RECEIVED MAR 10 1999 OSTI

Subtask 3.12 - Small Power Systems

Final Topical Report January 1 - June 30, 1997

By

Michael D. Mann; Mark D. Kurz; Lanny Schmidt Michelle Kjeden; Chris Sprynczynatyk

Work Performed Under Contract No.: DE-FC21-93MC30097

For

U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center P.O. Box 880 Morgantown, West Virginia 26507-0880

By

Energy & Environmental Research Center University of North Dakota P. O. Box 9018 Grand Forks, North Dakota 58202-9018

PROCESSED FROM BEST AVAILABLE COPY

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owed rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

LIST	OF FIGURES i
1.0	INTRODUCTION 1
2.0	OBJECTIVES
3.0	THE INTEGRATED MUNICIPAL SERVICES SYSTEM CONCEPT
4.0	ACCOMPLISHMENTS
INTE STUI	GRATED MUNICIPAL SERVICES SYSTEM RESULTS FROM A CASE DY OF TOK, ALASKA Appendix A

LIST OF FIGURES

1 Sche	matic of the integrat	ed municipal services	system (IMSS).		4
--------	-----------------------	-----------------------	----------------	--	---

SUBTASK 3.12 - SMALL POWER SYSTEMS

1.0 INTRODUCTION

One of the overall goals of the U.S. Department of Energy (DOE) is the development of the technology necessary to provide for a secure, reliable, affordable, and environmentally sound source of energy. This technology is important to ensure economic stability and growth in the next century as well as to reduce current and minimize future environmental impact associated with power generation in the United States and the world.

Throughout the world, coal will play an expanded role in the production of affordable energy necessary to meet the demands of economic development and growth. The development of more efficient and environmentally sound technology in the United States may present export market opportunities throughout the world. For coal to play a key role in the energy mix, it will be necessary to develop and commercialize technologies capable of producing electricity at significantly higher overall system efficiencies with minimum emissions. A number of demonstration projects addressing these needs for large utility plants are being performed under the Clean Coal Technology Program. A need also exists for smaller (20-kW to 20-MW) systems to satisfy the needs of remote-site markets. Many of these markets are in areas where a small increment of power is needed to meet demand and the installation of transmission lines to bring in the power is not practical or economical. Diesel engines have traditionally filled this market niche; however, some of the advanced power systems currently under development could provide power more economically and with reduced environmental risk. Innovative solutions to barrier issues that are in some measure common to all advanced power system processes can be developed and demonstrated more economically and effectively in small-scale systems. Examples are material issues involving ceramic and refractory components and operational issues unique to hightemperature pressurized systems.

Because of their size, small communities are faced with a variety of problems that make the construction and operation of communitywide managed waste and wastewater cleanup, reuse, and/or disposal a difficult undertaking. Many communities in rural America have been losing population as a result of migration to large urban areas. Concurrently, federal and state regulations pertaining to waste disposal and water supply treatment have become more stringent. Small communities must provide the same degree of treatment that is now provided by large communities. Small communities cannot enjoy the economies of scale that are possible with the construction of waste and wastewater treatment facilities for larger communities. In addition, the economic base of smaller communities is often not large enough to support the added burden of more sophisticated treatment facilities, further stressing the resources of these rural communities. In many cases, the smaller communities have a lower per capita income, a residential tax base with few commercial or industrial entities, and difficulties in arranging financing because of low bond ratings. In many cases, the small community has limited economic resources and experience to manage wastewater treatment facilities. Problems are often experienced in design, contracting, inadequate construction supervision, project management, billing, accounting, budgeting, and maintenance. The need to overcome these problems makes the implementation of treatment facilities in the United States a major undertaking. Low-maintenance solutions must be developed to provide proper water and waste treatment for small communities.

In many developing countries, waste disposal and water treatment capabilities are not available to the general population outside the larger urban centers because of a lack of infrastructure. Access to required power supplies is extremely limited, and power generation capabilities are nonexistent. Of particular concern is the increasing number of outbreaks of infectious diseases within the last 30 years in these areas. With increased frequency, concern has risen over the potential for transmission of these diseases to other countries. At least partially, the trend for increasing infectious disease occurrences has been attributed to human-induced environmental stress and the lack of even the most rudimentary control techniques in many areas of the world. It is now becoming evident that the best method for controlling infectious disease is through the development and implementation of preventive measures and containment capabilities.

During the past 15 years, interest in small treatment systems has been overshadowed by design, construction, and operation of large regional systems. Small systems were often designed and constructed as small-scale models of larger plants. As a consequence, many are operationally energy- and resource-intensive. Greater attention needs to be focused on the design, operation, and maintenance of individual on-site systems. Decentralized technologies can reduce construction costs, minimize operation and maintenance costs, lower energy consumption, and drop infrastructure requirements as compared to the centralized options. These technologies are especially important in areas where centralized options are not possible.

The health and pollution hazards, including groundwater contamination, caused by the use of such systems warrant special attention and represent an area of need not only in the United States, but worldwide. In many cases, although effective treatment methods exist to provide safe drinking water and disposal of wastes, lack of sophistication and funds may impede implementation of these methods. Some small systems do not have access to skilled technicians, good support services, or the economies of scale available to larger systems.

2.0 OBJECTIVES

The programmatic goal in advanced power systems is to develop small integrated waste treatment, water purification, and power systems in the range of 20 kW to 20 MW in cooperation with commercial vendors. These systems will be designed to incorporate the advanced technical capabilities of the Energy & Environmental Research Center (EERC) with the latest advancements in vendor-offered hardware and software. The primary objective for the work to be performed under this subtask is to develop a commercialization plan for small power systems, evaluate alternative design concepts, and select practical and economical designs for targeted development in upcoming years. A leading objective for the EERC will be to continue to form strong business partnerships with equipment manufacturers who can commercialize the selected power system and treatment design(s).

FY95 activities were focused on collecting information from vendors and evaluating alternative design concepts. This year's activities began with the process of selecting one design for targeted development. A case study was performed to determine if the combination of water and waste treatment with power generation could improve the economics over a stand-alone power generation system.

3.0 THE INTEGRATED MUNICIPAL SERVICES SYSTEM CONCEPT

The solution to the energy, water, and waste treatment needs of the small community involves the use of integrated energy and environmental technology modules to meet the specific needs of each community. This modular approach uses new and existing technologies to provide waste disposal, water supply purification, wastewater treatment, and power generation capabilities on a scale appropriate to the situation. Integration of specific modules allows the total needs of the community to be met. In some cases, a specific technology such as fluid-bed combustion can be used to solve several problems. Fluid-bed combustion can be used to dispose of agricultural, industrial, and municipal solid wastes and sludges while utilizing these carbon sources for the production of energy or heat. The use of integrated, multifunctional modules increases flexibility, mobility, efficiency, and cost-effectiveness.

Several components must be considered in selecting wastewater treatment and water purification technology, the main consideration being the ability of the process to destroy microorganisms. In addition to their biological disinfection capabilities, these technologies must require relatively low maintenance, be modular and transportable, and be relatively cost-effective. Community size and geographical constraints must also be taken into account in selecting a technology. Several treatment options exist that can be used alone or in a treatment series to solve one or several problems. These options include ultraviolet radiation, ozonation, reverse osmosis, filtration, chemical treatment, and distillation. Also, these systems can be designed to address a variety of water disposal situations, from well-drawn water to wastewater and industrial process water. The benefits realized by this approach include a potential for economic development, protection of the environment, improvement of health for community members, job creation, and a general improvement in the quality of life.

This concept revolves around packaged systems, each a proven technology, integrated in such a manner as to take advantage of the synergistic effects that the treatment and power generation modules offer each other. Technologies that are easy to install and operate are particularly appropriate for use in package plants. These treatment plants are factory-designed to implement effective methodologies in the more restricted conditions typical of remote applications. The "packaged plant" modularity of the units is meant to address the financial, operational, regulatory, and installation limitations that hamper small water and waste treatment ability to deliver safe waste and comply with current disposal standards.

The ultimate disposal of the solid and semisolid residuals (sludge) and concentration contaminants removed by treatment has been and continues to be one to the most difficult and expensive problems in the field of wastewater engineering. Recent legislation banning the ocean discharge of sludge has eliminated one disposal option used by some large coastal cities. Because of concerns about air and groundwater pollution, the disposal of sludge by incineration and by the application on land or in landfills offers an attractive alternative. Land application of sludge is used extensively as a means of disposal, as a means of reclaiming marginal land for productive use, and as a means of utilizing the nutrient content in the sludges. However, landfilling and land application of sludge are becoming more strictly regulated, and landfill sites for the disposal of sludge are more difficult to locate. Landfilling and land application are also poor choices when infectious diseases are a concern.

The integration of the power system with the water and waste treatment facilities offers a solution to the problem of sludge disposal. The fluid-bed combustor offers a means to destroy the pathogens that cause serious health problems in some communities and greatly reduces the volume of material for final disposal. The integration of the power generation module with waste disposal, wastewater treatment, and water purification is depicted in Figure 1. The synergistic effects of integrating these modules can be clearly seen. For example, the power generation system can provide steam, heat, and/or electricity to any of the other modules while accepting the sludges generated from the various treatment processes as its fuel. Having a use for the low-level heat that is produced from the power generation system helps improve its overall efficiency and thereby reduce the overall cost of electricity to the consumer. Likewise, having the ability to route difficult-to-dispose-of sludges to the power generation system, rather than to a costly landfill or to a site for further treatment, can significantly reduce the cost of the treatment option.

The overall function of the integrated municipal services system (IMSS) is to supply cheap and efficient power, water, and waste treatment for domestic and industrial use. This is essential to sustain any community. A very attractive benefit of the IMSS is to provide the opportunity for economic development. If properly designed, the IMSS should produce a relatively inexpensive source of steam, heat, electricity, and water and an established and convenient method of dealing with the by-products produced from new economic developments. These developments not only benefit the community in the traditional manner, but also will help reduce the overall cost of power and treatment to the individual resident.

Figure 1. Schematic of the integrated municipal services system (IMSS).

4.0 ACCOMPLISHMENTS

A case study was completed to determine the preliminary feasibility of an IMSS for a small community (See Appendix A for the detailed report). The case study is focused on the community of Tok, Alaska. This city was chosen firstly because it fit the profile for the type of community that would benefit from an IMSS, and secondly because other ongoing studies have generated much of the input data required for this analysis.

Tok is a small community with a population of approximately 1250. There are 537 residential homes, 135 commercial facilities, and 32 community facilities. There is currently no centralized water or sewage system. Seventy-five percent of the water used is extracted from wells, with the remaining coming from the Tanana River. Sixty percent of the wastes are disposed of in septic or cesspool systems, with the remaining 40% going to an open landfill. This landfill, like others throughout the United States, is facing closure unless major investments are made to bring it into compliance with current regulations.

Electricity is currently generated using diesel generator sets. The cost of power of \$0.20/kWh for Tok is relatively low compared to other small Alaskan communities, but very high compared to the cost in the lower 48 states. The usage for 1994 was 5285 kWh for residential, 20,000 kWh for commercial, and 980,000 kWh for community facilities. The cost of fuel oil to Tok and other Alaskan communities is very high, ranging from \$1 to \$5 per gallon because of the cost of shipping the oil to the remote sites.

Heating is currently provided by fuel oil for commercial and community facilities. Fuel oil accounts for 57% of the needs for residential homes, with 38% being provided by wood and 5% from bottled gas. The costs associated with heating are very high because of the high costs of fuel oil to the community.

A preliminary study performed by Gilbert/Commonwealth, Inc., indicated a need for a power system capable of producing 2100 ke and 15 MMBtu/hr steam for district heating. Other information available indicates that subbituminous coal from the Jarvis Creek mine could be made available at a cost of approximately \$40/ton. In addition, approximately 400 tons of sawdust and wood wastes and 665 tons of municipal solid waste per year are currently being disposed of in the community.

The lack of a centralized water and sewage treatment facility, regulatory problems with the current landfill, local coal resources of good quality, and a current high cost of electricity made this an ideal community to use for a pilot study of the IMSS. Activities completed in the case study included designing a basic plant layout, preparing material and energy balances, and finally preparing economic projections for implementing an IMSS in the community of Tok. Results of this specific evaluation can be used to determine the relative benefits of IMSS in general.

The backbone of the IMSS used for this case study was an atmospheric fluidized-bed combustor (AFBC) designed to burn local coal as its primary fuel. The AFBC was also designed to burn municipal solid waste, sewage sludge, and secondary fuels such as wood. Waste heat generated in the process was designated for district heating for the community of Tok. An extended

aeration system was proposed to treat approximately 60,000 gallons per day of sewage and wastewater from the town with the treated wastewater to be discharged into the Tanana River.

An economic analysis was performed on the IMSS based on a 20-year life. A total capital investment of \$18.1 million was estimated to prepare the facility for production. Based on the current market prices and utility demands for the Tok area, the annual revenue was estimated at \$4.4 million, while the annual total product cost was estimated at \$4.9 million.

The internal rate of return (IRR) was determined to be negative 5.11%. This is well below the minimum attractive rate of return (MARR), which was chosen as 18%. To achieve MARR, electricity would have to be sold at a rate of 49.5 cents/kWh. Also, the breakeven analysis showed that IMSS would not provide a profit within the 20-year project life. Therefore, under current circumstances, it was determined that the IMSS is not an economically attractive alternative for a community the size of Tok.

Sensitivity analysis has shown a system of this nature may be economically attractive for communities with a population of 9100 or greater. Sensitivities were also performed on the price of coal, purchased equipment cost, and the percent utilization of the plant. However, the IMSS would not be economically attractive within the expected ranges of these variables.

District heating, wastewater treatment, and cofiring MSW were added to the basic power generation option to improve the overall economics. Adding the district heating option to the basic electrical generation resulted in a cost increase of approximately 25% and increased the revenue stream by 37%. The wastewater treatment had an incremental cost increase of 2.9%, with an increase in benefits of 3.6%. The additional cofiring of municipal solid wastes, based on a tipping fee of \$10/ton, showed an increase in revenue of only 0.3%, while the incremental cost increase was approximately 5%. A large part of the costs associated with these options is the development of the infrastructure to support their usage. For example, for the district heating option, most of the added costs are associated with the installation of the piping system to distribute the heat. For those cases where the IMSS would replace an existing system where the infrastructure for district heating is in place, the capital costs would be reduced by over 20% and the project would generate a positive rate of return.

The IMSS proved to be a technically feasible alternative to provide energy, as well as district heating, waste disposal, and wastewater treatment. Although it is not economically attractive for Tok, it was shown that the larger communities with similar circumstances may benefit from a system of this nature. Therefore, results from this project may provide useful information for future business ventures.

APPENDIX A

INTEGRATED MUNICIPAL SERVICES SYSTEM RESULTS FROM A CASE STUDY OF TOK, ALASKA

Integrated Municipal Services System

Final Report

April 18, 1997

By: Lanny Schmidt Michelle Kjelden Chris Sprynczynatyk

TABLE OF CONTENTS

LIST OF FIGURES	3
LIST OF TABLES	4
EXECUTIVE SUMMARY	5
INTRODUCTION	7
PROCESS SELECTION	8
TECHNICAL ANALYSIS	9
Production Requirements.	10
Storage and Handling	10
Area 100: Storage and Handling	10
Power and Heating	13
Area 200: Fuel Combustion	15
Area 300: Power Generation	15
Area 400: District Heating	16
Area 500: Particulate Removal	17
Wastewater Treatment	17
Area 600: Wastewater Treatment	17
LAYOUT	20
ECONOMIC ANALYSIS	23
Annual Revenue	23
Total Capital Investment	24
Total Product Costs	26
Depreciation	29
Taxable Income	29
Profitability Analysis.	30
Sensitivity Analyses	30
Population	31
Electricity Rates.	32
Plant Utilization	33
Purchased Equipment Cost	34
Raw Materials	35
Salvage Value of Buildings	35
Breakeven Analysis.	36
CONCLUSIONS AND RECOMMENDATIONS	37

REFERENCES	38
APPENDIX A: Project Summary	40
APPENDIX B: Quantitative Flow Diagrams Power Generation and District Heating Wastewater Treatment	43 44 45
APPENDIX C: Area 100: Storage and Handling	46
APPENDIX D: Area 200: Fuel Combustion	50
APPENDIX E: Area 300: Power Generation	53
APPENDIX F: Area 400: District Heating	55
APPENDIX G: Area 500: Particulate Removal	57
APPENDIX H: Area 600: Wastewater Treatment	59
APPENDIX I: Stream Summaries Power Generation Streams Wastewater Treatment Streams	63 64 64
APPENDIX J: Cash Flow Table	65
APPENDIX K: Process Flow Calculations	67
APPENDIX L: Equipment Design Calculations	79

5

. .

LIST OF FIGURES

Figure 1:	Qualitative Flow Diagram for Storage and Handling	11
Figure 2:	Qualitative Flow Diagram for Power Generation and District Heating.	14
Figure 3:	Qualitative Flow Diagram for Wastewater Treatment	18
Figure 4:	Plant Layout	21
Figure 5:	Site Layout	22
Figure 6:	Direct Costs	25
Figure 7:	Indirect Costs	26
Figure 8:	Direct Production Costs	28
Figure 9:	Fixed Charges	29
Figure 10:	Sensitivity of Population	31
Figure 11:	Sensitivity of Electricity Rate	32
Figure 12:	Sensitivity of Plant Utilization	33
Figure 13:	Sensitivity of Purchased Equipment Cost (PEC)	34
Figure 14:	Sensitivity of Coal Costs	35
Figure 15:	Payback Period versus Electricity Prices	36
Figure 16:	Quantitative Diagram for Power Generation and District Heating	44
Figure 17:	Quantitative Diagram for Wastewater Treatment	45

LIST OF TABLES

Table 1:	Area 100: Storage and Handling Equipment	12
Table 2:	Area 200: Fuel Combustion Equipment	15
Table 3:	Area 300: Power Generation Equipment	16
Table 4:	Area 400: District Heating Equipment	16
Table 5:	Area 500: Particulate Removal Equipment	17
Table 6:	Area 600: Wastewater Treatment Equipment	19
Table 7:	Breakdown of Annual Revenue	23
Table 8:	Total Capital Investment	24
Table 9:	Total Production Costs	27
Table 10:	Area 100: Storage and Handling Equipment	48
Table 11:	Area 200: Fuel Combustion Equipment	52
Table 12:	Area 300: Power Generation Equipment	54
Table 13:	Area 400: District Heating Equipment	56
Table 14:	Area 500: Particulate Removal Equipment	58
Table 15:	Area 600: Wastewater Treatment Equipment	62
Table 16:	Power Generation Streams	64
Table 17:	Wastewater Treatment Streams	64
Table 18:	Cash Flow Table	66

EXECUTIVE SUMMARY

Tok, Alaska is a small, remote community that faces increasing energy costs and pollution problems. As a possible solution, Alaska Power and Telephone Company (AP&T) is proposing an Integrated Municipal Services System (IMSS) that seeks to provide a reliable, affordable, and environmentally sound source of energy. The IMSS will provide power, district heating, solid waste disposal, and wastewater treatment for the community.

Coal, supplied locally, will be burned in an atmospheric fluidized bed combustor (AFBC) to generate power. The AFBC will also burn municipal solid waste (MSW), sewage sludge, and secondary fuels (wood). Waste heat generated in the process will be used to provide district heating for the community of Tok. It is estimated 19,000 tons of coal per year will be needed to supply 15.1 million kilowatt hours (kWh) of electricity per year and 360 million BTU per day for district heating.² An extended aeration system will be used to treat approximately 60,000 gallons per day of sewage and wastewater from the town. The treated wastewater will be discharged into the Tanana River.

An economic analysis was performed on the IMSS based on a 20 year project life. A total capital investment of \$18.1 million is required to prepare the facility for production. Based on the current market prices and utility demands for the Tok area, the annual revenue is estimated at \$4.4 million while the annual total product cost is estimated at \$4.9 million.

The internal rate of return (IRR) was determined to be negative 5.11 percent. This is well below the minimum attractive rate of return (MARR), which was chosen as 18 percent. To achieve MARR, electricity would have to be sold at a rate of 49.5 cents/kWh compared to the current price of 20.8 cents/kWh. Also, the breakeven analysis showed the IMSS would not provide a profit within the 20 year project life. Therefore, under current circumstances, it was determined that the IMSS is not an economically attractive alternative at this point.

Sensitivity analysis has shown a system of this nature may be economically attractive for communities with a population of 9100 or greater. Sensitivities were also performed on the price of coal, purchased equipment cost, and the percent utilization of the plant. However, the IMSS would not be economically attractive within the expected ranges of these variables.

The IMSS proved to be a technically feasible alternative to provide energy, as well as district heating, waste disposal, and wastewater treatment. Although it is not economically attractive for Tok, it was shown that larger communities with similar circumstances may benefit from a system of this nature. Therefore, results form this project may provide useful information for future business ventures.

INTRODUCTION

Many rural communities and third world countries throughout the world are faced with extremely expensive electricity prices in comparison with more developed, industrialized areas of the United States. The greater expense is due in large part to high fuel transportation costs and the lack of economies of scale. High electricity rates are not the only problems facing these communities. Inadequate sewage and wastewater treatment facilities lead to illness and pollution of the environment. Waste disposal is increasingly becoming a problem as landfills are quickly becoming filled, and the soil is being subjected to hazardous substances which may leak into the water supply. At the same time, tighter regulations are being placed on air and water emissions and waste disposal. Large sums of money, which small communities lack, will be required to correct current problems.

The Integrated Municipal Services System (IMSS) is being proposed as a possible solution. The IMSS seeks to provide a utility system which integrates power, heating, waste disposal, and wastewater treatment services in an affordable and environmentally friendly manner.

Specifically, the IMSS is aimed at rural communities and third-world countries near abundant coal supplies. Coal will be burned, along with municipal solid waste (MSW) and sewage sludge, in an atmospheric fluidized bed combustor (AFBC) to produce electricity. By utilizing local fuel sources, the transportation costs should be cut considerably. In addition, local wastes will be disposed of in a manner which will minimize pollution of the environment while utilizing the waste's high energy content. The waste heat generated from the AFBC can be used to provide heat to the community. After treating the community's wastewater in an extended aeration system, where solid sludge is removed, the water will be safely discharged into a local water body.

Tok, Alaska, a rural village of approximately 1,100 residents, has been selected as a potential site for the IMSS. Tok is located near major coal supplies.³ However, the town currently relies upon diesel fuel, which is shipped long distances, to generate electricity. Transporting, handling, and storing the diesel fuel is expensive, which increases the cost of electricity. To reduce costs, the State of Alaska subsidizes a large portion of the power cost through the Power Cost Equalization Program (PCE). The PCE fund is expected to be depleted by the year 2000.¹⁵ Therefore, an alternative means of producing electricity is desired.

IMSS will operate 24 hours a day, 360 days a year. There will be five scheduled down days for maintenance. During these five down days the current diesel system will be used to support the community. The complete project summary is presented in Appendix A. The target start up data for the IMSS is October 1998.

As stated previously, there are many other communities in need of cheap and environmentally safe utility services. Information gathered from the study for Tok can be applied to other communities. Whether or not the IMSS proves to be economically feasible for Tok, it is possible that it could be beneficial for other communities faced with similar circumstances.

PROCESS SELECTION

Atmospheric fluidized bed combustion will be used to generate electricity from coal. Advantages of burning coal with AFBC are:

- Addition of limestone removes more than 90% of sulfur pollutants inside the boiler rather than requiring expensive post-combustion devices.¹⁴
- Reduces the formation of nitrogen oxides by maintaining combustion temperatures at 1550°F.¹⁴

- Reduces environmental problems associated with MSW and sewage sludge disposal.
- Can be adapted to a variety of sizes without compromising its cost effectiveness.¹⁴
- Leads to economic development since the money from purchasing the coal remains within the community. It also leads to job creation and infrastructure development.⁴

An extended aeration system, a modification of the activated-sludge process, will be used to treat Tok's wastewater. The specific system chosen, developed by Tipton Environmental International, Inc., is an intermediate size biological wastewater treatment system capable of handling flowrates between 1,000 and 150,000 gallons per day. Currently, Tok produces approximately 60,000 gallons per day of wastewater.⁶ Advantages of using the TEII system are:¹⁸

- Creates a clear and odor-free effluent.
- Pre-built at the factory and shipped to project site as a compact, self-contained unit.
- Easily expanded for additional capacity.

• Can be installed at almost any location because of its small size.

• Maintenance costs are low.

TECHNICAL ANALYSIS

The IMSS is broken down into six major processing areas: storage and handling, fuel combustion, power generation, district heating, particulate removal, and wastewater treatment. A discussion of the production requirements and processing areas is given in the following sections. In addition, important equipment design specifications are included in the process discussion with detailed specifications and equipment costs provided in tables within each section. All calculations are shown in Appendix L.

PRODUCTION REQUIREMENTS

The power generation and heat production equipment were designed based on Tok's average daily electrical demand of 41,370 kilowatt-hours per day (kWh/day) and heating demand of 360 million British Thermal Units (BTU/day).² The existing diesel system will be used to handle peak requirements and any downtime. Figure 16 in Appendix B presents the quantitative flow diagram showing raw material and air requirements needed to meet these demands. The calculations to determine the process flow compositions are shown in Appendix K.

The wastewater treatment system design was based on an average daily flow rate of 60,000 gallons per day and 210 parts per million (ppm) biochemical oxygen demand (BOD₅). During shutdown the wastewater will accumulate in a storage tank until the system is back on line. The quantitative flow diagram showing the reductions in biochemical oxygen demand (BOD₅), chemical oxygen demand (COD), phosphorus, and nitrogen achieved in each stage of the aeration process may be viewed in Figure 17 of Appendix B.

STORAGE AND HANDLING

The storage and handling area stores, prepares, and transports the raw materials before entering the AFBC. Figure 1 shows a complete flow diagram of the storage and handling facilities. The following section briefly describes the storage and handling area. A more thorough description can be found in Appendix C.

Area 100: Storage and Handling

The fuel used to generate power and heating consists of coal, municipal solid waste (MSW), wood, and sludge. These raw materials remain in the storage and handling area until they are needed as fuel. Before the raw materials are burned in the atmospheric

Figure 1: Qualitative Flow Diagram Storage and Handling (Area 100)

fluidized bed combustor (AFBC), they must be reduced to a suitable size for transportation and fluidization. Jaw crushers will be used for size reduction of the coal and limestone. The MSW will first be shredded and then cubed to a one inch size. After the raw materials are reduced to the required sizes, they are transported to separate hoppers, fed into the feed bin, and finally sent to the AFBC.

Table 1 presents the equipment design specifications and costs for the storage and handling area of the plant.

Item No.	Description	Dimensions	Material	Cost
	Payloader	18 feet ³ capacity		\$ 20,000
	Fork lift	3000 lb capacity		\$ 25,000
C130	Coal jaw crusher	Capacity = 86 ton/hr Power = 60 hp	Carbon steel	\$ 74,000
J135	Belt conveyor from coal crusher to coal hopper	Width = 3 feet Length = 100 feet	Rubber belt	\$ 63,000
C140	Limestone jaw crusher	Capacity = 20 ton/hr Power = 25 hp	Carbon steel	\$ 18,000
J145	Belt conveyor from limestone crusher to limestone hopper	Width = 2 feet Length = 100 feet	Rubber belt	\$ 48,000
C150	MSW and wood shredder and cuber	Shredder Capacity = 2000 lb/hr Power = 10 hp	Carbon steel	\$ 41,000
		Cuber Capacity = 2000 lb/hr Cube size = 1 inch	Carbon steel	\$ 89,000
J155	Conveyor from cuber to MSW and wood hopper	Width = 2 feet Length = 100 feet	Rubber belt	\$ 48,000
F160	Coal hopper to store one day's supply of crushed coal	Height = 12 feet Width = 13 feet Length = 13 feet	Carbon steel	\$ 8,000
J165	Screw conveyor from coal hopper to feed hopper	Capacity = 3 ton/hr Diameter = 1.5 feet Length = 12 feet 0-15.9 rpm	Plate steel	\$ 9,000

Table 1: Area 100: Storage and Handling Equipment

Item No.	Description	Dimensions	Material	Cost
F170	Limestone hopper to store two day's supply of crushed limestone	Height = 5 feet Width = 5 feet Length = 5 feet	Carbon steel	\$ 500
J175	Screw conveyor from limestone hopper to feed hopper	Capacity = 3 ton/hr Diameter = 1.5 feet Length = 5 feet 0-15.9 rpm	Carbon steel	\$ 5,000
F180	MSW and wood hopper to store two day's supply of MSW and wood	Height = 11 feet Width = 10 feet Length = 10 feet	Carbon steel	\$ 4,000
J185	Screw conveyor from MSW and wood hopper to feed hopper	Capacity = 3 ton/hr Diameter = 1.5 feet Length = 12 feet 0-15.9 rpm	Plate steel	\$ 9,000
F190	Feed hopper to store one day's supply of fuel and limestone	Height = 13 feet Width = 14 feet Length = 14 feet	Carbon steel	\$ 10,000
J195	Screw conveyor from feed hopper to AFBC	Capacity = 3 ton/hr Diameter = 1.5 feet Length = 20 feet 0-15.9 rpm	Plate steel	\$ 12,000
F199	Wastewater sludge bin for three day's capacity	Height = 4 feet Diameter = 4 feet	Carbon steel	\$ 3,000
Total				\$486,500

POWER AND HEATING

The power and heating section contains the equipment necessary to convert the fuel into energy that is used to supply electricity and district heating. Also, particulate removal operations are included to ensure that all emission regulations are met. Flyash will be collected in bins until it is transported to the local landfill. A complete flow diagram of the power and heating section is shown in Figure 2. General operations of each area within the power and heating section are explained in the following section. A more detailed description of Area 200 (fuel combustion), Area 300 (power generation), Area 400 (district heating), and Area 500 (particulate removal) is given in Appendices D, E, F, and G, respectively.

Area 500

Area 200: Fuel Combustion

Fuel combusts with air in the atmospheric fluidized bed combustor (AFBC) to generate heat. The AFBC was designed to operate at 1550°F to minimize the formation of nitrogen oxides.¹⁵ Limestone is also burned in the AFBC to reduce the sulfur dioxide emissions below EPA regulations. A cyclone, located immediately after the AFBC, removes 91 percent of the flyash from the flue gas to prevent accumulation in the air heater.

Table 2 lists all the equipment contained in the fuel combustion area. The dimensions, materials of construction, and the cost of each piece of equipment is also given in the table.

Item No.	Description	Dimensions	Material	Cost
R200	Atmospheric Fluidized Bed Combustor	Height = 17 feet Width = 14 feet Length = 14 feet	Carbon steel with 8 inches of insulating refractory	\$ 545,000
G210	Centrifugal fan to supply atmospheric air to AFBC	468,000 lb/day air Power = 2 hp	Carbon steel	\$ 2,000
H220	Cycione to remove flyash from the fluegas	Diameter = 1.56 feet Height = 3.2 feet	Carbon steel with 4 inches of insulating refractory	\$ 30,000
F230	Storage bin for flyash from cyclone (2 day capacity)	Height = 7 feet Width = 7 feet Length = 7 feet	Carbon steel	\$ 1,000
Total				\$ 578,000

Table 2: Area 200: Fuel Combust	tion E	juipment
---------------------------------	--------	----------

Area 300: Power Generation

Hot flue gas from the cyclone enters the air heater and heats air from the gas turbine compressor from 328°F to 1440°F. The pressurized hot air leaving the air heater at 1440°F and four atmospheres is reduced to 1280°F and one atmosphere by expansion through the turbine. The generator converts the mechanical work created by the hot gas expansion into electricity.

Table 3 lists all the equipment contained in the power generation area. The dimensions, materials of construction, and the cost of each piece of equipment is also given in the table.

Item No.	Description	Dimensions	Material	Cost
E300	Air heater to heat air from turbine compressor	Heat transfer area = 674 feet ²	Stainless steel	\$ 31,000
N310	Hot Air Gas Turbine	1,975,000 lb/day air	Carbon steel	\$ 867,000
P320	Generator to convert mechanical work to electricity	41,370 kWh/day	Carbon steel	
Total				\$ 898,000

Table 3: Area 300: Power Generation Equipment

Area 400: District Heating

IMSS utilizes waste heat generated by the process to provide district heating to the community. Hot flue gas from the air heater enters the district heating heat exchanger and heats the water/glycol stream returning from the district. The heated water/glycol stream is then recirculated throughout the community to provide Tok with heat.

Table 4 lists all the equipment contained in the district heating area. The dimensions, materials of construction, and the cost of each piece of equipment is also given in the table.

Item No.	Description	Dimensions	Material	Cost
E400	Heat exchanger for district heating (water glycol stream)	Heat transfer area = 500 feet^2	Carbon steel	\$ 13,000
L410	Pump to circulate water/glycol stream through Tok	1776 gal/min Power = 109 hp	Carbon steel	\$ 8,000
Total				\$ 21,000

Table 4: Area 400: District Heating Equipment

Area 500: Particulate Removal

Flue gas from the water/glycol heat exchanger enters the baghouse where the flyash removal is completed. Seven pounds of flyash per day is emitted from the stack. This is well below the national standard for ash emissions, which is 29 pounds per day.

Table 5 lists all the equipment contained in the particulate removal area. The dimensions, materials of construction, and the cost of each piece of equipment is also given in the table.

Item No.	Description	Dimensions	Material	Cost
H500	Baghouse to remove final flyash from flue gas	Compartments = 3 Bags/Compartment = 398	Carbon steel shell Dacron bags	\$ 544,000
F510	Storage bin for flyash from baghouse (2 day capacity)	Height = 4 feet Width = 3 feet Length = 3 feet	Carbon steel	\$ 150
Total				\$ 544,150

Table 5: Area 500: Particulate Removal Equipment

WASTEWATER TREATMENT

The wastewater treatment system will treat the community's sewage and wastewater so it can be discharged into the Tanana River. Sludge removed from the system will be pumped to the AFBC and burned. A complete flow diagram of the wastewater treatment system is presented in Figure 3. A more detailed description of the equipment is given in Appendix H.

Area 600: Wastewater Treatment

An extended aeration system will be used to treat 60,000 gallons of wastewater per day. The wastewater will pass through a bar screen to remove all large solids before entering the aeration chamber. Biochemical oxygen demand (BOD₅) and chemical oxygen demand

Figure 3: Qualitative Flow Diagram

Wastewater Treatment System (Area 600)

(COD) are reduced in the aeration chamber. The wastewater then enters the clarifier chamber, where solids are allowed to settle out. Approximately one-half of the activated sludge is recycled into the aeration chamber, while the remaining sludge is transported to the sludge bin. Finally, the water leaving the clarifier chamber enters the chlorine contact chamber where remaining bacteria is killed before the water is discharged into the Tanana River.

Table 6 lists all the equipment contained in the wastewater treatment area. The dimensions, materials of construction, and the cost of each piece of equipment is also given in the table.

Item No.	Description	Dimensions	Cost
L600	Pump the water from Tok to plant	60,000 gal/day Power = 1 hp	\$ 2,000
H610	Bar screen to remove large solids	Bar Spacing = 1 inch Bar Diameter = 1/2 inch	\$ 75,000
R620	Aeration chamber which controls oxygen level and reduces BOD ₅ s and CODs	Volume = 72,000 gallons Depth:Width = 1.33:1 Retention Time = 24 hours	
R 630	Clarifier chamber to remove solids	Volume = 11,000 gallons Retention Time = 4 hours	
L640	Pump to recirculate activated sludge from clarifier to aeration chamber	4 inch airlift sludge pump	
R650	Chlorine contact chamber to kill bacteria	Volume = 1250 gallons Retention Time = 30 min.	
F660	Wastewater storage tank to hold up to one day's supply of wastewater	72,000 gallon capacity	
L670	Pump the sludge to AFBC	88 gal/day Power = 0.01 hp	\$ 300
Total			\$ 77,300

Table 6: Area 600: Wastewater Treatment Equipment*

* All pieces of equipment are constructed of a painted steel

LAYOUT

Figure 4 on the following page shows the complete equipment layout of the proposed Integrated Municipal Service System (IMSS), while Figure 5 on page 22 shows an overall site layout. The equipment and buildings were arranged to provide a safe process, easy maintenance, transportation access, and minimize pipe and conveyor lengths.

The storage facilities were all placed close to Glen Highway to facilitate receiving raw materials. Next to the storage facilities is the 4500 square feet pole barn which houses the size reduction equipment. The size reduction equipment was located in a separate building for safety reasons.

The main process building was arranged to minimize pipe and conveyor lengths. The land requirements for the main process building is 175 feet by 125 feet. Both the wastewater treatment and power generation systems may easily be expanded. Future expansion of the power generation system would result in expanding the building to the north to accommodate a second AFBC unit. The wastewater treatment system has a grid like flooring which allows for tanks to be removed and larger ones installed if a larger system is desired.

ECONOMIC ANALYSIS

The economic feasibility of the IMSS is dependent upon the cash flows throughout the life of the project. Table 18 in Appendix J shows the annual cash flow expected for the IMSS over its 20 year projected life. The annual revenue, initial investment, annual production costs, depreciation, and taxable income are discussed in the following sections. In addition, three different analyses were performed to judge the attractiveness of the project. These include a profitability analysis, sensitivity analyses, and a breakeven analysis.

ANNUAL REVENUE

The annual revenue received by IMSS is the sum of the incomes from the four separate utilities it provides: electricity, district heating, waste disposal, and wastewater treatment. Current market prices and demands for each utility, which were assumed to be constant over the proposed life of the project, were used to calculate the annual revenue. Table 7 below shows the breakdown of demand, price, and revenue for each utility service. The total expected annual sales of the IMSS is \$4.4 million per year.

Source of Revenue	Demand	Price/Unit	Annual Revenue
Electricity	15,100,000 kWh/yr ²	\$0.208/kWh ²	\$3,141,000
District Heating	360 million BTU/day ²	\$8.75/million BTU 12	\$1,150,000
Waste Disposal	964 ton/yr ¹⁵	\$10/ton ¹⁵	\$10,000
Wastewater Treatment	60,000 gal/day	\$0.0051/gal ¹²	\$112,000
Total			\$4,413,000

Table 7:	Breakdown	of Annual	Revenue
----------	-----------	-----------	---------

TOTAL CAPITAL INVESTMENT

The total capital investment, which is comprised of fixed-capital investment and working capital, is \$18,067,000. Fixed capital investment is broken down further into direct costs and indirect costs. Table 8 gives a breakdown of the individual costs which make up the total capital investment.

	Calculational Basis ¹³		
Components	X %	of	Cost
Direct Costs (DC)			
Purchased Equipment (PEC)*			\$ 2,605,000
Installation	40%	PEC	\$ 1,042,000
Instrumentation and Controls	18%	PEC	\$ 469,000
Piping, installed	45%	PEC	\$ 1,172,000
Piping for district heating ²			\$ 2,250,000
Electrical, installed	13%	PEC	\$ 339,000
Buildings ^{*,10,11}			\$ 1,456,000
Service Facilities & Yard Improvements	70%	PEC	\$ 1,823,000
Land ^{*,1}			\$ 5,000
Ethylene Glycol ^{*,17}			\$ 76,000
Total Direct Costs			\$11,237,000
Indirect Costs (IDC)			
Engineering and Supervision	8%	DC	\$ 899.000
Construction Expense and Contractor's Fee	15%		\$ 1.685.000
Contingency	10%	FCI	\$ 1,536,000
Total Indirate Costs		1.01	\$ 4 120 000
Total Hullet Costs			3 4,120,000
	DO	TDC T	615 357 000
Fixed-Capital Investment (FCI)			\$15,357,000
working Capital (WC)	15%		\$ 2,710,000
Total Capital Investment (TCI)	FCI -	+ wC	\$18,067,000

Table 8: Total Capital Investment

* indicates costs were calculated using known prices and quantities
Purchased equipment costs, buildings, land, and ethylene glycol were calculated using cost estimation tables and known prices and quantities. Costs for individual pieces of equipment can be found in previous tables located in the Technical Analysis section. Values from a study done by Gilbert/Commonwealth Inc.² were used to obtain the district heating pipe cost. Ethylene glycol used for district heating was assumed to be a one time cost.

All other costs were estimated as a percentage of the purchased equipment costs, direct costs, fixed capital investment or total capital investment. Extra landscaping will be needed to construct a shelterbelt to obstruct the view of the coal pile from the highway. Therefore, the cost for service facilities and yard improvements was estimated using the highest value within the expected range of values. Also, contingencies were estimated at a slightly higher rate than the most commonly used rate due to the harsh climate in Alaska. The remainder of the costs were estimated using the most common or average percentage rate.

Figure 6 below presents the breakdown of the total direct cost, \$11,237,000, for the IMSS project.

Direct Costs \$11,237,000

Figure 6: Direct Costs

Electricity Rates

Another variable which could have a significant impact on the profitability is the rate charged for electricity. The baseline rate used in the economic analysis was 20.8 cents/kWh, which is the current price of electricity in Tok. Figure 11 shows the sensitivity of the IMSS to variations in the electricity rate of up to 60 cents/kWh. The MARR would be met at a rate of approximately 49.5 cents/kWh. Any rate at or above this would make the IMSS an attractive project. However, the rate of electricity has not changed significantly in the past. It seems unlikely that a rate of 49.5 cents/kWh will be charged within the next 20 years. At a rate of about 25.5 cents/kWh the IMSS would break even.

Figure 11: Sensitivity of Electricity Rate

Plant Utilization

Plant utilization could change significantly if Tok's utility demands were to change. Since it is likely the plant has been oversized to some degree, a sensitivity analysis on plant utilization was performed by varying it by plus and minus 50 percent. The results of the sensitivity analysis can be seen in Figure 12. The figure indicates that profitability is sensitive to plant utilization. Despite the sensitivity to plant utilization, MARR would not be met operating at 150 percent. The plant will break even at approximately 120 percent utilization.

Figure 12: Sensitivity of Plant Utilization

Purchased Equipment Cost

Purchased equipment cost is a major component of the total fixed-capital investment. However, the prices for many pieces of equipment had to be estimated from graphs and tables found in the literature. Other price estimates were obtained from vendors. The sensitivity analysis, in which the PEC was varied by plus and minus 30 percent, is shown in Figure 13. As the figure illustrates, the profitability is sensitive to the PEC. However, over the expected degree of variation, the project will not be attractive. If the PEC estimate was off by minus 23 percent, the IMSS project would break even.

Figure 13: Sensitivity of Purchased Equipment Cost (PEC)

Raw Materials Cost

The cost of raw materials could vary over the life of the project depending on the supply available, advances in mining techniques, etc. Since the cost of coal dominates the total raw materials cost, it alone was used in the sensitivity analysis shown in Figure 14. The current price of coal is \$30 per ton, which includes the cost of delivery. Cheaper coal prices would not make the project attractive. IMSS would break even at a cost of approximately \$15 per ton.

Figure 14: Sensitivity of Coal Costs

Salvage Value of Buildings

Since the buildings will not be fully depreciated, it is assumed they will have a salvage value at the end of the 20 years. In the economic analysis of the IMSS, it was assumed there was a 20 percent salvage value on the buildings. A sensitivity analysis was performed varying the salvage value from zero to 50 percent. It was observed the rate of return would change by less than one percent. Thus, the salvage value was found to be an insensitive variable, and great concern should not be placed on trying to improve on this assumption.

BREAKEVEN ANALYSIS

The point at which the plant operates at a zero percent rate of return is called the breakeven point. Since the main goal of the IMSS is to make a profit while providing Tok with a more affordable source of energy, electricity prices dictate the economic feasibility of this project. At the current market price (20.8 cents/kWh), the IMSS does not breakeven throughout the life of the project. Electricity prices would have to reach 21.3 cents/kWh to breakeven at the end of the project. To attain MARR, the electricity prices would need to be 49.5 cents/kWh.

Figure 15 illustrates the payback period as a function of the electricity prices. Payback period is the time it takes to recover the initial investment. Many companies use payback period as an aid in making economic decisions. Currently the payback time exceeds the life of the project. At the breakeven point and at MARR, the payback time is 20 years and 5.3 years, respectively.

CONCLUSIONS AND RECOMMENDATIONS

The internal rate of return (IRR) is a negative 5.11 percent, which is well below the desired 18 percent minimum attractive rate of return (MARR). Therefore, the IMSS project is not economically attractive for Tok, Alaska.

In addition, sensitivity analyses conducted on the purchased equipment costs, percent utilization, and price of coal showed the IMSS would not be economically attractive within their expected ranges. A further sensitivity analysis indicated electricity would have to be sold at a rate of 49.5 cents/kWh to achieve MARR. However, unless unforeseen circumstances arise that lead to a drastic increase in electricity rates, it is expected a rate will be maintained well below 49.5 cents/kWh. A final sensitivity analysis on the population has shown the IMSS or a similar system may be economically attractive for communities of 9100 people or greater.

The IMSS proved to be a technically feasible alternative to provide energy, as well as district heating, waste disposal, and wastewater treatment. Although it is not economically attractive for Tok, it was shown that larger communities with similar circumstances may benefit from a system of this nature. Therefore, results from this project may provide useful information for future business ventures.

REFERENCES

- 1. "A World Wide Real Estate," http://awrem.com, 4/1/97.
- "Analysis of Load Data and Preliminary Sizing of Coal Based Power Plant for Tok, Alaska," Prepared for the Energy & Environmental Research Center by Gilbert/ Commonwealth, Inc., Reading, Pennsylvania, 1995.
- 3. "Community of Tok: Community Profile, Facilities, and U.S. Census," http://alaskan. com/cgi-bin/showcity.pl, 1/23/97.
- 4. Mann, Michael, Energy and Environmental Research Center, January 24, 1997.
- 5. Mann, Michael D., "Influence of Fuel Properties," Proceedings of Council of Industrial Boiler Owners, Fluid Bed IX Conference, Dec. 6-8, 1993.
- Metcalf & Eddy, Inc. (Tchobanoglous, G., and Burton, F. L., revisors), "Wastewater Engineering, Treatment, Disposal, and Reuse," 3rd ed., McGraw-Hill, New York, 1991.
- 7. Newman, Donald G., "Engineering Economic Analysis," 6th ed., Enginnering Press, San Jose, California, 1996.
- 8. Perry, Robert H., and Green, Don, "Perry's Chemical Engineers' Handbook," 6th ed., McGraw-Hill, New York, 1984.
- 9. Perry, Robert H., and Chilton, Cecil H., "Chemical Engineer's Handbook," 5th ed., McGraw-Hill, New York, 1973.
- 10. Personal Communication, Beltline Construction, Fairbanks, AK, "Price quotes for polebarns," 1997.
- 11. Personal Communication, ENSTAR Construction, Fairbanks, AK, "Price quotes for office space, laboratory space and plant facilities," 1997.
- 12. Personal Communication, Fairbanks Municipal Utilities, Fairbanks, AK, "Price quotes for district heating and wastewater treatment," 1997.
- 13. Peters, Max S., and Timmerhaus, Klaus D., "Plant Design and Economics for Chemical Engineers," 4th ed., McGraw-Hill, New York, 1991.
- Phillips Jr., Norman L., and Bonk, Donald L., "Doyon Limited Project Reducing an Alaskan Village's Oil Dependence," http://www.doe.gov/html/fe/mcgrath.html, 1/18/97

- 15. Phillips Jr., Norman L., and DeLallo Jr., Michael R., "AFBC Power Systems for Rural Villages," Proceedings from Alaska Native, American Indian, and Native Hawaiian Remote-Site Power Generation Workshop: Transferring the Alaskan Experience, EERC Publication No. 96-EERC-02-01, 1995.
- 16. Smith, J. M., Van Ness, H. C., and Abbott, M. M., "Introduction to Chemical Engineering Thermodynamics," 5th ed., McGraw-Hill, New York, 1996.
- 17. "T0963 List by Vendor," http://www.state.nj.us/infobank/noa/t0963d.htm, 3/26/97.
- 18. Tipton Environmental International, Inc., "The Wastewater Treatment Industry," http://www.tipton.org/wwts-tei.htm, 3/13/96.
- 19. Tipton, Fred D. (President), Proposal for TEII Wastewater Treatment Systems, Tipton Environmental International, Inc., January 29, 1997.
- 20. Weston, Kenneth C., "Energy Conversion," West Publishing, St. Paul, MN, 1992.

APPENDIX A: Project Summary

PROJECT SUMMARY

Products

- 15.1 million kWh/yr of electricity will be produced to support the Tok community
- Electrical growth for the next ten years is estimated at two percent producing a demand of 18.9 million kWh/yr

Raw Materials

- 19,000 tons per year of Jarvis Creek sub-bituminous coal
- Jarvis Creek Coal has an ash content of 9% and an average sulfur content of 1%
- 910 tons per year of limestone will be used to reduce the sulfur emissions
- 48 gallons per year of chlorine for wastewater treatment

By Products

- Waste heat will be used to provide district heating
- Fly ash may be sold for building materials, road construction, or a soil conditioner
- 1,400 tons per year of fly ash will be produced

Plant Process

- Atmospheric fluidized bed combustion for power generation using a hot air gas turbine
- Wastewater treatment using an extended aeration system

Waste Disposal

- The sludge from the wastewater treatment and municipal solid waste will be burned in the fluidized bed combustion system
- Remaining fly ash will be delivered to a landfill

Plant Information

- The plant location is Tok, Alaska
- IMSS will operate 24 hours a day, 360 days a year, 5 days per year for maintenance
- Electricity, wastewater treatment, and heat is provided by the IMSS
- The coal and limestone will be shipped in 50 ton capacity trucks
- Existing diesel system is used for increasing power demands
- The start up date will be October, 1998
- Power and wastewater treatment systems are easily expandable for future growth

Economics

- IMSS has an internal rate of return of -5.11%
- MARR was chosen as 18%
- Total Capital Investment is \$18,067,000
- Total Product Costs are \$4,859,000
- MACRS was used as the depreciation method
- To obtain MARR electricity costs would have to be 49.5 cents/kWh
- IMSS would become economically attractive for communities with a population larger than 9100

APPENDIX B: Quantitative Flow Diagrams

Figure 16: Quantitative Flow Diagram for Power Generation and District Heating

Raw Materials Processing **Products** Coal 104,300 lb AFBC Flue Gas 2.550*106 lb Limestone 4655 lb Ash 7975 lb Cyclone Ash Ash Removal: 7967 lb 7177 lb Ash 798 lb MSW 5282 lb Air Heater Sludge **District Heating** 57 lb Heat Exchanger 360,000,000 BTU Flue Gas Air Baghouse 2.443*10⁶ lb 1.475*10⁵ lb CO₂ Ash Removal: 1.450*10⁵ lb H₂O 790 lb 939 lb SO₂ 1.834*10⁶ lb N₂ 1.975*106 lb Air 3.192*10⁵ lb O₂ Turbine 8 lb Ash Electricity Generator 41,370 kWh

Basis: One operating day Unit designed to produce 41,370 kilowatt-hours per day of electricity and 360 million BTU per day of district heating

44

Figure 17: Quantitative Flow Diagram for Wastewater Treatment

Basis: One operating day

Unit designed to treat 60,000 gallons per day of wastewater and sewage

APPENDIX C: Area 100: Storage and Handling

Area 100: Storage and Handling

Raw Materials Storage

The fuel used to generate power and heating consists of coal, municipal solid waste (MSW), wood, and sludge. In addition, limestone will be added to reduce sulfur dioxide emissions. The raw materials will be stored next to the size reduction building in separate facilities. However, the MSW and wood will be stored together in the size reduction building.

A one month's supply of coal will be stockpiled (F100) outside in an area 100 feet in length and 50 feet in width. The coal will be received by truck from the Jarvis Creek Mine approximately 136 miles west of Tok.

The limestone will be received in large bags on four foot pallets. A one month's supply will be stored in an indoor facility (F110) 12 feet long, 12 feet wide, and 12 feet high. It is critical that the limestone remain dry.

The MSW and wood will be received once a week by truck. It will be dumped into an unheated building that will protect it from the wind, rain, and snow. The storage building (F120) will be 16 feet in both length and width, and 15 feet high.

Size Reduction

Before the raw materials can be sent to the atmospheric fluidized bed combustor (AFBC), they need to be reduced to a suitable size for transportation and fluidization. All raw materials are transported to their reduction equipment using payloaders. The coal will be reduced to a minus one-half inch size by a jaw crusher (C130) having a capacity of 86 tons per hour (ton/hr). It will operate at 60 horsepower (hp). The limestone will be sent through a 25 hp jaw crusher (C140) having a capacity of 20 ton/hr. The MSW and wood will first be shredded and then cubed to a one-inch size. Cubing is necessary so that the shredded MSW and wood will not blow out of the AFBC with the flue gas. The shredder and cuber system (C150) will operate at 10 hp and will have a capacity of 2000 lb/hr.

47

Transportation of Raw Materials

After being reduced to the appropriate sizes, the raw materials are then transported to separate hoppers in the main building by belt conveyors each 100 feet in length. The coal conveyor (J135) is two feet wide and feeds into the coal hopper (F160) having a capacity of one day's storage. The coal hopper is 13 feet long, 13 feet wide, and 12 feet high. Both the limestone and MSW conveyors (J145 and J155, respectively) are two feet in width. The limestone conveyor sends the limestone to a hopper (F170) having the dimension of five feet for length, width, and height. This will hold two day's supply of limestone. The cubed MSW and wood are conveyed to another hopper (F180) that has a length and width of 10 feet and a height of 11 feet.

A screw conveyor will transport the raw materials from each of the hoppers into a mixed feed hopper (F190) that can hold one day's supply of each raw material. Another screw conveyor will transport the fuel from the feed hopper into the bottom of the AFBC (R200). The feed hopper will have a width and length of 14 feet and a height of 13 feet. All four screw conveyors will have capacities of three ton/hr, diameters of one and one-half feet, and rotate between 0 and 15.9 revolutions per minute (rpm). The lengths of each will differ, however. The coal, limestone, MSW, and mixed feed conveyors (J165, J175, J185, and J195) will have lengths of 12 feet, 5 feet, 12 feet, and 20 feet, respectively.

Item No.	Description	Dimensions	Material	Cost		
	Payloader	18 feet ³ capacity		\$ 20,000		
	Fork lift	3000 lb capacity		\$ 25,000		
C130	Coal jaw crusher	Capacity = 86 ton/hr Power = 60 hp	Carbon steel	\$ 74,000		
J135	Belt conveyor from coal crusher to coal hopper	Width = 3 feet Length = 100 feet	Rubber belt	\$ 63,000		
C140	Limestone jaw crusher	Capacity = 20 ton/hr Power = 25 hp	Carbon steel	\$ 18,000		
J145	Belt conveyor from limestone crusher to limestone hopper	Width = 2 feet Length = 100 feet	Rubber belt	\$ 48,000		

 Table 10: Area 100: Storage and Handling Equipment

Item No.	Description	Dimensions	Material	Cost
C150	MSW and wood shredder	Shredder	Carbon steel	\$ 41,000
	and Cuber	Capacity = 2000 lb/hr		
]		Power = 10 hp		
		Cuber	Carbon steel	\$ 89,000
	· · · · ·	Capacity = 2000 lb/hr		
		Cube size $= 1$ inch		
J155	Conveyor from cuber to	Width = 2 feet	Rubber belt	\$ 48,000
	MSW and wood hopper	Length = 100 feet	1	
F160	Coal hopper to store one	Height = 12 feet	Carbon steel	\$ 8,000
	day's supply of crushed	Width = 13 feet		
	coal	Length = 13 feet		
J165	Screw conveyor from coal	Capacity = 3 ton/hr	Plate steel	\$ 9,000
	hopper to feed hopper	Diameter = 1.5 feet		
		0-15.9 rpm		
		Length = 12 feet		
F170	Limestone hopper to store	Height = 5 feet	Carbon steel	\$ 500
	two day's supply of crushed	Width = 5 feet		
	limestone	Length = 5 feet		
J175	Screw conveyor from	Capacity = 3 ton/hr	Carbon steel	\$ 5,000
	limestone hopper to	Diameter = 1.5 feet		
	feed hopper	0-15.9 rpm		
		Length = 5 feet		
F180	MSW and wood hopper to	Height = 11 feet	Carbon steel	\$ 4,000
	store two day's supply of	Width = 10 feet		
	MSW and wood	Length = 10 feet		
J185	Screw conveyor from MSW	Capacity = 3 ton/hr	Plate steel	\$ 9,000
	and wood hopper to feed	Diameter = 1.5 feet		
	hopper	0-15.9 rpm		
		Length = 12 feet		
F190	Feed hopper to store one	Height = 13 feet	Carbon steel	\$ 10,000
	day's supply of fuel and	Width = 14 feet		
	limestone	Length = 14 feet		
J195	Screw conveyor from feed	Capacity = 3 ton/hr	Plate steel	\$ 12,000
	hopper to AFBC	Diameter = 1.5 feet		
	· · · ·	Length = 20 feet		-
		0-15.9 rpm		
F199	Wastewater sludge bin for	Height = 4 feet	Carbon steel	\$ 3,000
	three day's capacity	Diameter = 4 feet		
Total	<u></u>	· · · · · · · · · · · · · · · · · · ·		\$486,500

APPENDIX D: Area 200: Fuel Combustion

Area 200: Fuel Combustion

Atmospheric Fluidized Bed Combustor (R200)

The AFBC (R200) was designed to operate at 1550°F, to minimize the formation of nitrogen oxides. The AFBC will be constructed of carbon steel that is lined with eight inches of insulating refractory. The boiler efficiency and fluidization velocity were assumed to be 80 percent and eight feet per second, respectively. A square bed will be used instead of a circular bed to provide a better fuel distribution.⁵ The AFBC is 17 feet tall and will have a cross-sectional area of 196 square feet.

Fan (G210)

In addition to the fuel, approximately 2,443,000 lbs/day of air will be required to operate the AFBC. The air will come from two sources: a centrifugal fan (G210) and a gas turbine (N310). The centrifugal fan is a backward inclined blade fan which was chosen because it is efficient and reduces erosion from light dust in the air. It will supply 468,000 lbs/day of the required air. A 20 SISW (single inlet, single width) fan operating at 1330 rotations per minute (RPM) with a two horsepower (hp) motor is required. The hot air gas turbine, which is described in the Area 300 section, will supply the remaining 1,975,000 lbs/day.

Cyclone (H220)

Flue gas leaves the AFBC at a rate of 2,550,000 lbs/day and a temperature of 1550°F. Immediately after leaving the AFBC the flue gas passes through a cyclone (H220) constructed of carbon steel, where 91 percent of its ash is removed. Four inches of insulating refractory will line the cyclone to keep the metal temperature low.⁵ The cyclone will have a diameter of 1.5 feet and be 3.2 feet tall.

The ash removed by the cyclone will fall into an ash bin (F230) with length, width, and height of seven feet constructed of mild steel. The bin will have a two day holding capacity.

Item No.	Description	Dimensions	Material	Cost
R200	Atmospheric Fluidized Bed Combustor	Height = 17 feet Width = 14 feet Length = 14 feet	Carbon steel with 8 inches of insulating refractory	\$ 545,000
G210	Centrifugal fan to supply atmospheric air to AFBC	468,000 lb/day air Power = 2 hp	Carbon steel	\$ 2,000
H220	Cyclone to remove flyash from the fluegas	Diameter = 1.56 feet Height = 3.2 feet	Carbon steel with 4 inches of insulating refractory	\$ 30,000
F230	Storage bin for flyash from cyclone (2 day capacity)	Height = 7 feet Width = 7 feet Length = 7 feet	Carbon steel	\$ 1,000
Total				\$ 578,000

Table 11: Area	200: Fuel	Combusti	ion Equipment
----------------	-----------	----------	---------------

APPENDIX E: Area 300: Power Generation

Area 300: Power Generation

Air Heater (E300)

Hot flue gas from the cyclone (H220) enters the shellside of a 1-2 parallel-counterflow shell and tube air heater (E300) made of 316 stainless steel. Air from the gas turbine compressor (N310) travels through the tubeside of the air heater where it is heated from 328° F to 1440° F. The required heat transfer area is 674 square feet (ft²).

Turbine (N310) and Generator (P320)

The pressurized hot air leaving the air heater at 1440°F and four atmospheres is reduced to 1280°F and one atmosphere by expansion through the turbine. The mechanical work done by the hot gas expansion supplies the power required by the generator to generate 41,370 kilowatt-hours per day (kWh/day) of electricity.³ The net work generated by the turbine is 141 million BTU per day assuming a 90 percent mechanical efficiency for the compressor and turbine.

ltem No.	Description	Dimensions	Material	Cost	
E300	Air heater to heat air from turbine compressor	Heat transfer area = 674 feet^2	Stainless steel	\$ 31,000	
N310	Hot Air Gas Turbine	1,975,000 lb/day air	Carbon steel	\$ 867,000	
P320	Generator to convert mechanical work to electricity	41,370 kWh/day	Carbon steel		
Total				\$ 898,000	

Table	12:	Area	300:	Power	Generation	Equipment
-------	-----	------	------	-------	------------	-----------

APPENDIX F: Area 400: District Heating

Area 400: District Heating

Heat Exchanger (E400)

Hot flue gas from the air heater enters the shellside of a 1-2 parallel-counterflow, shell and tube, water/glycol heat exchanger (E400) made of carbon steel. The water/glycol stream returning from the district, at 20.7 million lbs/day, enters the tubeside at 180°F and exits at 200°F. This provides the community of Tok with 360 million BTU/day of heat.² The required heat transfer area is 500 square feet (ft^2).

Pump (L410)

The pump size required to circulate the water/glycol mixture for district heating was calculated using an estimate of 25,000 feet of pipe and 150 feet of total dynamic head.² The flow rate of the mixture is 1776 gallons per minute and will require a 109 hp pump.

Tab	le 1	3:	Area	400 :	District	Heating	Equipment
-----	------	----	------	--------------	----------	---------	-----------

Item No.	Description	Dimensions	Material	Cost	
E400	Heat exchanger for district heating (water glycol stream)	Heat transfer area = 500 feet^2	Carbon steel	\$ 13,000	
L410	Pump to circulate water/glycol stream through Tok	1776 gal/min Power = 109 hp	Carbon steel	\$ 8,000	
Total				\$ 21,000	

APPENDIX G: Area 500: Particulate Removal

Area 500: Particulate Removal

Baghouse (H500)

The flue gas from the water/glycol heat exchanger will enter the baghouse (H500), where the fly ash removal will be completed. The baghouse will be constructed of three compartments each containing 398 bags. The bags will be constructed of a Dacron material to withstand the temperature of the flue gas. Each bag will contain 12.5 ft^2 of material. The baghouse has an efficiency of 99 percent. Therefore, the exiting flue gas will enter the atmosphere with seven pounds of ash per day. The national standard for ash emissions is 29 pounds per day.

The baghouse may be cleaned without shutdown time. The baghouse can operate with two compartments while the third is cleaned.

The fly ash removed by the baghouse will be collected in a bin (F510) four feet high and three feet in both length and width. The bin will have a two day holding capacity. Fly ash will be sold if possible, otherwise it will be disposed of in a landfill.

Item No.	Description	Dimensions	Material	Cost
H500	Baghouse to remove final flyash from flue gas	Compartments = 3 Bags/Compartment = 398	Carbon steel shell Dacron bags	\$ 544,000
F510	Storage bin for flyash from baghouse (2 day capacity)	Height = 4 feet Width = 3 feet Length = 3 feet	Carbon steel	\$ 150
Total				\$ 544,150

Table 14: Area 500: Particulate Removal 1	Equipment
---	-----------

58

APPENDIX H: Area 600: Wastewater Treatment

Area 600: Wastewater Treatment System

The wastewater treatment system will be purchased as a package system from Tipton Environmental International Inc. (TEII), located in Milford, Ohio. The system will include all tank vessels, components, and equipment necessary for efficient and proper plant operation. A field contractor from TEII will perform the actual installation of the system. The system will be capable of handling a fluctuation in the average daily flow rate of 50 percent to 100 percent with the peak flow rate not to exceed 250 percent of the rated capacity.

Construction Material

One-fourth inch structural grade steel plating will be used for construction of all vessels. The piping in the system will be six inch painted steel pipes. All vessels and pipes will be constructed of a painted steel to prevent corrosion. The painting process will start with the steel being prepared by wire brushing and cleaning. They will then be painted with "Koppers" coal tar bitumastic #50 to a total dry film thickness of 8-10 Mils.¹⁹

Pump (L600)

Wastewater from Tok will be pumped to the treatment plant at 60,000 gallons per day (gal/d). Based on 70 feet of head and a pump efficiency of 60 percent, a one horsepower pump will be required.

Bar Screen (H610)¹⁹

The wastewater will pass through a bar screen (H610) to remove all large solids before entering the aeration chamber. The bar screen will be constructed from one-half inch diameter bars spaced one inch apart. The bar screen will be sloped for easy cleaning. Removed solids will drop onto a drying deck.

The bar screen serves as a safety device for the system. If larger solids enter the system it could cause the system to become clogged. This would result in more down time for maintenance.

Aeration Chamber (R620)¹⁹

The wastewater will enter the aeration chamber (R620) once it passes through the bar screen. The aeration chamber will reduce the biochemical oxygen demand (BOD₅) and chemical oxygen demand (COD) along with maintaining a dissolved oxygen level of two mg/L. Retention time in the chamber will be 24 hours. The chamber will have a volume of 72,000 gallons. The sides of the chamber will be shaped so the sludge will not accumulate along the sides. The dimensions of depth to width will not exceed 1.33:1.

An air diffuser placed along one side of the chamber will be used in conjunction with flow control baffles to give optimum mixing and retention time. Each diffuser will be equipped with an air regulatory and shutoff valve and a diffuser bar with non-clog air diffuser nozzles. The diffusers will be an air check diaphragm with twenty 3/16 inch diameter air discharge holes evenly distributed on the diffuser body. The air flow per diffuser shall range from one to five cubic feet per minute (cfm).

Clarifier Chamber (R630)¹⁹

Once the activated sludge and oxygen in the aeration table reduces the COD and BOD_5 , the wastewater enters the clarifier chamber (R630). Here the solids will settle out of the water and either be pumped back into the aeration chamber (R620) or pumped to the sludge bin (F199). The clarifier chamber will have a volume of 11,000 gallons and a retention time of four hours. The effluent will pass over a baffled adjustable effluent weir into a trough and out of the chamber.

Sludge Recirculation System¹⁹

This system will recycle the activated sludge to either the aeration chamber or to the sludge bin. Two four inch diameter air lift sludge return assemblies will be used. The airlift pump system will have the capacity to recycle zero percent to 150 percent of the design flow. A needle valve will be used to vary the capacity of the pump. A clean-out plug will allow for easy cleaning and maintenance.

61

Sludge Disposal

Sludge that is not recycled back into the aeration chamber will enter a sludge bin (F199), which has a height and diameter of four feet. The sludge will be pumped to the AFBC (R200) to be burned. A 0.01 hp positive displacement pump will be used to pump the 88 gallons per day of sludge.

Chlorine Contact Chamber (R650)¹⁹

The water leaving the clarifier chamber then enters the chlorine contact chamber (R650) The chamber will be 1250 gallons and provide a 30 minute retention time. A hypo chlorination system will be used. This consists of a solution crock that will contain the clorox solution (five percent chlorine). The solution crock will be refilled approximately every 15 days with two gallons of clorox. The treated water will flow from the chlorine chamber into the Tanana River.

Item No.	Description	Dimensions	Cost
L600	Pump the water from Tok to plant	60,000 gal/day	\$ 2,000
		Power = 1 hp	L
H610	Bar screen to remove large solids	Bar Spacing = 1 inch	\$ 75,000
		Bar Diameter = 1/2 inch	
R620	Aeration chamber which controls	Volume = 72,000 gallons	
	oxygen level and reduces BOD ₅ s	Depth:Width = 1.33:1	
•	and CODs	Retention Time = 24 hours	
R 630	Clarifier chamber to remove solids	Volume = 11,000 gallons	
		Retention Time = 4 hours	
L640	Pump to recirculate activated sludge	4 inch airlift sludge pump	
	from clarifier to aeration chamber		
R650	Chlorine contact chamber to kill	Volume = 1250 gallons]
	bacteria	Retention Time = 30 min.	
F660	Wastewater storage tank to hold up	72,000 gallon capacity	
	to one day's supply of wastewater		
L670	Pump the sludge to AFBC	88 gal/day	\$ 300
		Power = 0.01 hp	
Total			\$ 77,300

Tab	le 15	5: .	Area	600 :	Wastewater	Treatment	Equipment*
-----	-------	------	------	--------------	------------	-----------	------------

* All pieces of equipment are constructed of a painted steel

APPENDIX I: Stream Summaries

	S1	S2	S3	S4A,B,C	S5A,B,C,D	S6 A,B,C	S7	S8	S9	S10
Air (lb/day)	468,000				1.98 x 10 ⁶					
Ash (Ib/day)		7,980	7,180	798			8	790	790	
Carbon Dioxide (lb/day)		1.48 x 10 ⁵		1.48 x 10 ⁵			1.48 x 10 ⁵			
Electricity (kWh/day)										4.14×10^{4}
Heat (BTU/day)	· .					3.60 x 10 ⁸				
Nitrogen (Ib/day)		1.83 x 10 ⁶		1.83 x 10 ⁶			1.83 x 10 ⁶			
Oxygen (Ib/day)		3.19 x 10 ⁵		3.19 x 10 ⁵			3.19 x 10 ⁵		1	
Sulfur Dioxide (lb/day)		939		939			939			
Water (Ib/day)		1.45 x 10 ⁵		1.45 x 10 ⁵			1.45 x 10 ⁵			
Total	468,000	2.44 x 10 ⁶	7,180	2.44 x 10 ⁶	1.98 x 10 ⁶	3.60 x 10 ⁸	2.40 s 10 ⁶	790	790	4.14×10^4

Table 16: Power Generation Streams

Table 17: Wastewater Treatment Streams

	S11A,B,C	S12	S13	S14A,B	S15	S16A,B,C	S17	S18
BOD ₅ (ppm)	210	105	21					5
COD (ppm)	350	175	35					8
Clorox (5% Chlorine)								
(gal/day)							0.133	0.133
Nitrogen (mg/L)	20	18	16					2
Phosphorus (mg/L)	4	3	2					2
Water (gal/day)	6.00 x 10 ⁴	6.00 x 10 ⁴	6.00×10^4	44	22	22		6.00×10^4
Solids (dry Ib/day)	57	57		57	28	29		

APPENDIX J: Cash Flow Table

Table 1	8: Cas	h Flows
---------	--------	---------

	Annual	Annual	BTCF	MACRS	Taxable	Cummulative	Annual Taxes	ATCF	ATCF
Year	Revenue (R)	Costs (C)	R-C	Depreciation	Income (TI)	TI	f(Tl)	BTCF-f(TI)	Cummulative
0	\$-	\$ 18,066,000	\$ (18,065,689)					\$(18,066,000)	\$ (18,066,000)
1	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 824,000	\$ (520,000)		\$ -	\$ 304,000	\$ (17,762,000)
2	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 1,478,000	\$ (1,174,000)		\$ -	\$ 304,000	\$ (17,458,000)
3	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 1,240,000	\$ (936,000)		\$ -	\$ 304,000	\$ (17,155,000)
4	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 1,056,000	\$ (753,000)		\$-	\$ 304,000	\$ (16,851,000)
5	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 913,000	\$ (610,000)		\$ -	\$ 304,000	\$ (16,547,000)
6	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 864,000	\$ (560,000)		\$-	\$ 304,000	\$ (16,244,000)
7	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 819,000	\$ (516,000)		\$-	\$ 304,000	\$ (15,940,000)
8	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 665,000	\$ (362,000)		\$-	\$ 304,000	\$ (15,636,000)
9	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 546,000	\$ (243,000)		\$ -	\$ 304,000	\$ (15,333,000)
10	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 546,000	\$ (243,000)		\$ -	\$ 304,000	\$ (15,029,000)
11	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 546,000	\$ (242,000)		\$ -	\$ 304,000	\$ (14,725,000)
12	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 545,000	\$ (242,000)		\$ -	\$ 304,000	\$ (14,422,000)
13	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 546,000	\$ (242,000)		\$-	\$ 304,000	\$ (14,118,000)
14	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 545,000	\$ (242,000)		\$ -	\$ 304,000	\$ (13,814,000)
15	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 546,000	\$ (242,000)	\$ (242,000)	\$ -	\$ 304,000	\$ (13,511,000)
16	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 543,000	\$ (240,000)	\$ (481,000)	\$ -	\$ 304,000	\$ (13,207,000)
17	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 541,000	\$ (237,000)	\$ (719,000)	\$-	\$ 304,000	\$ (12,903,000)
18	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 541,000	\$ (237,000)	\$ (956,000)	\$ -	\$ 304,000	\$ (12,600,000)
19	\$ 4,412,000	\$ 4,109,000	\$ 304,000	\$ 541,000	\$ (237,000)	\$ (1,194,000)	\$ -	\$ 304,000	\$ (12,296,000)
20	\$ 7,418,000	\$ 4,109,000	\$ 304,000	\$ 541,000	\$ 2,769,000	\$ 1,575,000	\$ 536,000	\$ 2,774,000	\$ (9,522,000)

Internal Rate of Return -5.11%
APPENDIX K: Process Flow Calculations

Determining Heat Capacity of Flue Gas¹⁶:

Temperature Dependence on Heat Capacity:

$$C_{p}^{ig}/R = A + BT + CT^{2} + DT^{-2}$$

Temperature must be in Kelvin (K)

CO2	C _A = 5.457	$C_{B} = 1.045 \cdot 10^{-3}$	$C_{D} \approx 1.157 \cdot 10^{5}$	^y c = 0.0603
H ₂ O	H _A = 3.470	$H_B = 1.450 \cdot 10^{-3}$	$H_{D} \approx 0.121 \cdot 10^{5}$	y _H = 0.0593
SO2	s _A = 5.699	$S_B = 0.801 \cdot 10^{-3}$	$S_{D} = -1.015 \cdot 10^{5}$	^y s = 0.000384
N ₂	$N_{A} = 3.280$	$N_{B} = 0.593 \cdot 10^{-3}$	$N_{\rm D} \approx 0.040 \cdot 10^5$	y _N = 0.7496
0 ₂	O _A = 3.639	$O_B = 0.506 \cdot 10^{-3}$	$O_{D} = -0.227 \cdot 10^{5}$	y _O = 0.1305

y = y C + y H + y S + y O + y N

y = 1

 $\begin{array}{ll} MW_{C} &= 44.01 \mbox{ g/gmole} \\ MW_{H} &= 18.02 \mbox{ g/gmole} \\ MW_{S} &= 64.06 \mbox{ g/gmole} \\ MW_{N} &= 28.02 \mbox{ g/gmole} \\ MW_{O} &= 32.00 \mbox{ g/gmole} \end{array}$

R = 8.314
$$\frac{\text{joule}}{\text{gmole K}}$$

T = 387 K = 697 R

Temperature of flue gas exiting the baghouse

$$C_{pC} = \frac{R}{MW_{C}} \left(C_{A} + C_{B} \cdot T + \frac{C_{D}}{T^{2}} \right)$$

$$C_{pC} = 0.961 \frac{joule}{gK}$$

$$C_{pS} = \frac{R}{MW_{S}} \left(S_{A} + S_{B} \cdot T + \frac{S_{D}}{T^{2}} \right)$$

$$C_{pS} = 0.692 \frac{joule}{gK}$$

$$C_{pO} = \frac{R}{MW_{O}} \left(O_{A} + O_{B} \cdot T + \frac{O_{D}}{T^{2}} \right)$$

$$C_{pO} = 0.957 \frac{joule}{gK}$$

$$C_{pO} = 0.957 \frac{joule}{gK}$$

$$C_{pMixture} = y_{C} C_{pC} + y_{H} C_{pH} + y_{S} C_{pS} + y_{N} C_{pN} + y_{O} C_{pO}$$

$$C_{pMixture} = 1.082 \frac{\text{joule}}{\text{g K}} = 0.261 \quad \frac{\text{BTU}}{\text{lb R}}$$

Determining Heat Capacity of Air:

T = 749.4 K = 1349 R Average temperature of air through the air heater

Air
$$A_A = 3.355$$
 $A_B = 0.575 \cdot 10^{-3}$ $A_D = -0.016 \cdot 10^5$ MW Air = 29 g/gmole
 $C_{pAir} = \frac{R}{MW_{Air}} \left(A_A + A_B \cdot T + \frac{A_D}{T^2} \right)$

 $C_{pAir} = 1.085 \frac{joule}{g K} = 0.259 \frac{BTU}{lb R}$

Turbine Calculations²⁰

Properties of Air
$$P_1 = 1 \cdot atm$$
 $T_1 = 530 \cdot R$ $Cp_{air} = 0.259 \cdot \frac{BTU}{lb \cdot R}$ $P_2 = 4 \cdot atm$ $T_3 = 1910 \cdot R$ $P_3 = 4 \cdot atm$ $P_4 = 1 \cdot atm$ $T_3 = 1910 \cdot R$

Mechanical Efficiency of Turbine and Compressor

$$\eta_{t} = 90.\%$$

 $\eta_{c} = 90.\%$

Calculations for $\rm T_2$ and $\rm T_4$

$$T_{2} = T_{1} \cdot \left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{k}}$$

 $T_2 = 787.6 \cdot R$

T₂=327.6°F

$$T_{4} = \frac{T_{3}}{\left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{k}}}$$
$$T_{4} = 1.285 \cdot 10^{3} \cdot R$$
$$T4 = 825^{\circ}F$$

Work produced by Turbine (Wt)

$$\mathbf{W}_{t} := \left[Cp_{air} \left(T_{3} - T_{4} \right) \right] \eta_{t}$$
$$\mathbf{W}_{t} = 145.609 \cdot \frac{BTU}{lb}$$

Shaft work required by compressor (W_c)

$$W_{c} = \frac{Cp_{air}(T_{1} - T_{2})}{\eta_{c}}$$
$$W_{c} = -74.125 \cdot \frac{BTU}{lb}$$

Net work produced by the turbine (W_n)

$$W_n = W_t + W_c$$

 $W_n = 71.485 \cdot \frac{BTU}{lb}$

Heat addition per unit mass of air (q_a)

$$q_a = Cp_{air} (T_3 - T_2)$$

 $q_a = 290.708 \cdot \frac{BTU}{lb}$

Thermal Efficiency

$$\eta_{\text{th}} = \frac{W_n}{q_a}$$
$$\eta_{\text{th}} = 24.59 \cdot \%$$

Ratio of Turbine Work to Compressor Work

Ratio =
$$\frac{W_t}{|W_c|}$$
 Ratio = 1.964

Mass of air needed to produce required electrical load

$$m_{air} = \frac{41370 \cdot \frac{kW \cdot hr}{day}}{W_n} \qquad m_{air} = 1.975 \cdot 10^6 \cdot \frac{lb}{day}$$

Mass of water/glycol stream required for district heating

$$m_{wg} = \frac{15000000 \frac{BTU}{hr}}{0.87 \frac{BTU}{lb \cdot R} \cdot 20 \cdot R} \qquad m_{wg} = 2.069 \cdot 10^7 \frac{1b}{day}$$

Heat capacity of the flue gas

 $Cp_{fg} = 0.261 \frac{BTU}{lb R}$ $\Delta T = 696 R$

Mass flow rate of flue gas, which was obtained using a Lotus spreadsheet.

$$m_{fg} = 101911 \cdot \frac{lb}{hr}$$

Amount of energy entering the atmosphere, through the stack:

$$E_{\text{stack}} = m_{\text{fg}} Cp_{\text{fg}} \Delta T$$

 $E_{\text{stack}} = 4.443 \cdot 10^8 \cdot \frac{BTU}{day}$

Energy needed to heat air from 788R to 1910R:

 $E_{\text{electricity}} = m_{\text{air}} \cdot Cp_{\text{air}} \cdot (T_3 - T_2)$

$$E_{\text{electricity}} = 5.741 \cdot 10^8 \cdot \frac{BTU}{day}$$

Total energy leaving the system:

$$E_{\text{heating}} = 3.6 \cdot 10^8 \cdot \frac{\text{BTU}}{\text{day}}$$

 $E_{\text{total}} = E_{\text{electricity}} + E_{\text{heating}} + E_{\text{stack}}$

$$E_{total} = 1.378 \cdot 10^9 \cdot \frac{BTU}{day}$$

AFBC efficiency

Required energy generated in AFBC

$$E_{AFBC} = \frac{E_{total}}{\eta_{AFBC}}$$
 $E_{AFBC} = 1.723 \cdot 10^9 \cdot \frac{BTU}{dav}$

Energy from air streams:

^m excessair = 3214
$$\frac{\text{ft}^3}{\text{min}}$$
 $\rho_{air} = 0.0808 \frac{\text{lb}}{\text{ft}^3}$ $T_{ref} = 0.R$
^{Cp} excessair = 0.24 $\frac{\text{BTU}}{\text{lb} \text{ R}}$ $T_{excessair} = 655 \text{ R}$

$$E_{air} = m_{air} \cdot Cp_{air} \cdot (T_4 - T_{ref}) + m_{excessair} \cdot \rho_{air} \cdot Cp_{excessair} \cdot (T_{excessair} - T_{ref})$$
$$E_{air} = 7.162 \cdot 10^8 \cdot \frac{BTU}{day}$$

$$r = 7.162 \cdot 10^\circ$$
 $\cdot \frac{-2}{day}$

Energy required by fuel

$$E_{\text{fuel}} = E_{\text{AFBC}} - E_{\text{air}}$$

 $E_{\text{fuel}} = 4.195 \cdot 10^7 \cdot \frac{\text{BTU}}{\text{hr}}$

Amount of coal required

Heating Values

$HV_{wood} = 8900 \cdot \frac{BTU}{lb}$	Wood = $299 \frac{\text{ton}}{\text{yr}}$
$HV_{MSW} = 8484 \frac{BTU}{lb}$	$MSW = 665 \frac{ton}{yr}$
HV sludge = 6269. $\frac{BTU}{lb}$	Sludge = $10.4 \frac{\text{ton}}{\text{yr}}$
BTI	

$$HV_{coal} = 9094 \cdot \frac{BIU}{lb}$$

 $Coal = \frac{E_{fuel} - Wood \cdot HV_{wood} - MSW \cdot HV_{MSW} - Sludge \cdot HV_{sludge}}{HV_{coal}}$ $Coal = 1.9 \cdot 10^4 \cdot \frac{ton}{yr} \qquad Coal = 52.84 \cdot \frac{ton}{day}$

Energy Balances

$$T_{6} = -\left[\frac{m_{air} \cdot Cp_{air} \cdot (T_{7} - T_{8})}{m_{fg} \cdot Cp_{fg}} - T_{5}\right]$$

 $T_6 = 1.205 \cdot 10^3 \cdot R$

Heat capacity of 50% water/glycol solution⁹

$$T_{11} = 640 \cdot R$$

 $T_{10} = 660 \cdot R$

$$Cp_{wg}^{8} = 0.87 \cdot \frac{BTU}{lb \cdot R}$$

$$T_9 = \left[\left[\frac{m_{wg} \cdot Cp_{wg} \cdot (T_{10} - T_{11})}{m_{fg} \cdot Cp_{fg}} \right] - T_6 \right]$$

 $T_{9} = 696 \cdot R$

Determination of required limestone to reduce sulfur dioxide emissions by 90%

Theoretical amount of SO₂ formed by combustion

Average mass fraction of sulfur in coal Average mass fraction of sulfur in MSW Average mass fraction of sulfur in sludge No sulfur was found to be present in the wood. $y_{sludge} = 0.0095$ $y_{MSW} = 0.0006$ $y_{sludge} = 0.035$

SO 2 =
$$y_{\text{coal}} \cdot \text{Coal} + y_{\text{MSW}} \cdot \text{MSW} + y_{\text{sludge}} \cdot \text{Wood}$$

SO 2 = 1.063 \cdot 10³ \cdot \frac{1b}{day}

Amount of SO₂ required to be removed to reduce emissions by 90%

SO
$$_{2req} = 0.90 \cdot SO_2$$

SO $_{2req} = 957.024 \cdot \frac{lb}{dav}$

Reactions involved in the removal of SO₂

 $CaCO_3 \rightarrow CaO + CO_2$ approximately 60% conversion⁴

CaO + SO₂ + 1/2O₂ ---> CaSO₄

approximately 40% conversion⁴

Required amount of CaO

$$CaO = \frac{SO_{2req}}{0.4}$$
$$CaO = 2.393 \cdot 10^{3} \cdot \frac{lb}{day}$$

Required amount of CaCO₃

$$CaCO_{3} = \frac{CaO}{0.6}$$

$$CaCO_{3} = 3.988 \cdot 10^{3} \cdot \frac{lb}{dav}$$

Amount of limestone

The limestone being used is a calcitic limestone with 80% CaCO₃

Limestone =
$$\frac{\text{CaCO}_3}{0.8}$$
 Limestone = 4.98 \cdot 10^3 \cdot \frac{\text{lb}}{\text{day}}

Weighted Average Composition and Heating Value of Fuel

	Coal* <u>(ton/yr)</u> 19040	MSW** <u>(ton/yr)</u> 665	Wood*** (<u>ton/yr)</u> 299	Sludge** <u>(ton/yr)</u> 10.4	Total Fuel (<u>ton/yr)</u> 20014.4
Weight Fraction of Total Fuel	0.9513	0.0332	0.0149	0.0005	1
Carbon	53.91	44.05	52.55	31.6	53.55
Hydrogen	3.43	4.66	6.02	4.4	3.51
Oxygen	13.03	8.48	41.25	19.3	13.30
Nitrogen	0.68	0.32	•	3.9	0.66
Sulfur	0.95	0.06		3.5	0.91
Ash	7.11	7.20	0.12	38.4	7.02
% Moisture	21.19	35.23		. 4	21.33
HV (BTU/Ib)	9094	8484	8900	6289	9069

*Coal composition and heating value from Ashworth(2)

**MSW and sludge compositions and heating values from Mann(5)

***Wood composition and heating value from Perry(7)

As-Received Ultimate analysis %>	100.28	Total Sample 100.28	The % Ib a	eoretical ir/lb coal		As-Received Ultimate analysis %>	in-put
Carbon	53.55	53.40	*****	6.157		53.55	53.55
Hvdroaen	3.51	3.50		1.202		5.88	3.51
Oxvaen	13.30	13.26				32.26	13.3
Nitrogen	0.66	0.66				0.66	0.66
Sulfur	0.91	0.91		0.039		0.91	0.91
Ash	7.02	7.00				7.02	7.02
% moisture	21.33	21.27				21.33	21.33
Total	100.3 Less oxygen in fuel:	100.0	*****	7.398	lb	100.28	
	Less oxygen in Idei.			-0.070			
				6.825	lb		
Total air require	d at 195.0	% excess air =	=	20.132	lb		
	Flow rate/lb coal			265.062	scf/lb		
flue das O2		13.0	%				
flue das CO2		6.0	%				
Excess air =		195.00	%				
Fuel feed rate		4569	lb/hr			•	
Required air flov	V:	20184.46	scfm				

COMBUSTION PRODUCTS

IN COAL OR PPM	
AND AIR Ib/Ib fuel moles/Ib fuel (wet basis)	
CO2 0.534 1.954 0.0444 6.03 9	%
H2O 0.035 0.787 0.0437 5.93 9	%
SO2 0.009 0.018 0.0003 384 p	opm
O2 3.078 3.078 0.0962 13.05 9	%
N2 20.132 15.478 0.5525 74.96 9	%
MOIST WEIGHT 21.316 0.737 100.000 9	~~~~ %
DRY WEIGHT 20.529 0.693	
FLUE GAS FLOW RATE 21330.53 scfm	
INSTRUMENT O2 READING 13.87	
INSTRUMENT CO2 READING 6.41	

APPENDIX L: Equipment Design Calculations

SIZING THE ATMOSPHERIC FLUIDIZED BED COMBUSTOR (AFBC)

Volumetric flow rate of flue gas (Vol_{fluestand}) at standard conditions (1 atm and 32°F) necessary to generate average required power and heating demands:

Mass flow rate of flue gas,

M flue =
$$2.55 \cdot 10^6 \cdot \frac{lb}{day}$$

p flue = 0.0808 $\frac{lb}{ft^3}$

Density of flue gas at standard conditions⁸, (assuming flue gas is essentially all air, approximately 96%)

Vol fluestand =
$$\frac{M}{\rho}$$
 flue

Vol fluestand =
$$365.271 \cdot \frac{\text{ft}^3}{\text{sec}}$$

Volumetric flow rate of flue gas corrected to AFBC temperature (1550°F):

Assumed at this high temperature, the flue gas behaves ideally.

Vol flue = Vol fluestand
$$\frac{459.67 + 1550}{32 + 459.67}$$

Vol flue = 1.493 · 10³ · $\frac{\text{ft}^3}{\text{sec}}$

Determining the bed area of the AFBC:

Assume a fluidization velocity of 8 ft/sec based on previous research done by the Energy and Environmental Research Center⁴.

V fluidization = 8.
$$\frac{ft}{sec}$$

Area bed = $\frac{Vol flue}{V}$

V fluidization

Area bed = $186.6 \cdot ft^2$

Sizing the Raw Material Feed Hoppers

Coal Hopper:

Coal consumption, Coal = $104300 \frac{\text{lb}}{\text{day}}$

Storage capacity, Stor coal = 1 day

Bulk density of coal⁸, $\rho_{coal} = 850 \frac{kg}{m^3}$ Coal hopper volume, Hoppervol coal $= \frac{Coal \text{ Stor } coal}{\rho_{coal}}$

Hoppervol
$$_{coal} = 2 \cdot 10^3 \cdot ft^3$$

Limestone Hopper:

Limestone consumption, Limestone = $4980 \frac{\text{lb}}{\text{day}}$

Storage capacity, Stor limestone = 2 day

Bulk density of limestone⁸, $\rho_{\text{limestone}} = 1500 \cdot \frac{\text{kg}}{\text{m}^3}$

Limestone Hopper volume, Hoppervol limestone = $\frac{\text{Limestone} \cdot \text{Stor}}{\rho}$ limestone

Hoppervol limestone =
$$106.4 \cdot ft^3$$

1....

Municipal Solid Waste (MSW) Hopper:

MSW consumption, MSW =
$$3644 \cdot \frac{16}{day}$$

Bulk density of MSW⁶,
$$\rho_{MSW} = 130 \frac{kg}{m^3}$$

MSW Hopper volume, Hoppervol $MSW = \frac{MSW \text{ Stor } MSW}{\rho MSW}$

Hoppervol MSW = $898 \cdot \hat{n}^3$

Wood Hopper:

Wood consumption, Wood =
$$1638 \frac{lb}{day}$$

Storage capacity, Stor_{wood} = $2 \cdot day$
Bulk density of wood⁸, $\rho_{wood} = 240 \frac{kg}{m^3}$

Wood Hopper volume, Hoppervol wood
$$= \frac{Wood Stor wood}{\rho wood}$$

Hoppervol wood =
$$219 \cdot ft^3$$

Combined MSW and Wood Hopper

Since the MSW and wood will be stored in the same hopper, their individual volumes need to be added together to find the required volume of the combined hopper.

Combined hopper volume Hopper combined = Hoppervol
$$MSW$$
 + Hoppervol wood
Hopper combined = $1.1 \cdot 10^3$ ·ft³

Sludge Hopper:

Sludge consumption, Sludge =
$$57 \frac{\text{lb}}{\text{day}}$$

Storage capacity, Stor sludge = 2 day

Bulk density of sludge⁸,
$$\rho_{sludge} = 1000 \frac{kg}{m^3}$$

Sludge Hopper volume, Hoppervol sludge
$$= \frac{\text{Sludge Stor sludge}}{\rho \text{ sludge}}$$

Hoppervol sludge =
$$1.8 \cdot ft^3$$

Fly Ash Storage from Cyclone:

Fly ash production, Flyash
$$_{cyc} = 7177 \cdot \frac{lb}{day}$$

Storage capacity, Stor $_{cyc}$ = 2 day

Bulk density of fly ash⁸,
$$p_{\text{flyash}} = 745 \cdot \frac{\text{kg}}{\text{m}^3}$$

Fly ash storage volume, Storagevol $_{cyc} = \frac{Flyash}{\rho} \frac{flyash}{flyash}$

Storagevol
$$_{\rm cvc} = 309 \cdot ft^3$$

Fly Ash Storage from Baghouse:

Fly ash production, Flyash
$$_{bag} = 790 \frac{lb}{day}$$

Storage capacity, Stor $_{bag} = 2 \cdot day$
Fly ash storage volume, Storagevol $_{bag} = \frac{Flyash \ bag \cdot Stor \ bag}{\rho \ flyash}$

Storagevol bag =
$$34 \cdot ft^3$$

Sizing the Storage Facility for Limestone (One Month Supply Stored)

Limestone Bin:

Limestone consumption in one month, Lime = 144000 lb

Bulk density of limestone, $\rho_{lime} = 1500 \cdot \frac{\text{kg}}{\text{m}^3}$

Limestone storage bin volume,

Binvol limestone =
$$\frac{\text{Lime}}{\rho_{\text{lime}}}$$

Binvol limestone =
$$1.5 \cdot 10^3 \cdot ft^3$$

Sizing the Fan to Provide Excess Air to AFBC

In order to size the fan, three items of information must be known. They are the density of air at the fan, the air volumetric flow rate through the fan, and the fan static pressure (FSP) increase to be supplied.

Density of air at fan (70°F),
$$\rho_{air} = 0.07519 \cdot \frac{lb}{ft^3}$$

Volumetric flow rate of air, Vol_{air} = 5310 $\cdot \frac{ft^3}{min}$

The FSP is found by calculating the head loss due to friction through the 50 feet of pipe leading from the fan to the AFBC and the acceleration loss that comes from accelerating stationary ambient air to the duct velocity. There will be no fittings or expansions and therefore no losses due to friction. For a low density gas such as air, a good duct velocity was found to be 2500 ft/min.

First find cross-sectional area of the pipe and then its diameter.

Velocity of air in duct,
$$v_{air} = 2500 \cdot \frac{fi}{min}$$

Cross-sectional area of duct, $A_{duct} = \frac{Vol_{air}}{v_{air}}$

A duct =
$$2.124 \cdot ft^2$$

Diameter of duct,

$$D_{duct} = 20 \cdot in$$

 $D_{\text{duct}} = \frac{4 \cdot A_{\text{duct}}}{7}$

The friction loss per 100 feet of pipe was then found from a chart using the volumetric flow rate, air velocity, and pipe diameter.

Friction loss per 100 feet, Fric loss $=\frac{0.40}{100}\frac{\text{in H}_2\text{0}}{\text{ft}}$

Length of pipe, Length pipe = 50 ft

Friction loss through 50 feet of pipe, Friction loss = Fric loss Length pipe

Friction loss = 0.2 in H₂0

The friction loss due to acceleration of stationary ambient air to 2500 ft/min was then found.

 $\langle \mathbf{v} \rangle$

Acceleration loss,

$$A_{loss} = \left(\frac{air}{4005}\right)$$
$$A_{loss} = 0.39 \text{ in } H_20$$

where the velocity of air must be in feet per minute and the acceleration loss is given in inches of water.

The fan static pressure was then found.

Fan static pressure, FSP = A

 $FSP = A_{loss} + Friction_{loss}$

 $FSP = 0.59 \text{ in } H_20$

Fan rating tables were then used to find the specifications of a fan capable of providing 5310 ft³/ min. Interpolation in these tables using the calculated FSP and volumetric flow rate showed that a 20 SISW (single inlet, single width) fan operating at 1330 RPM with a 2 hP motor is required. The specific type of fan that will be used is a backward inclined blade fan (a type of centrifugal fan) since it is efficient and reduces erosion from light dust in the air.

Pump Calculations

Pump (L410)

Calculations will be based on 150 feet of head and a pump efficiency (η) of 60%

Head = 150 ft
$$\frac{lbf}{lb}$$

 $\eta = 0.60$ $W_{in} = \frac{Head}{\eta}$

Power is calculated by P=mass flow rate * work in

$$m = 8.6208 \cdot 10^{5} \frac{\text{lb}}{\text{hr}}$$
$$m = 239.467 \cdot \frac{\text{lb}}{\text{sec}}$$
$$P = m \cdot W_{\text{in}}$$
$$P = 109 \cdot \text{hp}$$
$$Pump (L600)$$

Calculations will be based on 70 feet of head and a pump efficiency (η) of 60%

Head = 75 ft
$$\frac{lbf}{lb}$$
 $\eta = 0.60$

$$W_{in} = \frac{Head}{\eta}$$

Power is calculated by P=mass flow rate * work in

$$m = 500510 \cdot \frac{lb}{day}$$

$$m = 5.793 \cdot \frac{lb}{sec}$$

$$P = m \cdot W_{in}$$

$$P = 1 \cdot hp$$

Pump (L670)

Calculations will be based on 30 feet of head and a pump efficiency (η) of 60%

Head :=
$$30 \cdot ft \cdot \frac{lbf}{lb}$$
 $\eta := 0.60$

 $W_{in} = \frac{Head}{\eta}$

Power is calculated by P=mass flow rate * work in

$$m = 957.2 \cdot \frac{lb}{day}$$
$$m = 0.011 \cdot \frac{lb}{sec}$$

 $P = m W_{in}$

 $P = 1 \cdot 10^{-3}$ ·hp

A 0.01 hp pump will be used

Baghouse Calculations

The total amount of material area required

$$Q = 21331 \frac{\text{ft}^3}{\text{min}} \qquad V = 2 \frac{\text{ft}}{\text{min}}$$
$$A = \frac{Q}{V}$$
$$A = 1.067 \cdot 10^4 \cdot \text{ft}^2$$

A total of three compartments will be used in the baghouse. Each compartment will contain 5000 ft² of material. This will allow for one compartment to be shut down for cleaning while the other two compartments remain operational.

Area per bag

$$L_{bag} = 8 \cdot ft$$
 $d_{bag} = 0.5 \cdot ft$
 $A_{bag} = L_{bag} \cdot d_{bag} \cdot \pi$
 $A_{bag} = 12.566 \cdot ft^2$

Number of bags needed

$$A_{total} = 15000 \cdot ft^2$$

N bags $= \frac{A_{total}}{A_{bag}}$

N _{bags} = $1.194 \cdot 10^3$

Number of bags per compartment

B compartment =
$$\frac{N \text{ bags}}{3}$$

B compartment = 398

Conventional Cyclone Calculations

Standard conventional cyclone dimension

D = 0.5

$$H = \frac{0.5}{D} \cdot m \qquad L_{b} = \frac{2}{D} \cdot m$$
$$L_{c} = \frac{2}{D} \cdot m \qquad W = 0.25 \cdot \frac{m}{D}$$

Properties of the Flue Gas

 $\mu = 0.110 \frac{\text{lb}}{\text{hr ft}} \qquad \rho_{\text{A}} = .00125 \frac{\text{kg}}{\text{m}^3}$

Density of Ash

 $\rho_p = 745 \cdot \frac{kg}{m^3}$

Number of Effective Turns in the Cyclone

$$N_e = \left(\frac{1}{H}\right) \cdot \left(L_b + \frac{L_c}{2}\right)$$
 $N_e = 6$

Velocity of Flue Gas

$$f = 21331 \cdot \frac{ft^3}{min}$$
 $V_i = \frac{f}{H \cdot W}$ $V_i = 1.208 \cdot 10^3 \cdot \frac{m}{min}$

Diameter of Particle Collected with 50% Efficiency

$$d_{pc} = \left[\frac{9 \cdot \mu \cdot W}{2 \cdot \pi \cdot N_{e} \cdot V_{i} \cdot (\rho_{p} - \rho_{A})}\right]^{\frac{1}{2}}$$
$$d_{pc} = 1.902 \cdot 10^{-5} \quad \text{m}$$

Conventional Cyclone Calculations

Particle Size					
Range (mm)	d _p (mm)	d_p/d_{pc}	η	m j (%)	ղյ m յ (%)
0-44	22	1.157	0.572	13.40	7.668
44-74	59	3.102	0.906	26.70	24.19
74-150	112	5.889	0.972	14.50	14.09
150-300	225	11.83	0.993	16.30	16.18
300-600	450	23.66	0.998	14.10	14.07
600-900	750	39.43	0.999	5.500	5.496
900-1200	1050	55.21	1.000	3.800	3.799
1200<	1300	68.35	1.000	5.700	5.699
			Total E	fficiency	91

d_p=average particle size

 $\eta_{j}\text{=}\text{efficiency}$ for each particle size range

mj=mass fraction of particles in the particle size range

FLOWSHEET SECTION

FLOWSHEET CONNECTIVITY BY STREAMS

STREAM	SOURCE	DEST	STREAM	SOURCE	DEST
AIR-IN		AIRHEAT	HOT-FG		AIRHEAT
FG-OUT	AIRHEAT		AIR-OUT	AIRHEAT	

FLOWSHEET CONNECTIVITY BY BLOCKS

BLOCK	INLETS	OUTLETS
AIRHEAT	HOT-FG AIR-IN	FG-OUT AIR-OUT

COMPUTATIONAL SEQUENCE

SEQUENCE USED WAS: AIRHEAT *AIRHEAT

OVERALL FLOWSHEET BALANCE

***	MASS AND H	ENERGY BALANCE	***	
	1	IN	OUT	RELATIVE
DIFF.				
CONVENTIONAL COMPONENTS	(LBMOL/HI	R)		
N2	516	7.57 5	167.57	0.0000E+00
02	972.	.380 9	72.380	0.0000E+00
CO2	145	.096 1	45.096	0.0000E+00
H2O	348	.558 3	48.558	0.0000E+00
SO2	0.000	0.00 0.00	00E+00	0.0000E+00
TOTAL BALANCE				
MOLE (LBMOL/HR)	6633	3.61 6	633.61	0.0000E+00
MASS(LB/HR)	1885	542. 1	88542.	0.0000E+00
ENTHALPY (BTU/HR)	-0.126	67E+08 -0.12	67E+08	0.1469E-15

U-O-S BLOCK SECTION

BLOCK: AIRHEAT MODEL: HEATX (CONTINUED)

•

HEAT	TRANSFER	COEFFIC	CIENT S	PECIFICATION:	
HOT	LIQUID	COLD	LIQUID	BTU/HR-SQFT-R	149.6937
HOT	2-PHASE	COLD	LIQUID	BTU/HR-SQFT-R	149.6937
HOT	VAPOR	COLD	LIQUID	BTU/HR-SQFT-R	149.6937
HOT	LIQUID	COLD	2-PHAS	e btu/hr-sqft-r	149.6937
HOT	2-PHASE	COLD	2-PHAS	e btu/hr-sqft-r	149.6937
HOT	VAPOR	COLD	2-PHAS	E BTU/HR-SQFT-R	149.6937
HOT	LIQUID	COLD	VAPOR	BTU/HR-SQFT-R	149.6937
HOT	2-PHASE	COLD	VAPOR	BTU/HR-SQFT-R	149.6937
HOT	VAPOR	COLD	VAPOR	BTU/HR-SQFT-R	149.6937

*** OVERALL RESULTS ***

```
STREAMS :
```

					-		
HOT T= P=	-FG 1.5503D+0 1.4700D+0	> 3 1		HOT	 > 	FG-(T= P=	OUT 7.6549D+02 1.4700D+01
V=	1.0000D+0	0				V=	1.0000D+00
A: T= P=	IR-OUT < 1.4403D+0 5.8784D+0	 3 1		COLD	 <	AIR T= P=	-IN 3.2833D+02 5.8784D+01
V=	1.0000D+0	0			1	V=	1.0000D+00
DUT Ci Ci	Y AND AREA ALCULATED ALCULATED	: HEAT DUTY (REQUIRED)) AREA	BTU/HR SQFT	- 239:	1882: 67:	8.7899 3.9050
HEA' A'	T TRANSFER VERAGE COE	COEFFICI FFICIENT	ENT: (DIRTY)	BTU/HR-SQFT-R		14	9.6937

LOG-MEAN TEMPERATURE DIFF	'ERENCE :	
LMTD CORRECTION FACTOR		1.0000
LMTD (CORRECTED)	F	237.1034
PRESSURE DROP:		
SHELLSIDE, TOTAL	PSI	0.0000
TUBESIDE, TOTAL	PSI	0.0000

U-O-S BLOCK SECTION

BLOCK: AIRHEAT MODEL: HEATX (CONTINUED)

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

COLD

ZONE HEAT TRANSFER AND AREA:

ZONE	HEAT DUTY	AREA	DTLM	AVERAGE U
	BTU/HR	SQFT	F	BTU/HR-
SQFT-R				
1	23918828.790	673.9050	237.1034	149.6937

STREAM SECTION

AIR-IN AIR-OUT FG-OUT HOT-FG

.

STREAM ID	AIR-IN	AIR-OUT	FG-OUT	HOT-FG
FROM :		AIRHEAT	AIRHEAT	
то :	AIRHEAT			AIRHEAT
SUBSTREAM: MIXED				
PHASE:	VAPOR	VAPOR	VAPOR	VAPOR
COMPONENTS: LB/HR				
N2	6.5010+04	6.5010+04	7.9751+04	7. 97 51+04
02	1.7281+04	1.7281+04	1.3834+04	1.3834+04
C02	0.0	0.0	6385.6250	6385.6250
H2O	0.0	0.0	6279.3750	6279.3750
SO2	0.0	0.0	0.0	0.0
COMPONENTS: MASS FRAC				
N2	0.7900	0.7900	0.7506	0.7506
02	0.2100	0.2100	0.1302	0.1302
C02	0.0	0.0	6.0100-02	6.0100-02
H2O	0.0	0.0	5.9100-02	5.9100-02
S02	0.0	0.0	0.0	0.0
TOTAL FLOW:				
LBMOL/HR	2860.7426	2860.7426	3772.8630	3772.8630
LB/HR	8.2292+04	8.2292+04	1.0625+05	1.0625+05
CUFT/HR	4.1153+05	9.9227+05	3.3744+06	5.5361+06
STATE VARIABLES:				
TEMP F	328.3300	1440.3300	765.4895	1550.3300
PRES PSI	58.7838	58.7838	14.7000	14.7000
VFRAC	1.0000	1.0000	1.0000	1.0000
LFRAC	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0
ENTHALPY:				
BTU/LBMOL	1760.4154	1.0121+04	-1.1034+04	-4694.1185
BTU/LB	61.1981	351.8573	-391.8032	-166.6848
BTU/HR	5.0361+06	2.8955+07	-4.1629+07	-1.7710+07
ENTROPY:				
BTU/LBMOL-R	0.8984	7.4546	6.7039	10.6877
BTU/LB-R	3.1233-02	0.2591	0.2380	0.3795
DENSITY:				· ·
LBMOL/CUFT	6.9514-03	2.8830-03	1.1181-03	6.8150-04
LB/CUFT	0.1999	8.2932-02	3.1487-02	1.9192-02
AVG MW	28.7658	28.7658	28.1616	28.1616

COST BLOCK SECTION

*** INPUT DATA ***

HEAT EXCHANGER TYPE	BEM	
SHELL MATERIAL	STAINLESS 316	
TUBE MATERIAL	STAINLESS 316	
PEAK CAPACITY ALLOWANCE FACTOR	1.06	
NUMBER OF SHELL PASSES	1	
SHELL PRESSURE	14.6959	PSI
SHELL INLET TEMPERATURE	1550.0000	F
SHELL OUTLET TEMPERATURE	766.0000	F
NUMBER OF TUBE PASSES	2	
TUBE PRESSURE	58.7838	PSI
TUBE INLET TEMPERATURE	328.0000	F
TUBE OUTLET TEMPERATURE	1440.0000	F
FLOW DIRECTION	COUNTERCURRENT	
HEAT TRANSFER COEFFICIENT	79.2495	BTU/HR-
SQFT-R		

*** FLOWSHEET REFERENCE DATA ***

BLOCK ID - SHELL SI	IDE AIRHEAT	
BLOCK ID - TUBE SI	DE AIRHEAT	
TOTAL HEAT TRANSFE	R AREA 673.9050	SQFT
HEAT DUTY	2.3919+07	BTU/HR

*** SIZING AND COSTING RESULTS ***

CALCULATED NUMBER OF HEAT EXCHANGERS	1	
MATERIAL OF CONSTRUCTION FACTOR	1.95	
HEAT TRANSFER AREA PER UNIT 673	3.9050	SQFT
TOTAL SCALED HEAT DUTY 2.53	354+07	BTU/HR
LOG MEAN TEMPERATURE DIFFERENCE 23	7.3821	F
EXCHANGER GEOMETRY CORRECTION FACTOR	1.00	

*** COST RESULTS ***

CARBON STEEL COST	\$ 15,700
PURCHASED COST	\$ 30,700

FLOWSHEET SECTION

FLOWSHEET CONNECTIVITY BY STREAMS

STREAM	SOURCE	DEST	STREAM	SOURCE	DEST
COLD-WG		B1	HOT-FG		B1
FG-OUT	B1		WG-OUT	B1	

FLOWSHEET CONNECTIVITY BY BLOCKS

BLOCK	INLETS	
B1	HOT-FG	COLD-WG

OUTLETS FG-OUT WG-OUT

COMPUTATIONAL SEQUENCE

SEQUENCE USED WAS: B1 DISTRICT

OVERALL FLOWSHEET BALANCE

		***	MASS	AND	ENERGY	BALANCE	***		
					IN		OUT		RELATIVE
DIFF.									
CONVEN	TIONAL COMPO	NENTS	5 (LBI	MOL/I	HR)				
WAT	ER			24	144.4	24	4144.4	.0	00000E+00
GLY	COL			694	44.62	69	944.62	.0	00000E+00
N2				27	55.27	27	755.27	.0	00000E+00
02				480	0.775	48	30.775	.0	00000E+00
CO2				22:	1.642	22	21.642	. 0	00000E+00
SO2				0.00	00E+00	0.000	00 <u>E</u> +00	. 0	00000E+00
TOTAL	BALANCE								
MOL	E(LBMOL/HR)			34	546.7	34	4546.7	. 0	00000E+00
MAS	S(LB/HR)			961	8333.	96	58333.	.0	00000E+00
ENT	HALPY (BTU/HR)		-0.42	261E+10	-0.426	51E+10	. 0	00000E+00

U-O-S BLOCK SECTION

BLOCK: B1 MODEL: HEATX (CONTINUED)

HEAT TRANSFER COEFFICIENT SPECIFICATION:

HOT	LIQUID	COLD	LIQUID	BTU/HR-SQFT-R	149.6937
HOT	2-PHASE	COLD	LIQUID	BTU/HR-SQFT-R	149.6937
HOT	VAPOR	COLD	LIQUID	BTU/HR-SQFT-R	149.6937
HOT	LIQUID	COLD	2 - PHASE	BTU/HR-SQFT-R	149.6937
HOT	2-PHASE	COLD	2-PHASE	BTU/HR-SQFT-R	149.6937
HOT	VAPOR	COLD	2-PHASE	BTU/HR-SQFT-R	149.6937
HOT	LIQUID	COLD	VAPOR	BTU/HR-SQFT-R	149.6937
HOT	2-PHASE	COLD	VAPOR	BTU/HR-SQFT-R	149.6937
HOT	VAPOR	COLD	VAPOR	BTU/HR-SQFT-R	149.6937

*** OVERALL RESULTS ***

STREAMS:

		-					
нот	-FG -	>	I	HOT	 >	FG-0	TUC
T=	7.66001	0+02				T=	2.2081D+02
P=	1.47001	0+01			1	P=	1.4700D+01
V=	1.00001	00+0			l .	V=	1.0000D+00
WG-	out <	<		COLD	 <	COLI	D-WG
T=	2.0000	D+02			ĺ	T =	1.8000D+02
P=	1.47001	0+01	1			₽=	1.4700D+01
V=	0.00001	0+00				V=	0.000D+00
		-			-		

DUTY AND AREA:		
CALCULATED HEAT DUTY	BTU/HR	14967724.4966
CALCULATED (REQUIRED) AREA	SQFT	500.6461
	1999 - Alexandria Alexandria	対応
HEAT TRANSFER COEFFICIENT:		
AVERAGE COEFFICIENT (DIRTY)	BTU/HR-SQFT-R	149.6937
LOG-MEAN TEMPERATURE DIFFERENCE:		
LMTD CORRECTION FACTOR		1.0000
LMTD (CORRECTED)	F	199.7200
PRESSURE DROP:		
SHELLSIDE, TOTAL	PSI	0.0000
TUBESIDE, TOTAL	PSI	0.0000

U-O-S BLOCK SECTION

BLOCK: B1 MODEL: HEATX (CONTINUED)

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

ZONE HEAT TRANSFER AND AREA:

ZONE	HEAT DUTY	AREA	DTLM	AVERAGE U
	BTU/HR	SQFT	F	BTU/HR-
SQFT-R				
1	14967724.497	500.6461	199.7200	149.6937

STREAM SECTION

COLD-WG FG-OUT HOT-FG WG-OUT

STREAM ID	COLD-WG	FG-OUT	HOT-FG	WG-OUT
FROM :		B1		B1
TO :	B1		B1	
SUBSTREAM: MIXED				
PHASE:	LIQUID	VAPOR	VAPOR	LIQUID
COMPONENTS: LB/HR				
WATER	4.3104+05	3926.7203	3926.7203	4.3104+05
GLYCOL	4.3104+05	0.0	0.0	4.3104+05
N2	0.0	7.7185+04	7.7185+04	0.0
02	0.0	1.5384+04	1.5384+04	0.0
CO2	0.0	9754.4091	9754.4091	0.0
SO2	0.0	0.0	0.0	0.0
COMPONENTS: MASS FRAC	2			
WATER	0.5000	3.6957-02	3.6957-02	0.5000
GLYCOL	0.5000	0.0	0.0	0.5000
N2	0.0	0.7264	0.7264	0.0
02	0.0	0.1447	0.1447	0.0
CO2	0.0	9.1806-02	9.1806-02	0.0
S02	0.0	0.0	0.0	0.0
TOTAL FLOW:				
LBMOL/HR	3.0871+04	3675.6509	3675.6509	3.0871+04
LB/HR	8.6208+05	1.0625+05	1.0625+05	8.6208+05
CUFT/HR	1.4243+04	1.8260+06	3.2889+06	1.4412+04
STATE VARIABLES:				
TEMP F	180.0000	220.8118	766.0000	200.0000
PRES PSI	14.7000	14.7000	14.7000	14.7000
VFRAC	0.0	1.0000	1.0000	0.0
LFRAC	1.0000	0.0	0.0	1.0000
SFRAC	0.0	0.0	0.0	0.0
ENTHALPY:				
BTU/LBMOL	-1.3671+05	-1.5333+04	-1.1261+04	-1.3622+05
BTU/LB	-4895.3899	-530.4269	-389.5542	-4878.0277
BTU/HR	-4.2202+09	-5.6358+07	-4.1390+07	-4.2053+09
ENTROPY :				
BTU/LBMOL-R	-48.2427	2.7451	7.1257	-47.5010
BTU/LB-R	-1.7275	9.4967-02	0.2465	-1.7010
DENSITY:				
LBMOL/CUFT	2.1674	2.0130-03	1.1176-03	2.1419
LB/CUFT	60.5277	5.8189-02	3.2306-02	59.8152
AVG MW	27.9252	28.9064	28.9064	27.9252

COST BLOCK SECTION

BLOCK: DISTRICT MODEL: HEATX

*** INPUT DATA ***

HEAT EXCHANGER TYPE	BEM	
SHELL MATERIAL	CARBON STEEL	
TUBE MATERIAL	CARBON STEEL	
PEAK CAPACITY ALLOWANCE FACTOR	1.06	1
NUMBER OF SHELL PASSES	1	
SHELL PRESSURE	14.7000	PSI
SHELL INLET TEMPERATURE	766.0000	F
SHELL OUTLET TEMPERATURE	220.0000	F
NUMBER OF TUBE PASSES	2	
TUBE PRESSURE	14.7000	PSI
TUBE INLET TEMPERATURE	180.0000	F
TUBE OUTLET TEMPERATURE	200.0000	F
FLOW DIRECTION	COUNTERCURRENT	
HEAT TRANSFER COEFFICIENT	79.2495	BTU/HR-
SQFT-R		

*** FLOWSHEET REFERENCE DATA ***

BLOCK ID -	SHELL SIDE	Bl	
BLOCK ID -	TUBE SIDE	B1	
TOTAL HEAT	TRANSFER AREA	500.6460	SQFT
HEAT DUTY		1.4968+07	BTU/HR

*** SIZING AND COSTING RESULTS ***

CALCULATED NUMBER OF HEAT EXCHANGERS	1	
MATERIAL OF CONSTRUCTION FACTOR	1.00	
HEAT TRANSFER AREA PER UNIT	500.6460	SQFT
TOTAL SCALED HEAT DUTY	1.5866+07	BTU/HR
LOG MEAN TEMPERATURE DIFFERENCE	198.5119	F
EXCHANGER GEOMETRY CORRECTION FACTOR	0.93	
*** COST RESULTS ***		

CARBON STEEL COST	\$ 13,245
PURCHASED COST	 13,245