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Turbomachinery Blade Optimization Using the Navier-Stokes Equations

K. K. Chand* and K. D. Lee**
Aeronautical and Astronautical Engineering

University of Illinois
Urbana, Illinois 61801

A method is presented to perform aerodynamic design optimization of
turbomachinery blades.  The method couples a Navier-Stokes flow solver with a grid
generator and numerical optimization algorithm to seek improved designs for
transonic turbine blades.  A fast and efficient multigrid, finite-volume flow solver
provides accurate performance evaluations of potential designs.  Design variables
consist of smooth perturbations to the blade surface.  A unique elliptic-hyperbolic
grid generation method is used to regenerate a Navier-Stokes grid after perturbations
have been added to the geometry.  Designs are sought which improve a design
objective while remaining within specified constraints.  The method is demonstrated
with two transonic turbine blades with different types and numbers of design
variables.

Introduction

Development of future commercial transport
aircraft requires new and higher performance jet
engines.  One approach to the development of such
engines takes advantage of computational fluid
dynamics (CFD).  Traditionally, CFD has been
used in an analysis mode for cut-and-try
approaches to design.  Specified geometries are
analyzed for their performance and then modified
and resubmitted for further analysis.  While this
methodology may be effective if the designs fall
within a known experimental database, it becomes
cumbersome and difficult when the design
progresses outside the domain of the known
database.  Additionally, when the design space
becomes complex, the cut-and-try approach can
sacrifice the design effectiveness in time and cost.
Reference 1 provides an overview of the
methodology and difficulties of turbomachinery
design.  Clearly more automated design
optimization technologies are necessary for
reducing the time, and hence cost, necessary for
the development of new turbomachinery
components.  Computational methods have
matured to the point where CFD based numerical
optimization becomes a viable approach to a more
automated improvement of advanced
turbomachinery  components.

There are typically two approaches to using
CFD for automated design: inverse design and
constrained optimization.  Inverse design is
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capable of finding the geometry that yields a
pressure or velocity distribution specified by a
designer.  Several attempts have been made to
perform inverse design of turbomachinery blades.
Many of these attempts have involved the use of
potential flow analysis of the flowfield in order to
simplify the formulation and analysis of the
design2,3.  However, formulation of the inverse
design problem is extremely difficult, especially
when complicated flow physics, such as shock
waves and shear layers, are involved.
Unfortunately, transonic turbomachinery blade
flows are dominated by such complicated physical
phenomenon requiring the use of Euler and Navier-
Stokes simulations.  Quite often the necessary
velocity or pressure distribution cannot be
specified a priori.  Additionally, there is no
guarantee that a geometry exists for a specified
distribution.  Also, turbomachinery blade
performance is often judged by parameters such as
kinetic energy and total pressure loss coefficients
which are not directly associated with the blade
velocity or pressure distributions.  Fortunately,
another approach is available which circumvents
the difficulties of inverse design.

Numerical optimization provides a rational and
directed search through the design space.  Instead
of specifying the ultimate goal, as in inverse
design, a search methodology is provided.  CFD
based optimization is capable of modifying a
geometry in order to improve a design while
remaining within specified design constraints4,5.
In this manner, a specific design parameter may be
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improved without the degradation of other aspects
of the design.  For example, the objective may be
to reduce a turbine's loss coefficient while
constraining the blade loading to a specific value.
Importantly, the resulting blade pressure or
velocity distributions are not necessary a priori,
but are determined as a result of the design
process.  Unfortunately, numerical optimization is
often computationally expensive, particularly when
the design involves nonlinear problems with many
design variables and constraints.  However, the
efficiency of modern flow solvers, as well as the
computational power available today, alleviates
this drawback to optimization.

In order to provide a reliable and accurate
design the numerical optimization must be
presented with an accurate representation of the
flow field.  Transonic turbomachinery flows,
however, contain a variety of complicated
phenomenon including shock waves, turbulent
boundary layers and wakes.  Clearly the full
potential equations cannot accurately represent
these flows.  Comparatively few attempts have
been made to utilize Euler or Navier-Stokes flow
analysis for the numerical optimization of
turbomachinery blades.  A primary reason for this
involves both the maturity and cost of Navier-
Stokes analysis.  Reference 6 used Euler analysis
to search for shockless compressor blade designs.
Reference 7 utilized an Euler flow solver to reduce
the loss coefficient of turbine blades.  The present
study follows the design approach of Reference 7
while using Navier-Stokes analysis to more
accurately predict the turbine blade performance.

The present study develops and presents a
turbomachinery design tool based on constrained
optimization with Navier-Stokes flow analysis.  A
novel elliptic-hyperbolic grid generator is
incorporated into the design to ensure that grid
quality is maintained as new geometries are
investigated.  The method is tested and evaluated
by implementing it on three turbine blades.  The
present paper presents design results for two
turbine blades.

Tools and Methods

    Flow        Analysis   

The optimization utilizes a 2D, multigrid
Navier-Stokes flow code that solves the Reynolds-
averaged Navier-Stokes equations in conservative
form using a cell centered finite-volume
scheme8,9.  Runge-Kutta integration is used with
local timestepping to produce a steady state
solution.  Both second- and fourth-order numerical

dissipations are used to ensure stability.  To
improve convergence and efficiency, implicit
residual smoothing and a multi-level multigrid
method are implemented.  Turbulence closure is
provided by the Baldwin-Lomax eddy viscosity
model10.  Boundary conditions along the blade are
provided by zero velocity at the walls and zero
pressure gradient through the boundary layer.  Inlet
and outlet boundary conditions are determined by a
one dimensional analysis of the Riemann
variables.

    Elliptic-Hyperbolic        Grid        Generation   

Grid quality is critically important to
maintaining the accuracy and efficiency of a
Navier-Stokes flow solution.  The flowfield around
a turbine blade presents several difficulties in grid
generation.  Quality grids with good grid density
and orthogonality are hard to generate due to the
high camber, rounded leading and trailing edges,
and narrow pitch in the turbine geometry.
Hyperbolic grid generation methods produce
quality grids in the near-field but may not properly
handle the periodic boundaries.  Meanwhile,
elliptic methods are excellent in gridding the
confined in-field but have difficulty controlling grid
quality in the near-field.  This grid problem is
circumvented by utilizing a unique grid generation
method that combines elliptic and hyperbolic grid
generation.  

The elliptic-hyperbolic hybrid (EHH) grid
generation method of Bacon and Lee11 has the
ability to vary the amount of elliptic and
hyperbolic characteristics of the grid.  This method
is formulated by linearly combining the elliptic
and hyperbolic operators as

             (1-µ)H(R) + µE(R) = 0 (1)

where
µ = weighting parameter
H(R) = hyperbolic function
E(R) = elliptic function
R = [x ,y]T

Importantly, µ can be varied throughout the
domain so that the grid is predominantly
hyperbolic near the walls and elliptic in the middle
of the domain.  Not only does the EHH method
produce more orthogonal grids in the difficult
trailing edge regions, it preserves the smooth
nature of elliptic grids throughout the domain.  In
addition, EHH grid generation is robust and
computationally efficient making it ideal for
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repeated application during a numerical
optimization.

    Numerical        Optimization   

The present method utilizes a commercial
optimization package to provide a robust and
efficient algorithm for the numerical
optimization12.  A general presentation of a
constrained optimization problem is:

Minimize: F(X ) (2)

Subject to: gj(X )≤0 j=1,J

Xk
L ≤ Xk ≤ Xk

U k=1,K

X represents the vector of design variables Xk.
F is the objective function, and the gj are the
constraint functions.  J represents the number of
constraints and K the number of design variables.
Superscripts L and U denote the lower and upper
side constraints on the design variables.  Typically,
equality constraints are imposed by using two
inequality constraints.

Using this information, the first step in
nonlinear optimization is to form the  Langrangian:

           L(X, λ ) = F(X) + λ jg j (X)
j=1

J

∑ (3)

where the λ j are the Lagrange multipliers.  A local
optimum has been reached when the gradient of
the Lagrangian equals zero, which is known as the
Kuhn-Tucker condition:

              ∇F(X) + λ j∇g j (X) = 0
j=1

J

∑ (4)

∇F  and ∇g j  are the sensitivities of the objective

function and constraints, respectively, to changes
in the design variables.  In the current work,
sensitivities are calculated using a finite difference
technique.  For  example, the sensitivity of F for
the kth design variable is:

                 
∂F

∂Xk

= F(X + ∆Xk ) − F(X)

∆Xk

(5)

Optimization begins with an initial choice for
the design variables.  For example, the design
process starts from a known turbine blade.  The
optimization then proceeds to update the design
variables by finding a search direction and moving
the design variables along this direction  The
distance traveled along this direction is the step
size.

                       Xn+1 = Xn + βSn (6)

where S is the search direction, β the step size and
n the current design iteration.  Eq. (6) is applied
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iteratively until the Kuhn-Tucker condition of Eq. 4
is satisfied.

A search direction must be both usable and
feasible.  Usable search directions are those which
reduce the objective function and feasible
directions satisfy the constraints.  Mathematically,

                            ∇F(X) • S ≤ 0 (7)

                            ∇g j (X) • S ≤ 0 (8)

A constraint is considered active when it violates
the feasibility condition within a specified
tolerance.  The Fetcher-Reeves conjugate gradient
method is used to find the search direction when
no constraints are active.  This method is a
modified form of the steepest descent algorithm
which biases the current search direction with the
previous search direction.  In other words, the
determination of the new search direction utilizes
information from the previous direction.

When one or more constraints are active the
determination of the search direction is more
difficult due to the restrictions imposed by the
constraints.  In this case, minimizing Eq. (7)
subject to the constraints of Eq. (8) yields the
search direction.  This procedure is known as a
suboptimization and is also performed by the
commercial optimization package.

It is important to realize that the optimality
condition of Eq. (4) signifies only a local optimum.
In practice it is very difficult to obtain a global
optimum.  A better initial condition may produce a
better design.  In general, the present design goal
is to improve the performance of an existing
configuration although there is no guarantee
"global optimality."

    Design        Variables   

Since turbomachinery flows contain many
complicated and interacting phenomenon, careful
choice of the design variables and constraints can
significantly affect the optimization results.  The
cost of optimization increases by increasing the
number of design variables and constraints.
Alternatively, if the design variables and
constraints are carefully chosen the design
procedure becomes more effective and efficient.

In the current study, design variables consist of
smooth perturbations to the initial turbine blade.
These perturbations are added to the upper and
lower blade surfaces in a direction normal to the

camber line.  The total perturbation, ∆n , is defined
as

                        ∆n = Xkf k (s)
k =1

K

∑ (9)

where the fk(s) are smooth functions representing
the shape of the perturbations and s is the location
along the camber line.  Here, the design variables,
Xk, are weightings for each shape function.

Demonstration

Demonstrations are conducted using two initial
geometries: the VKI-rotor turbine, and the VKI-
LS82 turbine blade13.  Initial grids for these blades
are illustrated in Figure 1.  The design goal is to
reduce the loss coefficient, defined in Eq. (10),
without decreasing the blade area, A, mass flow,
M, and loading, L.  These constraints are presented
in Eq. (11).  In these equations, v2 is the exit
velocity and subscript 0 represents the initial
design value.  Preventing a decrease in the area
helps to avoid thin areas in the blade which cause
structural problems at the high temperatures and
loadings commonly found in turbines.  The latter
two constraints preserve the design requirements
specified for the turbine.

                     Closs = 1 −
v2

2

v2is
2 (10)

      1 − A

A0
≤ 0, 1 − M

M0
≤ 0 , 1 − L

L0
≤ 0 (11)

During the optimization, the grid is regenerated
after adding each perturbation to the geometry.  In
order to maintain computational efficiency, flow
solutions are restarted from the best available
solutions.  Solutions are considered converged
when the maximum residual is reduced by four
orders of magnitude from the free-stream residual
after a specified number of iterations have been
completed.

    VKI-rotor   

The shape functions defining the geometry
perturbations for this turbine blade are the patched
polynomials given below:

           f k = 1 − [
(sk − s)

sk

]2[1 + As

sk (1 − sk )2 ]

 

(14a)

for 0 ≤ s ≤ sk
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     f k = 1 − [
(s − sk )

(1 − sk )
]2[1 + Bs(1 − s)

sk
2 (1 − sk )

] (14b)

for sk ≤ s ≤ 1

where
A = max(0,1-2sk)

B = max(0,2sk-1)

In the above equations, sk represents the location
of the maximum of the functions.  

The first design utilizes six design variables,
three for the upper surface and three for the lower.
Values for sk used for this case are : 0.25, 0.5, 0.75
for both the upper and lower surfaces.  This turbine
operates at an exit isentropic Mach number of 1.02
and an inlet flow angle, α , of 30o.  The results of
the optimization are summarized in Table 1 and
Figure 2.  A 22.4% reduction of the loss coefficient
was produced by the design.  However, some of the
constraints were slightly violated.  Figure 2c shows
the slight change in the initial geometry as a result
of the design.  By examining the isentropic Mach
number distributions and the pressure contours it
seems that the new design reduced the strength of
the shock waves in order to decrease the loss
coefficient.

In an effort to improve the design, ten design
variables are used, five for each surface.  Their sk
values, for both surfaces, are: 0.15, 0.25, 0.5, 0.75,
0.85.  This time only a 16.1% decrease in the loss
coefficient is seen.  On the other hand, the
constraints were violated less during the design.
These results are seen by examining Table 2 and
Figure 3.  The geometry changes are depicted in
Figure 3c while the effects of the design changes
on the isentropic Mach number distributions and
flowfield are illustrated in Figures 3d, e and f.
Again, the strength, and hence detriment, of the
shock waves were reduced as a result of the
design.

    VKI-LS82       turbine

For the VKI-LS82 turbine, a different set of design
variables is demonstrated.  The Hicks-Henne
sinusoidal functions, given in Eq. 15, are used14.

            f1(s) = s.25 (1 − s) exp(−20s) (15a)

        f k (s) = sin3(πse(k ) ) ,  k>1 (15b)
where

                   e(k) = log(0.5)
log(sk )

Again, sk denotes the location of the maximum of
the functions and s the location along the camber
line.  For this blade, the exit isentropic Mach
number was 1.43 with an α  of 0o.  Two attempts
were made using six and ten design variables with
the same sk values used for the corresponding VKI-
rotor cases.

Tables 3 and 4 summarize the results using six
and ten design variables respectively.  Figures 4
and 5 depict the changes in the objective,
constraints, geometry, isentropic Mach number
distributions and flowfield for these cases.  Again,
the optimized designs generate weaker shocks, and
hence less losses due to shocks.  

In this case, the use of more design variables
produces a much better design than using only six.
With six variables, only a 6.3% improvement in
the objective function is achieved.  With ten, the
design is 9.3% better than the original geometry.
Unfortunately, a high cost is involved with using
more design variables.  While it only took 28 CPU
minutes on a Cray C-90 to perform the design with
six design variables, it took 66 minutes using ten.
More than twice as much computer time is
required in order to gain an extra 3.0%
improvement in the design.

Concluding Remarks

The presented method can consistently find
improved designs for transonic turbine blades.  The
optimization algorithm provides a means of
improving the design objective while maintaining
crucial constraints.  A Navier-Stokes solver
assisted by a unique, high quality grid generator
ensures that the optimization is efficient and
accurate.  Cost and efficiency of the method is
shown to be strongly affected by the number of
design variables and less influenced by the choice
of shape functions.  Future directions include a
study of the effects of turbulence modeling and
grid density on turbine design.  Also, this work will
be extended to the optimization of transonic
compressor blades.
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Table l. Design optimization of the VKI-rotor blade
using six design variables

Initial Design ] Change (%)

Cl,wc I 0.0853 I 0.0662 I -22.43.“.,.

Area 0.2787 0.2790 0.10
Mass flow 0.2337 0.2347 0.44

Blade loading I 0.2460 I 0.2513 I 2.13 I

Table 2. Design optimization of the VKI-rotor blade
using ten design variables

I I Initial I Desire I Chruwe(%) ]e.,

Goss 0.0853 0.0716 -16.05

Area 0.2787 0.2790 0.10

Mass flow 0.2337 0.2342 0.21

Blade loading 0.2460 0.2493 1.32

(a) VKI-rotorgrid (129x65)

Table 3. Design optimization of the VK.I-LS82 blade
using six design variables

I I Initial I Design I Change (%) 1

Table 4. Design optimization of the VKI-LS82 blade
using ten design variables

Initial Design Change (%)

Closs 0.0902 0.0819 -9.29

Area 0.1579 0.1577 -0.14

Mass flow 0.0882 0.0907 2.78

Blade loading 0.1139 0.1170 2.66

(b),VKI-LS82 grid (129x65)

Figure 1. Grids for the initial geometries
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