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Abstract 

Toroidal Alfven Eigenmodes are shown to be capable of inducing tipple trapping of 

high energy particles in tokamaks, causing intense localized particle loss. The effect 

has been observed in TFTR. 

PACS numbers: 52.35.Py, 52.35.Bj 

Collective alpha-driven instabilities such as the toroidicity-induced Alfven eigenmodes 

(TAE) are of concern for future tokamak devices since they can induce anomalous alpha 

losses. Previously discussed mechanisms of particle loss have consisted of induced transition 

from passing to direct-loss trapped orbits and radial diffusion produced by stochasticity in 

particle orbits caused by overlapping resonances1. In this work we point out a very effective 

loss process in devices possessing magnetic ripple wells. It differs from other forms of TAE 

induced loss in that the mechanism possesses no threshold mode amplitude. The effect has 

been observed in the Tokamak Fusion Test Reactor (TFTR), where particle fluxes intense 

enough to damage the vacuum wall were observed. 

The process is very simply understood using a simple model for the magnetic field. 

Consider a trapped particle whose banana tip is in the vicinity of a ripple well. In guiding 

center approximation the particle energy is given by 
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Model the field as a large aspect ratio circular equilibrium modulated by toroidal ripple 

B_B0(l+6sin(N<t>)) ( 2 ) 

R 

with N the number of toroidal field coils, 5 the local ripple strength, and R = Ro+rcos(6) 

the major radius. To leading orders in gyro radius to system size a trapped particle moves 

periodically between the bounce points in poloidal angle 9 and slowly precesses from the 

initial field line with the toroidal angle given by , <j> = q$+uidt with Ud the toroidal precession 

rate. Energy conservation then reduces the problem to a particle moving in a one dimensional 

potential given by ^B{6). A ripple well exists at points where dB/dO = 0 which requires 
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In TFTR the ripple magnitude is well represented by 6 - S0e^R-Rr)2+bzi / w with Rr = 

223cm, w = 18.3cm, Jo = 1-4 x 1 0 - 5 , Z = rsin(6), and b = 1.1. Consider a trapped particle 

whose banana tip is in the vicinity of a ripple well below the midplane (plasma current 

clockwise from above), i.e. the particle passes over a local well before bouncing. Ripple 

trapping occurs due to the fact that a particle is radially further outward after bouncing 

than before, due to the banana width. Field ripple increases strongly in this direction and 

thus the particle encounters larger ripple after bouncing, and may be trapped in the well. 

If this occurs it drifts vertically to the wall and is lost. Since the well location varies due 

to the toroidal precession, eventually all trapped particles on orbits with bounce points 

intercepting the ripple well domain will be lost. The presence of a time dependent magnetic 

perturbation such as the TAE mode produces additional modulation of the particle position 

which can greatly increase the phase space of particles capable of making the transition to 

a trapped state. 

To demonstrate the mechanism we model the high energy particle distribution, equi­

librium, and mode structure approximating those present in TFTR during the observation 

of this effect. The high energy particle distribution produced by heating was observed to 

cause destabilization of the TAE mode, in agreement with numerical analysis2. The toroidal 
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mode number observed was n = 4 and we include all important poloidal harmonics, i.e. 

m = 4 — 12. The calculation of the eigenmode profile and spectral components has been 

studied analytically 3 and numerically using the NOVA code 4. The code results are used in 

this paper. In Fig.l are shown the eigenfunctions obtained with NOVA. The mode frequency 

used was the experimentally observed TAE frequency of 188 kHz. However we find that the 

results are insensitive to the form of the eigenmodes used, as long as the mode amplitude is 

large in the ripple trapped domain. We used modes with 5B/B = 2 - 1 0 - 3 in the simulations. 

Comparison with the Mirnov coil measurements are not practical because of the different 

boundary conditions in the eigenvalue code (no vacuum region). The amplitude was set by 

comparison with the observed fractional loss in high energy tail energy. Total lost particle 

fluxes are not measured in the experiment, so cannot be compared directly. 

Simulation is done using a Hamiltonian guiding center code ORBIT described 

previously.5'6 

The equilibrium had a major radius R = 262cm, a minor radius a = 100cm, with a 

safety factor of q = .8 + 3.2(r/o) 2 . For these parameters the domain where ripple wells exist 

is rather large, and is shown in Fig 2. Also shown is the reduction in the ripple well domain 

which would be produced by decreasing the TFTR ripple by a factor of 2 or 4. The particle 

distribution is a model high energy Hydrogen minority tail ion distribution chosen to fit that 

produced during the experiment, given by 

F = elE-^/2?Jce-E,Te-r*/b' ( 4 ) 

with T = 370 keV, the width parameter c adjusted to give 75% trapped particles, b =33cm, 

and Br/2 the value of the field at r, & = it/2. 

Two populations of lost particles were observed in the simulations, those with banana 

orbits intersecting the wall, having pitch X = v\\jv w .5 and impacting the wall just below the 

midplane, and the ripple trapped population, with A s=s 0, intersecting the wall at a location 

determined by the existence of ripple wells and by the TAE amplitude. An example of a 

TAE induced ripple trapping event is shown in Fig. 3. In Figs 4, 5 are shown the lost particle 
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distributions in R and pitch, both with and without the presence of the TAE mode. The 

ripple trapped population peaks near R = 315cm which, as seen in Fig. 2, corresponds to the 

smallest value of R at which the ripple trapped domain extends across the plasma vertically 

including the high density central domain. Without a TAE mode, since the simulations did 

not include a source of high energy particles, but rather a fixed initial distribution, the ripple 

trapped flux is of short duration. In the experimental situation, which included a continuous 

source of high energy particles, this would translate into a small total intensity. A TAE mode 

moves particles in phase space, and allows a much larger population of particles to become 

ripple trapped. The simulations show a more intense ripple trapped flux of much longer 

duration in the presence of the mode. There is no threshold amplitude for this process, 

the total flux being approximately linear in the mode amplitude. Reduction of ripple by 

1/2 or 1/4 would move this domain significantly outward, as shown in Fig. 2, with a large 

reduction in flux. 

Details of the experiment confirming this process will be reported in a separate publica­

tion. Three different observations confirm the model sketched above. First, intense metallic 

influxes are observed in the plasma, predominantly of manganese. Second, thin stainless 

steel debris shields located at the bottom of the vacuum vessel at a major radius of 305 cm 

were melted. Third, strong fluctuations were measured in the expected TAE range during 

the experiments. 

In conclusion, high energy particle loss consisting of ripple trapping induced by high 

frequency MHD perturbations has been modeled and observed in TFTR. The mode observed 

was a TAE mode destabilized by the high energy tail produced by ICRF heating, but any 

high frequency mode could produce similar results. Finally we point out that this loss 

mechanism is not effective for the alpha particle distribution in ITER because of the very 

small ripple well domain. 
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Figure Captions 

Fig. 1 TAE eigenmode as determined by NOVA-K for the TFTR shot 79459, with n =4 

and m = 4-12. Only a few of the m values used are shown. 

Fig. 2 The ripple well domain in TFTR. Also shown are the resulting smaller domains 

if the ripple in TFTR were reduced by a factor of 2 or 4. 

Fig. 3 An example of TAE induced ripple trapping, using the parameters of shot 79459. 

Fig. 4 Simulation results shown lost particle distribution in R with (open) and without 

(black) the TAE mode. 

Fig. 5 Simulation results shown lost particle distribution in pitch with (open) and without 

(black) the TAE mode. 
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