
-0DUCED AT GOVT EXPENSE # 5

KAPL-P-000204
(K97158)

REAL TIME PROGRAMMING ENVIRONMENT FOR WINDOWS

D. R. LaBelle

April 1998

NOTICE

This report was prepared as an account of work sponsored by the United States Government.
Neither the United States, nor the United States Depamnent of Energy, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness
of any information, apparatus, product or process disclosed, or represents that its use would not
infringe privately owned rights.

KAPL ATOMIC POWER LABORATORY SCHENFCTADY, NEW YORK 15801

Operated for the U. S. Department of Energy
by KAPL, Inc. a Lockheed Martin company

DISCLAIMER

This repon was prepared as an account of work spoasod by an agency of the
United States Government Neither the U n i d States Government oor any agency
thereof. nor any of thdr anployees makes any wuranty, expms or impiiak or
assumes any legal liabiiity or responsibility for the m, completeness, or use-
fulness of any infomation, apparatus, producr, or process disclosed. or rrpiesenu
that its use would not infringe privately owned rights Reftrrncc harin to any spc-
afic c o m m d product, proceu, or service by trade name, urdtmprk, inmufac-
turer, or otherwise does not necessarily constitute or imp@ iu endorsemcat. ream-
mendation, or favoring by the United States Gowrament or any agency thereof.
The views and opinions of authors atprrucd herein Q not m y state or
reflect tbose of tbe United States Government or any agency t h d .

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

REPRODUCED AT GOVT EXPENSE # 5

REAL TIME PROGRAMMING ENVIRONMENT FOR WINDOWS

Dennis R LaBelle
22 Sandalwood Drive

Clifton Park, NY 12065
e-mail drlabell@albany.net

KEYWORDS

real time simulation tool WindowsNT

ABSTRACT

This document provides a description of the Real Time Programming
Environment (RTProE). RTProE tools allow a programmer to create soft real
time projects under general, multi-purpose operating systems. The basic
features necessary for real time applications are provided by RTProE, leaving
the programmer fi-ee to concentrate efforts on his specific project The current
version supports Microsoft WindowsTM 95 and NT. The tasks of real time
synchronization and communication with other programs are handled by
RTProE. RTProE includes a generic methog for connecting a graphical user
interface (GUI) to allow real time control and interaction with the
programmer’s product. Topics covered in this papa include real time
performance issues, portability, details of shared memory management, code
scheduling, application control, Operating System specific concerns and the
use of Computer Aided Software Engineering (CASE) tools.

The development of RTProE is an important step in the expansion of the
real time programming community. The financial costs associated with using
the system are minimal. All source code for RTProE has been made publicly
available. Any person with access to a personal computer, Windows 95 or
NT, and C or FORTRAN compilers can quickly enter the world of real time
modeling and simulation.

GOALS

Having done real time application development under a couple of versions
of UNrX, I set out to investigate what the 32-bit versions of Windows could
do. RTProE is the product ofthk investigation.

The project goals consisted of:

1. Creating an automated system for programming real time
applications such as simulators and non-critical, medium speed
control systems.

2. Maximizing multi-platform portability
3. Producing freely available source code
4. Generating efficient, compact, low maintenance source code
5. Providing a well integrated Graphical User Interface for real time

applications.

PERFORMANCE ISSUES

5.

The fust 3 items are by far the most important and are cur~ently the only
ones used by RTProE. Efforts to lock the program in memory are generally
unnecessary in today’s high RAM environments. CPU assignment is only
beneficial on multi-processor systems and would be easily implemented with a
single h c t i o n call.

Assignment of a program to a specific CPU

Shared Memory

Shared memory is by far the preferred method of inter-process
communication for this real time project. The use of shared memory makes
for an extremely simple and portable design. Only minor changes are
necessary to adapt the Windows shared memory usage to UNIX

Shared memory uses little CPU overhead and is extremely fast. However,
most importantly, it allows inter-process communication without using any
of the Windows Application Programming Interface (API) function calls. This
avoids Windows’ annoying tendency to sied the processor away from an
application in order to service low priority events such as mouse movements.
An application’s use of any other type of inter-process communication under
Windows severely degrades its real time response. However, avoiding the use
of the Windows API functions produces a surprisingly robust real time
application.

Timer Interrupts

Windows 95 and NT are capable of providing timer interrupts at a
resolution of 1 millisecond. From informal statements noted by other users on
the Internet, the interrupt precision is normally within 1 millisecond and
sometimes as bad as 10 milliseconds.

Priority Modification

RTProE uses the maximum level ofthe Windows
REALTIME-PRIORITY-CLASS to ensure proper response of the real time
application. This, of course, could lead to a dangerous situation should the
application programmer write faulty code with an infimite loop or infiite wait
condition. RTProE includes special code to detect such conditions and
automatically breaks out ofthem. This RTProE feature works quite well even
with a loop such as:

while (1);

Windows 95 versus NT

Overview

The Win32 environment has most of the important real time features found
in modern versions of UNIX. These include:

1. Sharedmemory
2. Timer interrupts
3. Priority modification
4. Program memory locking

Running real time application code under both Windows 95 and NT
demonstrates a sigruficant difference in real time response between Windows
95 and NT. Windows NT is much better at honoring the requested REAL
TIME priority level and responding to the timer interrupt than Windows 95.
Windows 95 performance appears satisfactory if CPU loading by the real
time application is kept under 40 percent.

mailto:drlabell@albany.net

REPRODUCED AT GOV7 EXPENSE # 5

PORTABILITY

producing a multi-platform compatible product is one ofthe major goals of
RTProE. Subsequently, many of its utilities are command line based.
Graphical user interfaces were constructed using the TCYTK programming
language. TCL/TK code can be run unmodified under Windows, UNIX and
the Mac operating system. Therefore, T C W K represents an excellent choice
for a multi-platform product. The data base system, build environment and the
Interactive Control Station (ICs) portion of RTProE, have graphical
interfaces.

The f& version of RTProE was produced under Windows 95/NT. Where
more than one method of implementation was possible under Windows, the
choice was made in favor of the approach most compatible with the UNM
operating system. This was done to simplify the migration path to UNM.

SOURCE CODE

Except for graphical user interface portions, done in TCVTK, RTProE has
been Written in C. The specific compiler used was Microsoft Visual C++
version 4.0. To maintain portability to UNn<, there was no use made of
Microsoft Foundation Class libraries.

Much of the code was created using PC versions ofthe LEX and YACC
utilities. Public domain versions of these long time UNM tools were used to
generate the code for the programs hgen, iqn , pdrn and rfduta. This resulted
in a relatively small amount of code that must be maintained for RTProE
(-6000 lines). This code takes the form of input files to the LEX and YACC
programs.

The choice of LEX and YACC was a natural one. The bulk of the work in
creating a real time programming environment consists of routine computer
science lexical translation and grammar parsing. These are tasks LEX and
YACC were respectively designed for.

All source code for RTProE is included in Appendix A of this document.

PROGRAMMING LANGUAGES SUPPORTED

RTProE currently supports the C and FORTRAN programming language
for real time user applica>ions.

RTProE MEMORY MANAGEMENT

Overview

Thepdm program manages a data base of variables which will be used by
a real time application. This data base is known as the Programmer's Data
Base (PDB). The variables specified in the PDB will exist in shared memory
when the application is run. Using RTProFs fimction library and tools, other
applications can access and interact with these variables during run time.
Since RTProE uses shared memory exclusively for communication with the
real time application, access to this data is provided with no run time speed
penalty.

The PDB contains the following infomation about program variables:

1. Variablename
2. Datatype
3. Array dimensioning
4.
5.

The hgen and igen programs generate header files of variable de rations
for each file that uses variables maintained in the PDB. Variables contained in
the PDB must not be declared in the source code by any other method.

Name of shared memory structure in which variable resides
Location in shared memory structure

The header generation programs use information in the PDB to produce
data structures which contain the PDB variables found within a source code
file. These structures are called global partitions. The header files produced
contain the necessary compiler directives to place the global partitions in
shared memory. The program source code should use the PDB variables as
discrete, non-structure items. The necessary structure syntax will be handled
by statements in the, automatically generated, header file.

Global Partitions

RTProE manages the placement of user application variables into shared
memory. With shared memory, the information in the variables can be made
available to any other running program. The information directly manipulated
by the application program, resides in shared memory. The shared memory
variables are not copies. They are the actual data items used by the
application program. Therefore, the use of shared memory results in no
additional processing overhead for the communication of the data between
programs. This provides the fastest possible data transfer available between
programs.

Large data structures are used for the eficient handling of this shared
memory. The actual location of a specific variable within the shared memory
structures is determined by the PDB. The structures are called global
partitions and are automatically created usingthe hgen and rgen programs
described later.

Partition Types - There are three general types of global partitions. A
programmer uses pdm to assign a variable to a partition type based on its
hnctionality. The three global partition types and the variables they should
contain are described below:

Global Partition for Non-save Variables - These variables are placed
in shared memory but do not defme the "state" of the application. They are
modified as part of the program execution but only reflect a temporary
condition of the application. The variables have global scope within the
application. This t y p of partition is never saved to or restored &om a file.

Global Partition for Initial Condition Variables -These variables are
placed in shared memory. Their values are necessary for restoring the
"state" of the application. They are modified as part of the program
execution. The variables have global scope within the application. All
partitions ofthis type are saved to file when an Initial Condition write
request is made. This write request can be made using the rfdufu command
SNAP. All partitions of this type are restored from file when an Initial
Condition read request is made. This read request can be made using the
rtdafu command RESET.

Global Partition for Constant Coefficents - These variables are placed
in shared memory. They define the behavioral characteristics of the
application and are not modified by execution of the program However,
their values may be changed by the programmer to modify the behavior of
the program. The variables have global scope withinthe application. All
partitions of this type are recalled from file when the real time application
is f& run. All partitions of this type are copied from memory to the file
globcon.dut by using the rtduta command CONSAVE. The RTProE real
time scheduler (rtsched.c) looks for this data at the end of the user
application executable file. The last part of building the real trine user
application involves attaching gZobcon.dut to the end of the executable file.
This is one of the tasks performed by the build program or the RTProE
Workbench.

Either the ICs or the RTDATA program can be used to set the values of
the constants before creating the giobcon.dat file.

D e f h g a Partition - Each global partition must have an entry in the
PDB. The information for a partition is entered like any other program
variable, usingpdm. The user may define any number of each global

partition type. Global partitions are normally defmed as large, single
dimension arrays. For each item of the array, 32 bytes of shared memory
will be reserved by the user application at run time. These shared memory
structures should be created large enough to hold all the variables the user
wishes to place in them. However, pdm allows the user to modify the size
of the partition with its MOD command

Reserving Space for a Variable Within a Partition - Space is reserved
within a partition by creating an entry in the PDB for the variable. When
first defining a variable, the user must also assign it to a global partition.
Placing the variable in the PDB with the pdm reserves space in the shared
memory data structure for the variable.

PDB addition and modification may be made interactively or in a batch
mode. This last method provides for the import of data from different
RTProE data bases or other real time development systems.

Shared Memory Under Windows9SNT - In order to create and use
shared memory under Windows 95 or NT, RTProE performs the
following:

1. Uses hgen to create header files for C program source code. Uses rgen
for FORTRAN source code.

These header files contain the global partition structures to properly
access the parameters in shared memory.

2. Uses hgen to create the special header file for rtsched.c.

This special header contains the necessary compiler directives for
global partition initialization and export to other programs.

Uses the RTProE Windows resource file rtsched.rc

t

3.

This file defmes the global partition structures as shared memory.

Compiles the real time application 4.

After building the application, the user should place the rtdutu.exe and
rtsched.exe files in a PATH directory prior to use. The rtdatu program
needs to access the real time application file at startup in order to access its
shared memory. Placing rtsched.exe in one of the PATH directories is one
method of ensuring it can do so.

SUPPORTING PROGRAMS

RTProE consists of several supporting utilities. Most of these programs are
automatically controlled and executed through the RTProE Workbench
program Summary descriptions ofthe utilities follow.

Build

The T C W K language was used to produce a program that can
automatically perform the proper scanning of source code and building of a
real time program with RTProE. The program is called build. Although
Make files are traditionally used to maintain and build applications, the
capabilities of the Make utility varies between operating systems and vendors.
Therefore, the cross-platform Scripting language TCLRK proved an excellent
choice for producing a portable utility.

Build performs source/target comparisons and compilations similar to
Make. The program also manages a hierarchy based on “official
Development” and “User Development” areas. The bulk of a real time
application is normally assembled fiom an “OiTicial Development” area with
small modifications coming from a “User Development” subdiiectoly.

Overview - Theframegen program generates the necessary C source.
code for scheduling the programmer’s code at intervals specified in the file
f i u m e s q i n . The ftame sequencing input file has a simple text file
format. The generated source code is stored in the fi1eframeseq.c. The
frame code generator can produce source code for any number of frames
per second.

RTProE supports the execution of user code fragments at multiple
frequencies. Thefrumeseq.in file is used to identify the desired ftequency
for each portion of the real time application. ,

Scheduling Real time Applications - Real time application program
normally divide execution time into an integral number of frames per
second. During each ftame, the application performs some work. Mer
the work is completed, the real time application suspends itselfuntil the
start of the next time frame. Processing theframeseqh file allows the
programmer to specify:

Framegen

REPRODUCED AT GOV’T EXPENSE # 5

The total number of frames per second.

This is the number of time slices which the programmer wishes
to schedule during each second. The minimum number is 1.
Under Windows 95/NT the maximum number is 1000. The
frames per second is specified when processing thefnrmeseq.in
file withframegen. Theframegen program can accept a single
argument on the command line. This argument is the number of
time slices (frames) that will be scheduled during each second.

How many times per second a subroutine is called

Individual subroutines do not need to be scheduled for
execution every time frame. To conserve CPU, they should only
be scheduled as often as the programmer deems necessary. For
example, the program may need to update a displayed numeric
value only once per second.

Load balancing on a per second basis

The work performed by a real time application is normally
spread evenly across time. This presents the best real time
behavior to the user or other interfacing applications. The
programmer should not schedule all the subroutine calls into a
single frame.

Load balancing is performed through the use of execution
groups. An execution group is an evenly spaced subset of the total
frames available per second. The number of groups is dependent
on the total number of frames in a second. For example, if 12
frames per second were specified, there would be:

12 groups with an execution rate of 1 frame per second
6 groups with an execution rate of 2 frames per second
4 groups with an execution rate of 3 frames per second
3 groups with an execution rate of 4 frames per second
2 groups with an execution rate of 6 h e s per second
1 group with an execution rate of 12 ftames per second

The table below shows the group numbers and execution frame
number for each calling frequency available in a 12 Hertz
program.

REPRODUCED AT GOV'T EXPENSE # 5

As seen in the table above, if a subroutine was scheduled for
execution 4 times per second in group 2, it would run during
frames2,5,8and11.

In scheduling a subroutine for execution 4 times per second, a
decision must be made as to which of 3 groups to use. Do not
schedule all 4 Hertz activity to the same group. Doig so would
create a load imbalance. Instead, it is better to alternate the groups
to which the 4 Hertz subroutine calls are assigned.

Thefiamegen program rea&frumeseq.in and produces the C source code
to correctly schedule the user's subroutines as requested. This generated code
is stored as fi1eframeseq.c.

t
Hgen

The hgen program scans the programmer's C source code and generates
the necessary header file for compilation into the real time application. Any
variable names which appear in both the user's source code and the PDB will
be identified and the necessary header file information will be produced.

Generation of include files for FORTRAN code is done by the program
igen.

The hgen program reads its data from standard input (stdin) and generates
the header file information to standard output (stdout). Therefore, the
redirection symbols are used to provide input and indicate the desired
location of the output. The output is redirected to a header tile associated with
the source code file being scanned. The scanned source code must also
reference the header file created with hgen.

Example - The following example shows how hgen is used to scan the
filexrc0la.c. The program variables xxtempl and xtemp2 have already
been defmed in the PDB.

Input source code fie: xxcolac

#include "xxc0la.h"

void xxc0 la()
(/*This subroutine increments a few values once per second */
++xxtempl;
xxtemp2 = xxtempl Yo 12;

t

Command Line to Generate Header File

hgen <xxc0la.c >xxc0la.h

Resulting Output Sent to File: xxc0la.h

#pragma dak-seg("SHAREDAT I")

- declspec (dlle-) struct {
long int xxtempl;

long int xxtemp2;
char dummyO[32760];

1 globalol;

P w m data-sego

#define xxtemp 1 global0 1 .xxtempl
#defme xxtemp2 global0 1 .xxtemp2

ICS client

The Interactive Control Station client, ics, provides a graphical interface
for interactive control of real time applications produced with RTF'roE. The
ics program communicates with the Interactive Control Station server,
icserver, to obtain information and control the real time program. This is done
through TCPIIP sockets, allowing easy communication over a network.

Ics is written in TCUTK. TCL 7.6 and TK 4.2 or later revisions must be
installed on the system to run it.

The author discusses the ics, icserver and icsgruph programs in greater
detail in the accompanying paper "Building u Simulator Control Station
using the TCWTKLanguage".

Icserver

The interactive control server (icserver) provides a set of centralized
services for controlling the real time application locally or over a network. It
uses the rfdara program for communication with the real time program.
Icserver is written in T C m K and communicates with clients using TCPIIP
sockets.

Icsgraph

The icsgraph program allows the user to plot the values of variables
contained within the real time application. This plotting is performed in real
time, while the application runs. The variables must be defined using thepdm
program. Any of the variables defmed in the pdm data base can then be
specified by their text label during run time.

The following features are available with icsgraph:

1.
2.
3. Sample rate adjustment
4. Display range selection
5.

Selection of up to 4 plotted parameters from the PDB
Automatic scaling and run rate adjustment

File SAVE and LOAD of parameter sets

Multiple copies of icsgruph may be run simultaneously. Icsgraph is
Written in TCUTK and communicates with the icserver using TCP/IP
sockets.

Igen

The igen program scans the programmer's FORTRAN source code and
generates the necessary include file for compilation into the real time
application. Any variable names which appear in both the user's source code
and the PDB will be identified and the necessary include file information will
be generated.

Generation of header files for C code is done by the program hgen

The igen program reads its data from standard input (stdin) and generates
the header file information to standard output (stdout). Therefore, the
redirection symbols are used to provide input and indicate the desired location
of the output. The output is redirected to an inciude file associated with the

REPRODUCED AT GOV7 EXPENSE # 5

source code file beiig scanned. The scanned source code must also reference
the include file created with igen.

Example - The following example shows how igen is used to scan the file
xxc0lb.E The program variables i_4byte, i-4byte-2 and i-4byte-3 have
already been defined in the PDB.

Input Source Code File: xxc0lb.f

subroutine mc0 1 b

include "xxd 1 b.inc"
C This subroutine inaements a few values once per second.

i-4byte = i-4byte + 1
i-4byte-2 = i-4byte + 1
i-4byte-3 = i-4byte-2 + 1
END

Command Line to Generate Include File

Rtdata

5. Numeric display formatting
6. Storage of descriptive, non-programming data

Under Windows, the pdm program is written as a 32-bit console
application with a keyboard interface. Prior to starting pdm, the environment
variable ODSPATH must be defined This is the only environment variable
required for using RTProE. ODSPATH must spec& the directory in which
the data base files are maintained. Multiple projects may be maintained on
the same system by storing the data base files in separate directories. The
value of ODSPATH can then be changed, as necessary, to switch to another
project.

Pdm is started in the same manner as any other Windows program. When
run interactively, the user is presented with a console window. Pdm does not
provide a command line prompt However, it will accept certain commands
and provide some feedback. Although it may be accessed directly through its
command line interface, the graphical &ont end provided by the RTProE
Workbench is normally used.

igen <xxcOlb.f >xxcOlb.inc

Resulting Output Sent to File: xsc0lb.inc

character* 1 GLOBALO3X(64)
COMMON /GLOBALO3/GLOBALO3X

t
integer*4 i-4byte
EQUIVALENCE(-4byte, global03X(5))

character*l GLOBALOOX(2048)
COMMON /GLOBALOO/GLOBALOOX

integeP4 i-4byte-2
EQuIVALENCE(i-4byte-2, globalOOX(1))

integer*4 i-4byte-3
EQuIVALENCE(i-4byte-3, globalOOX(5))

Pdm

Thepdm program mqages a data base of variables which will be used by
a real time user application. This data base is known as the Programmer's
Data Base (PDB). The variables specified in the PDB will exist in shared
memory when the application is run. Using RTProE's fimction library and
tools, other applications can access and interact with these variables during
run time. Access to this data is provided with no run time speed penalty. The
pdm program is generated using LEX and YACC.

Thepdm is used to manage the placement of application program variables
within large shared memory data structures. These structures are called global
partitions. Thepdm provides the following functionality for each variable
defined within it:

1. Identification of a variable as either:
a. A temporary variable
b. A state variable
c. A constant coefficient
Automatic placement ofthe variable into an available location within
a partition
Automatic generation ofthe variable's data definition withiin a header
tile
Maintenance of programming specific information
a. Variablename
b. Datatype
c. Array dimensioning
d Name of shared memory partition
e. Offset into shared memory partition

2.

3.

4.

The rtduru program acts as a data communications path between the real
time application and other programs. It is used to control the application run
state and read or m o d e values in the real time program. Using RTProE's
function library rfdafu can access and interact with the variables in the real
time application.. Access to this data is provided with no run time speed
penalty. The rfdutu program is generated using LEX and YACC.

The rfdutu program uses the Programmer's Data Base (PDB) to determine
the placement of variables within shared memory data structures used by the
real time application. These structures are called global partitions. The user,
however, refers to the data location by its normal symbolic name in the
application.

Under Windows, the rtduta program is written as a 32-bit console
application with a keyboard interface. Rtdufu is started in the same manner as
any other Windows program By default, rfdutu will connect to the shared
memory ofthe program rtsched.exe. To connect to the shared memory of
some other RTProE real time application, specifj the program name on the
rfdutu command line.

Example: rtdata myapp.exe

When run interactively, the user is presented with a console window.
Rfdufu does not provide a command line prompt. However, it will accept
certain commands and provide some feedback

Rtdutu is not normally accessed directly through the console. The
graphical user interface (GUI) program, Interactive Control Station (ICs),
should be used to access rfdufu's features. ICs runs rrdutu as a child process
and communicates with it through stdin and stdout.

List management - The main purpose of rtdufu is retrieval ofthe current
value of p r o w variables !?om shared memory. A list management
scheme is employed for efficient retrieval of this information using rfdafu.
The user fust defmes a list of program variables to retrieve on a regular
basis. All values of items in the list can then be obtained with a single, short
command (GETLIST). Multiple lists may be maintained simultaneously.

There are three commands (NEWLIST, ADDTOLIST AND
GETLIST) devoted to managing lists of variables needing retrieval. The
NEWLIST command creates a new, empty list and returns its name in the
form of a number. This number is referred to as the list-id and must be
used with the other two list commands. The list-id specifies which list a
command should access.

For infrequent, non-list based, data retrieval the GETVAL command is
available.

Rtschedx

The basic real time scheduling control is obtaiied by using the main()
fundion of rtsched.c. Real time programs are generated by using rtsched.c
for the main control loop. This file contains the code for all of the real time
scheduling and control features of RTProE. The main features include:

1. Freeze (suspend) the application
2. Run (resume) the application
3.
4.
5. Terminate the application
6. Multi-frequency hndion calling rates

Save the current state of the application
Reset (restore) the application to a previous state

Subroutines

main0

Under Windows, rtsched.c is implemented as a Win32 console
application It, therefore, has main0 as the program entry point. The main()
function performs the following tasks:

1. Change process to REALTIME-PRIORITY-CLASS
2. Set up periodic frame timer
3. Create Event for controlling real time loop
4. Create real time control thread
5. Use Sleep function to relinquish all yntrol to real time thread

FrameMsgO

Windows' timeSetEvent function is used to speclfy a callback function
which will be executed at a specific frequency. The time interval between
calls to FrameMsg0 is the referred to as a frame.

The callback function, FrameMsgO, activates the real time control
thread using Windows' pUlseEvent() function. Therefore, the control
thread is activated once per frame.

FrameMsgO also determines whether the application is successfully
running in real time. It determines whether the real time activity is
completing within the frame. Failure to complete the real time activity
within the assigned frame is considered an overtun. FrameMsg() allows the
real time control loopfo catch up using spare CPU capacity. However, if
FrameMsgO determines the real time loop is lagging real time by an
excessive amount, it will terminate the real time control thread, FREEZE
the real time application and start a new real time control thread. At this
point, the state of the real time application is still fully available for review.

This overrun detection capability is particularly useful for detecting and
recovering from infinite loops or inftnite wait conditions in the user's
application. Without this feature, it would be especially difficult to regain
control ofthe computer since the real time application is running at the
highest priority level.

rtctru

This subroutine controls the performance of the following actions based
on the value of the STATUS and ICRW variables:

REPRODUCED AT GOV'T EXPENSE # 5

ICsaveO

This subroutine will save, to file, all variables which have been
identified in the Programmer's Data Base as defining the state of the
application Rtctrl() will call this subroutine when the ICRW variable is set
to a value of 'W'. However, the name of the save file must fust be placed in
the character array ICNAME.

ICloadO

This subroutine will restore, from file, Initial Condition (IC) variables
which have been saved with the ICSaveO subroutine. Rtctrlo will call
this subroutine when the ICRW variable is set to a value of 'R'. However,
the name of the file to retrieve must fmt be placed in the character array
ICNAME.

load-constan ts0

The main0 function calls load-constants0 at start up to retrieve values
for the user application constant coefficients. These values are not meant to
change during execution of the user application. However, it may be
desirable to alter the coefficients during development of the application in
order to produce the desired mathematical result. The coefficients are
variables which are read but not modified by the application. The constant
coefficients are modified by the programmer using RTProE tools. This may
be done either at application run time or off-line. These special case,
constant variables are identified using thepdm program.

CONCLUSIONS

The 5 main goals of the project were reasonably achieved. It is now
possible to quickly Write a compact, full featured, low cost real time
development environment with graphical user interface. This is due to the
availability of many free development tools along with recent hardware and
operating system advances.

The development of RTProE is an important step in the expansion of the
real time programming community. The financial costs associated with using
the system are minimal. Any person with access to a personal computer,
Windows 95 or NT, and C or FORTRAN compilers can quickly enter the
world of real time modeling and simulation.

ABOUT THE AUTHOR

Dennis LaBelle is currently employed as a software engineer for
LockheedMartin. He holds a B.S. in Chemical Engineering from the
University ofMaine and received his M.S. in Computer Science from
Rensselaer Polytechnic Institute. The author has I 6 years programming
experience in a wide variety of mainframe. Workstation and personal
computer environments.

1. Freeze (suspend) the application
2.
3.
4.
5 . Terminate the application

Run (resume) the user application code
Save the current state of the application
Reset (restore) the application to a previous state

