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Abstract 
The M3D(Multi-level3D) tokamak simulation project aims at the simulation 

of tokamak plasmas using a multi-level tokamak code package. Several current 
applications using MHD and Extended-MHD models are presented; high$ dis- 
ruption studies in reversed shear plasmas using the MHD level MH3D code, 
w*; stabilization and nonlinear island rotation studies using the two-fluid level 
MH3D-T code, studies of nonlinear saturation of TAE modes using the hy- 
brid particle/MHD level MH3D-K code, and unstructured mesh MH3D++ code 
studies. In particular, three internal mode disruption mechanisms are identified 
from simulation results which agree well with experimental data. 

1. Introduction 

Recent nonlinear MHD simulation results for high$ disruptions[l] and dou- 
ble tearing sawteeth[2] have reaffirmed that many global behaviors of tokamak 
plasmas can be successfully explained using MHD simulation. However, as toka- 
mak experiments reach higher performance regimes, more sophisticated experi- 
mental diagnostics coupled with ever expanding computer capabilities have in- 
creased both the need for and the feasibility of 3D nonlinear global simulations 
using models more realistic than MHD. We currently use various “Extended- 
MHD” models as well as the MHD model to  study the global behavior of toka- 
mak plasmas. These include a two-fluid model which is used to  study finite 
gyroradius drift-MHD modes, and a Particle/MHD hybrid model which is used 
to  study the nonlinear evolution of kinetic-MHD modes. These and the unstruc- 
tured mesh capability represent the present status of our M3D (Multi-level 3D) 
tokamak simulation project. 

The M3D project aims at the simulation of tokamak plasmas using a multi- 
level tokamak code package. A multi-level code is necessary for the study of 
tokamaks, where complex phenomena can be modeled with various levels of 
realism. By comparing results from different levels, one can delineate the physics 
involved and ensure that particular approximations are relevant. This is also a 
step by step path which leads toward a comprehensive tokamak simulation code 
which would include most of the relevant physics and also allow various option 
levels in complexity of physics and geometry. A higher level M3D code contains 
the lower level codes, such that lower level benchmarks are still useful and the 
simulation can change to  a different level at any point in the calculation. (A 
simulation code with complete physics, but without intermediate option levels, 
would produce results too complex for the user to  delineate the physics involved 
and would be very difficult to  benchmark completely.) 

In the following sections, we present 3D simulation studies using various 
option levels of the M3D project; high-P disruption studies in reversed shear 
plasmas using the MHD level MH3D code, w,i stabilization and nonlinear island 
rotation studies using the two-fluid level MH3D-T code, studies of nonlinear 
saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, 
and unstructured mesh MH3D++ code studies. 
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2. MHD simulation 

The MH3D code is used to study the mechanisms of internal mode disruption 
in reversed shear plasmas. Previous studies of normal shear plasmas have shown 
that toroidally localized high-n ballooning modes can be driven unstable by local 
pressure steepening in the bad curvature region, which arises from the evolution 
of low-n modes.[l] Nonlinearly, the high-n mode becomes even more localized 
and produces a strong local pressure bulge which destroys the flux surfaces 
resulting in a thermal quench. 

Figure 1: (a)Pressure contours of the 3D equilibrium. Two local pressure s t eep  
enings occur; the stronger one inside the reversed shear core region at 4 = 0, 
and the other in the normal shear region at 4 = T.  (b)The later nonlinear de- 
velopment of the pressure. The localized high-n ballooning mode develops only 
from the pressure steepening in the normal shear region. 

A similar behavior is also seen in simulations of reversed shear plasmas. The 
Fig. l(a) shows pressure contours of a 3D equilibrium which results from the 
nonlinear evolution of an n=l  linear instability using a TFTR initial profile with 
3.8% peak p. (The aspect ratio used is 2.9, but a smaller aspect ratio is depicted 
in the figure only to save space.) This 3D equilibrium has two local pressure 
steepenings both on the outboard side as indicated with arrows; the stronger 
one inside the reversed shear core region at toroidal angle 4 = 0, and the other 
in the normal shear region at 4 = T.  A toroidally localized high-n ballooning 
mode grows out of the local steep pressure region in the normal shear region and 
eventually destroys the flux surfaces resulting in a thermal quench, as shown in 
Fig. l(b). The toroidally localized steep pressure gradient inside the reversed 
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shear core, although much stronger than the one outside, remains stable, show- 
ing that the advantage of the reversed shear profile regarding pressure driven 
modes extends far into the 3D configuration. 

Figure 2: The nonlinear deformation of pressure contours evolving from an m=2 
dominant n=l  mode, when toroidally localized high-n modes are stable. 

v 
Minor Radius 

Figure 3: Puncture plot of field lines on the toroidal mid-plane of the torus. 

For reversed shear cases, disruptions can also be caused by low-n modes 
alone without a toroidally localized high-n ballooning mode, when the qmin is 
close enough or lower than 2. (This will probably also apply to qmin close 
to other rational numbers like 3.) Fig. 2 shows the nonlinear deformation of 
pressure evolving from an m=2 dominant n=l mode. In this case, a toroidally 
localized high-n ballooning mode is not destabilized, probably because the q 
profile used has a smaller flat region around qmin compared to the previous 
case. The pressure bulge shown on the right figure pushes the plasma into 
the plasma boundary and drives magnetic reconnection until the outer region 
becomes stochastic. 

This is seen in Fig. 3 which shows the puncture plot of field lines on the 
toroidal mid-plane of the torus. The pressure bulge shown on the right figure 
of Fig. 2 corresponds to the bulge on the right side of the $ = -7r line(which 
is the same line as # = T). This bulge drives reconnection producing aligned 
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X-points of various island chains as indicated by X’s on the figure, and causes 
stochasticity. On the inboard side, mixed X-points and 0-points occur as shown ’ 

by X‘s and 0‘s on the left side of the 4 = -n line. (This mechanism is similar 
to the pressure bulge in m=l reconnection cases.[3]) 

The above two mechanisms of internal mode disruption are due to  high-@ 
effects. Another mechanism which can cause disruption for a reversed shear 
plasma is when a double-tearing reconnection occurs with a large mixing ra- 
dius.[2] This can happen for both high-@ and low-/? plasmas. In summary, 
three mechanisms are identified that can cause an internal mode disruption in 
high temperature reversed shear plasmas; (1) toroidally localized high-n modes 
driven unstable by local pressure steepening in the bad curvature region that 
arises from the evolution of low-n modes, (2)a large pressure bulge caused by 
the nonlinear development of a low-n mode, (3)a double-tearing reconnection 
with a large mixing radius. The mechanism (3) can occur only when qmin is 
lower than 2(or other low mode number rational surfaces), while mechanisms 
(1) and (2) do not have such a restriction. All three mechanisms are seen in the 
experiment and the experimental data agrees well with the scenarios presented 
here. In addition, the mechanism (3) can be mixed with either of the other two 
mechanisms to produce a disruption. 

3. Two-fluid simulation 

The MH3D-Tcode[4] is the two-fluid extension of the MH3D code. The two- 
fluid equations are obtained by generalizing the perturbative drift ordering[5] 
to arbitrary perturbation size. They are closely related, although not identical, 
to  the collisional Braginskii equations [SI. The model was chosen, in part, to 
transform smoothly into the resistive MHD equations in the limit of vanishing 
gyroradii. 

The drift ordering [5] assumes fluid velocities and growth rates small com- 
pared to  the thermal velocity scales of the MHD ordering, ‘u/’uth N 6, a/& N 

S’uth/L, and w/R& N pi/L N 6, where 6 is a characteristic small parameter, 
‘uth is the ion thermal speed, L a characteristic equilibrium scale length, w a 
typical frequency, Rc; the ion cyclotron frequency, and pi the ion gyroradius. 
The ordering introduces the diamagnetic velocities 

for j = e ,  i, where qj is the particle charge. 
The fluid velocities can be written exactly as 

where VI is the perpendicular guiding center velocity of the electrons and ions, 
neglecting magnetic drifts. The generalized “diamagnetic” part vdi of the ion 
fluid velocity perpendicular to the magnetic field is defined to be 
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where v,, is given by Eq. (1) with j = e. 

be summarized as 
In rationalized emu units, the essential features of our two-fluid model can 

- dV + (v . V ) v  = - (V& * V )  V I  + - J x B  - - v p  +pv; 
at nm; nm; 

- - V X E  dB 
at 
- -  

VIP. E + v x B  = q J - -  en 

The electron mass is neglected and quasineutrality, ne = ni = n, is assumed. 
Here p j  = nTj, p is the total pressure. The rj’s are the ratios of the specific 
heats. The large ~ l l j  is accurately modeled using the artificial sound method.[7] 

(4 (b) 

0.0 0.0 1 .o 2.0 
ai ho 

Figure 4: (a)Stabilization of the m = 1, n = 1 resistive mode compared to  the 
analytic dispersion relation. Crosses represent the analytic growth rates, circles 
the MH3D-T results for equilibrium profiles p ,  = pi .  Triangles show the MH3D- 
T case with p ,  = 0, illustrating the destabilizing effect of o*,. (b)Direction of 
the m = 1, n = 1 plasma kink flow relative to the reconnection X-point in a 
poloidal cross section. Circles represent the ion fluid flow v; and diamonds the 
guiding center velocity v for equilibrium p ,  = p; .  Triangles represent vi for 
p ,  = 0. 

The code has been benchmarked against analytic theory for the diamagnetic 
stabilization of the m = 1, n = 1 mode in a cylinder. The analytic dispersion 
relation was solved numerically [8] for a narrow reconnection layer. A uniform 
resistivity 7 = S-’ = 3.24 x and toroidal plasma beta Po = 0.067 at the 
center of the plasma was used. Viscosity and thermal and particle diffusion were 
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small compared to  the resistivity. q varied from qo = 1.1 to qa = 5,  with q = 2 
at r / a  = 0.63. In the first case, it was assumed that pe  = pi in equilibrium. 
The results are shown in Fig. 4(a), where the growth rate y is plotted against 
the diamagnetic parameter @*;/yo. Crosses represent the analytic results, and 
circles the numerical results. Good agreement is found over a wide range of 
growth rate. The destabilizing effect of the electron diamagnetic frequency w*e 

at fixed total ,O is seen by comparing the case pe  E 0 (triangles). 
The ion diamagnetic stabilization has a simple physical interpretation.[4] 

The direction of the outward kink motion of the plasma inside the q = 1 surface 
rotates poloidally away from the reconnection X-point as w,;/yo increases, up to  
approximately 7r/2. This reduces the efficiency of the mode drive, and slows the 
rate of reconnection. The relative angle A$ versus w,;/yo is plotted in Fig. 4(b). 
For the case pe  = p; the angle of the radial ion fluid flow vi,. is given by circles 
and the particle flow v,. by diamonds. The electron diamagnetic drift w*, exerts 
its destabilizing effect by resisting the rotation of the kink. When pe  = 0, flow 
rotation and mode stabilization develop much faster (triangles show v i r ) .  

The MH3D-T code has been used to  study the rotation of linear and non- 
linear resistive modes in a torus. The linear mode rotates in the w,, direction 
if Pe is comparable to  p i ,  and in the a*; direction if p ,  is small (in the elec- 
tron guiding center frame). Nonlinearly however, the magnetic island rotation 
is quite different, From Eq. 9, one can see that finite size islands have to  be 
stationary (except for a slow speed proportional to  7) in the electron guiding 
center frame, if Vllp, is small. This is because the X-point has to  move with VI 
from the frozen-in flux condition for 9 = 0. Any rotation speed on the order of 
a fractional power of 9 would require a fast reconnection process. This requires 
a large free energy which is absent near the saturation of the mode. Simulation 
results agree with this reasoning. For Vllp, # 0, islands rotate with Q,. How- 
ever, Vllp, 0; nVllT, +T,Vlln and VIIT, becomes negligibly small in the electron 
transit time scale, while Vlln becomes small in the sound wave time scale(= 
also seen in Ref. 9 and 10 using reduced equations). If the plasma rotation is 
very fast, Vlln can remain significant due to  centrifugal force, but for a realistic 
rotation speed it can be neglected. In the simulation with TFTR parameters, 
i t  takes about 100 to  1000 sound wave transit times for V p  to become small 
for islands of a few cm, because of the proximity of low mode number rational 
surfaces. This gives 0.1 to 1 msec for Vlln flattening. (VllT, flattening is much 
faster.) Since magnetic islands in tokamaks can form as fast as N 0.1 msec 
through a fast reconnection precess, an experimental measurement of the slow- 
ing down of the magnetic island rotation(in the electron guiding center frame) 
due to  the flattening of Vlln may be feasible. 

4. Particle/MHD hybrid simulation 

To model the nonlinear interaction of energetic particles with MHD waves, 
a hybrid particle/MHD model had been developed.[ll] The plasma is divided 
into two parts: the bulk plasma, which contains the thermal electrons and ions, 
and the energetic hot ions, The bulk plasma is described by the ideal MHD 
equations, whereas the hot ions are described by the gyrokinetic equations[l2]. 
The particle part can be coupled to  the bulk plasma part through one of two 
almost equivalent, accurate coupling schemes, the pressure coupling and current 
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coupling. In the pressure coupling scheme, the hot particle pressure tensor Ph 
is coupled to the bulk plasma momentum equation: 

In the current coupling scheme, the hot particle current density J h  and charge 
density qh are coupled to  the bulk plasma momentum equation: 

where the subscript b denotes the bulk part and the subscript h denotes the hot 
ion component. The last term of Eq. 16 can be thought of as the subtraction of 
the J x B force on the electrons whose density is the same as the hot particles. 
This term cannot be neglected because the E x B drift can be comparable to  
the perturbation of the magnetic drift of the hot particles. 

Equation 15 or Eq. 16, together with the other MHD equations form the 
MHD part which is advanced in time using particle quantities given by the 
particle part. The new E and B are in turn used by the particle part to advance 
the particle quantities in time. The model is fully self-consistent, including 
nonlinear Landau damping and other hot particle interactions with MHD waves, 
and the nonlinear MHD mode coupling. 

Using the particle/MHD hybrid MH3D-K code we have found that wave par- 
ticle trapping is the dominant mechanism for the nonlinear TAE saturation.[l3] 
In this work, the pressure coupling scheme was employed. The "double trajec- 
tory method" was used to  reduce the simulation noise in the linear regime. In 
this method, two sets of particles are used, one following the equilibrium field 
and the other the total electromagnetic field. The hot particle pressure tensor 
P h ( t )  is replaced by ( P h ( t )  - Ph,O(t)) + Ph,O(O) where P ~ , o  is evaluated from the 
equilibrium orbits. The advantage of the double trajectory method is that  it can 
be applied self-consistently to  any 3D equilibrium with an arbitrary distribu- 
tion of particles including a delta function in velocity space. The disadvantage 
is that  it is only valid for the linear regime. 

The Sf method of noise reduction[l5], on the other hand, also applies in the 
nonlinear regime. However, because of difficulties, it has not been applied in a 
self-consistent manner to  a 3D electromagnetic problem with a self-consistent 
equilibrium. We have devised a scheme for a self-consistent Sf method for such 
cases, and implemented it in the MH3D-K code. The new linear results agree 
closely with the double trajectory method results, while improved nonlinear 
saturation results have been obtained which still give the same conclusion as 
obtained before in Ref. 13. The self-consistent Sf method and MH3D-K simu- 
lation results of TAE saturation will be described at this conference by Fu et al. 
in a TAE mode paper. 

5. Unstructured mesh code 

As demonstrated in fluid dynamics research, the most efficient way to  repre- 
sent general geometric effects is to  use an unstructured numerical mesh. Finite 
element, unstructured mesh methods are now just beginning to  be used in MHD 
computations. Unstructured meshes offer two important advantages. They may 

8 



\, 

be fitted to  complicated geometries. This is necessary for simulations of divertor 
tokamaks.[l6,17] The second advantage is the ability to introduce localized mesh 
refinement. For example, extra vertices may be added at a magnetic X-point. 

The meshpoints of the unstructured mesh are the vertices of triangles (see 
Fig. 5(a)), located at points 6. The most convenient basis functions are piece- 
wise linear “tent” functions, Xi(f), which are nonzero at a vertex common to 
several triangles, and which vanish at all other vertices. 

The variables in the MHD equations are represented as a sum over poloidal 
finite element basis functions and toroidal Fourier harmonics. We use a mixed 
method in which the variables to be expanded in basis functions include the 
electrostatic potential 4, magnetic flux +, toroidal vorticity W and toroidal 
current C. The MHD equations are discretized with a zero residual Galerkin 
approach, in which the equations are multiplied by a basis function X j  and 
integrated over the domain. This gives a set of sparse matrix equations, in 
which the differential operators become sparse matrices involving integrals of 
the basis functions and their derivatives. These can be done analytically. In the 
Laplacian, integration by parts is used to  avoid having to take second derivatives. 
The primary matrices appearing in the discrete equations are the mass matrix 
M, the stiffness matrix S ,  and the Poisson bracket tensor P, defined by 

P;jk = X;vxj X VXk * 2d2x (19) J 
Both the stiffness and mass matrices are symmetric. The Poisson bracket is 

anti-symmetric under the exchange of any two indices. This assures that some 
of the most important integral relations satisfied by the differential equations 
are preserved by the finite element discretization. This includes conservation of 
energy and magnetic flux in the absence of dissipation. The matrices are very 
sparse, having nonzero elements only between those vertices connected by the 
side of a triangle. 

Although the use of the stiffness matrix causes no problems when the elec- 
trostatic potential q5 is calculated from the toroidal vorticity W, there is a loss of 
accuracy and even convergence when the toroidal current C is calculated from 
the poloidal flux + using the stiffness matrix. Convergence is restored by cal- 
culating the current in two steps: first calculating the poloidal magnetic field 
components from $, and expanding the result in basis functions; then taking 
the toroidal component of the curl and again expanding in basis functions. This 
is equivalent to  using a larger stencil for the current calculation, which preserves 
the necessary symmetries for energy conservation [18]. 

The finite element unstructured mesh discretization has been incorporated 
into MH3’@+ with an object oriented approach. A benefit of object oriented 
programming is that  the objects are like black boxes whose inner workings are 
hidden from and protected from the user. They can be linked with other code 
in a simple way, without having to be concerned with details of their inner 
workings. The unstructured mesh objects, called Meshobject, generate an un- 
structured mesh, create all necessary auxiliary arrays, and produce the sparse 
matrices which implement differential operators including gradient, curl, and 
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Figure 5: (.)An unstructured mesh for an ITER-like geometry. Note that the 
mesh has no origin. (b)Pressure contours resulting from nonlinear development 
of a pressure driven mode after a pellet injection. 

divergence, as well as various Poisson solvers based on the Incomplete Cholesky 
Conjugate Gradient method. 

An important feature of this approach is that  most of the MH3D code is 
retained. The user has the option of linking the code in the standard way, to  
produce a code that runs as a finite difference/Fourier code; or linking with 
Meshobject, t o  give an unstructured mesh. This allows direct benchmarking 
of the two versions against each other. Equilibrium and stability calculations 
using the two versions have been compared, and there is good agreement. 

As a nontrivial example of the use of the MH3D++ code, we consider pellet 
injection into an ITER like tokamak. The pellet is assumed to rapidly heat and 
form a large pressure perturbation, which is poloidally and toroidally localized. 
The peak pressure of the perturbation is 0.25 of the peak pressure in the toka- 
mak, which has 4% peak p. The initial state consists of an equilibrium, on which 
the pellet perturbation is superposed. A pressure driven instability develops and 
undergoes a large distortion as shown in Fig. 5(b). The implication of this result 
is currently under study. 

6. Conclusion 

The M3D(Multi-level 3D) tokamak simulation project aims at the simula- 
tion of tokamak plasmas using a multi-level tokamak code package. Several 
current applications are presented; high+ disruption studies in reversed shear 
plasmas using the MHD level MH3D code, w,; stabilization and nonlinear island 
rotation studies using the two-fluid level MH3D-Tcode, studies of nonlinear sat- 
uration of TAE modes using the hybrid particle/MHD level MH3D-K code, and 
unstructured mesh MiY3D++ code studies. In particular, three internal mode 
disruption mechanisms are identified from simulation results which agree well 
with experimental data. 

The successful applications of these MHD and Extended-MHD codes support 
the premise of the M3D project that a multi-level simulation code is necessary 
for the study of tokamaks, where the complex phenomena can be modeled with 
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various levels of realism. It is also a hopeful sign that this step by step path 
could eventually lead to a comprehensive tokamak simulation code which would 
include most of the relevant physics and also allow various option levels in 
complexity of physics and geometry. 
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