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Abstract

There are several applications for which it is desirable to calculate the locations and energies

of individual gamma-ray interactions within a high purity germanium (HPGe) detector.

These include gamma-ray imaging and Compton suppression. With a segmented detector

this can be accomplished by analyzing the pulse shapes of the signals from the various

segments.  We examine the fundamental limits to the spatial resolution attainable  with this

approach.  The primary source of error is the series noise of the field effect transistors

(FETs) at the inputs of the charge amplifiers.  We show how to calculate the noise spectral

density at the output of the charge amplifiers due to an optimally selected FET.  This

calculation is based only on the detector capacitance and a noise constant for the FET

technology.  We show how to use this spectral density to calculate the uncertainties in

parameters, such as interaction locations and energies, that are derived from pulse shape

analysis using maximum likelihood estimation (MLE) applied to filtered and digitized

recordings of the charge signals.  Example calculations are given to illustrate our approach.

Experimental results are given that demonstrate that one can construct complete systems,

from detector through data analysis, that come near the theoretical limits.
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Introduction

There are applications  in which one must determine the positions of individual gamma-ray

interactions with an HPGe detector [1,2].   To determine all three coordinates of

interactions requires a segmented detector with possibly many signal processing channels.

It is desirable to calculate the limits of the resolution of a particular detector configuration

without the expense of building a system and carrying out complex experiments.   We

present here a procedure for carrying out such calculations.  It is based on the observation

that the dominant error source is the noise from the field effect transistor (FET )at the input

of the detector preamp.  We model the attainable noise vs. input capacitance for FETs,

calculate the noise output for an optimally selected FET and use this result to estimate the

errors in a maximum likelihood estimate of the interaction locations.

FET noise

Figure 1 depicts a detector (segment) connected to the input stage of a charge amplifier.

The voltage signal, vn, is the FET series noise voltage.  It is not an actual voltage source,

but is the voltage at the gate of the FET that would be required to generate the thermal noise

current in the channel of the FET.  The noise voltage, vn , is well known [3,4] to be related

to the mutual conductance, gm, of the FET by the relation

v
kTB

gn
m

2 4 7≅ × .
, (1)

where k is the Boltzman constant, T is the absolute temperature, and B is the bandwidth

over which the noise measurement is made.  From this relation we can see that the noise

can be made as small as desired by increasing gm; however, increasing gm increases the

input capacitance, CF, which decreases the signal.
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An important figure of merit for FETs used in charge amplifiers is the ratio, gm/CF.  This

gives the "charge sensitivity" of the FET and is limited by how short the channel can be

made [4] by the relation
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where µ is the majority carrier mobility, W00 is the pinch-off voltage, and L is the length of

the channel controlled by the gate.  Combining (1) and (2) we have
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µ

, (3)

where K is a constant which depends on the parameters in (2).  Note that although K is

proportional to the absolute temperature, T, it is the temperature of the majority carriers in

the FET channel that is relevant.  Even if the exterior of the FET is cooled to liquid

nitrogen temperature, the channel is in electrical contact, and hence very good thermal

contact, with preamplifier components at room temperature, and, hence the cooling has

little effect on the noise.  However, placing the FET near the detector in the liquid nitrogen

effects the signal to noise ratio by decreasing the parasitic capacitance of the leads between

the detector and the FET.

The constant, K, in (3) is a measure of the state-of-the-art in low noise FET manufacturing.

Varying the width of the channel, keeping other design parameters constant,  changes CF

and  vn  in a manner that keeps K constant.  Placing an ideal transformer at the input of the

transistor changes the effective CF and  vn  at the input of the transformer in a manner that

leaves K invariant.  Circuits made of several transistors in either parallel (increases

capacitance and gain, decreases noise) or in Darlington combination (decreases capacitance

and gain, increases noise) also leave K invariant.
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If vn   is expressed in nV / Hz  and CF is expressed in pF, the value, K = 4 represents

current technology.  In [4,1973] an experimental device, SFC6593, was reported with K =

4.7.  The two commercial devices reported in the same source had K values of 8 and 16.

In [5, 1992] devices with CF  = 1 and K = 4 and with CF  = 8 and K = 3.4 were reported.

These devices were not optimized solely for sensitivity and noise performance [6], so

devices with smaller K may be possible.  The measured value for our experimental system

[1  is K = 10.  This was obtained by measuring the total noise at the output of the amplifier

system and attributing it all to FET noise.

Optimum noise level

We desire to evaluate detector performance for the situation in which the detector is mated

with the best possible buildable FET.  The signal voltage due to charge Q at the input of the

FET  is Q/(CD+CF), where CD is the detector capacitance.  The noise per unit bandwidth,

from (3),  is v K Cn F= / .  The maximum of the ratio of these two quantities occurs at

C CF D= , (4)

The relationship (4) only holds if one assumes that vn
2CF = const. If you minimize with

another relation, such as vn
pCF = const., with p ≠ 2, the relationship between CD and the

optimum CF will be different.  The noise voltage per unit bandwidth from (3) is then

e K Cn D= / . (5)

This can be converted into energy units by multiplying by 10-9 times the total capacitance,

2 CD , to convert from nV to pC, then dividing by the .053 pC/Mev sensitivity of Ge.  This

gives
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E KC Cn D D= × = ×− −3 8 10 7 6 108 8. .   Mev / Hz , (6)

where CD is in pC.  The second equality assumes that K = 4.

Figure 2 shows the assumed mechanism for measuring the charge signal from each

detector segment.  The amplifier is assumed to have a flat frequency response up to the

Nyquist frequency of the waveform digitizer.  The waveform digitizer samples with a time

spacing of ∆t.  The anti-aliasing filter is a low-pass filter with a bandwidth of 1/(2∆t).  We

assume that the sampled data is scaled to be in units of Mev and that the only source of

error is the noise from the FET.

Substituting the bandwidth of 1/(2∆t) into (6) gives

σ = × −2 7 10 8. C tD ∆   Mev (7)

for the standard deviation of any sampled value of the digitized signal.  The units for CD

and ∆t are pC and Seconds.  Because the noise is due to thermal currents, the errors have a

Gaussian distribution with zero mean [7, p. 189].  Because the noise is white, the errors in

different sample values are independent [7, p. 145-155].  Thus, if e = (e1, e2,...,em)T is a

column vector of errors in sampled values, the probability density is given by

P e e e
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It may appear from (7) that making ∆t  too small could be deleterious, because the standard

deviation of the error increases as ∆t   decreases.  However, we will make clear later why

this is not the case.
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In practice, the recorded signals will have a baseline offset due to accumulated charge from

previous pulses and due to excess low frequency noise that isn't accounted for in (1).  The

analysis given here assumes that this error has been corrected.

Estimating parameters and their errors

The data by which we determine interaction locations are the recorded signals, through a

system such as that in Figure 2, from each of the segments.  Recorded signals from each

segment have a length of L samples.  The number of segments is NSeg.  Signals are

formed into column vectors, v,  of length M = LNSeg  by concatenating the signals from the

various segments.

Let U tj ( , )r  be the signal at the jth segment resulting from a single interaction occurring a t

= 0 of 1 Mev energy at (vector) position r .  In our analysis we assume that the number, I,

of interactions is known.  In practice, one would have to determine this from the data; we

won't be covering this aspect of the problem in this paper.  The signal from the jth segment

resulting from the I interactions is given by

V t E U t tj i j i
i

I

( ) ( , )= −
=
∑ 0

1

r , (9)

where t0 is the time of the interactions, Ei is the energy of the ith interaction, and ri is the

position vector of the ith interaction.  Thus, there are 4I + 1 parameters that must be

determined from the data.  We assume that the digitized record starts at a t sufficiently

earlier than t0 that an adequate baseline correction can be made.

Let p denote a column vector consisting of the 4I + 1 unknown parameters; let v(p) be the

column vector of the concatenated segment signals that would result from noiseless
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recording of a signal with parameters p , and let v be the actual recorded signal.  From (8)

the likelihood function [8] is given by

L
M

T

( , ) exp
( ( )) ( ( ))/

p v
v v p v v p= ( ) − − −



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−
2

2
2 2

2πσ
σ

. (10)

We estimate the unknown parameter p with the vector ̂  p  that maximizes (10).  This is

equivalent to minimizing (v− v( p))T (v− v( p)), a non-linear least squares problem with

several known methods of solution [9, p. 681-688].  Our purpose here is to determine the

accuracy with which the estimated parameter values approximate the true parameter values.

This is an easier problem than that of finding the solution to the least squares problem.

Let

S=
∂v
∂p

, i.e.  Srs =
∂vr

∂ps

. (11)

The condition for a least squares solution is [9, Sec. 14.4]]

S p v v p 0T ( ˆ )( ( ˆ ))− = . (12)

We let po be the true parameter vector and assume that the errors in the parameters are

small enough that the first order approximation

v p v p p p p0 0( ˆ ) ( ) ( ˆ )( ˆ )≅ + −S . (13)

Since S and ST are always evaluated at p̂ , we will omit the argument when writing them.

Multiplying (13) by ST we obtain
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STS( ˆ p − p0) ≅ ST (v( ˆ p )− v( p0 )). (14)

We can rewrite v( ˆ p )− v( p0 )as v( ˆ p )− v+ v− v( p0 ) then, using (12) and the fact that

v− v( p0)= e, (14) becomes

STS( ˆ p − p0) ≅ ST e, or ∆p= ( ˆ p − p0) ≅ (STS)−1ST e. (15)

This gives the error in the parameters in terms of the errors in the data.  Using the fact,

from (8), that E[eeT] = σ2I , where I  is the identity matrix, we obtain the covariance matrix,

C,  for ∆p as

C= E[∆p∆pT ] = (STS)−1 ST E[eeT ]S(STS)−1 = σ 2(STS)−1 , (16)

where E[] is the statistical expectation operator.  The standard deviation of the ith parameter

is

σ i iiC= . (17)

  Now, σ is given by (7), making σ2 proportional to 1/∆t.  If ∆t is small enough the

sampled signal adequately represents the continuous time signal then

(ST S)rs ≅
1

∆tj =1

Nseg

∑ ∂Vj ( t)

∂pr

∫ ∂Vj ( t)

∂ps

dt , (18)

where Vj(t) is given by (9).  This implies that (STS)-1 is proportional to ∆t.  Combining

this which the 1/∆t dependence of σ2 in (7) means that the covariance matrix in (16) is (for

sufficiently small ∆t) independent of ∆t.  If ∆t is too large, the anti-aliasing filter in Figure

2 washes out some of the detail in the signals, which decreases the resolution.  We
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evaluated the covariance matrix as a function of ∆t for our 5 cm by 5 cm detector and

found that it was constant for ∆t<20 nanoseconds (25 MHz bandwidth).

Experimental results and example

Figure 3 shows the noise measured on our experimental system.  Shown is the integral of

the power spectral density.  The slope of the straight line  is that given by the square of (6)

with CD = 25 pF and K = 10.  The noise spectrum was calculated from a record of data

from the waveform digitizer in the configuration shown in Figure 2.

We use the unsegmented cylindrical detector of [1] for an example.  We assume a single

interaction of .2 Mev and calculate the radial position uncertainty.  The three columns of S

are given by sampled values of (see (9) and (11))

∂
∂

∂
∂

V

t
E

U t t r

t0

0= − −( , )
,  

∂
∂
V

E
U t t r= −( , )0  and 

∂
∂

∂
∂

V

r
E

U t t r

r
= −( , )0 . (19)

The function, U, was calculated, to 300 nanoseconds after the interaction, by (12-27) of

[10] using empirically determined constant electron and hole velocities.  The derivative of

U with respect to r was approximated using a finite difference with 2 mm separation.

Standard deviations for radial position and energy were calculated as a function of radial

position of the interaction using (17), (16) and (9) with CD = 25 pF.  The results are in

Figure 4.  From (19) it can be shown that the radial resolution is inversely proportional to

energy and that the energy resolution is independent of energy.  The energy resolution

shown is only that due to FET noise; at higher energies the inherent carrier statistics is a

larger effect.  The carrier statistics do not affect the radial resolution, but at higher energies

the size of the electron cloud will have a larger effect than reported here.  The point at which

the radial uncertainty is worst (16 mm) is where the electron and hole travel times are equal

and the signal rise time is a minimum.  The energy resolution is best at this point, because
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the duration of the full amplitude portion of the signal is maximized.  The energy resolution

improves as the record length increases, but the position resolution does not.

Conclusions

We have presented a straight forward procedure for calculating the uncertainties due to

FET noise in the positions and energies, calculated by the maximum likelihood method, of

gamma-ray interactions in a segmented HPGe detector.  The calculations are for an

optimally selected FET matched to the capacitance of the detector.  A single constant was

presented to describe the state-of-the-art of FET technology (as it applies to this problem).

The uncertainty calculations can be performed using this constant, without the requirement

to obtain and measure an FET or preamplifier.
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Figure captions

1. Equivalent input stage for one detector segment showing the detector, its capacitance,

the FET, its capacitance and the equivalent noise generator.

2. Block diagram of the system to record the signal from one detector segment.

3. The measured noise power (integrated power spectrum) as a function of frequency for

the example system.

4. Calculated standard deviation of the maximum likelihood estimate of the radial

coordinate and the energy for the example in the text.
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