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A Second-Orde Method for Interface Reconstruction
in Orthogonal Coordinate Systems' (U)

J. A. Greenough
Lawrence Livermore National Laboratory
D. T. Graves P. Colella
Lawrenae Berkeley National Laboratory

We presen a methal in two-dimensioafor reconstructig an interface from a distribution of vol-
ume fractions in a genera orthogond coadinate system The method in a cel by cel fashion,
approximates the interface curve by a linear profile. The approach requres only loca volume
fraction information for the reconstruction An integral formulation is usal that accouns for the
orthogona coadinate systenin a naturd way. We use finite differences to approximat the slope
of the requred interface while retaining at worg seconl order accuragy for genera interface ori-
entatiors and an exad representatio for coardinate systen aligned ones (U)

Keywords: interface reconstructionmultifluid hydrodynamics

Introduction

An approab for computirg flows composd of thermodynamicayl distind materias in Eule-
rian coordinats is basel on a volume-of-flud descriptim of the system In this type of method,
ead cel isdescribé by mixture properties and individud pha properties Theindividud phase
properties include avolume fraction in eadt cell tha is defined as the ratio of the volume of a cell
occupiel by amateria to the totd volume of the cell. From afluid dynamicé point of view, there
is a sd of equatiors tha describs the dynamic of the effective mixture system say the equa-
tions of gas dynamics ard additionad ones that descrile the motion of the volume fraction field,
of equvalently the materid interface and a self-consistenséd of equatiors for the evolution of the
individud pha® properties.

Numericall, this systen of equatiors can be solved in the foll owing steps:

¢ In single fluid regions (regions containirg only one material) an appropria¢ numerical
methal for advancirg in time the mixture equatiors is used e.g. a higha-orde Godunov
method Note tha effective single fluid properties mug be appropriatel definal for the
mixed cells.

e For cells containirg more than one material i.e. mixed cells the multifluid equatiors must
be solved (herem referrad to as the multifluid equations) Thisincludes evolving the volume
fraction field and the individud pha® properties in a self-consistenfashio tha retains
globd consevation.

The complee multifluid systen of equatiors has been presentd elsawhere (Colella, Glaz and
Ferguson 1998 Saltzma and Pucketf 1992 and Mille r and Puckett 1996 so will not berepeated

Work performel unde the auspics of the U.S. Departmeh of Enagy by the Lawrene Livermoe National
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herefor the sale of brevity and to maintain focus on the subje¢ of the pape. Without going into the
detaik of the multifluid update algorithm this step requiresthe interface to be reconstructd cel by
cell from the gridscak volume fraction distribution. Asthelocation ard orientation of the interface
isrecomputd as neededwe refe to it as a sub-gridscad featuse of the flow. We have developed
anew methal for the reconstructia that easily generalize to orthogona coordinagé systens and
by using monotore limited finite differencesfollowing Colella, Helmsa ard Pucket (1997) it

retairs second-ordeaccuray ard is faste and more efficient than othea function minimization
approachg(Pilliod ard Puckett 1995).

This pape will first establi$ the notation needd for describirgy the reconstructia method,
then outline the stefs of the reconstructia algorithm We introduce the integrd formulation that
accouns for the generd orthogoné coordinaé system The reductio of the locd volume frac-
tion distribution to a canonica orientation will be describe next, followed by the calculatian of
the interface slope We presem two examples of calculatirg the slope of an interface first for
Cartesia coordinats and seconl for axisymmetre coordinatesThen we briefly descrike how the
reconstructia is couplel to an advection schene for moving a materid interface nondifusively.

Terminology and Description of Problem

We conside an orthogon&curvilinea coordinaé systen in two dimensiors consistirg of inde-
pendenvariablegz', #?), and with uniform grid spacing{dz', d #). Wealso conside aCartesian
coordinaesystem(zy ) and amappirg betwee the thetwo coordinaesystems(zy ) — (x!, 2?),
tha isinvertible and sufficiently smooth We defirne scak factors,h! andh?, given by

(W = (3524 (i e (1,2) )

Note tha the scak factors in generdare function of the variables(z!, z2). Analytically, a differ-
entid volume encompasskby differentid lengths,dz' anddz?, and is given by

dV = h'h?dz'da?. (2)
For the ca of cylindrical (axisymmetri¢ coordinateswherel = r and2 = z, we have

h"=1,h* =1,d V= 2nrdrdz. 3)
For sphericacoordinateswherel = r and2 = ¢, we have

R =1,1" = rsinfdV = 2rr?sinfdrdo. 4)

Numerically we divide the spatid doman evenly into computationbelemens of sizeAz! by Az2.
Thecente of ead cell islocatal at ((i+3)Az?, (j+3)Az?). Werestrid attention to problenswith
only two fluids, which we identify with v =2  ard an associate volume fraction f in every
cell. Note tha thisrestrictian only isimportart for the presemnalgorithm We have hybridized this
methal with a lower orde methal for treatirg case with more that two fluids. If the volume of
the computationbcel is AV, this volume fraction is defined as

o] Va
1m= AVe
Note tha the volume fractiors satisfy the constraintf* + f2? = 1.
2

(5)
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Figure 1: lllustration of the locd orientation of the intefface The figure on the left shows the
interface beg describe as afunction of 22, sincetheinterface islocally close to being horizontal.
On the left, it is beg describé as a function of !, sinee the interface is locally close to being
vertical.

Canonicd Interfac e Orientation

Given aline separatig two fluids and acoordinaé system(z!, z%), the descriptim of an inter-
faae as a function of one of its independenvariables is not uniquel defined Say we arbitrarily
defire the interface location L to be a function of z! with L = L(z'). Equivalentl, by a 90deg
rotation of the coordinae system we could obtai an interface location = L(22). Thisideais
simply illustrated in figure 1. In the cas on the left, any descriptia of the interface as afunction
of 22 would be multiply defined but describirg the interface as locally a function of !, as shown
on the right gives a single valued function Anothe reasa for choosimg the latter orientation is
to have slopes that are well behaved insdfar as they are bounded In the configuratian on the left,
the slopeislarge while on theright it isfinite. Thisisthe guide for choosimg one orientation over
anothe.

We use this concep to pick which locd orientation is mod suitabk for the description of
the interface First we extrad a 5x5 platte of volume fractiors of the marke fluid, say fluid 1,
surroundirg the cel of interest We then calculae which edge of the platte is “heaviest’ with
respetto fluid 1. That is, which edge has the greatesconcentratia of the marke fluid. Defining
i andj to be the locd (to the 5x5 plattel) indices in the z! and 2? directions respedtvely, the



NECDC Octobea 1998

volume fractiors are summel over ead edge of the platte as

5 2
Abot — Z Z fi,j
i=1j=1
5 5
Atop = Z Z fi,j
55 (6)
Alef = Z Z fi,j
i=1j=1
5 5
Arig — Z Z fi,j
i=4 j=1
Define the heavies edge to be tha 5x5 grid edge as A = max(Ag|k = bottoplefrig ). If
Ayop OF Ay is found to be the greatestthe interface is sad to be a function of z!, otherwi the
interface is a sai to be afunction of 22.

Once the canonich orientation is selectedwe can restrid the 5x5 platte to 3 wide by 5 tall.
We retan the 5 tall so that we have accurag integrals that are given in the foll owing sections.

Geometric Description of Interface
Without loss of generaliy, we assune tha at a point the location of the interface can be de-
scribal by the following graph:

{(z',2%) :2® = L(2")} (7)
Since we are modelirg theinterface as alinear function, within acel the function L is of the form
L(z") = Ly + Lyz' (8)

whereL, andL; are constants.

In figure 2 we show the curve that we wart to approximag with a linear function Below the
curve are full marked fluid cells, abowe we have empty marke fluid cells and the cells cut by the
interface are mixed Itisincell (i ) where we wart to constru¢ an approximatim to the slope of
the curve,L = L(z"). We designag the amourt of marke fluid, in arestrictal region (see figure
2), asthe function,Q(x!), given explicitly as

z' L(7)

Q)= [ ([ st ) Asnir ) ©)
where
Aydndr = dV, (10)

The function, ), contairs the locd coordinaé systen metric and the marked fluid volume fraction
in the integrard as well as the interfaceL(z') in the limits of integration In orde to recover the
location of the interface we mug invert equatian 9.

Slope Calculation
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j Y aa L=L(x})

Figure 2: The volume of marked fluid in the shade region is the area unde the curve,L(z'). See
narratve for orientation The curwveistaken asafunction of z' and limitinterestoz; < z' < x};
andz? < z? < L(z'). Thelocal 3 by 5 grid, abou cell (i ), isshown in the dashe online.

The previous section showed the formalian for representig the curve to be approximated.
Within our locd 3x5 platte of datg it isvery simpleto numericaly calculate() using 9:

i—1+m j+2 Jj+2
Qicsppam = Y (> fradVe)( D [ e%vi,) (11)
k=i—1 1=j—2 I=j—2
wheredV isthe cel volume andi =2,3 . Notice tha for i = , equati 11 is just the
integrd over the first colurm of the platte and# = is the integrd over all three columrs of
data We further define@;_s(, = , with & = . This follows from equatim 9 with the upper

ard lower 7 limits of integration equal In going from the continuos integrd form to a discrete
computatio form using summation the discrete) exactly reproducs the integra resut when
integrating betwee cel edges.

So now we have 4 values of () definad on cel edges We can compue first derivatives
dQ/dxl(ime), for m = 0, 1, 2, using the abo\e values of ).

The exad form of this delivative will be given in the examples to follow. In orde to recover
the slope of the linear profile, we use the three first delivatives to construt a limited monotonic
approximatia to the secoml derivative of () using Van Leer stylefinite differencain cell (i, ) as
required Thes also will be given in the examples.

Locating the Lin e within the Cell

It remairs to locate the interface within the cell. Thisisdore so that the volumes delimited by
the interface within the cel matcte the volume fraction values in that cell. If we limit the slope
sothat—1 < L; < 1 andinsig that Az =22  then only three possibk line orientatiors are
possible Thisis shown in figure 3.
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Figure 3: Given aslope of the line, three possibé translatios within the (i, ) cel are possible.

Given aslope thes casa differ by verticd translatian of theline. So in practice one proceeds
throudh the case until theline splitsthe cell in away tha matche the volume fractions Note that
for non-Cartesia geometriesthe uppermosand lower mog translation canna be treatal as the
sane cas by reflection.

Example: Cartesian Coordinates
In the cage of 1 = x andx, = y, equatio 9 reduces to

Q(z) = / L(z')da' (12)

(since the area function is independenof v, .., 1S Sé to zero) So analyticall, the heiglt of the
interface is given by

_dQ
L(z) = o (13)
ard discretize@ as foll ows
1
Li= - (Qiy — Qiy) (14)

Sinee all the coordinaé metrics are unity in the cas of Cartesia coordinatesthe calculation of
the heigh for the ca® of z; = y andz, = z is a simple permutatim of = andy in the above
formulae The slope of thelineisgiven as

ALl = szgn (Li+1 — Ll_l)MZ 71(2|LZ — Li—1|7 2|Li+1 — Lz|7 05|Ll+1 — Li_1|)/AIL‘1 (15)

wheresign (a) gives+1 ifa 0 and—1isa 0 . Thistype of formulais known colloqui-
ally as “min-mod limiting” . The three argumens of the M nfunction abowe can be identified as
backward forward ard centerd differen@ approximationsrespedtely.

6
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Example: Axisymmetric Cylindrical Coordinates

Becaus non-tiivial coordinaé metrics are involved in axisymmetre cylindrical coordinates,
the slope calculation become somewha more difficult. Inthe cag of z; = r andz, = z, equation
9reducsto

Q(r) = /27rL(r')r'dr' (16)

(since the area function is independenof z, z,,, IS s to zero) So analyticall, the heigh of the
interface is given by

1 dQ
L(r) = S dr (17)
ard discretizal as foll ows
1
Li = A—T(Q”% — Q1) (18)

In the cag of 1 = z andxz, = r, equati; 9 reduces to

z

Q) = [ 7(L2(") = R, )dr (19)
0
which implies tha (analytically) the height of the interface is given by
L) = GO 12, (20)
We calculate the discret heiglt of the interfae as foll ows
Ly = (é(@m% ~ Qi1+ R, (21)

In both casesonce the interface height is calculatedthe slope is computel foll owing equation 15
for the cente cell.

Coupling to Advection Scheme

In orde to coupkthereconstructia algorithm to an advectio schenefor the volumefractions,
we nedl to have velocities at the cell edges Given thes velocities and a time increment, At, we
can defire atotd volume flux acros the cel edge Thisis shown schematicall in figure 4. Then
the problemisreducel to one of geomety where we mug compue the volume of the quadrilaterals
formed by overlayirg the rectangé defining the totd volume flux onto the quadrilaterad defining
the volumes of the two fluids containe in the cell.

Results
We presem resuls of the reconstructio methal for a hydrodynamis problan in spherical
geomety. The problem istha of aden® gas sphericashel embeddd in alight gas background.
The outea edce of the den® shel is pressurizd (heatedl so that a strorg shodk is driven into the
shel towardsthe origin therely forcing animplosion The oute edge of the shel isdriven outward
where it eventually moves out of the computatio domain The initial configuratian of the shell
7
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Figure 4. lllustration of advectia of interface The volume fluxed out of the cell during atimestep
At is shown by the dashe rectangle The quadrilateravolume of fluid 1 ard fluid 2 with this
rectange are the volume fluxes of fluid 1 and fluid 2 during the timestep.

Figure 5. The initial configuratia of the den® gas sphericashel shown in logical i andj coar-
dinates In this view, spherichshelk appeaas verticd lines Yellow denote full den® shel cells
ard blue denotea full light gas cells The origin isthe left edge of the computationedomain.

volumefractionisshownin figure 5. The originisto theleft in the figure Notetha we display the
problem in alogical i andj coordinaé system This shows spherica shelk as verticd lines and
will make it eay to see tha the problem retairs spherich symmety exactly. At very late times,
shown in figure 6, we see the oute shel edge has exited the computationedoman and that inner
edee is very close to the origin. At thistime is has just startel to reverse its direction of motion
away from the origin. Note that spherichsymmety is exactly preserved.
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