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ABSTRACT 

A 3-D frequency domain EM modeling code has been implemented for helicopter 
electromagnetic (HEM) simulations. A vector Helmholtz formulation for the electric fields is 
employed to avoid problems associated with the first order Maxwell's equations numerically 
decoupling in the air. Additional stability is introduced by formulating the problem in terms of the 
scattered electric fields which replaces an impressed dipole source with an equivalent source that 
possesses a much smoother spatial dependence and is easier to model. In order to compute this 
equivalent source, a primary field arising from dipole sources in a whole space must be calculated 
where ever the conductivity is different than that of the background. 

The Helmholtz equation is approximated using finite differences on a staggered grid. After 
finite differencing, a complex-symmetric matrix system of equations is assembled and 
preconditioned using Jacobi scaling before it is solved using the quasi-minimum residual (QMR) 
method. In order to both speed up the solution and allow for larger, more realistic models to be 
simulated, the scheme has been modified to run on massively parallel architectures. The solution 
has been compared against other 1-D and 3-D numerical models and is found to produce results in 
good agreement. The versatility of the scheme is demonstrated by simulating a survey over a salt 
water intrusion zone in the Florida Everglades. 

INTRODUCTION 

With the increasing use of helicopter electromagnetic (HEM) methods for mapping 
hazardous waste sites comes the need for more rigorous forms of interpretation. Models of 
isolated targets such as buried plate or spheres embedded in layered half spaces (Palacky and West, 
1991) are useful only for simple interpretation. The advances made over the last decade with three- 
dimensional (3-D) integral equation (E) solutions ( Tripp and Hohmann, 1984; Newman et al., 
1986 and Xiong, 1992) has allowed the relatively quick calculation of more generally shaped 3-D 
bodies located in a layered media. Unfortunately the solution time for an integral equation scheme 
goes as order 27N3, where N is the number of cells representing the structure. Thus IE solutions 
are only practical for compact bodies. To efficiently model the response of realistic 2-D and 3-D 
earth structures in the presence of surface topography, differential equation (DE) solutions to 
Maxwell's equations must be employed. 

Even with the ability to model general structures using DE methods, the calculation of 
HEM responses on traditional serial computers is limited. This is due to the fact that in an airborne 
survey the source is constantly moving and the data are collected at several frequencies. Because 
each new source position and frequency requires a new forward model to be calculated, the 
simulation of even only a small part of an airborne survey may require the solution of tens, 
hundreds or even thousands of forward models. To partially overcome this limitation more 
powerful massively parallel computers can be employed. This allows us to simulate airborne EM 
data that would take a few days or longer in a matter of a few hours or even minutes, thus 
minimixing the turn around time for interpretation. 

In this paper we will show how to simulate HEM responses to geologic structure using the 
method of finite differences (FiD) on massively parallel computers. First the theoretical basis of our 
FD-DE solution will be developed. Next the methods employed to numerically solve the FD 
problem will briefly be examined. Checks on the solution will then be presented for a simple half- 
space and a compact 3-D target. Finally the capability of the new modeling approach is realized 
with the simulation of an airborne survey over a sea water intrusion site in Florida. 
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THEORETICAL DEVELOPMENT 

The FD solution that we have developed for computing HEM responses on serial 
computers is outlined in Alumbaugh and Newman (1994). However, for completeness we have 
included a brief description of its development here. 

The HEM responses we are interested in simulating require that a magnetic dipole source is 
located in close proximity to the receiver. This severely complicates matters for the finite difference 
solution of the total field because the fields in the vicinity of the source are rapidly varying. If too 
coarse a mesh is used, numerical differencing at the receiver will be prone to inaccuracies. On the 
other hand, employing a very fme grid near the source and receiver limits the size of the model to 
be calculated due to storage overhead. To avoid these problems, we have chosen to work with the 
scattered field versions of Maxwell's equations which have the form 

V x Hs = (CT + ia)Es + [ ( CT - C T ~ )  + io( E - ep)]EP. (2) 

In these equations Es,E,, and Et are the scattered, primary and total electric fields, respectively 
(Et= E,+ Es), H,,H,, and Ht are the associated magnetic fields with Ht= H,+ Hs, o is the 
operating frequency in radians, i = f i ,  and CT,E, and p are the electric conductivity, electric 
permittivity and magnetic permeability of the medium, respectively, and the subscript 'p' denotes 
the background or primary value. Note that the terms at the end of each of these equations 
( (p - pp)Hp and CT - CT + io E - E EP) are "equivalent source" terms which involve the 
analytic calculation of the primary electric and magnetic fields that would exist in a whole space of 
uniform conductivity wherever the properties of the medium are different from that of the 
background, The boundary conditions employed are Dirichlet conditions, Le., the tangential 
component of Es is set to zero on the grid boundary. After the scattered fields are determined the 
total fields are calculated by simply adding the scattered fields to the primary fields. 

When both the source and receiver are buried deep within the earth, Newman (1995) has 
demonstrated that equations (1) and (2) can be solved efficiently for the electric and magnetic fields 
using iterative Krylov, or more specifically, conjugate gradient methods. However for those 
models which involve the solution of the fieids in the air, it has been our experience that the 
solution of these first order equations is either slowly or non convergent. This is due to the fact that 
in the air the conductivity, 0, is practically zero. Thus the first term on the right hand side of 
equation 2 is very small and the equations numerically decouple. To alleviate this problem we take 
the curl of equation (l), devide it by p which allows us to more easily account for variations in the 
magnetic permeability, and then substitute the resulting equation in (2) to arrive at a vector 
Helmholtz equation for the electric field; 

[( P) ( PI1 

V x -V 1 x Es = -io(o + i a ) E s  - ~.[(CT - bP) + io(& - E~)]E, - ioV x [ (y p-pP ) H .]. (3) 
c1 

Solution of this equation with Krylov methods is far more efficient than solving equations (1) and 
(2) simultaneously in the presence of air. 

NUMERICAL SOLUTION 

The scattered electric and magnetic fields are assigned to each cell using the staggered grid 
scheme developed by Yee (1966). Following Wang and Hohmann (1993), we have assigned the 
electric fields to the edges of the cell and the magnetic field to its faces. This yields a finite 
difference stencil for the solution of the electric field Helmholtz equation as shown in Figure 1. 
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Thus for node (i,j,k), the x, y and z components of electric field are sampled at (i+l/2,j,k), 
(i,j+l/2,k) and (i,j,k+1/2), respectively. Reflections off the boundaries are mitigated by grid 
stretching, i.e. employing larger cells towards the edges of the mesh. 

Figure 1 : The staggered grid for the electric field Helmholtz equation. The 
arrows along the cell edges represent the unknown electric fields needed to 
form the equations for Ex, Ey and Ez at node (i,j,k), with the open arrows 
representing the unknowns needed to form only the equation for Ex. The 
cell associated with node (i,j,k) contains the corresponding material 
properties o,&,and p. 

The above formulation requires that the conductivity, dielectric permittivity and magnetic 
permeability be computed halfway along a given cell edge in Figure 1. Wang and Hohmann (1993) 
showed that an average conductivity (and pennitivity) can be evaluated by tracing out a line integral 
of the magnetic field centered on the midpoint of the cell edge. The resulting conductivity is simply 
a weighted sum of conductivities of the four adjoining cells. Similarly the average magnetic 
permeability can be derived by enforcing the continuity of tangential B field across the cell 
interface. The resulting average is the inverse of the weighted permeability sum for two adjacent 
cells. 

After finite differencing Maxwell's equations for the scattered fields, a linear system is 
assembled, 

Af=s, (4) 

where f is the unknown vector for the scattered electric field and s is the equivalent source vector. 
The matrix A is sparse with dimension NxN, and it is shown in Smith (1992) how to choose the 
appropriate scaling factors such that A becomes complex symmetric. 

The solution vector can be obtained using either a bi-conjugate gradient (BICG) or quasi- 
minimum residual (QMR) (Freund, 1992) technique to iteratively determine the solution within a 
predetermined error level. These and other Krylov subspace methods effectively find a solution 
vector which minimizes the difference between the two sides of equation (4) in a least squares 
sense, Le., we wish to minimize some form of 

m = llAf - s 112. (5). 

We have chosen to focus on these two Krylov methods as for the type of problem being 
considered here, they have been determined by Freund to offer the best tradeoff between accuracy 
and speed. We have extensively tested both routines and determined that although the QMR routine 
may take slightly longer than the BICG method, it converges in a more stable manner. Thus all 
results presented here have employed this scheme. 



Krylov methods are iterative and for these methods to work effectively, it is often 
necessary to precondition the system. This process reduces the condition number of the matrix and 
accelerates convergence (Axelsson and Barker, 1984, pp 28-30). Although we have implemented 
elaborate preconditioners such as polynomial and incomplete Cholesky decompositions, we have 
found that simple diagonal or Jacobi scaling ( Heroux, Vu and Yang, 1991) provides the quickest 
solution convergence for our problem even though it may take more iterations. The pre-conditioned 
system provides for a modified matrix which is st i l l  complex symmetric, but with unity on its main 
diagonal. 

Once the scaled version of equation 4 is solved to some desired error, the scaled fields are 
rescaled back to the true values, after which the fields at the receivers must be calculated. The 
electric field at the receivers is simply calculated using bi-linear interpolation while the magnetic 
field is calculated by fxst taking a numerical approximation of the curl of the electric field on the 
grid surrounding the receiver and then interpolating the result to the point of interest. (Note: for 
each frequency both A and s must be reformulated, while for different source positions only s 
must be recalculated.) 

As mentioned in the introduction, the simulation of an airborne survey requires the forward 
solution for many different source and receiver combinations which can be very time consuming 
on traditional computers. Therefor the original serial version of the code has been modified to run 
on massively parallel MIMD (multiple instruction multiple data) machines which can have 
thousands of processors. These parallel machines are employed by breaking the model up such that 
each individual processor is in charge of a subset of the model. Because each processor needs only 
to make the necessary calculations for this subset, and because all of the processors are making the 
their appropriate calculations simultaneously, as the number of processors is increased the solution 
time is reduced by a factor which is approximately equal to the number employed. To this point 
the code has been implemented on two different MIMD machines available at Sandia National 
Laboratories; the 1840 processor Intel Paragon and 1024 processor nCUBE 2. Comparisons 
against an IBM RS6000 590 workstation has shown a decrease in run times of up to two orders of 
magnitude. Thus the solution of large, complicated models which were once intractable are now 
possible. 

VERIFICATION OF SOLUTION 

To validate the solution, we compare results calculated with it to two other solutions. The 
fxst is a semi-analytical half-space solution while the second is a 3-D integral equation solution. In 
both cases we will employ vertical magnetic dipole sources in the air and measure both the 'x' and 
'z' directed magnetic fields. 

We begin by considering a 100 Qm half-space model of variable magnetic permeability. In 
the first case the permeability is set equal to h, while in the second case a permeability of 5 * ~  is 
employed. To achieve the 3-D results, the earth and air are divided into 151,424 cells using a 52 x 
52 x 56 grid. This yields a total of approximately 4.5~105 field unknowns to be solved for. To 
avoid reflections off the mesh boundaries the grid is 580m in length in the x and y directions, and 
640m in depth. The source is situated at x=y=z=29Om which is centered in x and y and located 
20m in the air above the earth's surface. The frequencies of operation are 0.9,7.2 and 56 kHz. 
Eight receivers are in direct line with the transmitter and are positioned at the same height above 
the earth's surface. The receivers are each separated by 5m with the first receiver situated 5m from 
the source. 

In Figure 2, the 3-D magnetic-field half-space responses arising from the VMD source are 
plotted against the semi-analytic Hankel transform solution given in Ward and Hohmann (1988, 
pp. 208-228). Figure 2a shows the results when the magnetic permeability of the half space is set 
to k, while in Figure 2b the results for a half space with permeability of 5*k are plotted. For 
both of the higher frequencies, the comparisons between the 1-D responses and 3-D FD responses 
are excellent; even those points where the fields change signs achieve similar values. The notable 
exception is real component of the vertical magnetic field at 900 Hz. We are not able to explain this 
discrepancy, however it may be do to round-off errors and the small magnitude of this component. 
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Figure 2 : Comparison of the 3-D results to a 1-D solution. The scattered 
fields are plotted in parts-per-million of the free space field. a) Comparison 
for p=h. b) Comparison for p=5*h. 

In this case as well as all following examples we arbitrarily chose a residual error (equation 
4 normalized by Ils112 ) of 10-8 to designate the point at which the solution had converged to an 
acceptable accuracy. Table 1 shows the number of iterations, and the cpu time required to reduce 
the squared error to this level for two different machines: 1) an IBM RS-6OOO 590 which is a high 
end workstation, and 2) the 1840 processor Intel Paragon. Due to the relatively small size of the 
problem, only 125 processors were employed on the Paragon. However, even though a limited 
number of processors are employed, the Paragon is still 10 times faster the IBM. Thus the 
necessity of using this type of machine to model airborne surveys where thousands of source 
positions may be employed is evident. The second thing to notice is that as the frequency is 
increased, the solution converges faster. We have found this to be true until the MHz range is 
reached at which point the dielectric properties become a factor. 

In our next check, we simulate the HEM response of a 3-D body using the 3-D FD code 
and compare the results to those of an lE solution (Newman et al., 1986). Consider the 3-D model 
shown in Figure 3 which is designed to crudely simulate a buried pit which has been filled with a 
conductive material such as brine. The body has a resistivity of 1 Qm and is embedded in a 100 
Qm half-space. Its dimensions are 4m in depth extent, 1Om wide with a strike length of 20 m, and 
it is buried at 2 m depth. Again the flight line is 20 m above the earth surface, and a VMD source is 
used to excite the body at 7.2 and 56 kHz. The transmitter and receiver are separated by a fmed 
distance of 8 m, with the receiver leading the transmitter to the right. Results have been plotted 



halfway between the transmitter and the receiver along the flight line where this line bisects the 
body. 

Half Space p.=h 
Frequency IBM RS600 590 Intel Paragon 

(kHz) Iteration Time (s) Iteration Time (s) 
0.9 1009 1282 1039 129 
7.2 605 770 605 - 75 
56 586 745 587 73 

Half Space p . = 5 * ~  
IBM RS600 590 Intel Paragon 

Iteration Time (s) Iteration Time (s) 
1150 1465 1167 42 
651 828 660 82 
346 441 342 145 
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Figure 3 : The 3-D model employed to compare the finite difference and 
integral equation solutions. 

Comparisons between the vertical and horizontal magnetic fields for the 3-D model shown 
in Figure 3 (the body is centered at 0 m along the profile) are shown in Figure 4. Here as in Figure 
2 the free space response of the transmitter has been removed and the remaining components 
plotted in parts per million of this primary field (PPM). Overall the comparisons of the fields are 
very good, especially in the vertical components where the error between the two solutions is 
approximately 1.3% in amplitude for the 56kHz simulation, and 2.4% for the 7.2 kHz results. 
The results do not compare quite as well for the horizontal components with a maximum error of 
7.3% for the 56- simulation and 9.3% at 7.2kHz. However, due to the order of magnitude 
better comparisons that were achieved for the half-space model in Figure 2, and the excellent 
comparison for the vertical fields, we feel that the finite difference code is well within the accuracy 
limits needed for modeling the airborne response of environmental targets. 
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Figure 4 : Comparison of the 3-D integral equation (E) and finite difference 
(FD) solutions. 

SIMULATION OF THE FLORIDA EVERGLADES SURVEY 

In order to determine how far inland sea water has intruded into the Florida Everglades, the 
United States Geological Survey and DIGHEM flew a HEM survey over the region in the summer 
of 1994 as part of the Department of Interior's "South Florida Ecosystem Initiative". Figure 5 
shows the 7.2 kHz and 0.9 kHz coplanar data in terms of apparent resistivity that were collected 
across the fresh water-salt water contact. In this area the flight line was essentially perpendicular to 
this contact. Notice that the 7.2 lcHz data produce higher apparent resistivities compared to the 0.9 
lcHz data indicating the subsurface becomes more conductive with depth. Although 1-D inversions 
along the line would be able to give a good estimate of the surface and deeper conductivities, it 
would not accurately estimate the 3-D nature of the interface and thus, the 3-D finite difference 
code was employed. 

Figure 7 shows a x-z crossection through the model at the central position in y. This 1.6 
km section corresponds to the same section for which the data have been plotted. The model was 
divided into 208 x 36 x 66 cells which yields a total of 1.48~106 unknowns to solve for. Notice 
that this is much to large of a.model to solve for on our TBM machine; it can handle a maximum of 
approximately 6x105 unknowns. A total of 27 source-receiver positions were employed at 60m 
intervals and a fine discretization has been employed at these locations to accurately calculate the 
scattered fields. In between these positions a coarser discretization has been employed to reduce 
the size of the model. The resistivities in the subsurface range from 140 Qm on the left hand side 
of the model to 10 s;Zm at depth. It must be pointed out that because of the limited amount of data 
employed in this simulation, this model is non-unique. Thus we are not trying to fit the data 
exactly, but rather design a simple model which reproduces the general features observed in the 
data. 
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Figure 5 : A portion of the data collected on flight line 10070 of the Florida 
Everglades HEM survey. 

Figure 6 shows the results from the simulation, which took approximately 3 hours to run 
on the Paragon with 384 processors. Notice that the 0.9 lcHz results fit the data in Figure 5 very 
well. The 7.2 kF3[z data however, seems to produce apparent resistivities that are a little high from 
600 m to 1200 m. This seems to indicate that in this region, the near surface of the model may be 
too resistive. However, we found the shapes of these curves to be very sensitive to the dip of the 
interface as well as the thickness of the surficial layers. Thus we feel that this model gives a good 
general representation of the geometry that is producing the results measured at this location. 
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Figure 6 : Results from the Everglades simulation shown in Figure 7. 

CONCLUDING REMARKS 

A 3-D frequency domain EM modeling code has been implemented for HEM simulations. 
The Helmholtz equation for the electric fields is approximated using finite differences on a 
staggered grid and to avoid numerical instabilities, the problem is formulated in terms of the 
scattered rather than total electric fields. This definition allows us to replaced the impressed source 
with an equivalent source which possesses a much smoother spatial dependence. After finite 
differencing, a complex-symmetric matrix system of equations is assembled and scaled before it is 
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Figure 7 : Central portion of the model employed to simulate flight line 10070 of the Florida Everglades survey. The model 
stretches from 0 to 2000 m in the x direction, 0 to 440 m in the y direction and 0 to 630 m in the z direction. The flight line is 
located at y=220m, and the &-earth interface is at z=270m. The vertical exaggeration is 4 times the horizontal. The Rs  desigate 
the receiver position with the sources located 8m to the left. 
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solved using the QMR method. We have employed the QMR method since it was judged to be one 
of the best available Krylov subspace method for solving matrix systems that are complex 
symmetric. The modeling code has been compared against a variety of 1-D and 3-D numerical 
models and was found to produce results in that are in good agreement. Implementation on a 
massively parallel computer architecture allows us to simulate HEM responses that are 
computationally intractable on normal serial computers. This added versatility has been 
demonstrated with a simulation of a survey conducted in the Florida everglades. 

In the near future we will be applying the code to more complicated surveys, such as the one 
conducted at Oak Ridge National Laboratory in Tennessee. In these cases structures such as 
dipping layers and the effects of topography will be simulated in order to help in the interpretation. 
In the long range we plan to employ this code as the forward solver within a 3-D inversion routine. 
This further modification will help in the interpreption of airborne data in that it will remove some 
of the problems associated with simpler inversion schemes such as 1-D irversions. 

ACKNOWLEDGMENTS 

We express our thanks to Ki Ha Lee of Lawrence Berkeley Laboratory for the 1-D layered- 
earth code used in our comparisons. Also we would like to thank the geophysics branch of the 
USGS for providing the Florida Everglades data. This work was performed at Sandia National 
Laboratories, which is operated for the U.S. Department of Energy (DOE). Funding for this work 
was provided by DOES office of Basic Energy Sciences, Division of Engineering and Geoscience 
under contract DE-ACO4-94AL85OOO. 

REFERENCES 

Alumbaugh, D. L., and Newman, G. A., 1994, Fast frequency domain electromagnetic modeling 
using finite differences: 64th Ann. Intemat. Mtg., SOC. Explor. Geophys., Expanded 
Abstracts, 369-373. 

Ashby, S.F., Manteuffel, T.A. and Saylor, P.E., 1990, A taxonomy for conjugate gradient 
methods: SIAM J. Numer. Anal., 27, 1542-1568. 

Axelsson, O., and Barker, V.A., 1984, Finite element solution of boundary value problems: 
Theory and Computation, Academic Press Inc. 

Freund, R., 1992, Conjugate gradient type methods for linear systems with complex symmetric 
coefficient matrices: SLAM J. Sci. Statist. Comput., 13,425-448. 

Heroux, M. A., Vu, P. and Yang C., 1991, A parallel preconditioned conjugate gradient package 
for solving sparse linear systems on a Cray Y-MP: Applied Numerical Mathematics, 8,93- 
115. 

Newman, G. A., Hohmann, G. W. and Anderson, W. L., 1986, Transient electromagnetic 
response of a three-dimensional body in a layered earth: Geophysics, 51, 1608-1627. 

Newman, G. A., 1995, Cross well electromagnetic inversion using integral and differential 
equations: Geophysics, May-June issue (in press). 

Palacky, G. 3. and West, G. F., 1991, Airborne electromagnetic methods: in Electromagnetic 
Methods in Applied Geophysics V2., part b Application:, Nabighian, M. N., Ed., 81 1-879 

Smith, T. J., 1992, Conservative modeling of 3-D electromagnetic fields: International Association 
of Geomagnetism and Aeronomy, 1 lth Workshop on Electromagnetic Induction in the Earth, 
Wellington, New Zealand, Meeting Abstracts. 

Tripp, A.C., and Hohmann, G. W., 1984, Block diagonalization of the electromagnetic 
impedance matrix of a symmetric buried body using group theory: Inst. of Electr. and Electron. 
Eng., Trans. Geoscience and Remote Sensing, GE-22,62-69. 

Wang T. and Hohmann, G. W., 1993, A finite difference time-domain solution for three- 
dimensional electromagnetic modeling: Geophysics, 58,797-809. 

Ward, S.H., and Hohmann, G.W., Electromagnetic theory for geophysical applications: in 
Electromagnetic Methods in Applied Geophysics: Vl., Theory, Nabighian, M. N., Ed., 130- 
311. 

Xiong, 2.: 1992, Electromagnetic modeling of 3-D structures by the method of system iteration 
using mtegral equations: Geophysics, 57, 1556-1561. 

Yee, K. S., 1966, Numerical solution of initial boundary problems involving Maxwell's equations 
in isotropic media: E E E  Trans. Ant. Prop, AP-14,302-309. 



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employ&, makes any warranty, express or implied, or assumes any lega! liability or responsi- 
bility for the accuracy, completeness. or usefulness of any information, apparatus, product, or 
process disclosed. or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise docs not necessarily constitute or imply its ,endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

I 


