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ABSTRACT As our society becomes technologically more complex, computers are being used in greater and 
greater numbers of high consequence systems. Giving a machine control over the lives of humans can be disturbing, 
especially if the software that is run on such a machine has bugs. Formal reasoning is one of the most powerful 
techniques available to demonstrate the correctness of a piece of software. 

When reasoning about software and its development, one frequently encounters expressions that contain partial 
functions. As might be expected, the presence of partial functions introduces an additional dimension of difficulty to 
the reasoning fiamework. This difficulty produces an especially strong impact in the case of high consequence 
systems. 

An ability to use formal methods for constructing software is essential if we want to obtain greater confidence in 
such systems through formal reasoning. This is only reasonable under automation of software development and 
verification. However, the ubiquitous presence of partial functions prevents a uniform application to software of any 
tools not specifically accounting for partial functions. 

In this paper we will describe a framework for reasoning about software, based on the nonstrict explicit domain 
approach [17, 181, that is applicable to a large class of softwarehardware systems. In this framework the Hoare 
triples containing partial functions can be reasoned about automatically in a well-defined and uniform manner. 

KEYWORDS: correctness proofs, partial operations, 1st order logic, Hoare triple, Dijkstra language. 

1. INTRODUCTION 

1.1. Motivation 
When constructing high consequence softwarehardware systems, it is essential that one has the ability to reason 

about properties of computations expressed by Hoare triples. Recall that the Hoare triple {P]c@] states that if the 
code fragment c begins its execution at any state SO such that P(so) holds, then 

cterminates 
upon termination, c produces a state SI such that R(sJ holds. 

Although the Hoare triples and their proof rules [3] are the standard mechanism for proving the correctness of 
terminating programs, the current state of the correctness proof practice does not adequately address Hoare triples 
that contain partial functions. 

Partial functions were dealt with in mathematics rigorously for quite a long time [lo]. However, with respect to 
software there is more difficulty in handling partial functions. This is because, while in mathematics overstepping 
the domain of a partial function is prohibited and is watched over very closely, computation of a partial function 
outside its domain is a common occurrence within software. Another common occurrence is a computation of a 
“total function” on an invalid input, which is the same as regarding the function as partial on a larger domain. Using 
our new notion of “nonstrict explicit domains”, we alleviate the above obstacles, thus providing a uniform and 
practical way for proving correctness of software with partial functions. In particular, nonstrict explicit domains 
permit us to utilize the existing theorem provers to verify software under conditions when software and/or its 
requirements contain partial functions. 

* This work was supported by the United States Department of Energy under contract DE-AC04-94AL.84000. 

1 

mailto:aryakhn@sandia.gov
mailto:vryakhn@sandia.gov
mailto:vlwinte@sandia.gov


1.2. The Goals of the Paper 

12.1. Extending Logical Connectors 
Consider a typical high consequence system: a nuclear reactor, e.g., the EBR I1 sodium reactor. The nuclear core 

of this reactor is cooled by liquid sodium. Now suppose that it has been determined that this reactor should be shut 
down if the ratio of the heat to the coolant flow exceeds a certain threshold T. This shutdown condition can be 
expressed as: 

heat/coolantflao 2 T reactor-shutdown 

Here reactor-shutdown is the property of the reactor to be in a shutdown state. We assume that there is a command 
shutdown satisfying the following Hoare triple {true)shutdown{reactor-shutdown). In this context, consider the 
possibility that the flow that cools the reactor can stop (Le., coolantflow = 0) due to some mechanical failure. 
Clearly, one would also like to shutdown the reactor in this case: 

coolantflow = 0 reactor-shutdown 

If software is supposed to control the shutdown in those two cases, the following Hoare triple for a C-code 
fragment might be written: 

Precondition: fieat/coolantflow 2 T v coolantfIow = 0) 

if (coolantflow = 0 11 headcoolantflow 2 T )  shutdown /* where 11 is the C notation for “OR” */ 

Postcondition: {reactor-shutdown) 

One of the standard approaches to proving correctness of the above Hoare triple is to show that 

Precondition + wp(c, Postcondition) 

holds, where c is the above code fragment. However, in such an approach, a difficulty is introduced by the presence 
of partial functions, which can occur in either the pre/postconditions or in the code itself, e.g., in the above example 
the division V‘ occurs both in the precondition and the code. Intuitively, the code fragment in the above example is 
correct. Nevertheless, showing within a standard two valued logic that the program operates correctly when the 
initial state satisfy coolant3ow = 0 presents problems. In this particular case one could rewrite the precondition to 

Precondition’: peat 2 coolantJlow*T v CoolantfIOw = 0 

but this would be an ad hoc solution specific to this particular precondition and code. 
In order to systematically account for, and deal with the difficulties that arise from undefined values, 3-valued 

logics were introduced [4,8,9, 101. In this framework, the Boolean domain B = (t f) is extended to B’ = {t, f, I], 
where I designates the value “undefined”, and the logical connectors such as OR, AND, and NOT are given 
semantic extensions with respect to B . We would like to point out that semantic extensions of logical connectors 
can be done in a number of ways, e.g., Gries provides an asymmetric extension of OR, Jones provides a symmetrical 
one. In spite of the fact that undefined values have been accounted for in some sense, in the past, formal treatment of 
undefined values (resulting from the evaluation of partial functions) beyond propositional logic have been somewhat 
incomplete. One source of this incompleteness results from the fact that, in general, to describe a system in a natural 
manner, one may need several different extensions of each classical Boolean connector. 

Indeed, in the example above, “v” in the precondition should be replaced by the nonstrict symmetric monotone 
extension of “v” over 5 (as that in [SI) which is designated as “vs)’ in the following sections, whereas “II” in the 
code fragment should be interpreted as a monotone extension of “v” over B with a nonstrict right argument (as that 
in [4]) which is designated as “v:’ in the following sections. Note that vr is a precise semantics for the “short circuit” 
evaluation rule for ‘‘11’’ in C/C++ [12], whereas using “v? in lieu of ‘‘v? in the precondition is not natural since it 
would preclude treating the left argument of “OR” as nonstrict. 

In the following sections we will provide several different (monotone) extensions of each classical Boolean 
connector. 

I 

I 

I 
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122. Providing a Uniform Treatment of Partial Functions 

1.2.2.1. From Partiality to Totality 
Consider a one dimensional integer arrayfof length 100. Thenfis a partial function (over integers) whose domain 

is the segment [ 1 .. 1001. If we would want to require some property offupon the completion of a code fi-agment then 
fmust be included in some form in the postcondition for the code fiagment, e.g., u(n)>O>. Since the software may 
include instructions such as n := 101, we have to replace the above formula by one which is meaningful for values of 
n beyond the domain of$ For example, we may want to consider the postcondition (Kn1100 ~, f (n )>O)  instead. 
Similarly to the preceding example, A% is the nonstrict symmetric monotone extension of A, defined later in the 
paper. (Thus if n = 101, the new form of the postcondition is false.) Now we may forget thatfis partial and may 
arbitrarily extend it to a total function. This will not change the truth value of the precondition for any n. It can be 
found by ordinary theorem provers based on 2-valued logic. 

This is the essence of the following idea of Gries [4]: 

If all partial functions in a formula are somehow extended to total functions, then we can try to prove the formula 

If during the proof we would never take an advantage of the values extending the partial functions into total, the 
as if the functions were indeed total; 

proof would be valid. 

This technique is very convenient since it enables the classical 2-valued first order logic to be applied to formulas 
with partial functions. However, in order to make this technique both rigorous and amenable to automation, the 
following questions must be answered: 

which formulas may be treated in this fashion? 
since the classical Tarski semantics of classical first-order logic formulas does not treat partial functions, in which 

0 is there a rigorous meta-proof of the validity of the technique? 
sense can we speak about the validity of the proofs within the Gries technique? 

In the following sections we will provide positive answers to the above questions. 

1.2.2.2. From Totality to Partiality 
An implementation of the above Gries idea is not yet sufficient for a uniform treatment of partial functions, since 

there are legitimate usages of total functions within software when only a part of the argument list is available. This 
is equivalent to regarding such total functions as partial on an extended domain. E.g., consider the “selection” 
function (b ? x : y) from C/C++. It is obviously a total function when b,x, and y are defined. However, what is the 
meaning of (true ? 1 : 1/0) ? It is 1, even if the third argument is undefined i.e., not available. Thus, although, by 
itself, (b ? x :y) is total, its usage does not conform to the classical Tarski’s semantics, since the latter does not allow 
undefined arguments. 

In the following sections we will provide a mechanism to account for such usages of total functions. 

123. Extending the Proof Rules for Hoare Triples to Account for Partial Functions 
Although the Hoare triples are the major mechanism for proving correctness of terminating programs, the current 

state of the correctness proofs practice does not adequately address Home triples with partial functions. Consider an 
example fiom [9], an excellent book on program correctness and derivation. It is suggested there (and in many other 
books and papers, e.g., [4, 9, 191, etc.) that in order to prove a Hoare triple of the form P{x:=E]Q, one has to show 
that P DeJE A Q(x/E), where Q(x/E) is the result of substitution of E for x, holds. There are three problems with 
such treatment: 

the expression transformer Def is not formally defined. This makes the approach less amenable to automation; 
the meaning of connectors A and + must be extended to cover undefined arguments, since Q(x/E) may become 

0 even if E does not have occurrences of partial functions, the formula may become undefined if P or Q contain 
undefined due to occurrences of partial functions in Q and/or E. This is discussed in previous sections; 

partial functions. E.g., it is possible that DejE holds when Q(dE) is undefined. 

In the following sections we will provide a formal definition of Def and will modify the Hoare and Dijkstra proof 
rules for all the program connectors, so that one would be able to fmd by automatic means the logical values of the 
Hoare triples in the presence of partial functions. 

3 



1.3. 
Many researchers worked in the area of partial functions and their applications in computing [ 10 and references 

there, 4, 13,8,2,5]. 
In order to reason about partial functions, 3-valued logic was used by Kleene in his classical “Introduction to 

Mathematical Logic”, 1952. Kleene described several 3-valued logics developed by him (1938) and others (e.g., the 
Lukacevich logic 1920). Most of the researches, including Gries [4] and Jones [SI, used 3-valued logics described in 
[lo] and introduced various versions of explicit domains for partial functions. Note however, that Kleene’s purpose 
was to elucidate partial functions in recursion theory, rather than to reason about software. 

In order to provide a uniform treatment of partial functions, we introduce a new notion of nonstrict explicit 
domains that are substantially different from the ones previously considered. 

The Existing Research on Partial Functions 

2. NONSTRICT EXPLICIT DOMAINS AND CONSTRUCTION OF DEE 

2.1. Basic Definitions 
We are working here with sorted partial algebras with explicit domains (see [17]). We will provide necessary 

definitions in an informal manner, see [17] for completely formal definitions. The expressions are defined 
inductively as follows: 

a variable x:S or a constant c:S are expressions of sort S; 
0 if$Slx ...an -I+ S is a (partial) function and t l ,  ..., tn are expressions then: 

0 if b is a Boolean-valued expression, then (Vx:S, b) ,  &:S, b), ( ‘dx:S, b), and (%S, b )  are Boolean-valued 

expressions. Each free occurrence of the variable x in b becomes a bound occurrence in the above expressions. ‘d 
and 3 are called the nonstrict quantifiers. 

- f(tl, ..., tn) is an expression of sort S. Iff is a Boolean-valued function, then f(ttl, ..., tn) is a Boolean expression; 
ns ns 

ns 

ns 

Following [4], we view each partial function$Slx ...XS,, ++ S as such total function ?:Six ... *,,+Sthat: 

- 
0 Ax1, ..., xn) = f (x1, ..., x n ) ,  whenever ( X I ,  ..., xn)E D0m.f - 

f (xl, ..., xn)  is unknown, otherwise, 

where Dom.fis the domain off in the usual sense. In order to formalize “known” and “unknown” we construct an 
expression transformer Def such that for every expression exp, DeAexp) is a Boolean expression such that if we 
replace every partial function f occurring in exp by its total extension f ,  thus producing an expression exp‘, then 

- 

(Al) the value of Dej(ex$) does not depend on how each extension 7 is defined outside DomJ 
(A2) if DeAexp’) = t then the value of exp‘ does not depend on how each extension f is defined outside Dom$ 

Thus we can say that the value of an expression exp is known (or is defined) if DeAexp) = t and is unknown 
otherwise. 

We construct Def by associating with each (partial) function $SIX ...*,, -I+ S its nonstrict explicit domain 
Eilom.$BxSlx ... x B x S , 4  (see below) and defining Defiexp) as 

0 if exp =Atl, ..., t,,),$Slx ...x& ++ S is a function and t l ,  ..., tn are expressions then: 

if b is a Boolean-valued expression, then 
- DeAexp) 4 Edom.ADe$tl, t l ,  ..., De$tn, tn);  

DeJ(’dxS, b) P VxS, De$b; 
D e w s ,  b) P Vx:S, Def-b; 

DeJ(vx:S, b) 4 (Vx:S, Def(b)) v 3x:S(De$b hs Tb); 

D e f i h S ,  b) P (Vx:S, Defp)) v 3x:S(DeJb A~ b), 

- 
- 
- 
- 

us 

us 
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In order to satisfy the conditions A1 and A2, we impose the following restrictions on the nonstrict explicit 
domains. For simplicity, let$SlxS2 -I+ S. Then EdomJsatisfy the following: 

0 

0 

0 

the standard set-theoretical domain may be computed as Domlf= ((x, y )  I Edom.fit, x, t, y )  = t]; 
if Edom.fTt, xo, f ,  y )  = t, then (xO,y)~Dom.J;f(xo,y) does not depend on y and, moreover,J(xo,y) may be 
computed without knowing y ;  
if Edom.fif, x, t, yo) = t, then ( ~ , y ~ ) ~ D o m . J ; f ( x , y ~ )  does not depend on x and, moreover,J(x,yo) may be 
computed without knowing x. 

Informally, when considering Edom.flz, x, w, y ) ,  z means “x is defined” and w means “y is defined”. For a full 
treatment of the explicit domains see [17]. We treat constants as functions of arity 0. Iff is a known constant, EdomJ 
is a Boolean valued function of arity 0 whose single value is t. Iff is not a known constant, EdomJis a Boolean 
valued function of arity 0 whose single value is f. The examples of unknown constants are I and program variables 
which are not initialized. 

There may be distinct nonstrict explicit domains associated with identical functions. We are going to differentiate 
between such functions by assigning to them unique names. Finally, in order to use classical logic for computations, 
we will represent each partial functionfby a pair ( f ,  Edomlf), where f is a total extension off: When thinking of 
f as itself, f ( x , y )  is known whenever both arguments are known. However, when we think of f as a 
representation off, ?(x, y )  is known only ifEdomfit, x, t, y )  = t. 

.-, - w 

2.2. Examples of Nonstrict Explicit Domains 
0 

0 

0 

0 

Boolean constants: 
- Edom.t=t; 
- Edom.f=t; 
The “undefined” element: 
- Edom.l=f;  
Strict Boolean connectors and equality A, v, u, +, and =. If I2 is of any of A, v, u, +, and =, then: 
- Edom.*(z, x, w, y) = z A w; 
Nonstrict Boolean connectors A ~ ,  v,, *,, Ar, Vr, *r7AI, VI, 31: 
- Edom.v,(z, x, w, y) = (z A w) v (z A x) v (w A y); 
- Edom.v& x, w, y) = (z A w) v (z A x); 
- Edom.vl(z, x, w, y) = (z A w) v (w A y); 
- Edom.As(z, x, w, y) = (z A w) v (z A l x )  v (w A ~ y ) ;  
- Edom.&z, x, w, y) = (z A w) v (z A lx); 
- Edom.&(z, x, w, y) = (z A w) v (w A -y); 
- Edom.qs(z, x, w, y) = (z A w) v (z A TX) v (w A y); 
- Edom.+dz, x, w, y) = (z A w) v (z A lx); 
- Edom.=h(z, x, w, y) = (z A w) v (w A y); 

The idea for some of this explicit domain was obtained from the truth-table for the nonstrict monotone extensions 
of the logical connectors over the extended domain of Booleans given in [lo, 81. E.g., the truth-table for the 
symmetric monotone extension of OR over extended domain of Booleans is the following: 

Conditional function 

G (b ? x, y )  P 
i f b = t ;  
i f b = f :  

5 



- Edom.?(z, b, v, x, w, y )  4 z A (b + v) A (4 3 w). 

2.3. The Five-Step Process for Evaluating Expressions with Partial 
Functions and/or Extended Logical Connectors 

Let cp be a closed expression. Since cp is nonclassical (due to occurrences of partial functions and/or extended 
logical connectors), automated theorem provers cannot be applied to cp directly. We will show how to automate the 
process without ad hoc rewriting of cp. 

Stet, 1. Transform cp into a formula DeJcp. Using the expression transformations facilities of a theorem prover 
(such as the ones available in OTTER [ 141) or an automated term rewriting system, the transformation “ c p  + De$$’ 
can be carried out automatically. 

&g 2. Replace all the occurrence of nonclassical Boolean connectors in DeJq by their classical counterparts 
(e.g., v, by v )  and all the partial functions by their total extensions. We designate the result as Classic(DeJcp) since it 
falls within the classical two-valued frst-order logic. This can be carried out automatically as well. 
&g 3. Find the logical value of Classic(De$cp) via a theorem prover. We will prove below that this value does not 

depend on how the extensions of the partial functions to total are carried out. If Classic(De$cp) is false, then the 
original formula is undefined. In this case we stop here. Otherwise, if Classic(De$cp) is true, proceed to step 4. 

&g 4. Replace all the occurrence of nonclassical Boolean connectors in cp by their classical counterparts and all 
the partial functions by their total extensions. We designate the result as CZassic(cp). 

Stet, 5. Find the logical value of Classic(cp) via a theorem prover. We will prove below that this value does not 
depend on how the extensions of the partial functions to total are carried out. 

2.4. Application of the Five-Step Process to the Nuclear Reactor Example 

24.1. The “Bottom” Example 
Let’s attempt to find the logical value of 1 v ,  f. Recall that DeA1) 4 f and Deflf) 4 t. Let us employ t as an 

extension of 1. We’ll apply the 5-step procedure: 

Stet, 1.DefT-L vs f) B (DeAL) A DeAf)) v (DeAl) A l) v (DeAf) A f) 4 (f A t) v (f A I) v (t A f). 
Stet, 2. Classic(DeA1 vs f)) 4 (f A t) v (f A t) v (t A f). 

3. (f A t) V (f A t) V (t A f) f. 

Thus the formula is undefined and we can’t find its logical value. Note that if we would transpose Step 2 and Step 1, 
i.e., substitute the extension o f l  directly into the formula 1 v, f, we would have a defined formula. This shows that 
the 5-step procedure is not commutative. Finally, it’s easy to check that result of Step 3 would be the same if we 
would employ f as an extension of 1. 

242. The Nuclear Reactor Example 
Let’s consider as an example the precondition 

exp 4 heat/coolantflow 2 T v coolantflow = 0 

from the nuclear reactor example. We consider heat, coolantflow, Z coolant$ow, and 0 to be known and therefore 
their explicit domains are all equal to t. We will treat “Y, “v”, and “=” as Boolean-valued binary functions. Thus 
the above expression has occurrences of four binary functions, namely “I”, ‘‘Y, “v”, and “=”. All these functions are 
strict in the sense that their values are known only if all the arguments are known. The division “I” is the only partial 
function out of the four. Let us extend “P, by a function Div(x,y) such that Div(x, 0) = 0 for each. The explicit 
domains are the following: 

0 Edom./(z, x, w, y )  A z A w A O., it 0); 
Edom. *(z, x, w, y )  4 z A w, 

where ‘5%” is any of ‘Y, “v”, and “=”. We emphasize that the above form for Ed0m.v was chosen because the 
classical understanding of OR is that both disjuncts are known. 

Now, let’s assume cooIantflow B 0 and compute Def(exp) using the above definitions: 

6 



Stet, 1. Defexp) A DefheatA 2 T )  A DefTO = 0) 4 DefTheatA) A DefTT) A DefO) A DefO) 2 Defheat) ADefTO) 

step 2. Classic(DeJexp) A Dej(ap) 4 t A t A f A t A t A t. Note that in this case there are no occurrences of 
A O # O A f  A t A t t A t  A f A t A  t A f .  

partial functions in Def(ap). 
-3. f A t  A f A t  A t  A t  4 f. 

This means that heat/coolantflow 2 T v coolantJow = 0 is undefined whencoolantflow = 0. This is not 
satisfactory, since we wish to be able always to check whether this particular precondition is true or false. Therefore, 
we will replace the classical explicit domain for OR by such another one which would enable us to compute x ORy 
whenever one disjunct is known and another is unknown. Since we wish to preserve unique names associated with 
explicit domains, we’ll rename new connector as v,. The explicit domain for this new connector is as follows: 

EdO??Z.Vs(Z, X, W, y )  A (Z A W )  V (Z A X) V (W A y). 

Now let exp‘ 4 heat/coolantflow 2 T v coolantflow = 0. Let’s apply the 5-step procedure to exp‘ when 
coolantflow A 0: 

ster, 1. DeJ(exp? 2 (DefTheat/O 2 T )  A DefTO = 0)) v (DefheatA 2 T )  A head0 2 T)  v (DefTO = 0 )  A 0 = 0 )  A f v 

ster, 2. Classic(De$expp‘) A (f A Div(heat, 0) 2 T)v t 2 (f A Div(heat, 0) 2T)v f. 
ster, 3.  (f A Div(heat, 0) 2 T )  v t A (f A 0 2 T )  v t A t. Note that the result does not depend either on the value of 

Stet, 4. Classic(exp‘) A Div(heat, 0)  2 T v  0 = 0. 
&g 5 .  Div(heat, 0) 2 T v  0 = 0 A t. 

(f A heat/O 2 T )  v (t A t) (f A heat/O 2 7‘) v t. 

Div(heat, 0)  or on the value of T. 

That’s exactly what the intuitive meaning of this formula should give. 

2.5. Theorems Justifying the Approach 
Let t be a closed expression. 

Theorem 1. Classic(De$t) is a closed expression and its Boolean value does not depend on the choice of total 
extensions of partial functions occurring in t. 

0 

r i  

Theorem 2. If Classic(De$t) = t then the value of Classic(t) does not depend on the choice of total extensions of 
partial functions occurring in t .  

The proofs of these theorems can be found in [ 171. 
U 

3. AUTOMATING CORRECTNESS PROOFS OF SOFTWARE WITH PARTIAL 
FUNCTIONS 

3.1. Application of the Five-Step Process to the Correctness Proofs 
In this paper we focus on a subset of the Dijkstra language which includes the following components: 

assignments, conditionals, and special loops which we call simple verifiable loops described at the end of the paper. 
Suppose c is a code hgment in this language. For every Hoare triple (F’)c{Q) which may contain partial functions 
and/or extended logical connectors, we construct the following formula: 

where wpp(c, Q) denotes the formula representing the “weakest precondition in the presence of partial functions”. 
The formula wpp(c, Q) is constructed using our rules provided at the end of the paper. Our rules extend the Dijkstra 
weakest precondition rules. Let us designate (DeJP P )  as wpp(c, Q) as cp. Since cp is nonclassical (due to 
occurrences of partial functions andor extended logical connectors), automated theorem provers cannot be applied 
to cp directly. In order to find whether cp is correct, we’ll apply the 5-step process above. 

Theorem 3. The following is true: 
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0 If Classic(De$cpl is true, then the Hoare triple {P)c{Q) is defined in the sense that if the code fiagment c begins its 
execution at any state so such that P(so) is defined and holds, then 

- during the execution of c there will be no attempts to compute the value of any partial function outside its 
domain. 

- upon termination, c produces a state SI such that Q(s4, is defined. 

If Classic(DeJcp) is false, then the Hoare triple P]c(Q) is undefined in the sense that at least for one state so such 
that P(so) is defined and holds, at least one of the two condition above will be violated. 

proof. Induction on the length of c. 
n 
U 

Theorem 4. If Classic(De$cpl is true then the following is true: 

execution at any state so such that P(so) is defined and holds, then 
0 If Classic(cp) is true, then the Hoare triple (?’)e@) is correct in the sense that if the code fiagment c begins its 

- during the execution of c there will be no attempts to compute the value of any partial function outside its 
domain. 

- cterminates 
- upon termination, c produces a state s1 such that Q(sl) is defined and holds. 

If CZassic(q) is false, then the Hoare triple {P]c{Q) is incorrect in the sense that at least for one state so such that 
P(so) holds, at least one of the three condition above will be violated. 

Proof. Induction on the length of c. 
0 

3.2. Semantics of Programs with Partial Operations 
Given a specification, our intuitive concept of a program satisfying this specification is a state machine 

transforming the states defined by the data structure of the specification. We identify the states with first order 
structures which have signatures including the signature of the data structure viewed as an algebra. Although there 
are many descriptions of formal program semantics, see [l 11, the most convenient for us is the “evolving algebras” 
semantics developed by Y. Gurevich, see [5 ] .  In [17] we modified the original evolving algebras to accommodate 
our explicit domains, thus obtaining evolving sorted partial algebras with explicit domains (ESPED-algebras). We 
also defined there (via ESPED-algebras) a semantics of programs in a subset of the Dijkstra language. The 
semantics of programs is necessary to prove the theorems 3 and 4 about Hoare triples with partial functions (see the 
previous subsection). These theorems show the soundness of the proof rules for the Hoare triples given in the 
following section. 

Here we’ll only present an informal operational semantics for the language. 

Instructions 

Skip 

Composition 
skip 

/* F and G are algorithms */ 
F;G 

Simple Assignment 

/* x is a variable and E is an expression 
*/ 

x : = E  

Behavior during Execution 
Sten 1. Do nothing; 
Step 2. Terminate. 
Step 1. Execute F; 
Step 2. Execute G; 
Step 3. Terminate. 
Step 1. Compute the value of Def(E) in the initial program state. 

If Def(E) = f then crash. Otherwise go to the next step; 
Step 2. Get the new program state by replacing the value of the 

program variable x by the value of E, replacing Ed0m.x by t, and 
leaving the values of all other variables unchanged; 

Step 3. Terminate. 

a 



Strict Indexed Assignment 

I* let $ S I ,  ..., S,+S be an indexed 
program variable, tl:S1, ..., tn:Sn, E:S be 
expressions *I 

f(t1, ..., tJ := E 
Simple IF 

I* y is a Boolean expression and F and 
G are algorithms. *I 

i f y + F  

fi 
Simple Verifiable Loop 

I* y is a Boolean expression, cp is a 
logical assertion, E is an integer-valued 
specification expression and F is an 
algorithm. It is established that cp is an 
invariant of F and that E is a bound 
function. *I 

do y+ 

O-ly+G 

invariant cp 
bound function E 
F 

od 
Pseudocode Instruction 

I* SV is a list of program variables called 
“specification variables”, cp, \I, are logical 
assertions *I 

Step 1. Compute the values of Def(tl), ..., Def(tn), De$E) in the 
initial program state. If any is equal to f then crash. Otherwise go to 
the next step; 

Step 2. Get the new program state by replacing the value of f(t1, 
..., tJ by the value of E, replacing the value ofMom.j@, tl, ... , t, tn) 
by t and leaving the values of all other variables unchanged; - 

Step 3. Terminate. 
Step 1. Evaluate DefTy) in the initial program state. If DefTy) =f  

then crash. Otherwise go to the next step; 

Step 2. If y it evaluates as t, execute F. Otherwise execute G; 

Step 3. Terminate. 
I* The following must be proved beforehand 
(9 Y> F hS @ef(cp) hs cp J~ Def(y)), i.e., cp is an 
invariant of the loop; 
(cp as B O )  hS (E=* F (E<X>, where X is an integer program 
variable not occurring in F. Thus E is a bound function of the 

Step 1. Evaluate DefTcp) in the initial program state. If DefTcp) = f, 

Step 2. Evaluate the loop guard y. If y evaluates as f, then 

Step 3. Execute the loop body F. When and if F terminates, go to 

loop. *I 

then crash. Otherwise go to step 2; 

terminate. Otherwise go to step 3; 

step 2. 

Step 1. Evaluate Deficp) in the initial program state. If DefTcp) = f, 
or if DefTcp) = t and cp = f then crash. Otherwise go to step 2; 

Step 2. Let Q, be the set of all program states such that: 
the values of all the specification variables are the same as in the 
initial state; 
the state satisfies w. 
If 

and terminate. Otherwise crash. 
is not empty then choose any state from @ as the final state 

3.3. Extending the Dijkstra-Gries Program Correctness Rules 
We will extend the Dijkstra weakest precondition (wp) expression transformer to programs with partial 

operations. We’ll denote the new transformer as wpp for “weakest precondition with partiality”. We assume that Q 
is a logical assertion; the rest of the symbols are from the above semantic definitions. 

Instruction 9 wpp(Z 0) A 

skip D~JTQIA~ Q 
skip 

F: G 
Composition 

Simple Assignment 
Y .= c 

______ ~~ 

Strict Indexed Assignment 

W P P R  WPP(G7 e>> 
DefW hS D&Q[E/xI.) hs Q[E/xl 

, LetAtl, ..., tHEl be a hc t ion  identical to f, except that f(tl, ..., t,J = 
E. Then: 
wppf(tl, ..., tn) := E ,  Q )  A Def(4) hs ... hS Def(t,,) hS Def(E) hS 
DefQMtl, ..., tnHEllJ1) hs QMtl, ..., tHEllJ1 
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do y+ 
invariant cp 
bound function E 
F 

* c p  
* f  

od 

iw, CP, VI 
Pseudocode Instruction 

if DefTcp) cp l y  * DefTQ) A~ Q; 
otherwise. 

* c p  * f  otherwise. 
if DeAq) hs q * DefTQ) A~ Q; 

4. SUMMARY 
When using a computer to evaluate expressions containing partial functions care must be taken to avoid the actual 

evaluation of undefined values. For example, consider the evaluation of the expression 210 = 1 A 1 = 2. In order to 
evaluate it in a three-valued logic, we’ll rewrite it as 210 = 1 hs 1 = 2 where A~ corresponds to conjunction extended 
to symmetric and monotone function over extended Booleans, thus “undefmedY7 A~ false yields false. With respect to 
this three-valued logic, the evaluation of the above expression will produce the value false. However, even though 
the expression 210 = 1 A~ 1 = 2 has a meaning according to this three-valued logic, a computer will encounter 
difficulties if it is asked to evaluate the subexpression 210. The evaluation of 210 demonstrates an instance of a class 
of problems (i.e., evaluation of undefined values) that are encountered in attempts to use the automated realization 
of three-valued logics to model computations with partial functions. 

In the framework that we have presented in this paper, we define when a compound expression or formula with 
partial functions can be computed and when it can not be computed. We do this by providing a rigorous defmition of 
the domains of applicability of expressions and formulas. The key elements of this definition are predicates Edom 
and DeJ; together with an extension of partial functions to total functions. These provide a mechanism for rewriting 
a formula cp to cp‘. The objective of this rewriting process is to produce a formula cp‘ having the desirable property 
that it consists exclusively of total functions, while the truth-value of the formula does not depend on which 
particular total extensions of partial functions are selected. 

For example, let us consider the evaluation of the expression 210 = 1 A~ 1 = 2 in our framework. The predicates 
Edom and Def describe for what inputs the I, =, and A~ are defined. Using this domain information it can then be 
determined that DeJ(210 = 1 hs 1=2) holds. From this we conclude that all partial functions can be extended (by 
arbitrary values) to total functions and all extended logical connectors can be replaced by their classical analogs, Le., 
A~ can be replaced by A. Now, for the sake of interest, suppose I has been extended so that 210 = 1. For such an 
extension the evaluation of 210 = 1 1 = 2 will produce 1 = 1 A 1 = 2 as an intermediate result. In turn this will 
yield true A false which evaluates to false. Other extensions of I, such as 2/0 = 0 will produce the same result. Not 
surprisingly, this is the same value that resulted from the evaluation of 210 = 1 hs 1 = 2 by means of the original 
three-valued propositional logic. Note however that this expression can be evaluated within the three-valued 
propositional logic only if we supply the information that (2/0 = 1) is “undefined”. An attempt to find this by 
actually computing 210 = 1 would cause the same difficulties that we have been trying to avoid. 

Finally, we have done the following 
introduced a new notion of nonstrict explicit domains of partial functions represented within the classical first 
order predicate logic. This allowed us to model each partial functionfas a pair consisting of the nonstrict explicit 
domain offand an arbitrary total extension of$ 
provided rigorous and uniform definitions of the set-theoretical domains of expressions including partial 
functions. This domains are also represented within the classical first order predicate logic. They are constructed 
by utilizing the above pairs modeling the partial functions in the expressions; 
developed models of functions with argument lists of variable length. This is done via our nonstrict explicit 
domains. Thus such languages as C/C++ would be able to enter in the realm of program correctness proofs. 

0 provided a process for verification of Hoare triples containing partial functions which permits us to use existing 
theorem provers which were not designed to accommodate partial functions. 
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