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A Second-Order Method for InterfaceReconstruction
in Orthogonal Coordinate Systems1 (U)

J. A. Greenough
Lawrence Livermore National Laboratory

D. T. Graves, P. Colella
Lawrence Berkeley National Laboratory

We present a method in two-dimensions for reconstructing an interface froma distribution of vol-
ume fractions in a general orthogonal coordinate system. The method, in a cell by cell fashion,
approximates the interface curve by a linear profile. The approach requires only local volume
fraction information for the reconstruction. An integral formulation is used that accounts for the
orthogonal coordinatesystem in a natural way. We use finitedifferences to approximate the slope
of the required interfacewhile retaining at worst second order accuracy for general interfaceori-
entationsand an exact representation for coordinatesystemaligned ones. (U)

Keywords: interface reconstruction, multifluid hydrodynamics

Int roduction
An approach for computing flows composed of thermodynamically distinct materials in Eule-

rian coordinates is based on a volume-of-fluid description of the system. In this type of method,
each cell is described by mixtureproperties and individual phase properties. The individual phase
properties include avolume fraction in each cell that is defined as the ratio of the volumeof a cell
occupied by amaterial to the total volumeof thecell. From afluid dynamical point of view, there
is a set of equations that describes the dynamics of the effective mixture system, say the equa-
tions of gas dynamics, and additional ones that describe the motion of the volume fraction field,
of equivalently thematerial interface, and aself-consistent set of equations for theevolution of the
individual phaseproperties.

Numerically, thissystem of equationscan besolved in the following steps:

� In single fluid regions (regions containing only one material), an appropriate numerical
method for advancing in time the mixture equations is used, e.g. a higher-order Godunov
method. Note that effective single fluid properties must be appropriately defined for the
mixed cells.

� For cells containing more than one material, i.e. mixed cells, the multifluid equations must
besolved (hereon referred to asthemultifluid equations). This includesevolving thevolume
fraction field and the individual phase properties in a self-consistent fashion that retains
global conservation.

The complete multifluid system of equations has been presented elsewhere (Colella, Glaz and
Ferguson, 1998, Saltzman and Puckett, 1992, and Miller and Puckett, 1996) so wil l not berepeated

1Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National
Laboratory under contract No. W-7405-ENG-48.
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herefor thesakeof brevity and tomaintain focuson thesubject of thepaper. Without going into the
detailsof themultifluid updatealgorithm, thisstep requirestheinterfaceto bereconstructed cell by
cell from thegridscalevolumefraction distribution. Asthelocation and orientation of theinterface
is recomputed as needed, we refer to it as a sub-gridscale feature of the flow. We have developed
a new method for the reconstruction that easily generalizes to orthogonal coordinate systems and
by using monotone limited finite differences, following Colella, Helmsen and Puckett (1997), it
retains second-order accuracy and is faster and more efficient than other function minimization
approaches (Pilliod and Puckett, 1995).

This paper wil l first establish the notation needed for describing the reconstruction method,
then outline the steps of the reconstruction algorithm. We introduce the integral formulation that
accounts for the general orthogonal coordinate system. The reduction of the local volume frac-
tion distribution to a canonical orientation wil l be described next, followed by the calculation of
the interface slope. We present two examples of calculating the slope of an interface, first for
Cartesian coordinatesand second for axisymmetric coordinates. Then webriefly describehow the
reconstruction iscoupled to an advection schemefor moving amaterial interfacenondiffusively.

Terminology and Description of Problem
Weconsider an orthogonal curvilinear coordinatesystem in two dimensionsconsisting of inde-

pendent variables(x1; x2), and with uniform grid spacing,(dx1; d x2). Wealso consider aCartesian
coordinatesystem(x;y ) and amappingbetween thethetwocoordinatesystems,(x;y )! (x1; x2),
that is invertibleand sufficiently smooth. Wedefinescale factors,h1 andh2, given by

(hi)2 = (
@x

@xi
)2 + (

@y

@xi
)2; i 2 f1; 2g: (1)

Note that the scale factors in general are function of the variables(x1; x2). Analytically, a differ-
ential volumeencompassed by differential lengths,dx1 anddx2, and isgiven by

dV = h1h2dx1dx2: (2)

For thecase of cylindrical (axisymmetric) coordinates, where1 = r and2 = z, wehave

hr = 1; hz = 1; d V= 2�rdrdz: (3)

For spherical coordinates, where1 = r and2 = �, wehave

hr = 1; h� = rsin�;dV = 2�r2sin�drd�: (4)

Numerically wedividethespatial domain evenly into computational elementsof size�x1 by�x2.
Thecenter of each cell islocatedat((i+ 1

2
)�x1; (j+ 1

2
)�x2). Werestrict attention toproblemswith

only two fluids, which we identify with � =1 ; 2 and an associated volume fraction f� in every
cell. Note that this restriction only is important for thepresent algorithm. Wehavehybridized this
method with a lower order method for treating cases with more that two fluids. If the volume of
thecomputational cell is�V c, thisvolumefraction is defined as

f� =
V �

�V c
(5)

Note that thevolumefractions satisfy theconstraintf 1 + f 2 = 1.
2
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Figure 1: Illustration of the local orientation of the interface. The figure on the left shows the
interfacebest described asa function of x2, sincethe interface is locally closer to being horizontal.
On the left, it is best described as a function of x1, since the interface is locally closer to being
vertical.

Canonical Interface Orientation
Given a lineseparating two fluidsand acoordinatesystem(x1; x2), thedescription of an inter-

face as a function of one of its independent variables is not uniquely defined. Say we arbitrarily
define the interface locationL to be a function of x1 with L = L(x1). Equivalently, by a 90deg
rotation of the coordinate system, we could obtain an interface locationL̂ = L̂(x2). This idea is
simply illustrated in figure 1. In the case on the left, any description of the interface as a function
of x2 would be multiply defined but describing the interface as locally a function of x1, as shown
on the right gives a single valued function. Another reason for choosing the latter orientation is
to have slopes that are well behaved insofar as they are bounded. In the configuration on the left,
theslope is large, whileon the right it isfinite. This is theguide for choosing oneorientation over
another.

We use this concept to pick which local orientation is most suitable for the description of
the interface. First we extract a 5x5 platter of volume fractions of the marked fluid, say fluid 1,
surrounding the cell of interest. We then calculate which edge of the platter is “heaviest” with
respect to fluid 1. That is, which edgehas thegreatest concentration of themarked fluid. Defining
i and j to be the local (to the 5x5 platter) indices in the x1 andx2 directions, respectively, the

3
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volumefractionsare summed over each edgeof theplatter as

Abot =
5X

i=1

2X
j=1

fi;j

Atop =
5X

i=1

5X
j=4

fi;j

Alef =
2X

i=1

5X
j=1

fi;j

Arig =
5X

i=4

5X
j=1

fi;j

(6)

Define the heaviest edge to be that 5x5 grid edge asA = max(Akjk = bot;top;lef;rig ). If
Atop or Abot is found to be the greatest, the interface is said to be a function of x1, otherwise the
interface is asaid to be afunction of x2.

Once the canonical orientation is selected, we can restrict the 5x5 platter to 3 wide by 5 tall.
Weretain the5 tall so that wehaveaccurate integrals that aregiven in the following sections.

Geometric Description of Interface
Without loss of generality, we assume that at a point the location of the interface can be de-

scribed by the following graph:

f(x1; x2) : x2 = L(x1)g (7)

Sincewearemodeling the interfaceasa linear function, within acell the functionL isof theform

L(x1) = L0 + L1x
1 (8)

whereL0 andL1 are constants.
In figure 2 we show the curve that we want to approximate with a linear function. Below the

curve are full marked fluid cells, above we have empty marked fluid cells and the cells cut by the
interfacearemixed. It is in cell (i;j ) wherewewant to construct an approximation to theslopeof
the curve,L = L(x1). We designate the amount of marked fluid, in a restricted region (see figure
2), as the function,Q(x1), given explicitly as

Q(x1) =

x1Z

x1;low

(

L(�)Z

�low

fmarked(�;� )A2(�;� )d�)d� (9)

where

A2d�d� = dV; (10)

The function,Q, contains the local coordinatesystem metric and themarked fluid volumefraction
in the integrand as well as the interfaceL(x1) in the limits of integration. In order to recover the
location of the interface, wemust invert equation 9.

SlopeCalculation
4
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Figure2: Thevolumeof marked fluid in theshaded region is thearea under thecurve,L(x1). See
narrative for orientation. Thecurve is taken asa function of x1 and limi t interest to x1L < x1 < x1H
andx2L < x2 < L(x1). The local3 by 5 grid, about cell (i;j ), isshown in thedashed online.

The previous section showed the formalism for representing the curve to be approximated.
Within our local 3x5 platter of data, it isvery simple to numerically calculateQ using 9:

Qi�3=2+m =
i�1+mX
k=i�1

(
j+2X

l=j�2

fk;l�Vk;l)(
j+2X

l=j�2

fmarked
k;l �Vk;l) (11)

where�V is the cell volume andm =1 ; 2; 3 . Notice that for m =1 , equation 11 is just the
integral over the first column of the platter andm =2 is the integral over all three columns of
data. We further defineQi�3=2 =0 , with m =0 . This follows from equation 9 with the upper
and lower � limits of integration equal. In going from the continuous integral form to a discrete
computation form using summation, the discreteQ exactly reproduces the integral result when
integrating between cell edges.

So now we have 4 values of Q defined on cell edges. We can compute first derivatives
dQ=dx1(i�1+m), for m = 0; 1; 2, using theabovevaluesof Q.

The exact form of this derivative wil l be given in the examples to follow. In order to recover
the slopeof the linear profile, we use these three first derivatives to construct a limited monotonic
approximation to thesecond derivativeof Q using Van Leer stylefinitedifferences in cell (i;j ) as
required. Thesealso wil l begiven in theexamples.

Locating the Lin e withi n the Cell
It remains to locate the interface within thecell. This isdone so that the volumesdelimited by

the interface within the cell matche the volume fraction values in that cell. If we limi t the slope
so that�1 � L1 � 1 and insist that�x1 =� x2 then only three possible line orientations are
possible. This is shown in figure3.

5
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Figure3: Given aslopeof the line, threepossible translationswithin the(i;j ) cell are possible.

Given aslope, thesecasesdiffer by vertical translation of the line. So in practice, oneproceeds
through thecasesuntil the linesplits thecell in away that matches thevolumefractions. Note that
for non-Cartesian geometries, the uppermost and lower most translation cannot be treated as the
samecaseby reflection.

Example: Cartesian Coordinates
In thecaseof x1 = x andx2 = y, equation 9 reduces to

Q(x) =

xZ

0

L(x0)dx0 (12)

(since the area function is independent of y, ylow is set to zero). So analytically, the height of the
interface is given by

L(x) =
dQ

dx
(13)

and discretized as follows

Li =
1

�x
(Qi+ 1

2

�Qi� 1

2

) (14)

Since all the coordinate metrics are unity in the case of Cartesian coordinates, the calculation of
the height for the case of x1 = y andx2 = x is a simple permutation of x andy in the above
formulae. Theslopeof the line is given as

�Li = sign(Li+1 � Li�1)Mi n(2jLi � Li�1j; 2jLi+1 � Lij; 0:5jLi+1 � Li�1j)=�x1 (15)

wheresign(a) gives+1 if a> 0 and�1 is a< 0 . This type of formula is known colloqui-
ally as “min-mod limiting” . The three arguments of theMi n function above can be identified as
backward, forward and centered difference approximations, respectively.

6
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Example: Axisymmetric Cylindrica l Coordinates
Because non-trivial coordinate metrics are involved in axisymmetric cylindrical coordinates,

theslopecalculation becomessomewhat moredifficult. In thecaseof x1 = r andx2 = z, equation
9 reduces to

Q(r) =

rZ

0

2�L(r0)r0dr0 (16)

(since the area function is independent of z, zlow is set to zero). So analytically, the height of the
interface is given by

L(r) =
1

2�r

dQ

dr
(17)

and discretized as follows

Li =
1

�r
(Qi+ 1

2

�Qi� 1

2

) (18)

In thecaseof x1 = z andx2 = r, equation 9 reduces to

Q(z) =

zZ

0

�(L2(r0)0 �R2
low)dr

0 (19)

which implies that (analytically) theheight of the interface isgiven by

L(r) = (
1

�

dQ

dz
+R2

low)
1

2 (20)

Wecalculate thediscreteheight of the interfaceas follows

Li = (
1

�z
(Qi+ 1

2

�Qi� 1

2

+R2
low))

1

2 (21)

In both cases, once the interface height is calculated, the slope is computed following equation 15
for thecenter cell.

Coupling to Advection Scheme
In order tocouplethereconstructionalgorithmtoanadvectionschemefor thevolumefractions,

we need to have velocities at the cell edges. Given these velocities and a time increment,�t, we
can define a total volume flux across the cell edge. This is shown schematically in figure 4. Then
theproblem isreduced to oneof geometry wherewemust computethevolumeof thequadrilaterals
formed by overlaying the rectangle defining the total volume flux onto the quadrilaterals defining
thevolumesof the two fluidscontained in thecell.

Results
We present results of the reconstruction method for a hydrodynamics problem in spherical

geometry. The problem is that of a dense gas spherical shell embedded in a light gas background.
The outer edge of the dense shell is pressurized (heated) so that a strong shock is driven into the
shell towardstheorigin thereby forcing an implosion. Theouter edgeof theshell isdriven outward
where it eventually moves out of the computation domain. The initial configuration of the shell

7
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Figure4: Illustration of advection of interface. Thevolumefluxed out of thecell during atimestep
�t is shown by the dashed rectangle. The quadrilateral volume of fluid 1 and fluid 2 with this
rectangleare thevolumefluxesof fluid 1and fluid 2during the timestep.

Figure 5: The initial configuration of the dense gas spherical shell shown in logical i andj coor-
dinates. In thisview, spherical shellsappear as vertical lines. Yellow denotes full denseshell cells
and bluedenotes full light gas cells. Theorigin is the left edgeof thecomputational domain.

volumefraction isshown in figure5. Theorigin is to theleft in thefigure. Notethat wedisplay the
problem in a logical i andj coordinate system. This shows spherical shells as vertical lines and
wil l make it easy to see that the problem retains spherical symmetry exactly. At very late times,
shown in figure 6, we see the outer shell edge has exited the computational domain and that inner
edge is very close to the origin. At this time is has just started to reverse its direction of motion
away from theorigin. Note that spherical symmetry isexactly preserved.
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Figure 6: The late time cofiguration of the dense gas spherical shell shown in logical i and j
coordinates. In this view, spherical shells appear as vertical lines. Yellow denotes full dense shell
cellsand bluedenotes full light gascells. Theouter edgehasexited thecomputational domain and
the inner edge is just reversing itsdirection of motion away from theorigin. The interface isstill a
spherical shell (vertical line).
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