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INTRODUCTION 
Advances of computer hardware and communication software have made it possible to 

perform parallel-processing computing on a collection of desktop workstations. For many 
applications, multitasking on a cluster of high-performance workstations has achieved 
performance comparable or better than that on a traditional supercomputer. From the point of 
view of cost-effectiveness, it also allows users to exploit available but unused computational 
resources, and thus achieve a higher performance-to-cost ratio. 

Monte Carlo calculations are inherently parallelizable because the individual particle 
trajectories can be generated independently with minimum need for interprocessor 
communication. Furthermore, the number of particle histories that can be generated in a given 
amount of wall-clock time is nearly proportional to the number of processors in the cluster. This 
is an important fact because the inherent statistical uncertainty in any Monte Carlo result 
decreases as the number of histories increases. For these reasons, researchers have expended 
considerable effort to take advantage of different parallel architectures for a variety of Monte 
Carlo radiation transport codes, often with excellent results. 

The initial interest in this work was sparked by the multitasking capability of MCNP’ on a 
cluster of workstations using the Parallel Virtual Machine (PVM) software. On a 16-machine 
IBM RS/6000 cluster, it has been demonstrated that MCNP runs ten times as fast as on a single- 
processor CRAY YMP. In this paper, we summarize the implementation of a similar multitasking 
capability for the coupled electron/photon transport code system, the Integrated TIGER Series 
(ITS), and the evaluation of two load balancing schemes for homogeneous and heterogeneous 
networks. 

MULTITASKING ITS WITH PVM 
The ITS system2 provides a state-of-the-art Monte Carlo solution of linear, time-integrated, 

coupled electron/photon radiation transport problems with or without the presence of external 
electric and magnetic fields. In US, the particle histories are divided into “batches” of equal size 
and the evaluation of the estimated quantities are performed using batch-averaged sample 
statistics. Since the batchwise evaluation can be performed independently, it provides a natural 
partition for multitasking. 
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The multitasking version of ITS is based upon a message-passing model in conjunction with 
a master/slave paradigm. The master process performs the input/output functions and starts up the 
slave processes, while the slaves perform the majority of the computational work, Le., generating 
particle trajectories and scoring. The problem-dependent data (such as the geometry and cross- 
section data) and the tallied results are transferred between master and slaves, but no data is 
shared between the slaves. All the communication tasks, including the data transfer and process 
control, are handled by the software system P l M 3  

In a multiuser environment, appropriate load balancing can further enhance performance of a 
parallel program. The current version of ITSPVM provides two load-balancing schemes, namely, 
the static and dynamic methods. The static method is simple and easy to implement.. In this 
method the required tasks (or batches) are divided up and assigned to the available machines in 
the configured PVM. The number of batches can vary from machine to machine to account for 
different computation powers for different machines. These assignments are set at the start and 
will not be adjusted to the actual loading and performance. As one may expect, this scheme can be 
quite effective on a lightly loaded network (either homogeneous or heterogeneous). 

Dynamic load-balancing in ITSPVM is accomplished by the classic “pool-of-tasks” 
paradigm. Initially, each slave process is given a batch. As a slave process finishes its batch it will 
receive another one. With this scheme all the slave processes are kept busy as long as there are 
batches remaining in the pool. The work load for each machine is adjusted according to the 
“realistic” computational performance which can be changing dynamically as other users share 
the resources. In this case, one may wish to divide up the problem into small batches (small 
number of particles per batch) which may be easier to balance across the available machines than 
the large batches. 

SPEEDUP AND PERFORMANCE EVALUATIONS 
The goal of multitasking is to make the program run faster (shorter wall-clock time) than it 

would in the corresponding serial run. A speedup ratio is often used to evaluate the performance 
of a multitasking program. On a dedicated system, the speedup ratio can be calculated using the 
following manner: 

s , = - =  TS 1 
TN 1 - F p + -  FP , 

N 

where SN is the speedup ratio if N processors are used in the calculation, Ts is the elapsed wall- 
clock time for a single processor, TN is the wall-clock time for N processors, and F p  is the 
fraction of program that can be run in parallel (sometimes called the parallel efficiency). The 
second part of this equation is known as Amdahl’s law from which one can estimate the parallel 
efficiency based on a set of measured speedup ratios. 

Table 1 summaries the measured speedup ratios for seven test problems on a cluster of SUN 
workstations. These test problems include the three standard codes, two P-codes, and two M- 
codes of the ITS system, and utilize many tally and biasing options of the system. Sufficient 
particle histories were required so that the input/output times were negligible in comparison to the 
overall CPU times. It is observed that the speedup ratio increase almost linearly with the number 
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of processors. The parallel efficiency approaches 99%, except for the ACCEPT-M code, where it 
is around 93%. 

Further studies indicated that the relative poor performance of the ACCEPT-M code was 
caused by an anomalous batch which consumed 50% more CPU time than the other batches. It 
is believed that one or more electrons entered a vacuum region with a uniform magnetic field with 
velocities almost perpendicular to the field so that they drifted very slowly through this region. 
Consequently, extra computing time was needed to calculate these orbits, thus prolonging the 
CPU time for that batch. 

CONCLUSIONS 
Using the PVM communication software, we have implemented a distributed-multitasking 

capability in the ITS code system. An update to ITS Version 3.0 was developed and tested on a 
cluster of workstations. For selected problems, the multitasking version of ITS performs very well 
with estimated efficiencies approaching the theoretical limit. This multitasking capability will 
undoubtedly become a standard feature in the future releases. 
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Table 1. Measured Speedup Ratios* for Various ITS/PVM Applications 

Code 

TIGER 

CYLTRAN 

ACCEPT 

TIGER-P 

ACCEPT-P 

CYLTRAN-M 

ACCEPT-M 

Amdahl’s Law 
with 

99 % Efficiency 

Number of Processors 

2 1 4  8 I 12 1 16 

1.99 I 3.81 7.39 I 10.88 I 14.19 

1.97 3.92 7.32 10.93 14.3 1 

1.99 3.93 7.42 10.64 14.2 

14.39 

1.96 I 3.87 7.42 I 11.06 I 14.56 

1.80 I 3.49 5.83 I 7.75 I 10.78 

1.98 3.88 7.48 10.81 13.91 

* Speedup relative to a single SUN4/75 workstation. 
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