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2 Alpha Loss in the 452 Detector 

The DT alpha loss to  the detector 45' below the outboard midplane is 
shown vs. plasma current in Fig. 3 for the same plasmas of Fig. 1. In 
contrast to  the results at 902, the neutron-normalized alpha loss at this 
location does not follow the predicted first-orbit alpha loss vs. plasma 
current. This behavior is not due to any "collective" alpha effect, since the 
alpha loss at 45' is independent on the DT neutron rate at a fixed current, 
and since a similar current dependence is obtained for DD fusion products. 
Therefore this behavior is a "single particle" effect, possibly due to  
stochastic toroidal field (TF) ripple diffusion, such as analyzed previously 
for the midplane (209 detector in DDES]. 

However, calculations of stochastic TF ripple diffusion in TFTR done 
using the collisionless bounce-averaged MAPLOS coder51 predict that the 
collisionless TF ripple loss should occur at poloidal angles 130' below the 
outboard midplane, so can not explain the non-first-orbit loss component at 
45? in Fig. 3.  The collisional guiding center code ORBIT predicts higher TF 
ripple loss than MAPLOS, with a global alpha loss at Ip=1.8 MA about a 
factor of 3 above the first-orbit loss, but also predicts that this TF-ripple- 
induced loss should be 130g below the outboard midplane[6]. Thus neither 
code is presently able to  explain the trend shown in Fig. 3. 

, 

3. Time Dependence of Alpha Loss 

The time dependence of the alpha loss in the 90' detector follows 
closely the time dependence of the DT neutron rate during and after NBI, as 
expected from first-orbit loss. For the 45' detector there is a gradual -50% 
increase in the alpha loss rate per neutron over =1 sec during NBI, but no 
large increase after NBI. This may be consistent with the relatively rapid 
process of stocbastic TF ripple diffusion (510 msec), but not with a 
significant collisional loss over the timescale of alpha thermalization (20.6 
sec). There was also no significant change in the gyroradius distribution 
after NBI in either detector, such as might be calculated from a delayed loss 
process. 

The alpha loss in the DT discharges described above was not visibly 
affected by coherent MHD activity. The clearest examples of MHD-induced 
alpha loss have occurred during major and minor disruptions, as seen 
previously for DD fusion products[l]. Fig. 4 shows the alpha loss in the 90' 
detector increasing by a factor of =lo0 above the first-orbit loss level just 
before a major disruption. This pre-disruptive alpha loss could be a 
problem for ITER, since the alphas may be lost at different places than the 
thermal plasma. No DT alpha particle loss associated with Alfven waves, 
such as the TAE mode, has yet been seen[7]. 
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r Alpha particle loss to  the wall of TFTR has been measured during 
the initial TFTR DT run period. These measurements were made with the 
same lost alpha scintillator detector system used previously for DD hsion 
products[&except for a switch of the scintillator material from zinc sulfide 
(P31) to  yttrium aluminate (P46) t o  i ure a linear response up to the 
maximum alpha flux expected in DT fl The alpha loss signals in DT are 
=lo0 times larger than the DD fusion product loss signals, as expected from 
the neutron rates and the relative sensitivity to DT vs. DD fusion products. 

1. Alpha Loss in the Wo Detector 

The DT alpha loss at the vessel bottom 90' below the outboard 
midplane is generally consistent with the calculated first-orbit loss of 3.5 
MeV alphas. This is illustrated in Fig. 1, which shows the total alpha loss 
rate to the 909 detector normalized to the DT neutron rate as a function of 
plasma current (R=2.52 m). When the data at  Ip=0.6 M4 are normalized to 
the calculated first-orbit loss to  this detector, the data at Ip=l.O-2.5 MA fit 
the calculated first-orbit loss t o  within the joint uncertainties in  
measurement and modeling (=30-40%). The absolute value of the alpha loss 
at  90' in DT is also consistent with this model, at  least to  within the factor- 
of-two uncertainty of an absolute detector calibration. The alpha loss per 
neutron at  Ip=2.0 MA does not change more than =20% over the entire 
range of DT neutron rates from 2% tritium to 50/50 DT, Le. over =0.05- 
2.2~1018 neutrons/sec, indicating the absence of any collective alpha. loss 
mechanism in these plasmas with .f3 ,(0)<0.25%. 

The measured pitch angle and gyroradius distributions for DT alpha 
loss in the 90' detector are shown in Fig. 2 for a discharge at Ip=2.5 MA 
with 7.4 MW of fusion power. The distributions in DT are consistent with 
the expected alpha particle first-orbit loss, the peak of which is calculated to 
be at  the "x" in the figure. Also shown in Fig. 2 is a DD discharge with the 
same plasma parameters and a fairly similar loss pattern, as expected for 
DD fusion products, but with a small "delayed loss" feature similar to that 
previously observed in DD[3]. The apparent absence of this delayed loss in 
the 90' detector in DT is at least qualitatively consistent with the hypothesis 
that in DD it was due to classical collisional pitch angle scattering of the 1 
MeV tritons, which is much reduced for 3.5 MeV alphas[l,4]. 
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4. Discussion 

The DT alpha loss detected 90e below the outbaard midplane is 
consistent with the expected first-orbit loss, while the alpha loss detected 45' 
below the outboard midplane is significantly higher than the expected first- 
orbit loss. In all cases the relative alpha loss per neutron does not vary 
significantly with the DT neutron rate, so the non-first orbit losses at 45' are 
not due to  any collective alpha particle effect. 

Somewhat similar non-first orbit loss was previously described for 
DD fusion products in the 20' detector, and was explained in terms of 
collisionless stochastic TF ripple diffusion[5]. The recent guiding center 
code calculations of collisional TF ripple-induced alpha loss have shown a 
significant collisional alpha loss effect[6], but have not yet explained the 
increased alpha loss seen at 45'. Such calculations have predicted the loss 
of neutral beam ion loss in JT-60U[8], and will be continued with improved 
modeling of the TFTR magnetic fields and better statistics. Fokker-Planck 
calculations are also in progress to  model the collisional loss into these 
detectorsE91. 

So far there have been no signs of any alpha particle loss associated 
specifically with full DT operation, such as might have been expected from 
collective alpha particle instabilities. Experiments designed to stimulate 
such instabilities are reported elsewhere[ 103. 
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Fig. 1: The total alpha particle loss 90p below the midplane 
vs. Ip. The vertical axis is the calculated alpha loss fraction 
into this detector, e.g. =lolo alphaskec for an Ip= 2.0 MA 
discharge with 2x1 0l8 neutronskec. 
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Fig. 3: The total alpha parlicle loss 4 9  below the midplane vs 
Ip. Since a similar non-first orbii loss vs. current is seen in DD. 
this is a "single particle' and not a "collective" alpha effect. 
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Fig. 2: Pitch angle vs. gyroradius distributions of 
alpha loss at lp=2.5 MA for similar DT and DD 
discharges at R=2.52 rn. In DT the pattern is 
consistent with first-orbit loss when the instrumental 
broadening effects are included. The delayed loss 
in DD which is not seen in DT is most likely due to 
collisional losses of 7 MeV tritons in DD. 
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Fig. 4: Time dependence of the 
DT alpha loss at 90' during a high 
power disruption at lp=2.5 MA. 
There is a factor of =lo0 increase 
in the alpha loss a few rnsec 
before the start of the plasma 
current decay. The alpha loss at 
90' was larger than the loss in the 
other detectors. 
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