
Distributed Multitasking ITS with PVM

Wesley C. Fan
Radiation and Electromagnetic Analysis Department

and
John A. Halbleib, Sr.

Simulation Technology Research Department
Sandia National Laboratories

Albuquerque, NM. 87185

* Prepared for the American Nuclear Society Annual Meeting
in Philadelphia, June 25-29, 1995.

** This work was supported by the U. S. Department of Energy
under Contract No. DE-AC04-94AL8500.

A
1

OtSTRlBUTION Of THiS DOCUMENT IS UNLIMITESb 3-

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. images are
produced from the best available original
document.

Distributed Multitasking ITS with PVM

Wesley C. Fan
Radiation and Electromagnetic Analysis Department

and
John A. Halbleib, Sr.

Simulation Technology Research Department
Sandia National Laboratories

Albuquerque, NM. 87185

INTRODUCTION
Advances of computer hardware and communication software have made it possible to

perform parallel-processing computing on a collection of desktop workstations. For many
applications, multitasking on a cluster of high-performance workstations has achieved
performance comparable or better than that on a traditional supercomputer. From the point of
view of cost-effectiveness, it also allows users to exploit available but unused computational
resources, and thus achieve a higher performance-to-cost ratio.

Monte Carlo calculations are inherently parallelizable because the individual particle
trajectories can be generated independently with minimum need for interprocessor
communication. Furthermore, the number of particle histories that can be generated in a given
amount of wall-clock time is nearly proportional to the number of processors in the cluster. This
is an important fact because the inherent statistical uncertainty in any Monte Carlo result
decreases as the number of histories increases. For these reasons, researchers have expended
considerable effort to take advantage of different parallel architectures for a variety of Monte
Carlo radiation transport codes, often with excellent results.

The initial interest in this work was sparked by the multitasking capability of MCNP’ on a
cluster of workstations using the Parallel Virtual Machine (PVM) software. On a 16-machine
IBM RS/6000 cluster, it has been demonstrated that MCNP runs ten times as fast as on a single-
processor CRAY YMP. In this paper, we summarize the implementation of a similar multitasking
capability for the coupled electron/photon transport code system, the Integrated TIGER Series
(ITS), and the evaluation of two load balancing schemes for homogeneous and heterogeneous
networks.

MULTITASKING ITS WITH PVM
The ITS system2 provides a state-of-the-art Monte Carlo solution of linear, time-integrated,

coupled electron/photon radiation transport problems with or without the presence of external
electric and magnetic fields. In US, the particle histories are divided into “batches” of equal size
and the evaluation of the estimated quantities are performed using batch-averaged sample
statistics. Since the batchwise evaluation can be performed independently, it provides a natural
partition for multitasking.

2
OtSTRlBUTlON OF THIS DOCUMENT IS UNLIMITED

The multitasking version of ITS is based upon a message-passing model in conjunction with
a master/slave paradigm. The master process performs the input/output functions and starts up the
slave processes, while the slaves perform the majority of the computational work, Le., generating
particle trajectories and scoring. The problem-dependent data (such as the geometry and cross-
section data) and the tallied results are transferred between master and slaves, but no data is
shared between the slaves. All the communication tasks, including the data transfer and process
control, are handled by the software system P l M 3

In a multiuser environment, appropriate load balancing can further enhance performance of a
parallel program. The current version of ITSPVM provides two load-balancing schemes, namely,
the static and dynamic methods. The static method is simple and easy to implement.. In this
method the required tasks (or batches) are divided up and assigned to the available machines in
the configured PVM. The number of batches can vary from machine to machine to account for
different computation powers for different machines. These assignments are set at the start and
will not be adjusted to the actual loading and performance. As one may expect, this scheme can be
quite effective on a lightly loaded network (either homogeneous or heterogeneous).

Dynamic load-balancing in ITSPVM is accomplished by the classic “pool-of-tasks”
paradigm. Initially, each slave process is given a batch. As a slave process finishes its batch it will
receive another one. With this scheme all the slave processes are kept busy as long as there are
batches remaining in the pool. The work load for each machine is adjusted according to the
“realistic” computational performance which can be changing dynamically as other users share
the resources. In this case, one may wish to divide up the problem into small batches (small
number of particles per batch) which may be easier to balance across the available machines than
the large batches.

SPEEDUP AND PERFORMANCE EVALUATIONS
The goal of multitasking is to make the program run faster (shorter wall-clock time) than it

would in the corresponding serial run. A speedup ratio is often used to evaluate the performance
of a multitasking program. On a dedicated system, the speedup ratio can be calculated using the
following manner:

s , = - = TS 1
TN 1 - F p + - FP ,

N

where SN is the speedup ratio if N processors are used in the calculation, Ts is the elapsed wall-
clock time for a single processor, TN is the wall-clock time for N processors, and F p is the
fraction of program that can be run in parallel (sometimes called the parallel efficiency). The
second part of this equation is known as Amdahl’s law from which one can estimate the parallel
efficiency based on a set of measured speedup ratios.

Table 1 summaries the measured speedup ratios for seven test problems on a cluster of SUN
workstations. These test problems include the three standard codes, two P-codes, and two M-
codes of the ITS system, and utilize many tally and biasing options of the system. Sufficient
particle histories were required so that the input/output times were negligible in comparison to the
overall CPU times. It is observed that the speedup ratio increase almost linearly with the number

3

of processors. The parallel efficiency approaches 99%, except for the ACCEPT-M code, where it
is around 93%.

Further studies indicated that the relative poor performance of the ACCEPT-M code was
caused by an anomalous batch which consumed 50% more CPU time than the other batches. It
is believed that one or more electrons entered a vacuum region with a uniform magnetic field with
velocities almost perpendicular to the field so that they drifted very slowly through this region.
Consequently, extra computing time was needed to calculate these orbits, thus prolonging the
CPU time for that batch.

CONCLUSIONS
Using the PVM communication software, we have implemented a distributed-multitasking

capability in the ITS code system. An update to ITS Version 3.0 was developed and tested on a
cluster of workstations. For selected problems, the multitasking version of ITS performs very well
with estimated efficiencies approaching the theoretical limit. This multitasking capability will
undoubtedly become a standard feature in the future releases.

REFERENCES

1. G. W. McKINNEY and J. T. WEST, “Multiprocessing MCNP on an IBM RS/6000 Cluster,”
Trans. Am. Nucl. SOC., Vol. 56, pp. 212-214, 1993.

J. A. HALBLEIB et al., “ITS: The Integrated TIGER Series of Coupled ElectronPhoton
Monte Carlo Transport Codes - Version 3.0,” IEEE Trans. Nucl. Sci., Vol. 39, No. 4, pp. 1025-
1030,1992.

2.

3. G. A. GEIST et al., “PVM 3 User’s Guide and Reference Manual,” Technical Report OR=/
TM-12187, Oak Ridge National Laboratory, 1994.

4

L

Table 1. Measured Speedup Ratios* for Various ITS/PVM Applications

Code

TIGER

CYLTRAN

ACCEPT

TIGER-P

ACCEPT-P

CYLTRAN-M

ACCEPT-M

Amdahl’s Law
with

99 % Efficiency

Number of Processors

2 1 4 8 I 12 1 16

1.99 I 3.81 7.39 I 10.88 I 14.19

1.97 3.92 7.32 10.93 14.3 1

1.99 3.93 7.42 10.64 14.2

14.39

1.96 I 3.87 7.42 I 11.06 I 14.56

1.80 I 3.49 5.83 I 7.75 I 10.78

1.98 3.88 7.48 10.81 13.91

* Speedup relative to a single SUN4/75 workstation.

5

