraitits OII the "1' direction. For all other 
simple roots. the presentation is unchanged. and the Cartan matrix Cij, 
j # 1 satisfies the usual rules to he a C'artan matrix. which continues to be 
a symmet.rizable inlcger illat ris with iioiiposi t ive ofT-diagonal elements and 

The Borcherds paper summarizes the algebraic structure and representa- 
tion theory of these extended algebras [I]. The focus in this section is the 
root and wight itiultiplicity f ~ J r l l l l l h S  for Borclir-rds algebras and their rep- 
resentations. 'I'he represeittat i o i i  t 11~or)-  o f  higlicsl -\wight representations is 
almost identical to t.hc Iiac-!vloody case: the \Veyl-liac character formula is 
valid for Borclierds a l g e l ~ r i ~  1tc-f. [ I ] .  lltiis. t.he root and weight multiplici- 
ties can be coiiiimtcvl iri il iiiaiiii(*r i 4 c i i t  ical to I liosc of Iiac-Moody algebras. 
In particular, the Pet ersoii foriiiula [-I] is valid aiid provides a computational 
niethod for rl(*tcriiii iiittg ~ C J C J I  it i i t l  \wiglit t i i i i l t  i plicit ics. 

Tfic tlwivat ioii of t l i t -  I ' ~ t ( ~ r s o i i  fCJrllluh kJr K ~ I C - ~ I ~ C J C I ~  aIgc4ras is worked 
out in  deta.il in  Sec. 22 or Rc-f. [?I1- I t  is at1 itclrative formula for the multi- 
plicities of positive roots .j = E, //,ai. i l l  tcrnis of t h e  multiplicities of lower 

Cii = 2 for i + 1. Ref. [l]. 

positive rook. '['llC'S(' I i O I l Z ( ' ~ ( J  rOOtS \\-it h ~ o l l I l l o I l ( B 1 ~ ~ S  0 5 )?)-, 5 nj: 

where the sum is over all positivp i*oots .P and j'' wit11 .P + .?" = 3, and p is 
defined by (pla;) = I .  i = I.. - .  - 1 .  'I'ttc qiiant it?. is dcfincd by 



the symmetrized C'artan nial ris. 

The simple root a1 is imaginary and 0 2  is real. The scalar product of roots 
a = n la l  + 1 2 2 ~ 2  and 3 = mlal + 111202 is 

Table 1: I'osit.ivc roots oI' l h r c * I i c ~ r i l ~  algch-a wit 1 1  syiriiiietxized Cartan matrix 
given i i i  Kq. (IO) for  .w(2)&. ' f l ~  iiiiagiiiary siiiiplc root a1 has zero norm. 
The posit.ive root s ~ s t c m i  is listctl Iitnrc. tw-cpt at 1 1 1  = 0. where one negative 
and two zero roots are incliitled. (I<ecall that .  if CY is a root. so is -a) 
The s u ( 2 )  reprcwiit.nt ioii is i i i c l i c - a r c * t l  I,? its Iiiglicst. weight .\(It2) = 2 j :  for 
example (3)  is ( l i e  spiii 01' isospiii 3,'2 rc*l)rcvr-iitat ioii of tlitiieirsion 4. 

111 S l l ( 2 )  corltellt 
0 (2)  + (0) 
1 ( 1 )  
2 (0) 
:3 ( I )  
4 (2) 
5 (3) + (1) 
6 
i 
8 
9 

(4) + (2) + (0) 
(3)  + ?(:I) + 2( I )  
((i) + 2(  I )  + I ( ? )  + ( 0 )  
( i )  + 3(5 )  + 5 ( 3 )  + .'I( I I 

T'he adjoilit rcprc-scwl at i o i i  is r i o t  R Iiigli(as1 -\vc.iglir representation, since 
i f  a is a ~ O O I .  SO is --(I .  aiitl I 1ic.r~- i >  air i i i f i i i i t ( b  sent of' roots. Kct-er~heless, 
the weight iiiultiplicities of highest-weight representations can also be con- 
st.riict.cd I'roiii t l i c *  Pc.~c*rsoii I'oriiiiila foi .  ill1 c~~iI;irgc*cl iilg(*lmi. 111 part.icular, 
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the Freudenthal formula for Iiac-!iloo(ly alsehras is derived from the Peter- 
son foriiiula Cor an esteiiclcd xlgch-a wit11 siiiiplc root a. appended to the 
simple roots. ci I .  . . . . Clr :  I I i c  addit ioiial scalar products needed to define the 
extended algebra are (aoln,,) = '1 and (nolai) = -(.\la;). i = 1 , .  . . ,4, where 
A is the highest weight of the representation. 

The results are illustrated by calculations of the (1,O) representation of 
the algeljra witli syiiiiiiel.rizc<l ( 'artail iiiatris Eq. (10). I i i  order to calculate 
the weiglit riiultiplicitics for ~ h c  [ 1.0) rcyrcsciitation. oiir uscs the Peterson 
formula KCIS.($) and  (9). h i i t  i i i  voii.jiiiict ion \vi! h t hc  csteiidcd Cart.an ma.trix, 

Tlic I~i.eiideiitlial foriiiiila follows frwii I liis (:SI cwsioii. as derived in Refs. [2, 
4, 5 ) .  'I'll(* wiglit i i i u l t i p l i c - i t i c . 3  o f  I lie. (1.0) iiiiil (0.1 ) (iiiiig a difTt:rcmt es- 
tended ('artan inat ris. . 4 (" - i ) ( .w(2 )~ )  i i i  I liis lat tc*r case) representations are 
listed for tlie first. 10 rAws or I )  I i i i  ' I k l ) l c ~  2. Sotc: I I i c b  iiifiiiily of weights start- 
ing from tlie Iiigliest iveiglil vsI.c-iidiiig i i i  the o 1  tlirect.ion: h l  is an operator 
wit 11 a sei I i i- i 11 fii i i [.e spcc-i. 1-1 i I i I. 

11  is p o ~ ~ i l , l v  I O  i~iiravt-l I l i e .  I L J I ~ ~ ( w I s  r ( * ~ ) r ( ~ s ( ~ i t  a1 i o i i  i i i  ttar1lis of Fock 
space operators. just as m i 1  I I C  cloiic* for t Iic- af i i i c  Kac-lloody highest. weight 
reprewrit at ioiis .  ' I ' l i c -  SI riii-t iirc' o f  I I i v  1 I .Q) rc-Im.scntat io i i  of s u ( ' 3 ) B  is ex- 
tremely siiiiple: it. is possil>le IO h i i i l d  th is  reprcsent.ation ivith an su(2) dou- 
blet of crcatiori operators ( I , ,~ . , , ,  ")+ [tiat carrics l t t l  = 1. .MI products of a1,*,,, 
acting on the ground state are liiimrly independent. in  this construction; the 
lack of statistics is a prohlwi  for physical pa.rtic1t.s and is likely due to the 
assumption of no Scrru9 rclatiori- 131.  (.5) for i = 1 .  Thc -<TI(?) structure at 
slice tL1 = 11 is 1 . 1 1 ~ ~  tC'llSOr pro(li i(-l  ~ l '  I l l ( -  ( 1  ) rcipresentation of su(2) with 
itself 11 liiiics. 

Froiii a direct aiialFsis o f  I I i v  ( I . O )  ~ ( ' j ~ r ( ~ c ~ i i t a l i [ ) i i .  i t  is siniplc to t.ra.nsform 
from the ( h l . h 2 )  hasis of siiiiph- roots to t t i c -  ( -Y.21:3) hasis of the Cartan 

(1) t  



Table 2: Branching Rules of the (1.0) and (0.1) representat.ions of the 
Borcherds algeha . - I / (  2 ) B  o f  *l*al~l(* 1.  Agaiii. \ve slice t h e  representation 
with 0 1 .  I'lic s u ( 2 )  rcl~rcvc..iit.atiuir is givcw its highest weight. .\(hz) = 2. 
The results for the (1.0) are derived from t.he Pet.ermn formula with Q. (12) 
for the bilinear form. 
nl atr(2)  colltellt. of ( I  .oj 

0 (0) 
1 ( 1 )  
2 (2) + (0) 
3 (3)  + 2(I)  
4 
5 
6 
i 
8 

9 

(4) + 3(2) + 2(0) 
(*5) + 4(3) + .5( 1 )  
(6) t 5(1) t !J(2) t .li(O) 
( i )  + 6 ( 5 )  + 1-1(3)  + I d (  I )  
(8) + T(6) + 20(-1) 
+ 28(2) + 1 I(0) 

4- -18(:J) + 42( 1 )  
(9)  + S ( i )  + 2i(.3) + -1S(S) 



+ (1.0) 
+ 2( 1 - 1 1  + (0.0) 
+ :1( 1.2) + 32.0) + 3(0,1) 
+ l ( l . 3 )  + -5(3.1) + 6(0,2) 

+ ->,I 1 .U) 
((Hi) + -5( 1 .1 )  + !I(?.?) +10(0,3) 
i .5(3.0) + I ( i f  I. I ) + -5(O.O) 

I l ( : L l )  + :V5( 1 2 )  -i- 2l(2.0) + 3.5(0,1) 

6 

'i ( l . . j ) + ~ ( ~ . ~ ~ ) + ~ ( ~ ~ . l ~ + 2 ~ l J - l )  ( l l . Y ) + ( i ( l . . j )  4- Il(2.:3)+ l.j(O.1) 

( 1 . 1 )  + (2.2) + 2(0.3) + (:Lo) 
+ :3( 1.1)  

+ 5 (  1.2) + 3(2.0) + 3((I.l ) 



weight system of the ( 1.0.0) reprcscntation is also given in Table 3. As in the 
SZL(  2 ) ~  caw. the fiiiidariic-iital rq)rcsciit at ion ( 1.0.0) can Iw constructed from 
a triplet of creahii opcaratora w i t h  hl = 1 actiiigon a11 Eu(:J) siiiglet ground 
state. Tlic~ trick of atltiiiig t lie iiiiagiiiar: root 1.0 a finite dimensional Lie al- 
gebra giws a rc*prc?ierilat ioii f Iii.11 I)rovitlt*s tlic c v i t  iw Foc-k space of a set of 
operators traiisforiiiiiig ab oiit' o f  t l i t *  rc.lmwiil.a tioils of the- fiiiite-diniensional 
Lie algelJra.. 

Thus. I Iict  ( I .O.U] uf au(3 jb uf I-:([. ( 1s) I I ~ S  a st nict urc siiiilar to the  (1,O) 
represeiila.tioii of a c i ( 2 ) ~ .  * l h *  rcymsc-iitat ioii at = 11 is the tensor product 
of the su(3)  represcvit at ion  ! 0. I ) wit Ii itself 11 t iiiics. with no symmetry or 
aiitisxiiiiiiet ry c*oiist raiitls. 0 i r c . c .  agaiii I Iro i ~ ~ ~ ~ ~ ~ ~ ~ s ~ ~ i i ~ a ~ j ~ ~ i  of a Borcherds 
exteiidetl algebra adjoins t o  I Iic- l i i i i t c -  cliirieiisional rel>resentat.ion i t s  entire 
Fock sliacc. iiiclutliiig t I i ( *  siiiglc.1 gr(~iiii(I st R ten. ' 1 ' 1 1 ~ ~  rcq>reseiitation is shown 
in  Tahlr 3. 

3 Cartan Subalgebra of an Affine Kac-Moody 
Algebra 



(20) 

defined by 
f i  = c,n,. 

I 

(21) 

(22) 

(23) 



(c, = 1) .  the simplest soliitiori t o  I < q .  (20) aiirl (23) is to add a zeroth row 
(and coluriin) of the foriii (0. - 1.0.. . . . O )  to tlic Cartan niatrix. 

Finally. the valiic of . \ l l (  is 1 1 o 1  vc91.y iiiil)ortant so Imig as it  is not. 2. 
The natural choice is to sc-1 (.\ul.\u) = 0. 

The c~s~c*i i t le t l  ('iir~aii ~111~iiIg~~l~ra is sc~lcctc~l to iiicluclt- Lo along with h;, 
i = 1,. . . ,e. The basis vectors of the est.ended root space corresponding to 
these operators arc t l i c w  aiicl (1,. ; = I . .  . . - 1 .  *l*l i (w ~lir bilinear form is 
defined as .At, = (a,l(i,) for i .  j = I . .  . . . ( plus a zcwth r o ~  and column. The 
zeroth row is constraiiied I): (h l . \ ( l )  = - I :  for t h e  algebras anal_vzed here, we 
take (o1J.A0) = - 1 .  = 0. i = 2 . .  . . . ( an(l (.\,,I.\,,) = 0. I n  making 
the extension of tlic ('arlilii iiiat ris IO H 13orc.lic*rtls algchra. i t  is necessary to 
identify t I i c  opcmtors ( . ( i r r ~ ~ s ~ ) e ~ i i ~ l i i i ~  10 I I I V  s i i j i p h -  roo~s. 

4 Adding Energy and Number Operators to 
the Cartan Subalgebra 

I - I  



(26) 

0 0 \ 

(27) 

('18) 

I .i 

T _I- . ,.&, -. , . -- - .. J - ( - I ,  . -  . . A. .:, . :, f .  . . I -  ' , .  . I .  

- 



affine-su(2) irreducible r~prcsciit.atioiis as  

(31)  

I f i  

(32) 



dence is 

5 Conclusions 
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