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Abstract

The role of resonances in the sawtooth-crash-induced redistribution of

fast ions is investigated. In particular, the conditions of wave-particle

resonant interaction in the presence of the equilibrium electric �eld

and the mode rotation are obtained, and e�ects of sawteeth on the

resonant particles with arbitrary width of non-perturbed orbits are

studied. It is found that resonances play the dominant role in the

transport of ions having su�ciently high energy. It is shown that the

resonance regions may overlap, in which case the resonant particles

may constitute the main fraction of the fast ion population in the

sawtooth mixing region. The behavior of the resonant particles is

studied both by constructing a Poincar�e map and analytically, by

means of the adiabatic invariant derived in this paper and calculation

of the characteristic frequencies of the particle motion.



I. INTRODUCTION

Two years ago an approach to the description of fast ion transport induced

by crashes of sawtooth oscillations has been suggested, which revealed important

features of such transport.1 It was found that there is a critical energy, Ecrit, such
that when E > Ecrit the radial redistribution of ions depends essentially on their

pitch-angles. In particular, when E > Ecrit, the bulk of trapped ions with small

banana width are weakly sensitive to a crash, whereas circulating particles are

strongly redistributed.

These theoretical predictions are in agreement with exper-

imental observations2{6 on the Tokamak Fusion Test Reactor (TFTR)7 and the

Joint European Torus (JET).8

The critical energy is determined from the condition that the crash duration is

equal to the period of the toroidal precession of the well-trapped fast ions, and can

be written as follows:

Ecrit = 2�MrsR!B=�cr; (1)

where �cr is the crash duration, rs is the radius of the q = 1 surface, M is the ion

mass, and !B is the cyclotron frequency. The Ecrit exists due to the fact that the

toroidal precession tends to decorrelate the phase of interaction of particles and

the electromagnetic helical perturbation associated with the crash.

It is clear that the precession is negligible for E � Ecrit. Therefore, slow parti-

cles (both circulating and trapped) are strongly redistributed by the crash, being

`attached' to the evolving 
ux-surfaces. Their redistribution can be described by

earlier theory9. The motion of the `
ux-surface-attached' particles can be consid-

ered as a result of the ~E�~B drift, where ~E is the electric �eld generated due to

evolution of the magnetic con�guration during the crash, and ~B is the magnetic

�eld.1;10
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On the other hand, when E � Ecrit, an essential fraction of the fast ion pop-

ulation may have non-standard orbits, �rb >� r, where �rb is the orbit width in

the absence of sawteeth, r is the radial coordinate. In particular, most of fusion-

produced alpha particles in the sawtooth mixing region of TFTR and JET are

characterized by non-standard orbits. One can expect that certain groups of these

particles will be sensitive to the sawtooth crash in spite of the strong precession.

Indeed, when �rb >� r, the bounce period is of the order of the period of the

toroidal precession. Therefore, resonance between the poloidal and toroidal mo-

tion is possible. The corresponding resonance condition can be written as follows:

s!b = n!�; (2)

where !b is the bounce/transit frequency, !� is the frequency of the particle motion

in the toroidal direction, n is the toroidal mode number, and s is an integer. For

the particles satisfying Eq. (2), the toroidal precession will not decorrelate the

phase of the wave-particle interaction, at least when the perturbation frequency is

negligible, therefore their behavior will di�er from that of other fast ions.

Note that the resonance condition (2) can be satis�ed also when �rb � r

but only in the degenerate case of s = 0. In this case, Eq. (2) singles out a

narrow group of marginally trapped ions, this group being the same for any mode

number and consisting of the particles with the trapping parameter � � 0:9, where

� � f[ER0 + �B0(r �R0)]=(2�B0r)g1=2, � is the particle magnetic moment, B0 �
B(r = 0), R0 � R(r = 0) is the radius of the unperturbed magnetic axis, and R is

the distance to the axis of symmetry. The behavior of these particles was studied

in a recent work,11 where it was shown that they move along superbanana orbits

and, therefore, their orbit width essentially exceeds that of other particles.

The main purpose of the present work is to investigate e�ects of resonances on

the sawtooth induced transport of fast ions with E > Ecrit, �rb >� r. In addition,

this work is aimed to elucidate the role of �nite wave frequency and the associated

mode rotation, which were neglected in previous studies.
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The work is organized as follows. In Sec. II, the harmonic spectrum of the

electromagnetic perturbation associated with a sawtooth crash is analyzed. Sec. III

deals with a linear theory of the resonant wave-particle interaction, i.e., a theory

where the change of the characteristic frequencies of particle motion is neglected.

Non-linear behavior of fast ions near the resonance drift surfaces is studied in

Sec. IV. The summary of the obtained results and the drawn conclusions are given

in Sec. V. Features of motion of particles with arbitrary orbit width in the absence

of sawtooth oscillations are analyzed in Appendix A. Appendix B contains the

derivation of the adiabatic invariant used for non-linear analysis of the resonances.

II. ELECTROMAGNETIC FIELD DURING A CRASH

Experiments indicate that a sawtooth crash is associated with development of

the m = n = 1 helical perturbation. In spite of this, higher harmonics with m = n

are to be present, too. The reason is that the perturbation having initially the

sinusoidal form becomes non-harmonic on the non-linear stage of the instability.

In order to demonstrate a contribution of harmonics with m = n > 1, we

expand a perturbed quantity X in the Fourier series:

X(r; �; t) =
X
n

Xn(r; t) exp(in�� i!t); m = n; (3)

where the helical coordinate system is used, namely, (x1; x2; x3) = (r; � � #�';');
# and ' are the poloidal and toroidal coordinates, respectively; ! is the wave

frequency. Then we assume that the toroidal magnetic �eld is not perturbed by the

crash and take into account that the perturbed electromagnetic �eld is described

in terms of the helical magnetic 
ux, 	, as follows:9

~B = B3~e3 + ~e 3�r	; ~E =
1

c

@	

@t
~e 3 �r�: (4)

Here the base co- and contravariant vectors ~ej and ~ej (j = 1; 2; 3) are used, B3 =

B0R0=R
2, and �(r; �; t) is the electric potential related to 	 by the equation ~E � ~B =

0, which can be written in the form:1
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= 0; (5)

where g is the determinant of the metric tensor gij. The temporal evolution of 	

determines the kind of a crash.

Let us take the analytical expression for 	(r; �; t) suggested in Ref.9 for model-

ing the Kadomtsev-type crash. Then, after calculations, we �nd that the harmonics

with m = n = 2 and 3 essentially contribute to the electromagnetic �eld during

a considerable part of the crash. In particular, at the �nal stage of the reconnec-

tion of the magnetic �eld lines, the calculated amplitudes of these harmonics are

�2 � 2�3 � �1=3 and 	2 � 2	3 � 	1=2, see Fig. 1. Probably, the role of the

harmonics m = n 6= 1 is even more essential because this model represents the

simplest pattern of the plasma 
ow during a crash. Moreover, in reality a crash

is accompanied also by m 6= n harmonics, �rst of all, m = 2, n = 1. These har-

monics contribute to the transport of fast circulating ions, leading to stochasticity

of the magnetic �eld lines.12 However, the harmonics with n = 1 cannot satisfy

the resonance condition (2) (see also Sec. III) because typically !b=!� � 1. In this

work we ignore the e�ects of stochasticity of the magnetic �eld lines, which gives

us grounds to assume that m = n.

III. WAVE-PARTICLE RESONANCE IN THE PRESENCE OF

EQUILIBRIUM ELECTRIC FIELD AND MODE ROTATION

It was shown in Ref.11 that the ions of narrow banana width, �rb � r, and

the trapping parameter � � 0:9 are sensitive to the crash even when E � Ecrit.
Di�erence in behavior of these and other particles with small �rb is associated with

the fact that the particles with � = 0:91 are characterized by very small toroidal

precession frequency, due to which they are `resonant', being trapped or marginally

untrapped with respect to the helical perturbation of the electromagnetic �eld

with ! = 0. The particles trapped in the perturbation move along superbanana
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orbits, oscillating in the radial and toroidal directions near the resonance radius rr

determined by the equation �(rr) = 0:91.

But, in general, the condition of small banana width, �rb � r, is di�cult to

reconcile with the condition E � Ecrit. Therefore, it is of interest to �nd high energy
resonant particles with arbitrary orbit width and investigate their behavior. In this

section we make the �rst step in this direction, assuming that frequencies of the

particle motion weakly change during the crash, which implies that the e�ect of the

crash on the particles is small. This assumption corresponds to the approximation

of linear resonance in the theory of non-linear oscillations.13 In this sense, our

analysis is `linear' in spite of the fact that we make no restrictions on amplitudes of

perturbations of the electromagnetic �eld. Linear analysis enables us to obtain the

resonance condition and demonstrate that resonant and non-resonant particles are

a�ected by the crash in di�erent ways. Moreover, it enables us to make conclusions

concerning the role of the mode rotation and the equilibrium radial electric �eld -

the factors which always take place but were ignored in previous studies.

We proceed from the following equations describing the particle behavior during

the crash:

_~r = ~vk + ~vD + ~vE; (6)

_E = ~E � (~vk + ~vD); (7)

where the dot denotes the time derivative along the guiding center orbit, ~vk �
vk ~B=B, vk = f(2=M)[E � �B0(1 � � cos#)]g1=2, ~vD � �~vk�r(vk=!B), ~vE �
c ~E� ~B=jBj2, � = r=R0.

We assume that the crash duration exceeds the particle bounce/transit time

period (�b). Then the particle displacement can be characterized by the change of

the canonical angular momentum, which motives us to proceed from Eqs. (6), (7)

to the following equations:

_JT =
evk

cR

@	

@�
+ e

@�

@�
; (8)
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_� = v2k + v2D + v2E =
vk

R

�
B#

�B
� 1

�
+
vD#

r
+
vE#

r
; (9)

where the superscript `2' labels the corresponding contravariant components, JT is

the canonical angular momentum given by

JT = �e
c
	p +MvkR; (10)

	p = 	+F (r) is the poloidal magnetic 
ux, and F (r) � R r
0 dr

p
gB3 is the toroidal

magnetic 
ux.

The equation (8) is linear in the perturbation amplitude. Therefore, its formal

solution can be written as follows:

�JT =
X
n

Z �cr

0
dt0An(t

0) exp

"
i

Z t0

0
dt00(n _� � !)

#
; (11)

where An is a quantity proportional to the perturbation amplitude.

_� entering Eq. (11) is determined by the right hand side of Eq. (9), which can

be simpli�ed. Indeed, using Eq. (5), we �nd that

�(r;	; t) =
Z r

r�

dr
B3

cB1

@	

@t
+ ��; (12)

where �� = �(r�;	; t), r� is a point on the 
ux surface 	. On the other hand, due

to Eq. (3),

@	

@t
=

@	

@t

�����
n��!t

� !

n

@	

@�
: (13)

Taking into account that B1 = �(1=pg)@	=@�, we present � as follows:

�(r;	; t) = �̂ + �1 + �!; (14)

where

�̂ =
Z r

r1

dr
B3

cB1

@	

@t

�����
n��!t

; (15)

�! =
!

nc

Z r

r1

dr
p
gB3; (16)
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�! is the part of the potential associated with the mode rotation. Correspondingly,

v2E = v̂2E + v2E� + v2E!, where v
2
E! = !=n. Therefore,

n _� � ! = n(v2k + v2D + v̂2E + v2E�); (17)

The quantity ~vE� describes the plasma rotation along the perturbed 
ux sur-

faces. One can expect that both before and during the crash �� � T=e, where T is

the plasma temperature. This is because the crash is presumably associated with

development of the tearing instability accompanied by large-scale plasma motion

(note that, in general, �� di�ers from T=e; for instance, during �shbone oscilla-

tions may essentially exceed the thermal level to compensate for the large �!).

Assuming that this is the case and taking E � T��1, we neglect v2E�, which is small

compared to v2D. We assume also that E � Ecrit, when v̂2E is also small compared

to v2D. Under these assumptions, n _� � ! = n(v2k + v2D). The contribution of the

perturbation to ~vD is negligible. The perturbed part of v2k is also negligible for all

particles except the narrow-orbit circulating particles (for the latter, the perturbed

part of v2k is small only immediately after the beginning of the crash). Therefore,

below the contribution of the perturbation to n(v2k + v2D) is neglected.

Neglecting the perturbation, we assume that n(v2k + v2D) is a periodic function

of time on the particle orbit. In this case, Eq. (11) can be written as:

�JT =
X
n

NX
p=0

exp(ip
�b)
Z �b

0
d�An(� + p�b) exp

�
i

Z �

0
dt0(n(v2k + v2D)

�
+ �JT ; (18)

where


 = nhv2k + v2Di: (19)

the brackets h:::i mean bounce averaging, N is the integer part of the ratio �cr=�b,

�JT is a banana displacement for �t < �b.

It follows from Eq. (18) that �JT is maximum when either


�cr � 2� (20)

or
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�b = 2�s: (21)

The equations (19) and (20) yield Ecrit for trapped particles with narrow or-

bits. We conclude from this that, when E < Ecrit, the coherent interaction between
narrow-orbit trapped particles and the waves takes place, which provides the par-

ticle redistribution. The equation (20) cannot be satis�ed for circulating particles

with narrow orbits. However, our analysis is not valid for them. Such particles are

strongly redistributed by the crash because they are frozen in the magnetic �eld

and follow the evolving 
ux surfaces even when E > Ecrit.1

The equation (21) represents the condition of wave-particle resonance, which is

well-known in the theory of plasma instabilities. In general, it can be written in

the form:

! + n!� + (Cn� s)!b = 0; (22)

where C equals unity for circulating particles and zero for trapped ones. This

equation determines the resonance curves E(�) at a given point r; # or the resonance
value of JT and, thus, the resonance drift surface r(#) for a particle with given E, �.
When ! � !b, it, in fact, coincides with Eq. (2) (the only di�erence is that s has

been rede�ned for circulating particles). Due to Eq. (19), the resonance condition

can also be written for all particles except for the narrow-orbit circulating ones as

follows:

n

�
vD#

r

�
� s!b: (23)

This equation, as well as Eqs. (20) and (21) with 
 given by Eq. (19), depend

on ! and E!r only through the shape of the orbits. Therefore, we can conclude

that the resonance condition for the trapped particles with �rb � r and, which is

more important, the magnitude of Ecrit, do not depend on the mode rotation and

the equilibrium electric �eld.

The derived feature is a consequence of the assumption that the helical sym-

metry is conserved during the crash, which implies that fast ions do not a�ect the
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plasma 
ow. However, di�erence in the redistribution of di�erent groups of parti-

cles during the crash (trapped and circulating particles, resonant and non-resonant

particles etc.) may lead to violation of the helical symmetry. It is clear that this

e�ect may be essential when the number of fast ions is not very small. Moreover,

it is known that the presence of fast ions with a dominant trapped-ion population

can even stabilize sawtooth oscillations14 provided that their pressure is su�ciently

high (the corresponding condition can be found in, e.g., Ref.15).

It follows from Eq. (18) that the e�ect of resonances is the strongest when

�cr � �b. On the contrary, when �cr � �b then there is no di�erence between the

resonant and non-resonant particles.

Note that the rate of the energy change of the resonant particles is much less

than that of the other particles. This can be shown as follows. Write Eq. (7) in

the form

_E = e~v � ~E = �ed�
dt

+ e
@�

@t
+ ev3E3: (24)

This equation yields

Z t2

t1

dt _E = �e(�2 � �1) +O(�b=�cr); (25)

where t2 = t1 + �b, the subscripts `1' and `2' label the points on a particle orbit at

t = t1 and t = t2, respectively. Using Eqs. (21) and 
 ' h _�i � !, we �nd:

n(�2 � �1)� !�b = 2�s: (26)

It follows from Eqs. (25), (26) that �2��1 � 0 and, thus, h _Ei � 0 for the resonant

particles.

According to Eq. (18), the displacement of the resonant particles tends to in-

�nity when �cr ! 1. The reason of this is that we neglected violation of the

resonance during the particle motion. In reality, however, the displacement of res-

onant particles depends on the wave-particle interaction not only on the resonance

surface but also beyond it and can be found from a non-linear theory.
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IV. NON-LINEAR BEHAVIOR OF RESONANT PARTICLES

In Sec. III we have found the conditions of resonant interaction between particles

and a perturbed electromagnetic �eld. To understand whether the resonances

are important, one should answer two questions. First, how many particles are

resonant? Second, how do the resonances a�ect the particles? The answers depend

on consistency of the frequencies of particle motion with the resonance condition

(22), results of in
uence of a crash on resonant particles, and the e�ective width

of the resonances.

Below we consider these questions, taking into account that typically jq�1j � 1

in the sawtooth mixing region. This gives us grounds to consider the magnetic �eld

with q(r) � 1 as the unperturbed �eld and the contribution of 	 as a perturbation.1

In addition, we assume that ! = 0 and Er0 = 0. This assumption is justi�ed

because experiments indicate that typical frequencies of the mode rotation during

sawtooth crashes are small compared to the bounce frequency of fast ions. On the

other hand, our analysis in Sec. III shows that the wave frequency is associated

with the equilibrium electric �eld. Thus, if ! is negligible, the equilibrium electric

�eld can be neglected, too.

A. Resonant particles

We begin with a consideration of features of the unperturbed motion of the

particles, such as the orbit shape and the frequencies of the motion, !b and !�.

Topological classi�cation of particles with arbitrary orbit width was given in,

e.g., Refs.16{20. In addition, an analytical expression for !b of such particles has

been obtained in Ref.19. The general conclusion which follows from these works is

that the particle orbits and the characteristic frequencies of their motion depend on

all three constants of motion of the particle, E, �, and JT , as well as on parameters of

the magnetic con�guration, such as the q(r) pro�le, the Shafranov shift, and the 
ux

surface shape. However, the problem is considerably simpli�ed if we are interested
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in behavior of particles in the central part of a plasma and, therefore, can assume

that the 
ux surfaces are concentric ellipses of constant ellipticity (k) and q(r) �
const. In this case, both the orbit topology18 and the ratio !�=!b

21 are completely

determined by two dimensionless constants of motion, L � (1 � �B0=E)��1 and

P � �2cJT q=(keB0R
2
0�

2), where � � [2q�=(kR0)]
2=3, � is the Larmor radius at

R = R0. The corresponding analysis is given in Appendix A. Note that the

analysis is more general than it is required for our purposes as it does not use the

assumption q = 1. The resulting orbit classi�cation is presented in Fig. 2, and

level contours of the calculated ratio of the frequencies of the toroidal and poloidal

motion, in Fig. 3.

It follows from Fig. 3 that there are particles with the values !�=!b =

0; 1=3; 1=2; 2=3; 1, which are resonant to the dominant modes of the sawtooth

crash, m = n = 1; 2; 3. The orbits of the resonant particles are characterized by

large width �rb � r, and have a `potato'-like shape. The exception is the !� = 0

resonance, which is possible also for �rb � r, when it is relevant to marginally

trapped particles with the trapping parameter � = 0:91. When the ion energy

is su�ciently high, �rb � rs, resonant particles with large orbit width occupy a

major part of the sawtooth mixing region.

To study the particle motion near the resonances under in
uence of a pertur-

bation, we use two approaches. First, we use a guiding center code to construct

a Poincar�e map of the particle motion near a resonance. Second, we apply an

analytical approach.

B. Description of resonant particles by the Poincar�e map

To construct Poincar�e maps, we integrate Eqs. (6), (7) and plot the points where

particle trajectories intersect the equatorial plane of the torus.

We assume that either a magnetic or an electrostatic perturbation is present,

i.e., either 	 6= 0, � = 0 or � 6= 0, 	 = 0. This assumption simpli�es the
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analysis and, at the same time, enables to understand the role of the longitudinal

motion and the ~E� ~B drift. We take the perturbations in the following form, which

describes superposition of the m = n = 2 and m = n = 3 modes:

X = X2maxf2(r) exp(2i�) +X3maxf3(r) exp(3i�): (27)

Here X is either 	 or �; X2max and X3max are the amplitudes of the cor-

responding harmonics at the points where they are maximum; the functions

f2(r) = 4(r=rmix)
2[1� (r=rmix)

2] and f3(r) = (25=6)(5=3)1=2(r=rmix)
3[1� (r=rmix)

2]

model the radial pro�les of these harmonics, maxf2(r) = maxf3(r) = 1.

The Poincar�e maps obtained for various perturbation amplitudes are shown in

Fig. 4. Fig. 4 (a) demonstrates creation of a superbanana orbit (Chirikov island)

due to the resonance 1/3 in the presence of an electrostatic perturbation. The orbit

is formed as a result of simultaneous action of the radial ~E� ~B drift caused by the

perturbation and the toroidal precession. Adding the m = n = 2 perturbation of

a small amplitude a�ects the particle behavior near the resonance 1/3, leading to

appearance of secondary islands and a stochastic layer near the island separatrix,

see Fig. 4 (b). A similar stochastic layer arises also in the case of a single harmonic

with larger amplitude, see Fig. 5. An example of the superbananas resulting from

a magnetic perturbation is shown in Fig. 4 (c). Note that the e�ect of the magnetic

perturbations was stronger than that of electrostatic perturbations in the analyzed

cases of the mode amplitudes that are expected for the Kadomtsev crash (see

Sec. II).

All particles that intersect the resonant drift surface are trapped with respect

to the perturbation and move along superbanana orbits. Depending on the wave

phase at the points of the intersection, they are characterized by di�erent extent

of trapping in the wave and, correspondingly, di�erent superbanana width. The

�gure 5, where the Poincar�e map is shown for several particles characterized by

various wave phases at the intersection with the resonance surface, demonstrates

this. In addition, Fig. 5 shows orbits of the particles that are not trapped in the

13



wave. We observe that the orbit width of most of superbananas, �rsb, is much

greater than the width of the passing particles. However, the superbanana width

is less than the width of unperturbed orbits of the considered particles.

In spite of the fact that �rsb � rmix, motion along the superbanana orbits must

essentially redistribute the considered particles during the crash because �rb �
rmix. Therefore, we can conclude that the resonance interaction is a dominant

mechanism of the crash-induced redistribution of fast ions with �rb � rmix. This

conclusion is true provided the period of the superbanana motion, �sb, is less or,

at least, of the order of �cr, which was the case in our calculations. As a result of

redistribution of resonant particles, plateaus on the radial distribution of bananas

near the resonance values of JT must be formed. Note that this pattern di�ers

from redistribution of particles with E � Ecrit, �rb � rs, in which case the crash-

induced displacement of bananas essentially exceeds �rb.

Stochasticity near the island separatrix is a factor that enhances transport of

resonant particles. However, the presented Poincar�e maps show the particle motion

in the electromagnetic �eld of steady-state perturbations for thousands of bounce

periods. Therefore, one can expect that, in reality, �nite crash duration will prevent

the stochastic motion.

C. Analytical description of motion of resonant particles

Due to Poincar�e maps, we investigated general properties of particle motion near

a resonance. However, generating a Poincar�e map is rather time-consuming and,

therefore, not convenient for studying the dependence of the resonance width on

the parameters P and L. For this reason, below we present an analytical approach

based on the adiabatic invariant derived in Appendix B.

We consider particle motion near the resonance surface !�=!b = s=n, neglecting

the in
uence of harmonics with the toroidal mode number not equal to n and

assuming that perturbations weakly change constants of the unperturbed motion
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for one bounce period.

Let us introduce new coordinates associated with the guiding-center motion.

The unperturbed particle motion is characterized by three constants of motion

(COM): E, �, and J , where J = JT j	=0 = �(e=c)F +MvkR. Given E and �, J can

be considered as a function of r and #. As a result, an unperturbed trajectory lies on

a torus (drift surface) determined by the equation J(r; #) = const. It is convenient

to replace the poloidal and toroidal coordinates # and ' by the canonical angular

coordinates associated with the torus, �(#; J; �; E) and �('; #; J; �; E), de�ned as

follows:

� = !b

Z #

0
d#= _#; � = '+ �(#) (28)

where � � R #
0 d# (!�� _')= _# is a continuous periodic function of #, the integrals are

taken along the orbit J(r; #) = const, _#(#; J; E; �) = (~vk+~vD) � r#, _'(#; J; E; �) =
(~vk + ~vD) � r' � vk=R, and the poloidal and toroidal frequencies are given by

!b = 2�

�I
dt

��1
= 2�

�I
d#( _#)�1

��1
; (29)

!� =
!b

2�

I
dt _' =

!b

2�

I
d#

_#

vk

R
: (30)

The coordinates � and � were introduced for analyzing resonant interaction of

particles with waves.22 Their convenience is associated with the fact that _� and _�

in the absence of a perturbation are constants on a drift surface, _� = !b(J; E; �),
_� = !�(J; E; �).

One can see that, in addition to J , E and �, there is one more constant of the

unperturbed motion, �̂ � n�� s�, at the resonant surface. Then, in the presence

of a perturbation, the following quantity, which will be called the `resonance in-

variant', is an adiabatic invariant of the particle motion near the resonance (see

Appendix B):

I(�̂; J; E; �) = �I(J; E; �) + ~I(�̂; J; E; �): (31)
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Here

�I = Jp +
s

n
J (32)

is the part of I independent of perturbations; Jp is the poloidal action
22 given by

Jp =
1

2�

I
d#

e

c
F (r); (33)

~I =
1

2�

I
d#

_#

�
�evk
cR

	� e�

�
; (34)

and the integral in Eq. (34) is taken at constant �̂, J , E and �. One can show

(the proof will be presented elsewhere) that the equations of the bounce-averaged

motion near the resonance can be written in terms of the resonance invariant as

follows:

_̂
� = �n!b @I

@J
; _J = n!b

@I

@�̂
: (35)

We �nd the particle orbits, using the following procedure. We take the poten-

tials as

	 = 	n(r; #) exp(in'); � = �n(r; #) exp(in') (36)

(note that here we do not have to restrict ourselves to the modes with m = n).

Substituting Eqs. (36) to Eq. (34) and proceeding to the variables �̂ and �, we

present the oscillating part of the resonance invariant I as:

~I = �I exp(i�̂); (37)

where

�I =
1

2�

I
d#

_#

�
�evk
cR

	n � e�n

�
exp[i(s� � n�)]: (38)

Now we expand I in a power series in J � Jr, where the subscript `r' refers to

the resonant torus, keeping the terms of �I up to the second order and only the

zeroth-order term of ~I and using Eq. (37). This yields:
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I = �I(Jr) +
@ �I

@J

�����
J�Jr

(J � Jr) +
1

2

@2�I

@J2

�����
J�Jr

(J � Jr)
2 + �IjJ�Jr exp(i�̂): (39)

The lines of level of I represent orbits of the bounce-averaged motion in the

presence of the perturbation in the vicinity of the resonance. They form a Chirikov

island near the resonance.13 The separatrix of the island separates the orbits of the

particles that are trapped with respect to the perturbation of the electromagnetic

�eld (i.e., superbanana orbits) from the other orbits. This pattern agrees with the

Poincar�e maps obtained above. Note that similar approach was used to study the

motion of the marginally trapped narrow-orbit particles during a sawtooth crash11

and of locally trapped particles in stellarators.23

The equation (39) enables us to to evaluate the resonance width �J (i.e., the

maximum superbanana orbit width) in terms of the amplitude of ~I on the resonant

drift surface, �I. It follows from Eqs. (B9), (B10) that @ �I=@J = s=n � !�=!b.

Substituting this to Eq. (39), we obtain:

�J = 2 j�Ij1=2
����� @@J

!�

!b

�����
�1=2

: (40)

Calculation of the Chirikov island width from Eqs. (38), (40) requires only com-

putation of several integrals along an unperturbed resonant trajectory and takes

much less time than generating a Poincar�e map. Comparison of �J calculated

with these two methods shows a good agreement unless the perturbation ampli-

tude is su�ciently large to cause stochastization of particle motion near the island

separatrix [in the latter case, Eq. (40) gives a lower estimate for the island width].

In particular, when �rb � r and !� = 0, Eq. (40) yields the superbanana width

obtained in Ref.11.

In order to calculate the period of motion along a superbanana orbit, �sb, we

use Eqs. (35), (39). We �nd:

�sb =
2�

n!b

������I @

@J

!�

!b

�����
�1=2

(41)

In conclusion, we consider a numerical example. Using Eqs. (29), (30), (38),

(40), we calculate the width of the resonances 1/3, 1/2 and 2/3 for 1.4-MeV alpha
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particles or 1.9-MeV 3He ions in a JET-like tokamak. The results obtained in the

assumption that � 6= 0, 	 = 0 are shown in Fig. 6. We see that the resonances

overlap. The obtained picture is weakly sensitive to variation of the particle en-

ergy because location of the resonance curves on the (L;P )-plane almost does not

depend on E (see Appendix A), and the resonance width depends on E rather

weakly. Taking into account these facts and that �rb � rs in our calculations (be-

cause �rb � �R0), we conclude that the resonant particles constitute an essential

fraction of `potatoes'.

Overlap of resonances is known to lead to stochastic di�usion. Stochastization

was indeed observed in Poincar�e maps corresponding to the regions of the overlap-

ping resonances. This stochasticity is much more important than the stochasticity

near the island separatrix (shown in Figs. 4, 5). The reason is that the stochasticity

caused by the overlap requires less time to manifest itself and can occupy the whole

sawtooth mixing region.

D. Application to JET experiments

It is of interest to apply our understanding of behavior of resonant and non-

resonant particles to experiments with Ion Cyclotron Resonance Frequency (ICRF)

heating on JET, where the bulk of ICRF-accelerated 3He ions was not sensitive

to the crash, whereas a small population of these ions (`hot spot') was strongly

redistributed.5 The estimated energies of observed ions were about 2 MeV, which

well exceeded Ecrit. Thus, one can expect that the `hot spot' was produced by

resonant particles in contrast to the bulk of the fast ions.

In order to check this hypothesis, let us consider ions with E = 2MeV. We take

the pitch angle of a hot-spot particle to be 100� at R�R0 = 20 cm.5 For a typical

fast ion, we take � � �B0=E = 1 and the banana tip radius rt = 28 cm. We obtain

L = �0:37, P = �0:085 for the hot-spot ion and L = 0, P = 1:1 for the typical

ion. Using Figs. 2 and 3, we conclude that the hot-spot ion is a poloidally trapped
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and toroidally untrapped one located in the region of the resonances s = 2, n = 3

and s = 1, n = 2, whereas the typical ion is outside of the region of resonances

with n = 1� 3.

More detailed information can be obtained from numerical simulations of mo-

tion of the ions during the crash. Calculations indicate that, in spite of the fact

that the hot-spot ion is located close to the resonance s = 2, n = 3, the main

role in its displacement belongs to the resonance s = 1, n = 2. The Poincar�e

maps demonstrating response of the hot-spot ion to a m = n = 2 perturbation are

presented in Fig. 7. We see from Fig. 7 (a) that the outer part of the orbit is essen-

tially displaced outwards during the motion along a superbanana orbit. It follows

from Fig. 7 (b) and Figs. 2, 3 that, �rst, the particle passes through the resonance

1/2 and approaches the resonances 1/3 and 2/3 and, second, the orbit transforma-

tions PT+ $ T take place (see the caption of Fig. 2 for notations). The period of

the superbanana motion was of the order of the crash duration. When we added

the m = n = 3 harmonic, we observed stochastic motion of the hot-spot particle

in a wide range of the parameter P covering the resonances 1/3 and 1/2. Thus,

resonant behavior of the hot-spot ions is a probable reason of their redistribution.

However, to draw a de�nite conclusion, a detailed analysis is required.

V. SUMMARY AND CONCLUSIONS

We have investigated the conditions and e�ects of resonant wave-particle in-

teraction during sawtooth crashes. The obtained results can be summarized as

follows.

The frequency of the mode rotation and the equilibrium electric �eld are con-

nected by the relationship ! = vE#=r. Due to this, the condition of resonant

interaction between waves and particles can be presented in the form which does

not depend on the mode frequency but depends on the electric �eld, the depen-

dence on the electric �eld being associated only with in
uence of the electric �eld
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on the shape of particle orbits. In a special case of particles with narrow orbits,

the resonance condition does not depend on ! and ~E.

The resonant particles are more sensitive to the sawtooth crash than other

particles. The reason is that the resonant particles, being trapped or marginally

untrapped in the electromagnetic perturbation associated with a crash, have a

perturbed orbit width which considerably exceeds the width of other orbits, see

Fig. 5. Those particles which are trapped in the perturbation �eld move along

superbanana orbits under in
uence of the crash. Motion of the particles with

�rb � rs (`large potatoes') is similar to that of the particles with �rb � r studied

in Ref.11. However, the in
uence of resonances on the population of large pota-

toes is much greater. Only a narrow group of particles with �rb � r, namely,

marginally trapped particles with � � 0:9 are resonant. In contrast to this, there

are many groups of resonant particles among `potatoes' because the s 6= 0 res-

onances (!�=!b = 1=3; 1=2; 2=3) are possible for these particles. The mentioned

resonances take place due to both the features of particle motion (!b � !�) and the

presence of the n = 2; 3 harmonics in the electromagnetic perturbation. Note, that

the harmonics with n = 2; 3 have signi�cant amplitudes even if the crash results

from the m = n = 1 instability. The dominant harmonic (m = n = 1) interacts

resonantly only with those particles that are characterized by negligible toroidal

precession.

The period of the superbanana motion is less or, at least, comparable to the

crash duration. As a result, plateaus are formed on the radial pro�le of the fast

ion distribution function near the resonant surfaces.

These results were obtained both numerically, by generating a Poincar�e map,

and analytically. In the analytical approach, a new adiabatic invariant given by

Eqs. (31)-(34), was used. In addition, the frequencies of unperturbed motion of

particles with arbitrary orbit width in the poloidal and toroidal directions were

calculated, which may be of general interest, too.

The above described motion of resonant particles and the di�erence in behavior

20



of resonant and non-resonant particles take place only when the particle energy is

su�ciently large, E > Ecrit, where Ecrit is given by Eq. (1). Otherwise, the width of

perturbed orbits is of the order of the sawtooth mixing radius, and all particles are

strongly redistributed by sawtooth oscillations. Ecrit was introduced for the �rst

time in Ref.1. Here we have shown that Ecrit does not depend on the mode rotation

and the equilibrium electric �eld.

The particles having non-standard unperturbed orbits with small orbit width,

e.g., `small potatoes' with �rb � rs, become standard orbit particles as a result of

the crash-induced redistribution. That is why the s 6= 0 resonances are important

only for particles with �rb comparable to rs. This yields additional restrictions

for the particle energy. The �rst we obtain using the condition �rb(� = 1) � rs,

which can be written as E > E1, where E1 is given by

E1 = Mr3s!
2
B

16R
= 10�2!B�crEcrit�2s; (42)

where �s � rs=R0. The second condition is E > E2, where

E2 = 8E1: (43)

Eq. (43) is determined from the condition �rb(�min) = rs, with �min satisfying the

equation vk�jr=rs = �vD#jr=rs. When E > E2, there are no particles with standard

narrow orbits in the sawtooth mixing region.

It is convenient to show di�erent behavior of various groups of particles in

terms of the normalized particle energy and crash duration de�ned as follows:

�E = �2=(�sr
2
s), ��cr = �2s!B�cr. This is done in Fig. 8.

Because of the presence of the s 6= 0 resonances and the �nite width of these

resonances, the resonant particles may constitute an essential fraction of the high

energy ions in the sawtooth mixing region. Furthermore, the resonances may over-

lap (see Fig. 6) so that all particles in a certain region of phase space may be

resonant.

Di�erent behavior of resonant and non-resonant ions seems to explain why a

21



crash a�ects only a narrow group of ions (`hot spot') in ICRF heating experiments

on JET.5
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APPENDIX A: THE FREQUENCIES OF TOROIDAL AND POLOIDAL

MOTION OF PARTICLES WITH ARBITRARY ORBIT WIDTH

We assume that q(r) = const, and the cross-sections of the 
ux surfaces are

concentric ellipses of constant ellipticity k. In this case, the following equation of

the particle orbit results from conservation of the magnetic moment, �, and the

canonical angular momentum, JT :

M2v2kR
2 = 2MR (ER � �B0R0) =

�
JT +

e

c
	p

�2
; (A1)

where 	p = F=q = B0[k(R � R0)
2 + z2=k]=(2q) is the poloidal magnetic 
ux, z

is the vertical coordinate. Let us introduce the dimensionless parameters L �
(1 � �B0=E)��1 and P � �2cJT q=(keB0R

2
0�

2), where � � [2q�=(kR0)]
2=3, � �

v=!B0.
18;21 Then we can write Eq. (A1) in the following form:

(L+ ~x)(1 + �~x) = (~x2 + ~z2 � P )2; (A2)
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where ~x � (R=R0 � 1)=�, ~z � z=(kR0�), � being typically small. The equation

(A2) is simpli�ed if we take jR �R0j=R0 � 1:

L+ ~x = (~x2 + ~z2 � P )2; (A3)

We conclude from Eq. (A3) and the de�nition of ~x and ~z that variation of the

particle energy at �xed L and P changes only the size of the orbit on the (R; z)-

plane, the orbit shape being almost invariant.

At �rst, we analyze the number of orbits for given L and P . For this purpose,

we consider Eq. (A3) for z = 0. This equation may have 0, 2 or 4 real roots, which

corresponds to presence of 0, 1 and 2 orbits, respectively. The curves separating

the regions with di�erent number of the roots (i.e., di�erent orbit topology) on the

(L;P )-plane are characterized by coincidence of a pair of roots, whence we obtain

the following parametric equations of the separating curves:

P = ~x2� �
1

4~x�
; L = �~x� + 1

16~x2�
; (A4)

where ~x� equals to the pair of coinciding roots. A detailed analysis shows that the

dashed curve in Fig. 2 (~x� < �1=2) is the locus of the orbits with an X-point (the

pinch orbits), whereas the solid curves in Fig. 2 (~x� > �1=2) are the loci of the

orbits reduced to a point in the (~x; ~z)-plane (the stagnation orbits).

To accomplish the classi�cation of orbits, we need to determine which of them

belong to trapped or passing particles. The margin of toroidal trapping is given by

the condition that vk = 0 at ~z = 0, which leads to P = L2. The margin of poloidal

trapping corresponds to passing of the orbit through the point ~x = ~z = 0, whence

L = P 2. Adding these two curves (dotted lines in Fig. 2), we arrive at the orbit

classi�cation presented in Fig. 2. Numerical calculations show that small but �nite

� weakly changes the classi�cation.

To calculate the frequencies of the particle motion, we proceed from the follow-

ing expressions for the frequencies [cf. Eqs. (29), (30)]:

!b = 2�

�I
d	p( _	p)

�1
��1

; (A5)
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!� =
!b

2�

I
d	p

_	p

vk

R
: (A6)

_	p can be found from Eq. (6). Transforming to the coordinates ~x and ~z, we obtain:

!b =
v�1=2

qR0

Fb(L;P; �); !� = q!bF�(L;P; �); (A7)

where

Fb = �

�I
d~	

�
1

~z

�
1 + �~x

1 + L� + 2�~x

��1
; (A8)

F� =
1

�

I
d~	

P � ~	

~z(1 + L� + 2�~x)(1 + �~x)
; (A9)

~	 � ~x2 + ~z2, and the integration is performed along an orbit de�ned by Eq. (A2).

When L� � 1, the functions Fb(L;P; �) and F�(L;P; �) weakly depend on � (note

that the functions are double-valued when there are two orbits for given L, P , and

�). This means, in particular, that the ratio !�=!b determining resonance groups

of particles weakly depends on E when the L and P are �xed and L <� 1. This

conclusion is supported by direct numerical calculations of !�=!b using Eq. (6).

The contour map of !�=(q!b) = F�(L;P; �) for � = 0:097 is presented in Fig. 3.

The fact that Fb and F� weakly depend on � enables us to approximate them

by their values at � = 0. The latter can be found analytically in terms of ~x1 and

~x2, where ~x1 and ~x2, ~x1 > ~x2, are the points of intersection of the orbit with the

axis ~z = 0. Indeed,

Fb =
�

2

"Z ~x2
1

~x2
2

d~	Q�1=2( ~	)

#�1
; (A10)

F� =
2

�

Z ~x2
1

~x2
2

d~	 (~	� P )Q�1=2( ~	); (A11)

where Q( ~	) = ~	�[( ~	�P )2�L]2 is, ~z2 expressed from Eq. (A3) as a function of ~	.

The integrals in Eqs. (A10), (A11) can be calculated analytically as elliptic integrals

with arguments depending on the roots of Q.24 One can see that the roots of Q are

the squares of the roots of Eq. (A3) for z = 0. The equation Q(~x1) = Q(~x2) = 0
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can be solved for P and L. Then all four roots of Q are expressed through ~x1 and

~x2.

In particular, in the most important case when there are two real roots of Q( ~	)

[and, therefore, two real roots of Eq. (A3) for z = 0, ~x1 and ~x2], we obtain:

Q( ~	) = �( ~	� ~x21)(
~	� ~x22)[(

~	� �)2 + �]; (A12)

where � = (~x21 + ~x22)=2 � 1=�, � = � � (~x21 � ~x22)
2=4, and � = ~x1 + ~x2. Using the

integral tables,24 we �nd:

Fb =
�

4
A1=2K(�); (A13)

F� =
2

�A1=2

�
��1K(�) +

�
�2 + ��1 + �A

� �
�

�
�

2
;�; �

�
�K(�)

��
; (A14)

where K and � are the complete elliptic integrals of the �rst and third kind,

respectively,

A = (2~x1 + ��2)1=2(2~x2 + ��2)1=2; (A15)

� =
(~x1 � ~x2)

2

A[(2~x1 + ��2)1=2 + (2~x2 + ��2)1=2]
; (A16)

� =

�
1

2
� 1

2A

�
� � 1

2
(~x21 � ~x22)

2 + ��2
��1=2

: (A17)

The case of small orbit width, �rb � r, corresponds to P � 1. One can show

that ~x1 ' ~x2 ' P 1=2, ~x21�~x22 � P 1=4, ~x1�~x2 � P�1=4 in this case. Then Eqs. (A13),

(A14) and (A17) take in the main order in P the form

Fb =
�P 1=4

23=2K(�)
; (A18)

F� =
2E(�) �K(�)

21=2�P 3=4
; (A19)

� =
~x21 � ~x22
23=2P 1=4

; (A20)
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which agrees with the well known expressions for the precession and trapping pa-

rameter of a trapped particle with small orbit width:

!b =
�

23=2
v�1=2

qR0K(�)
; (A21)

!�=!b =
21=2�q2

�kr�1=2
[2E(�)�K(�)]; (A22)

�2 =
E � �B0(1� �)

2��B0

; (A23)

where � � r=R0.

APPENDIX B: RESONANCE ADIABATIC INVARIANT

We proceed from the following Lagrangian of the guiding center motion:25

L =
e

c
~A � _~r + Mvk

B
~B � _~r + Mc

e
� _� �

�
e� + �B +

M

2
v2k

�
(B1)

where � is the gyrophase. As we are not interested in the evolution of the gy-

rophase, we will omit the third term, consider � as a parameter and deal with a

system with only two degrees of freedom.

We use the representation (4) for the electromagnetic �eld and choose the gauge

A1 = 0; A2 = F (r); A3 = �	 (B2)

for the covariant components of ~A. Analyzing the equations of motion (6), one can

�nd that they do not change in the leading order if ~B is replaced by the toroidal �eld

BT = B0R0~e
3 everywhere except for the terms associated with ~vk. For this reason,

we retain the contribution of the poloidal magnetic �eld only in the �rst term of

the Lagrangian (B1), which is responsible for the longitudinal motion. Taking the

kinetic energy E = �B0R0=R + Mv2k=2 as an independent variable instead of vk,

we arrive at the following Lagrangian:

L =
e

c
~A � _~r +Mvk(r; #; E)R _'� (E + e�) : (B3)
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Note that Eqs. (6), (7) can be derived from Eq. (B3) as the corresponding Euler-

Lagrange equations. Below we will also use the di�erential of the action associated

with L,

L dt = e

c
~A � d~r +Mvk(r; #; E)Rd'� (E + e�)dt (B4)

As �rst, we consider the unperturbed motion of a particle in the magnetic �eld

with q = 1, � = 	 = 0. In this case, it is expedient to use the coordinates (r; #; ')

instead of (r; �; ') in order to take advantage of the axial symmetry. Then the

Lagrangian (B3) becomes:

Lu =
e

c
F _#+

�
�e
c
F +Mvk(r; #; E)R

�
_'� E: (B5)

The time independence and the axial symmetry immediately lead to conservation

of E and J(r; #; E) = �eF=c +MvkR , which determines the invariant tori (drift

surfaces) of the unperturbed motion.

Now we will introduce the action-angle canonical variables of the unperturbed

system.

To introduce the canonical angles, we use the property that their time deriva-

tives are constant along a trajectory. In addition, we demand that the canonical

angles, � and �, changed by 2� after one turn around the drift surface in the poloidal

and toroidal direction, respectively. Then we arrive at the canonical angles � and

� de�ned by Eqs. (28).

As usual, the corresponding actions are introduced as the integrals of the action

di�erential

Lu dt =
e

c
F d# +

�
�e
c
F +Mvk(r; #; E)R

�
d'� E dt (B6)

along arbitrary loops encircling an invariant torus in the poloidal and toroidal

directions. The toroidal action is just J . Performing integration around a drift

surface at ' = const, we can see that the poloidal action Jp is the toroidal magnetic


ux enclosed by the surface [up to the factor e=c, see Eq. (33)]. For a narrow-orbit
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circulating particle, Jp is just (e=c)F . For a narrow-orbit trapped particle, Jp

coincides with the longitudinal adiabatic invariant (the easiest way to see this is to

direct the integration contour along a magnetic �eld line).

To show that the coordinates (Jp; J; �; �) are indeed canonical, it is su�cient to

prove that the Lagrangian

L�
u = Jp _� + J _�� E (B7)

is equivalent to Lu, i.e., the di�erence L�
u dt�Lu dt is the full di�erential of certain

function of t, ~r, and E. This calculation is straightforward and, therefore, not

presented here. Due to equivalence, we will not distinguish between Lu and L�
u

below.

To study the motion near the resonance !�=!b = s=n, we introduce new canon-

ical angles associated with the resonance, �̂ = n� � s� and �̂ = �=n. Then the

Lagrangian (B7) takes the following form:

Lu = Ĵp
_̂
� + Ĵ

_̂
�� E; (B8)

where Ĵp � nJp + sJ , Ĵ � J=n. The Euler-Lagrange equations resulting from

Eq. (B8) are as follows:

_̂
� =

 
@Ĵp

@E

!�1

= !b(E; Ĵ)=n; (B9)

_̂
� = �

 
@Ĵp

@E

!�1
@Ĵp

@Ĵ
= n!�(E; Ĵ)� s!b(E; Ĵ); (B10)

_̂
J =

_̂
Jp = 0: (B11)

Note that we treat Ĵp as a function of Ĵ and E, which are considered as independent
variables together with �̂ and �̂. If we considered E as a function of Ĵp and Ĵ , we

would obtain the usual Hamilton's equations.

An immediate consequence of Eq. (B10) is that
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@Ĵp

@Ĵ

�����
Ĵ=Ĵr (E)

= 0; (B12)

where Ĵr(E) is the value of Ĵ at the resonant drift surface of the resonance !�=!b =

s=n.

Now we proceed to study the particle motion in the presence of a perturbation.

Our idea is to use the fact that `detuning' of a particle from the resonance is

expected to be small when the perturbation is small. Having this in mind, we

consider Lu as a sum of two components of di�erent orders. The �rst of them,

which is responsible for the resonance motion, is de�ned as

L(0) = Ĵ (0)
p (E) _̂� + Ĵ

_̂
�� E; (B13)

where Ĵ (0)
p (E) � Ĵp(E; Ĵr(E)). The Euler-Lagrange equations resulting from

Eq. (B13) describe bounce motion in resonance with the wave:

_̂
� =

0
@@Ĵ (0)

p

@E

1
A

�1

= !0(E) � !b(E; Ĵr)=n; (B14)

_̂
� = 0; (B15)

where we have taken into account Eq. (B12). We will assume that the residual

Ĵ (1)
p � Ĵp(E; Ĵ)� Ĵ (0)

p (E) responsible for `detuning' from the resonance (
_̂
� 6= 0) is of

the order of ", which is the ordering parameter indicating the order of magnitude

of various terms (we will set " = 1 to obtain physically meaningful results). The

same order is attributed to the terms that include � and 	 and are responsible for

the perturbation. Then the Lagrangian (B3) can be written as follows:

L = L(0) + "

�
Ĵ (1)
p (E) _̂� � e

c
	 _'� e�

�
: (B16)

For the following calculations, it will be convenient to introduce the vector of

variables ~z = (z1; z2; z3; z4) � (�̂; �̂; E; Ĵ). Expressing _' through _~z, we can rewrite

Eq. (B16) as follows:

L = 
j(~z) _zj �H(~z): (B17)
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where H = H(0) + "H(1) = E + "e�, 
j = 

(0)

j + "

(1)

j . Here and below we imply

summation over repeating subscripts. The zeroth-order contributions to ~
 are



(0)
1 = Ĵ (0)

p (E), 
(0)2 = Ĵ , 

(0)
3 = 


(0)
4 = 0. As we will see below, it is not necessary to

know the components of ~
(1), although they can be easily established by expressing

d' in terms of d~z.

Now we assume that the particle motion near the resonance is not stochastic

and can be characterized by an adiabatic invariant. To �nd the invariant, we apply

the following method.26 We assume that the invariant (I) can be found as a power

series in ", I(~z) = I(0)(~z) + "I(1)(~z) + :::, and is a single-valued function periodic

along the angle variables (z1 and z2). We restrict ourselves to the case of steady-

state perturbations and, thus, do not suppose I to depend on time explicitly. Now

we will solve the equation dI=dt = 0 order by order.

At the lowest order, only
_̂
�
(0)

= !0 is non-zero [see Eqs. (B11), (B14), (B15)],

which leads to @I(0)=@�̂ = 0. The next order gives

@I(1)

@�̂
!0 +

@I(0)

@zi
_z
(1)

i = 0: (B18)

To exclude I(1), we integrate Eq. (B18) along �̂ over one period and use periodicity

of I(1). We obtain:

@I(0)

@zi

I
d�̂ _z

(1)

i = 0: (B19)

>From this point, we will omit the superscript `(0)' at I.

The Euler-Lagrange equations following from Eq. (B17) can be written in the

form25

_zi = �ij

@H

@zj
; (B20)

where �ij = fzi; zjg are the Poisson brackets of the variables, which are the inverse

of the Lagrange brackets:

�ijwjk = �ik; (B21)
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where �ik is the Kronecker symbol. The Lagrange brackets wij = [zi; zj] can be

found from the coe�cients of the Lagrangian:

wij =
@
j

@zi
� @
i

@zj
: (B22)

Expanding Eqs. (B20)-(B22) to the �rst order in " to �nd _z
(1)
i , we transform

Eq. (B19) to

@I

@zi
�
(0)

il

I
d�̂

2
4@H(1)

@zl
+

0
@@
(1)l

@zk
� @


(1)

k

@zl

1
A�

(0)

kj

@H(0)

@zj

3
5 = 0: (B23)

One can �nd from Eqs. (B13), (B21) and (B22) that the only non-zero compo-

nents of �
(0)

ij are

�
(0)
13 = ��(0)

31 = !0; �
(0)
24 = ��(0)

42 = 1: (B24)

Substituting these values for �
(0)

ij and z3 for H
(0), we obtain the �nal equation for

I:

@I

@�̂

I
d�̂

0
@@H(1)

@Ĵ
� !0

@

(1)
1

@Ĵ

1
A� @I

@Ĵ

I
d�̂

0
@@H(1)

@�̂
� !0

@

(1)
1

@�̂

1
A = 0: (B25)

The general solution of this equation is an arbitrary function of E and

1

2�

I
d�̂
�
!0


(1)
1 �H(1)

�
: (B26)

We choose I as follows:

I =
1

n

�
Ĵ (0)
p +

1

2�

I
d�̂
�


(1)
1 � !�1

0 (E)H(1)
��

(B27)

As 

(0)
1 = Ĵ (0)

p ,

I =
1

2�n

�I
d~z � ~
 �

I
d�̂!�1

0 e�
�

(B28)

where " in ~
 is set to unity. However, the di�erential of the action

L dt = ~
 � d~z �Hdt (B29)

with " = 1 is equivalent to Eq. (B4) up to a coordinate transformation. Thus,

substituting Eq. (B4) for d~z � ~
 in Eq. (B28) does not change I. We obtain:
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I =
1

2�n

I �
e

c
F d#+ J d' � e

c
	 d' � !�1

0 e� d�̂

�
: (B30)

Finally, we recall that the integration contour makes n turns around the drift

surface in the poloidal direction and s turns in the toroidal one. The �rst two

terms in Eq. (B30) evidently result in �I given by Eq. (32). If we assume that

the perturbation potentials � and 	 consist only of harmonics with the toroidal

wavenumber n, we can replace the integral over n poloidal turns by the integral

over one turn multiplied by n. Then the last two terms of Eq. (B30) yield Eq. (34)

if we neglect the deviation of !b and !� from their values on the resonance surface.

In the general case, when the perturbation is not periodic in ' with the period

2�=n, the integration should be done over the closed loop �̂ = const, making n

poloidal turns.
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FIGURES
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FIG. 1. Harmonics of perturbed electromagnetic �eld at the end of reconnection in

the crash model of Ref.1. (a), the helical magnetic 
ux; (b), the potential of the electric

�eld. 	̂ � kB0r
2
mix(q

�1
0 � 1)=8 and �̂ � kB0r

2
mix=(c�cr) are characteristic magnitudes

of 	 and �, respectively, k is the cross-section ellipticity, rmix is the sawtooth mixing

radius.
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FIG. 2. Classi�cation of particle orbits. Notations: P � �2cJq=(keB0R
2
0�

2);

L � (1 � �B0=E)�
�1; � � [2q�=(kR0)]

2=3; C, circulating; PT, poloidally trapped; TT,

toroidally trapped; T, trapped (both poloidally and toroidally); superscripts `+' and `-'

refer to sgnvk. P � 1 corresponds to standard orbits with �rb � r.
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FIG. 3. Level contours of !�=(q!b) for � = 0:11.
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FIG. 4. Poincar�e map of motion of fast ions in the presence of helical perturbations

of the electromagnetic �eld. Used parameters: E = 1:4MeV, � � �B0=E = 1:007,

B0 = 3:5T, R0 = 3:0m, �cr = 10�4 s, rmix = 0:4m, k = 1:5. (a) single electrostatic

harmonic, �3max = 0:1�̂, �2max = 	2max = 	3max = 0; (b) superposition of two

electrostatic harmonics, �3max = 0:1�̂, �2max = 0:025�̂, 	2max = 	3max = 0; (c) single

magnetic harmonic, 	3max = 0:1	̂, 	2max = �2max = �3max = 0.
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FIG. 5. Poincar�e map showing several superbanana and passing orbits and

a stochastic region in the presence of the perturbation with �3max = 0:15�̂,

�2max = 	2max = 	3max = 0. The used parameters are the same as in Fig. 4.
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FIG. 6. Regions of resonances !�=!b = s=n = 1=3; 1=2; 2=3 for 1.4-MeV �-particles,

�3max = �2max = 0:1�̂, and the same tokamak parameters as in Fig. 4.
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FIG. 7. Poincar�e maps of motion of an ion relevant to the `hot spot'5 under the

m = n = 2 perturbation, �2max = 0:32�̂.
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FIG. 8. E�ects of sawteeth on di�erent groups of ions depending on the normal-

ized ion energy �E and the normalized crash duration ��cr. Notations: �E = �
2
=(�sr

2
s),

��cr = �
2
s!B�cr, � is the Larmor radius of a fast ion, subscript `s' labels values at the q = 1

surface radius.
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