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Turbomachinery Blade Optimization Using the Navier-Stokes Equations

K. K. Chand* and K. D. Lee**
Aeronautical and Astronautical Engineering
University of lllinois
Urbana, lllinois 61801

A method is presented to perforraerodynamic design optimization of
turbomachinery blades. The method couples a Navier-Stokes flow solver it a
generator and numerical optimization algorithm to seek improved designs for
transonic turbine blades. A fast and efficient multigrid, finite-volume flow solver
providesaccurate performance evaluations of potentlakigns. Desigrvariables
consist of smooth perturbations to the blade surface. A unidjimic-hyperbolic
grid generation method is used to regenerate a Navier-Stokes grid after perturbations
have been added to the geometry. Designs are sought which imprdesign
objective while remaining within specified constraints. The methadkmonstrated
with two transonic turbine blades with different types and numbersdesign
variables.

Introduction
capable offinding the geometry that yields a

Development of futurecommercial transport pressure or velocity distribution specified by a
aircraft requires new and higher performance jedesigner. Several attempts have been made to
engines. One approach to the developmergumh  perform inverse design of turbomachinebnjades.
engines takes advantage of computatiofiaid Many of these attempts have involved the use of
dynamics (CFD). Traditionally, CFD hakeen potential flow analysis of the flowfield in order to
used in an analysis modefor cut-and-try simplify the formulation and analysis of the
approaches to design. Specified geometries ardesigrf:3. However, formulation of thdnverse
analyzedfor their performance and then modified design problem is extremely difficultespecially
and resubmittedor further analysis. While this when complicated flow physics, such asshock
methodology may be effective if the desigfadl waves and shear layers, are involved.
within a known experimental databaseb#comes Unfortunately, transonic turbomachinerplade
cumbersome and difficult when thedesign flows are dominated by such complicatptlysical
progresses outside the domain of th@own  phenomenon requiring the use of Euler and Navier-
database. Additionally, when the desigpace Stokes simulations. Quite often theecessary
becomes complex, the cut-and-try approach camelocity or pressure distribution cannot be
sacrifice the design effectiveness in time and costspecified a priori.  Additionally, there is no
Reference 1 provides an overview of theguarantee that a geometry exi$ts a specified
methodology and difficulties of turbomachinery distribution. Also, turbomachinery blade
design. Clearly more automateddesign performance is often judged by parameters such as
optimization technologies are necessary forkinetic energy and total pressure lossefficients
reducing the time, and hence cost, necessary fawhich are not directlyassociatedwith the blade
the development of new turbomachineryvelocity or pressure distributions. Fortunately,
components. Computational methodsiave another approach is availablghich circumvents
matured to the point where CFD basedmerical the difficulties of inverse design.
optimization becomes a viable approach to a more
automated improvement of advanced Numerical optimization provides a rational and
turbomachinery components. directed searchthrough the design spacdnstead

There are typically two approaches to usingof specifying the ultimate goal, as in inverse
CFD for automated design: inverse design anddesign, a search methodology is provided. CFD

constrained optimization. Inverse design is based optimization is capable ohodifying a
geometry in order to improve a desigwhile
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improved without the degradation of othespects dissipations are used to ensure stability. To
of the design. Foexample, the objective may be improve convergence and efficiencyimplicit

to reduce a turbine's loss coefficienivhile  residual smoothing and a multi-level multigrid
constraining the blade loading to a specific valuemethod are implemented. Turbulence closure is
Importantly, the resulting blade pressure orprovided by the Baldwin-Lomax eddyiscosity
velocity distributions are not necessagy priori,  model9. Boundary conditions along the blade are
but are determined as a result of tliesign provided by zero velocity at the walls armkro
process. Unfortunately, numerical optimization ispressure gradient through the boundary laysetet
often computationally expensive, particularly whenand outlet boundary conditions are determined by a
the design involves nonlinear problems wittany  one dimensional analysis of theRiemann
design variables and constraints. However, theariables.

efficiency of moderrflow solvers, as well as the

computational power available today,alleviates  Elliptic-Hyperbolic Grid Generation
this drawback to optimization.

, ) Grid quality is critically important to
In order to provide areliable and accurate majntaining the accuracy and efficiency of a
design the numerical optimization must be Navier-Stokes flow solution. The flowfield around
presented with araccurate representation of the 3 tyrbine blade presents several difficultiesgiid
flow field. Transonic tu_rbomachmery. flows, generation. Quality grids with good gridensity
however, contain a variety ofcomplicated ang orthogonality are hard to generate due to the
phenomenon including shock waves, turbulenthigh camber,rounded leading and trailingdges,
boundary layers and wakes. Clearly the fullagng narrow pitth in the turbine geometry.
potential equations cannot accurately represenfjyperholic grid generation methods produce
these flows. Comparatively fewattempts have  qality grids in the near-field but may not properly
been made to utilize Euler or Navier-Stokd®v  pandle the periodic boundaries. Meanwhile,
analysis for the numerical optimization of gjiiptic methods are excellent imgridding the
turbomachinery blades. A primary reastor this  confined in-field but have difficulty controlling grid
involves both the maturity and cost of Navier- quality in the near-field. This grid problem is
Stokes analysis. Reference 6 used Ealealysis (jrcumvented by utilizing a unique grigeneration

to searchfor shockless compressor blade designsethod that combines elliptic and hyperbagjgd
Reference 7 utilized an Euler flow solverreduce  generation.

the loss coefficient of' turbine blades. Tpeesent
study follows the design approach Beference 7 The elliptic-hyperbolic hybrid (EHH) grid

while using Navier-Stokes = analysis to MOY€ qeneration method of Bacon and ELéehas the
accurately predict the turbine blade performance. abilty to vary the amount of elliptc and
hyperbolic characteristics of the grid. Thmethod

& formulated by linearly combining thelliptic

and hyperbolic operators as

The present study develops and presents
turbomachinery design tool based @onstrained
optimization with Navier-Stokeflow analysis. A
novel elliptic-hyperbolic grid generator is -
incorporated into the design to ensure tlyaid (IH(R) + HER) = 0 1)
quality is maintained as new geometries are h
investigated. The method is tested awhluated where
by implementing it on three turbine blades. The
present paper presents design resultis two
turbine blades.

p = weighting parameter

H(R) = hyperbolic function

E(R) = elliptic function

R =[xy

Tools and Methods )

Importantly, 4 can be varied throughout the
domain so that the grid ispredominantly
hyperbolic near the walls and elliptic in the middle
of the domain. Not only does the EHidethod
produce more orthogonal grids in the difficult
trailing edge regions, it preserves the smooth
nature of ellipticgrids throughout the domain. In
addition, EHH grid generation is robust and
computationally efficient making it ideal for

Flow Analysis

The optimization utilizes a 2D, multigrid
Navier-Stokes flow code that solves the Reynolds
averaged Navier-Stokes equations cianservative
form using a cell centered finite-volume
schemé& 9. Runge-Kutta integration is used with
local timestepping to produce a steadbtate
solution. Both second- anidurth-ordernumerical



repeated application during a numerical
optimization.

Numerical Optimization

The present method utilizes aommercial
optimization package to provide aobust and
efficient algorithm  for  the numerical
optimizatiod2. A general presentation of a
constrained optimization problem is:

Minimize: F(X) (2)
Subject to:  ¢gX)<0 =1,J
Xk <X, <Xy k=1,K

X represents the vector of design variablgs X

F is the objective function, and the gre the
constraint functions. J represents the number of
constraints and K the number of design variables.
Superscripts L and U denote the lower and upper
side constraints on the design variables. Typically,
equality constraints are imposed by using two
inequality constraints.

Using this information, the first step in
nonlinear optimization is to form the Langrangian:

J
L(X,A)=F(X)+ ZA,-gj(X) (3)
=1

where the\j are the Lagrange multipliers. lacal

optimum has been reached when the gradient of
the Lagrangian equals zero, which is known as the
Kuhn-Tucker condition:

J
DF(X)+Z}\ngJ—(X):O (4)
=1

OF and [g; are the sensitivities of thebjective

function and constraints, respectively, ¢hanges

in the design variables. In the current work,
sensitivities are calculated using a finite difference
technique. Forexample, the sensitivity of F for
the kth design variable is:

OF _ F(X+DX,)=F(X)
X, AX

(5)

Optimization begins with an initial choice for
the design variables. Fogxample, the design
process starts from a known turbine blade. The
optimization then proceeds to update the design
variables by finding a search direction and moving
the design variables along this direction The
distance traveled along this direction is thep
size.

Xn+1:Xn +ﬂsn (6)

whereS is the search directiof, the step size and
n the current design iterationEq. (6) is applied



iteratively until the Kuhn-Tucker condition of Eq. 4 camber line. The total perturbatioAn, is defined

is satisfied. as
K
A search direction must be both usable and An:zxkfk(s) (9)
feasible. Usable search directions are those which =1

reduce the objective function andeasible
directions satisfy the constraints. Mathematically, where the f(s) are smooth functions representing
the shape of the perturbations and s is ltdmtion
OF(X)sS<0 (7) along the camber line. Here, the desigriables,
Xk, are weightings for each shape function.
0g;(X)+S<0 (8)
Demonstration
A constraint is considered active whenviblates ) o
the feasibility condition within a specified Demonstrations are conducted using tiwdial
tolerance. The Fetcher-Reeves conjugate gradiefeometries: theVKl-rotor turbine, and theVKI-
method is used to find the search direction wherl.S82 turbine blad®. Initial grids for theseblades
no constraints are active. This method is aare illustrated in Figure 1. The design goal is to
modified form of the steepest descent algorithm reduce the loss coefficient, defined Hq. (10),
which biases the current search direction with thewithout decreasing the blade area, A, méssy,
previous search direction. In other words, theM, and loading, L. These constraints are presented
determination of the new search directiatilizes in Eq. (11). In these equations, Vs the exit
information from the previous direction. velocity and subscript 0 represents theitial
design value. Preventing a decrease in dhnea
When one or more constraints are active thehelps to avoid thin areas in the blade whaduse
determination of the search direction is morestructural problems at the high temperatures and
difficult due to the restrictions imposed by the loadings commonly found in turbines. Thatter
constraints.  In thiscase, minimizing Eq. (7) two constraints preserve the desigaquirements
subject to the constraints d&q. (8) yields the specified for the turbine.
search direction. This procedure is known as a

suboptimization and is also performed by the V2
commercial optimization package. Closszl‘sz (10)
2is
It is important to realize that theptimality

condition of Eq. (4) signifies only a local optimum. A M L

In practice it isvery difficult to obtain aglobal 1-—x<0, 1_M_S0’ 1—L—S0 (11)

optimum. A better initial condition may produce a Ao 0 0

better design. In general, the present degjgal ) o o

is to improve the performance of asxisting During the optimization, the grid ieegenerated

configuration although there is nayuarantee after adding each perturbation to the geometry. In

"global optimality." order to maintain computational efficiencyflow
solutions are restartedrom the bestavailable

DesignVariables solutions.  Solutions are considerecbnverged

when the maximum residual is reduced fopr
orders of magnitudérom the free-streanresidual
after a specified number of iterations habeen
ﬁompleted.

Since turbomachineryflows contain many
complicated and interacting phenomenaareful
choice of the design variables and constraints ca
significantly affect the optimization results. The
cost of optimization increases by increasing theYKl-rotor
number of design variables and constraints.

Alternatively, if the design variables and The shape functions defining thgeometry
constraints are carefully chosen the desigrPerturbations for this turbine blade are thatched
procedure becomes more effective and efficient. Polynomials given below:

In the current study, design variables consist of f :1_[(5k ‘S)]2[1+ As 1 (14a)
smooth perturbations to the initial turbine blade. K s((1-5s,)?
These perturbations are added to the upper and
lower blade surfaces in a direction normal to the for 0<s<s,



log(0.5)

_ _ e(k) = ——
fo=1-[3- My, B9y gy | log(s) |
1-s) Sc(1-s) Again, % denotes the location of the maximum of
the functions and s the location along #ember
for s, <s<1 line. For this blade, the exit isentropiklach
number was 1.43 with ao of (°. Two attempts
were made using six and ten design variables with
where the same svalues used for the correspondiwl-
A = max(0,1-2g) rotor cases.

B = max(0,2g-1)

Tables 3 and 4 summarize the results using six
In the above equationsk sepresents thdocation ~ 2nd ten design variables respectively. Figures 4
of the maximum of the functions. and 5 depict the che}nges in thebjective,
constraints, geometry, isentropic Mach number
distributions and flowfieldfor these cases. Again,
the optimized designs generate weaker shocks, and
hence less losses due to shocks.

The first designutilizes six designvariables,
three for the upper surface and thifee the lower.
Values for g used for this case are : 0.25, 0055

for both the upper and lower surfaces. This turbine | this case, the use ahore designvariables

operates at an exit isentropic Mach numbed.6P produces a much better design than using sidy

and an inlet flowangle, a, of 3(°. The results of \ith six variables, only a 6.3% improvement in
the optimization are summarized in Table 1 andhe objective function is achieved. With ten, the
Figure 2. A 22.4% reduction of the loseefficient  design is 9.3% better than the original geometry.
was produced by the design. However, some of thginfortunately, a high cost is involved with using
constraints were slightly violated. Figure 2¢c showsmore design variables. While it only took 28 CPU
the slight change in the initial geometry as a resulininutes on a Cray C-90 to perform the design with

of the design. By examining the isentropitach  six design variables, it took 66 minutes using ten.
number distributions and the pressure contours ifjore than twice as much computer time is

seems that the new design reduced the strength @équired in order to gain an extra 3.0%
the shock waves in order tdecrease the 10ss jmprovement in the design.
coefficient.
Concluding Remarks
In an effort to improve the design, tetesign
variables are used, fivlor each surface. Theifs The presented method can consistentiyd

values, for both surfaces, are: 0.15, 0.25, 0.85,  improved designs for transonic turbine blades. The
0.85. This time only a 16.1%ecrease in the loss optimization algorithm provides a means of
coefficient is seen. On the other hand, theimproving the desigrobjective while maintaining

constraints were violated lesduring the design. crucial constraints. A Navier-Stokes solver
These results are seen by examining Table 2 angssisted by a unique, high quality ggenerator

Figure 3. The geometry changes are depicted iensures that the optimization is efficient and
Figure 3c while the effects of the desighanges accurate. Cost and efficiency of the method is
on the isentropic Mach number distributions andshown to be strongly affected by the number of
flowfield are illustrated in Figures 3d, e and f. design variables and less influenced by theice

Again, the strength, and hence detriment, of thef shape functions. Future directions include a
shock waves were reduced as a result of thetudy of the effects of turbulence modeling and

design. grid density on turbine design. Also, this wakl
be extended to the optimization of transonic
VKI-LS82 turbine compressor blades.
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Table 1. Design optimization of the VKI-rotor blade
using six design variables

Initial Design | Change (%)
Closs 0.0853 0.0662 -22.43
Area 0.2787 0.2790 0.10
Mass flow 0.2337 0.2347 0.44
Blade loading | 0.2460 0.2513 2.13

Table 2. Design optimization of the VKI-rotor blade
using ten design variables

Initial Design | Change (%)
Closs 0.0853 0.0716 -16.05
Area 0.2787 0.2790 0.10
Mass flow 0.2337 0.2342 0.21
Blade loading | 0.2460 0.2493 1.32

(a) VKI-rotor grid (129x65)

Table 3. Design optimization of the VKI-LS82 blade
using six design variables

Initial Design | Change (%)
Cioss 0.0902 0.0846 -6.26
Area 0.1579 0.1579 0.00
Mass flow 0.0882 0.0892 1.16
Blade loading | 0.1139 0.1156 144

Table 4. Design optimization of the VKI-LS82 blade
using ten design variables

Initial Design | Change (%)
Closs 0.0902 0.0819 -9.29
Area 0.1579 0.1577 -0.14
Mass flow 0.0882 0.0907 2.718
Blade loading | 0.1139 0.1170 2.66

(b) VKI-LS82 grid (129x65)

Figure 1. Grids for the initial geometries
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