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Abstract 

A new foil deposition alpha collector sample probe has been developed for TFTRs 
D-T'phase. D-T fusion produced alpha particles escaping from the plasma are implanted in 
nickel foils located in a series of collimating ports on the detector. The nickel foils are 
removed from the tokamak after exposure to one or more plasma discharges and analyzed 
for helium content. This detector is intended to provide improved alpha particle energy 
resolution and pitch angle coverage over existing lost alpha detectors, and to provide an 
absolutely calibrated cross-check with these detectors. The ability to resolve between 
separate energy components of: alpha particle loss is estimated to be = 20%. 
pitch angle coverage is provided for by 8 channels having an acceptance range of = 53" per 
channel. These detectors will be useful in characterizing classical and anomalous alpha 
losses and any collective alpha instabilities that may be excited during the D-T campaign of 
TFTR. 

A full 360" of 
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I. Introduction 

TFlX’s D-T phase now offers the first-possibility of conducting a systematic study 
of alpha particle physics in a tokamak. A crucial aspect of alpha particle physics is the 
fraction of alphas lost to the first wall. In the design of ITER and future reactors it  will be 
necessary to be able to predict the alpha particle losses to the first wall and divertor plates, 
since even a few percent loss may cause damage due to localized heating. Studies of alpha 
particle loss mechanisms could also prove invaluable in developing much needed methods 
of He ash removal and burn control. 

The existing lost alpha scintillator detectors [ 1,2], which have been operating on 
TFTR for several years, are capable of detecting D-D fusion products as well as D-T alpha 
particles. Their choice of design has resulted in relatively good pitch angle resolution at the 
expense of gyroradius resolution, making it difficult to obtain an accurate energy 
dismbution of detected particles. At best, i t  may be possible to resolve between the first 
orbit alpha loss component at 3.5 MeV and a second component of comparable loss 
strength occurring due to a different loss mechanism at work simultaneously at an energy at 
least 50% lower. The need for better energy resolution prompted the design of a new 
detector using a different detection method that could improve upon energy resolution and 
provide other advantages over the existing detectors. 

The new lost alpha collector probe is based on the foil deposition technique 
originally proposed by Lang!ey [31 and a similar method attempted on JET to determine the 
energy dismbution of 3He ions accelerated by ICRH 14.51. As depicted schematically in 
Fig. 1, alpha particles can enter any one of a total of 16 collimating ports that are separated 
into two rows on the cylindrical probe head located at the bottom of the vessel. Each port 
only accepts particles within a particular range of pitch angles. At the back of each port is a 
stack of nickel foils into which the alpha particles implant and remain immobile as long as 
the foils remain below a critical temperature. Once the foils are exposed to the alpha flux of 
one or more discharges they are removed from the moveable probe and analyzed for He 
content. The sample analysis consists of melting the foils one at a time in a closed vacuum 
chamber, thus releasing the He, and measuring the partial pressure of He with a Residual 
Gas Analyzer (RGA). The alpha energy spectrum is deduced by measuring the depth 
dismbution of He in the Ni foil stack. 
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11. Alpha Collector Probe 

A. Design Considerations 

The choice of nickel as the implantation foil was based on the immobile character of 
He in Ni at temperatures below = 400' C. A 10 x 10 cm sheet of 1 pm Ni foil is folded to 
form 10 layers that are then wrapped around a cylindrical graphite spool that is inserted into 
the carbon-fiber-composite probe head. 

at various energies [6]. The range of 3.52 MeV birth energy alpha particles in Ni is about 6 
pm with a standard deviation, or straggling, of about 0.2 pm. Removing the first foil layer 
prior to analysis helps to limit tritium contamination and results in a lower energy limit of 
about 0.5 MeV. The colliniating effect of the port results in most particles implanting into 
the foils at near normal incidence. For collimating ports of equal depth and diameter whose 
dimensions are much less than the gyroradius of an alpha, the depth distributions of Fig. 2 
are broadened in the direction of reduced depth by = 10% due to alphas implanting at less 
than normal incidence. 

Fig. 2 shows the depth distributions of alphas implanted at normal incidence in Ni 

The choice of 1 pm N i  foils arranged in a stack, and collimating ports of equal 
depth and diameter should result in the ability to resolve between the first orbit alpha loss at 
3.52 MeV, which should be implanted in the sixth and seventh layers of the foil stack, and 
other losses at energies below about 2.8 MeV. which would be implanted in the fifth and 
shallower layers. This results in  an energy resolution of about IO%, a significant 
improvement over the = 50% resolution of the scintillator detectors. Further improvement 
in the energy resolution may be possible by using thinner Xi foils and higher degrees of 
collimation. The use of 1/4 mm Ni foils and deeper collimating ports may allow energy 
resolutions as good as = 5%. 

shell whose wall thickness determines the depth of the ports. In the initial design of this 
probe the collimating pons have been given an equal diameter and depth of 1/4" (0.635 cm) 
which is much less than the alpha birth energy gyroradius of about 5 cm. The pitch angle 
acceptance range, as determined by the range of pitch angles that are capable of smking the 
center of the back of the port, is about 53". A spacing of 45" between ports allows 
complete pitch angle coverage whereas the scintillator detectors are limited to about 45' to 
85" in pitch angle. 

The collimating ports are cylindrical holes drilled into the probe head, a cylindrical 
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B. Preliminary Results and Discussion 

Three D-T exposures of the alpha collector probe have been completed. All three 
exposures were performed in 2.45 m plasmas with the probe tip inserted 1.9 cm inside the 
RF limiter radius of 99 cm. The first set of foils were exposed to two identical D-T 
discharges conducted at a plasma current of 0.6 MA and a neutral beam power of 5 MW 
using one co-going (in relation.to the plasma current) tritium beam and one counter-going 
deuterium beam. This exposure resulted in the unexpected melting of the Ni foils in most 
of the collimating ports. I t  is suspected that neutral beam ion loss was responsible far the 
overheating of the foils. 

To reduce the neutral beam ion loss in order to avoid heat damage to the foils, the 
second exposure was conducted at an increased plasma current of 1.8 M A  and used only 
co-going beams still at a power of 5 MW with one tritium and one deuterium beam. The 
effect of the higher plasma current is to reduce the banana width of trapped beam ions 
allowing more of them to be confined. The use of co-going beams also reduces beam ion 
loss since the beam particles are ionized on the co-going leg of their banana orbits and 
move in closer to the center of the plasma on the subsequent counter-going leg allowing 
more of them to be confined. These two modifications resulted in virtually no overheating 
of the foils with the exception of two ports which were facing directly into the magnetic 
field and presumably were exposed to excessive thermal plasma flux. 

beam power was increased to 10 MW using two deuterium and two tritium beams. Again, 
only co-going beams were used to reduce the beam ion loss. Although these foils have not 
been removed from the probe, the foils in four outboard facing (Le. away from the center 
line of the torus) and four inboard Facing ports are visible through windows in the probe 
chamber when the probe is fully retracted. No overheating of the foils in these ports is 
evident. 

The foils from the first two exposures have been removed from the probe head. 

For the third exposure the plasma current was lowered to 1.0 MA and the neutral 

Although, due to overheating, the first exposure will not provide useful data in terms of a 
depth profile of He, the resulting heating pattern has provided useful information. The fact 
that the heat damage occurred in ports oriented nearly perpendicular to the toroidal direction 
implies that the damage was caused by high energy ions. This is because a large 
gyroradius is necessary to avoid collimation at these large pitch angles. The maximum 
alpha heat flux to the foil stack in the collimating port oriented 75' outboard of the toroidal 
direction for this exposure as predicted by the orbit following code ORBIT 171 is = 300 
mW/cm2. The heat flux necessary to melt the Xi foils is > 100 Wicm2. Thus the expected 
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alpha heating is nearly three orders of magnitude too smail to cause any melting. The peak 
D-T neutron rate for these shots of 6 x 10l6 n/sec corresponds to a maximum alpha power 
of 34 KW. The larger NBI power of 5 MW, combined with the possibility of higher 
relative NBI ion loss to the probe due to their nonisotropic velocity distribution may 
account for the overheating of the foils. 

Their relatively large gyroradius of about 1.6 cm for 100 KeV tritons allows a large fraction 
of them to reach the foils without being separated out by collimation. Fig. 3 shows the 
fraction of ions that can reach the 75" foils without being separated out versus the 
collimating port depth. This plot was generated by a code that tracked ions backwards in 
time from an evenly spaced grid originating on the foil. A port width of 1/4" and a flat 
pitch angle dismbution were assumed and the gyrophases of the particles were incremented 
from -90" to 90°, 0' being the bottom of a gyro-orbit. The maximum nansmission is 
calculated for particles hitting the foil at the pitch angle corresponding to the orientation of 
the port. It can be seen from Fig. 3 that the original design depth of l/C7 (0.635 cm) did 
little to discriminate between alphas and the smaller gyroradius NBI tritons. By increasing 
the port depth the collimator is much more effective in discriminating between the two ion 
species. 

A new probe design has been completed which has doubled the depth of the 
collimating ports to l/2" (1.27 cm) while leaving the diameter at I/,,'. As can be seen in 
Fig. 3 this has the effect of nearly eliminating the ability of NBI ions to reach the foils in 
this 75" outboard facing port while only reducing the maximum transmission of alpha 
particles by about a factor of 2. This combined with a reduced pitch angle acceptance range 
of also = a factor of 2 results in reducing the alpha flux by only about a factor of 4 for the 
75" port when compared to the original design. This new probe head is expected to be used 
in all future exposures and should allow the use of the alpha collector in discharges with 
low plasma current and/or counter-going beams. 

NBI ions were not taken into consideration in the design of the collimating ports. 

111. Sample Analysis 

A. Apparatus and Method 

The sample analysis vacuum chamber located at the University of Toronto's Istitute 
for Aerospace Studies is shown in Fig. 4. The system is pumped down and baked at = 
150" C resulting in a base pressure of = torr. This bake is conducted at sufficiently 
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low temperature to ensure that the implanted He remains immobile in the Ni. As the 
analysis is carried out in a closed system, the titanium sublimator and the liquid nitrogen 
cold finger are used to remove gasses other than He, maintaining vacuum = 10-8 torr. 

Each of ten tantalum foil strips is folded in half to form a pocket which holds a 
piece of Ni foil corresponding to a specific collimating port and layer depth. Attached to 
one side of each tantalum holder is an elecmcal lead that penetrates the vacuum vessel 
through a vacuum sealed electrical feedthrough. The other side of each holder is grounded 
to the vessel. One at a time, a current of = 25 A is passed through each tantalum holder, 
resistively heating it to > 1700' C as measured with tne optical pyrometer viewing the 
holders through a vacuum window. The Ni, with a melting point of 1453' C, quickly 
melts, releasing the implanted He to the closed vacuum system. The 4He signal of the 
RGA is then recorded by an interfaced PC. Between each foil analysis the valve is opened 
to allow the pumps to remove the He in the system from the previous sample. The RGA 
output is calibrated before and after the analysis by introducing He into the system at a 
known rate using a calibrated He leak. 

B. Absolute Calibration 

For use as a check of the absolute c:ilibration of the sample analysis. calibration 
samples have been prepared a t  Mch-llaster University using a Van de Graff accelerator. A 
monoenergetic beam of He ions accelerated to 2.5 MeV was implanted into a stack of 1 pm 
Ni foils to a total integrated fluence of 1 .O (+ 0.2) x lo1? ions. This sample was then 
analyzed using the method described above. As can be seen from Fig. 3,2.5 MeV He ions 
have a predicted penetration distance of = 4.1 pm placing them mainly in the fifth foil of the 
stack. Due to straggling, a significant portion of the He is also to be expected in the fourth 
foil. The sample analysis resulted in n total release from all the foils of 1.16 x 1013 He 
atoms giving reasonable agreement with what was implanted. The measured distribution 
indicated that = 1% of the He atoms were retained by layer 3, = 57% by layer 4, = 42% by 
layer 5, and less than the minimum sensitivity of the analysis of = 3 x 109 atoms by the 
remaining layers. Fig. 2 implies that a larger fraction of the He should have been 
concentrated in layer 5 than 4. However, a small shift of a few percent towards lower 
depth in the peak of the depth dismbution could easily account for the disparity. Additional 
calibration samples implanted at varying fluences and energies will be analyzed prior to 
analyzing samples exposed in TFTR. 
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IV. Conclusion 

A new foil deposition alpha collector probe is currently being evaluated during 
TFTR’s D-T phase to measure alpha particle losses to the first wall. Design choices have 
made improvements in energy resolution and pitch angle coverage over existing scintillator 
detectors possible. Since there are no optics nor electronics that can experience interference 
or degradation from high neutron fluxes, the foil deposition technique may prove more 
survivable than other detection methods in ITER and future D-T reactors. 
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Figure Captions 

Figure 1: Conceptual diagram of alpha collector probe head. Alpha particles enter 
collimating ports and implant into stack of ten 1 mm nickel foils. 

Figure 2: Depth distribution of He ions implanting into Ni at various energies (Trim-89). 

Figure 3: Maximum transmission fraction for particles hitting the foil stack at the pitch 
angle corresponding to the ports orientation versus port depth plotted for birth energy 
alphas and NBI mtons. Averaged over gyrophase (-p/2 to p/2) and foil surface for 75' port 
with a diameter of 114'. 

Figure 4: Schematic of sample analysis tippnr:ttus. Ni foils are melted in a small volume 
vacuum chamber one at a rime in resistively heated rantrtlum holders. Released He is 
measured using RGA to obtain depth distribution of implanted alphas in Ni. 
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