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A particular configuration of the LHD stellarator with an unusually flat pressure profile has been 
chosen to be a test case for comparison of the MHD stability property predictions of different three-
dimensional and averaged codes for the purpose of code comparison and validation. In particular, two 
relatively localized instabilities, the fastest growing modes with toroidal mode number n = 2 and n = 
3 were studied using several different codes, with the good agreement that has been found providing 
justification for the use of any of them for equilibria of the type considered. 

MASTER 
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED 



I. INTRODUCTION 

MHD equilibrium and stability properties of toroidal configurations are important for the design, 
study, and utilization of fusion devices. Many codes have been developed and much work has been done 
for the study of these properties in axisymmetric tokamak devices. The problem is not as simple in 
stellarators where the three-dimensional effects impose much more severe difficulties. Nevertheless, much 
progress has been made. 

Considerable effort has been expended in the development of analytic and computational tools for the 
determination of three-dimensional equilibria. Two basic approaches have been employed: The early work 
utilized two-dimensional formulations which were obtained by using a "stellarator expansion'' 1 - 5 or an 
averaging technique.6"8 These codes have been employed in the design and interpretation of experiments 
and are still being used. More recently, several fully three-dimensional codes have been developed, using 
energy minimization schemes 8" 1 5 as well as direct integration along the magnetic field lines. 1 6 ' 1 7 Most, but 
not all, of these codes are only useful for configurations in which the magnetic surfaces are well behaved, 
with any island structure that is present sufficiently localized that it presents no problem. Much effort 
has been expended to compare the predictions of these codes for configurations where magnetic islands 
do not pose a problem and the results have been very favorable . 3 , 4 ' 1 0 ' 1 1 ' 1 8 - 2 0 There is still a need for work 
on the determination of stellarator equilibria with islands and the comparison of results from different 
codes that can treat this problem. 

The situation concerning codes for stability studies is not as complete. It is not obvious at first 
glance that there is a stability problem since at least some of these codes determine the equilibrium by 
finding the minimum potential energy of the system. Such equilibria should be stable by definition unless 
the chosen minimization fails to lead to the lowest energy state. In actual practice, most equilibrium 
configurations are prescribed to have periodic behavior over the magnetic field period associated with the 
geometric distortion of the configuration from axisymmetry or of the helical coils. Thus, the equilibrium 
should be stable with respect to any perturbation that does not destroy this helical periodicity. For this 
reason, stability is usually thought of as the question of whether relaxation of this periodicity constraint 
can lead to a lower energy state. 

Considerable work has been done on the problem of stellarator stability. Since a typical stellarator has 
little or no net current, one should expect that localized expressions, the Mercier criterion Di < 0 for ideal 
modes, the analogous DR < 0 criterion for resistive modes, [21] and ballooning mode considerations2 2 

would provide sufficient guidance. These functions can be obtained by integrating along the magnetic field 
lines and can thus be detennined from the equilibrium code results. Comparison of resistive interchange 
mode criteria and ballooning instabilities has been done for the W7-AS stellarator, which has many of 
the features of a helias 2 3 configuration, and the TJ-/I heliac.2 4 This agreement can be understood by 
the fact that the resistive criterion differs from th'i Mercier one primarily through the elimination of 
shear stabilization and that the plasma current in high-/? equilibria tends to reduce the local shear in 
regions of unfavorable curvature so that ballooning modes can grow even when the Mercier criterion is 
favorable. 2 3" 2 7 Since these studies only provide information about the forces local to a rational surface, 
it is useful to supplement them with studies of a more global character. This is being done, and some 
comparison of local and global mode stability criteria has already been reported. 2 8 

The treatment of more global modes is usually done by energy minimization techniques, and both two-
dimensional and three-dimensional formulations have been constructed. The first two-dimensional code 
of this type, STEP, 2 9 was based on the stellarator expansion. It has been modified into a new improved 
code KSTEP. 3 0 " 3 2 Several other codes 1 1 ' 3 3 - 3 6 are also based on this expansion. Other two-dimensional 
stability codes 7 , 8 ' 3 7 , 3 8 for three-dimensional configurations have been obtained with various averaging pro­
cedures. Initial value codes, 3 9" 4 1 in which the evolution of a system with the initial configuration having 
a small perturbation from equilibrium is followed, can be used to study the linear and nonlinear stability 
behavior. Indeed these codes can be used to construct equilibrium configurations by introducing a proper 
combination of resistivity and viscosity. More recently, some fully three-dimensional stability codes 4 2 - 4 6 

have been created to determine the linear eigenfunctions and eigenvalues of a Lagrangian minimization 
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associated with small perturbations from equilibrium. A technique has also been constructed that makes 
it possible to examine the stability properties of an equilibrium that is calculated by the BETA code 1 2 

by carrying through a second series of minimizations with the imposition of additional constraints. 
There has been some effort to compare the results of these codes in order to provide an understanding 

of how much confidence one could have in their predictions. Comparisons of the predictions of the stability 
properties of the ATF stellarator using the STEP 2 9 and FAR 3 5 codes showed very good agreement.1 1 

In the same spirit, a comparison of the stability predictions of the STEP code, the helically invariant 
HERA code, 4 7 and the BETA code 1 2 for a WENDELSTEIN VII-A model showed good agreement.4 8 

Study of this same case with the TERPSICHORE code 4 2 also gave a favorable comparison.49 Good 
agreement between the TERPSICHORE and CAS3D codes has been obtained in calculations of the 
global stability properties of a series of equilibria ranging from an I = 2 conventional stellarator to a 
W7-X configuration.2'-5 0 Although these different studies have been encouraging, it seems useful to carry 
through more comparison work in order to provide further validation of the models and to extend our 
understanding of the advantages and limitations of the different codes. 

It is difficult to find configurations where all of the codes are easy to use. The two-dimensional models 
are based on the approximation that the rotational transform per helical field period is small, so that 
there must be a large number of periods. Thus, they should not be expected to work well for heliacs like 
TJ-II (Madrid) and H-l (Canberra), or for the W7-AS and W7-X devices at Garching. On the other 
hand, it is difficult to justify extensive work on configurations like HELIOTRON E which has nineteen 
field periods. We therefore chose our basic equilibrium to be the ten field period LHD stellarator 5 1 that 
is being constructed at the National Institute for Fusion Science at Nagoya. Since it has been designed 
to have favorable confinement properties, a modification of it posed a difficult but not insurmountable 
problem for all of the codes. 

The input for most of the stability codes can be generated by the VMEC equilibrium code. Some 
of the stability codes require input from their own equilibrium solvers which further complicates the 
comparison. They may have minor differences in the equilibrium properties, such as the exact shape of 
*(ip), which modify the modes and thus complicate the comparison. The differences in the formulations 
of the various models also makes the presentation of the results difficult. A major problem is that the 
definition of jSo, the ratio of the plasma pressure to the magnetic pressure at the magnetic axis, is not 
the same in the different codes because they employed different values of B in the definition. A second 
problem is that the codes do not all use the same function to label the surface variable. A third is that 
the kinetic energy normalization used in denning the eigenvalue A which is associated with the mode 
growth rate is also chosen differently. This makes it difficult to get exact comparisons. It was difficult to 
use exactly the same pressure distributions in carrying through the studies at the various laboratories. 
Thus, we have to compare results for somewhat different cases. There were two robust instabilities, one 
with a primarily n = 2 toroidal mode number and the other with n = 3. The dominant poloidal mode 
number for the n = 2 mode was m = 3 with the mode localized near where * = 2/3 for values of/Jo up to 
about 7%. Above this value the m = 4 component becomes dominant. There was considerable difference 
in the unstable n = 3 modes for the different pressure distributions. The m = 4 mode is dominant for 
the case where p = pi whereas the m = 5 mode is most important when p = pin. Other more slowly 
growing modes were also observed. 

We have used the KSTEP code 3 0 as our basis for the comparison of the different codes because of con­
venience. This code comparison program originated at the Kyoto University Plasma Physics Laboratory 
and most of the work in compiling the results was done there. Since it was not possible to get all of the 
different codes to study exactly the same cases, it seemed to be worthwhile to exercise the KSTEP code, 
which has had significant use there, for all of the different pressure distributions to establish a common 
basis for the comparisons. We recognize that the results from this code are not necessarily better than, 
or even as good as, those from other codes. 

We describe our LHD configuration in the next section. We then give short sections on the results 
from the different codes. We make a few comments about the comparison in the final section. 
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II. LHD EQUILIBRIUM CONFIGURATION 

The LHD stellarator 5 1 has a major radius Ro = 3.9 m. a set of I = 2, M = 10 helical coils with 
winding laws 8 = (t/M)<j>+asm(i'./M)<j> and 8 = (l/M)4> + asin{l/M)ip+iT where the helical modulation 
is a = 0.1, and six poloidal field coils that can provide dipole and quadrapole fields to shift and distort 
the plasma column. For the purpose of this comparison, we adjust the currents in these poloidal field 
coils to shift the vacuum field magnetic axis inward 15 cm from its nominal center. This is close to the 
standard configuration that the National Institute for Fusion Science intends to use for its basic operation 
and has an equilibrium configuration in which magnetic islands and ergodic regions are sufficiently small 
that they pose no problem. 

We specify the plasma boundary to be 

R = 22 Rm,n cos(m0 — nM<t>). 

Z = 2~] %m,n sin(m0 — nM<t>), 
m,n 

with the coefficients Rm,n and Zm,n given in Table I. In actual operation one would expect to see a 
change in the shape and position of the boundary surface as the pressure is increased. This boundary 
modification is really an equilibrium problem and should not be introduced into this work since it would 
only complicate the stability code comparison. Furthermore, studies of LHD equilibria which are obtained 
with the VMEC code using a free boundary calculation with different prescriptions of the plasma-vacuum 
interface show that the plasma shift and distortion improves the MHD stability properties, making the 
configuration even less useful for a code comparison.52 Thus, we keep this same boundary specification 
for determining the equilibria as we change the pressure. 

For a typical stellarator application it is usual to prescribe the plasma pressure to be a parabolic 
function of the magnetic poloidal flux, 

P = P o ( l - ^ ) 2 (1) 

with ip a normalized flux, and to have no net toroidal current on the magnetic surfaces. In most of the 
studies, we use the value of (3 at the axis, 

A, = 2po/B 2 . 

with BQ the magnitude of the vacuum field at the major radius Ro which is not changed as po is increased, 
to measure the pressure in the system. 

We have examined this equilibrium with the KSTEP code 3 0 and found it to be almost marginally 
stable even at relatively high values of /9o.53 The growth rate that is calculated for these low-n modes 
is so small (the eigenvalue A = J*\pR%/B$\ ~ 1 0 - 5 ) that one should not expect to see an instability. 
This good physical behavior should have been expected since the LHD design was made for operation at 
relatively high values of @. However, the very small growth rates make the configuration unsuitable for 
a comparison study. 

On the other hand, relatively strong instabilities which are localized near an * = 2/3, 3/4, or 3/5 
resonant surface can be found for a more H-mode-like pressure distribution with 

p = p I ( t / . )=Po(l-V> 2 ) 2 - (2) 

again with i/> a normalized poloidal flux. Therefore, we chose this distribution for some of the studies. 
We used 

p = p , , ( V 0 = p o ( l - * 2 ) 2 (3) 
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with V> the toroidal flux for some other ones. Since some of the codes work better with a pressure 
distribution with p'(0) ^ 0, we have also considered a case with 

p = P n l ( 0 ) = ^ ( J ^ ) [ 5 ( l - ^ ) 2 + 3(l-V>)] (4) 

with V(i^) the volume enclosed by the surface ^ . The main difference between these flatter pressure 
profiles and the original parabolic one is that the region of large pressure gradient is shifted outwards, 
into a region where the magnetic field line curvature is strongly unfavorable. 

The dependences of the pressure and the rotational transform on a normalized poloidal flux ifi are 
shown for systems with these three pressure distributions with /3o = 4% in Figs. 1 and 2, respectively. It 
can be seen that the different models have strong similarities. 

We considered two types of boundary conditions for the instability. Most of the work was directed at 
"fixed boundary'' modes where the components of the displacement vector and the perturbed field normal 
to a magnetic surface vanish at the plasma boundary. In a few cases we also looked at "free boundary" 
modes where the normal component of the perturbed magnetic field is continuous at the plasma surface 
and goes to zero at au outer wall or as we get far from the plasma. 

III. THE KSTEP CODE 

The KSTEP code is a straightforward introduction of the stellarator expansion1 into the formalism 
of the PEST 5 4 tokamak stability code. It works on a two-dimensional equilibrium which is obtained by 
averaging the results of a VMEC calculation1 4 over the toroidal angle ifr to obtain averaged values of the 
contributions of the non-axially symmetric fields to the rotational transform and the magnetic field line 
curvature. Although higher-order terms in the inverse aspect ratio are incorporated in the model and 
the code results have agreed well with other calculations, application of the code can only be justified 
rigorously in the large aspect ratio limit. 

The assumption of large aspect ratio leads to the necessity of using the component of the displacement 
vector perpendicular to B (which is in the V<j> direction in this order) to make £ divergence free in lowest 
order for an instability to exist. Then we can set 

« i = ^ x V , + - . . . (5) 

This eliminates the fast magnetosonic waves from the problem, and our ability to adjust the component 
of £ parallel to B can be used to remove the sound waves. Further minimization determines the higher-
order components of $ and leads to a Lagrangian containing only the shear Alfven waves, the effects of 
current along B. and a plasma expansion term: 

C = " 2 / ^ I V q p - fdr{\Q±? + * » g ^ BQX • Vq" + g x • VpT • Vft}, (6) 

with 

QL = V0 x V[(iJoS0V<^ + V0 x Vt/>) • Vtj], 

and 

This is solved by using a Fourier series decomposition in 6 and <f> and a simple finite-element discretization 
in il>. The weakness of the model is that modes with different toroidal mode numbers n are decoupled, the 
effect of finite compressibility is eliminated, and the lowest-order displacement vector has no component 
along V0. Since most stellarators have a reasonably large aspect ratio, these restrictions are usually well 
justified by the physics and these limitations rarely impose a problem. A major difficulty is that the 
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magnetic axis should be nearly planar, making this code inapplicable for the study of heliac or helias 
devices in which the equilibrium contains a large t = 1 helical component. We typically run the stability 
problem with a relatively low toroidal mode number, n = 1 or 3 for example, choose a range of poloidal 
mode numbers su di as — 7 < m < 14, and work with k — 769 or more magnetic surfaces. 

The fastest-growing "fixed boundary" n = 2 mode for an equilibrium with the pressure given by 
Eq. (2) has an eigenvalue A = w2[pRl/B$] which varies with $> as shown in the first column of Table II 
and in Fig. 3. The Fourier components of the minimizing displacement normal to the magnetic surfaces 
are shown in Fig. 4a for the /% = 4% case. Convergence studies in which the number of poloidal modes is 
changed have shown little variation in earlier studies. 5 5 so modification of the range of poloidal modes is 
of little concern. On the other hand, the results are sensitive to the number of surfaces that are considered 
when the eigenfunction is extremely localized at the resonant surface and we have not carried through a 
proper study. 

The eigenvalues for the "fixed boundary" n = 2 mode in the configuration with p given by Eq. (3) are 
in the first column of Table III and in Fig. 5, and the eigenfunction for the po = 4% case is in Fig. 6a. 
Relaxation to a "free boundary" condition where the normal component of the perturbed magnetic field 
is forced to vanish at r(r/>) = 1.3ap, far from the plasma surface, leads to the eigenvalues in the third 
column of Table III, which are shown in Fig. 7. The eigenfunction for a case with fio = 7% is shown in 
Fig. 8a. It is worth mentioning that there is very little difference between the "fixed" and 'free" boundary 
eigenvalues when /?o = 4%. 

Results for the "fixed boundary" n = 3 mode with the pressure distribution of Eq. (2) are in the first 
column of Table IV and in Figs. 9 and 10a. Similar results for the n = 3 mode in the system with p given 
by Eq. (3) are in the first column of Table V and in Figs. 11 and 12a. 

IV. THE TWIST CODE 

The TWIST code is based on a relatively new approach 3 7 , 5 6 for constructing approximate models for 
MHD equilibrium and stability. It works in conjunction with the three-dimensional and two-dimensional 
equilibrium codes POLAR-3D code 5 ' and POLAR-2D.5 9 The key point of this variational formalism 
can be briefly described as follows: We start with a prescribed vacuum field or finite-/? three-dimensional 
equilibrium, a so-called background configuration which can be obtained either analytically or numerically. 
Then a formal functional with two-dimensional coefficients which approximates the plasma potential 
energy. 

for configurations close to the background one can easily be constructed. First and second variations of 
this functional consistently lead to approximate MHD equilibrium and stability models. This procedure 
is done in such a way that it gives exact models for plasmas with planar, axial, or helical symmetry. 
Moreover, it gives an exact equilibrium description for the background plasma and stability criteria 
for modes with toroidal mode numbers n which are decoupled from the equilibrium quantities. The 
coefficients of these two-dimensional approximated functionals are determined by only the metric tensor 
of the straight magnetic field line coordinate system of the background configuration and the freedom in 
its choice can be used to get the best (from one or another point of view) approximation. 

One of the guiding elements in this formalism is that construction of two-dimensional necessary and 
sufficient stability criteria as well as extension to a fully three-dimensional model would be straightfor­
ward. 

The approach gives in a natural way a nontraditional representation of the potential energy associated 
with small perturbations 

W(Ss. SX) = i / {Q2 + 6s(J- V<SA) - <5A (J • Vis) 

+ ( J . ( V x D ) x e ) (8sf + (Vp • e) V • (e(c5s)2)}d3r (8) 
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with 

DxB „BxVs B 

where 

« = " S

 B2 <M B2 " B 2 

Q = V« x B) = - V x (<>'AVs - SsD). 
D. = $'w+*'vc, B = V s x D , 

e = Vs/ |Vs | 2 , 
<$s = - « • 

• Vs). 
*A = - « • 

D). 

and (s,fl,£) is an arbitrary straight magnetic field line coordinate system for the configuration that is 
being determined. We have dropped the plasma compression term 7p(V • £ ) 2 , thus eliminating slow 
magnetosonic waves, and chosen ft = 0 in the kinetic energy. Therefore we actually overestimate the 
linear growth rate of the instabilities. 

The attractive feature of this functional W representation is that in a straight magnetic field line 
coordinate system it contains as coefficients only seven functions related to the metric tensor; gt.j/y/g 
appears in the first term and y/g in the others. This is convenient for spectral methods and our experience 
has shown that it can improve convergence properties. 

In the two-dimensional stability model of the TWIST code we take into account only the n = 0 
harmonics of the metric tensor. It is clear that, for a single mode with £ = £(s.#)e""' which is decou­
pled from the equilibrium, this gives an exact stability criterion. In fact, we could and did implement 
this criterion by deriving the metric tensor components approximately: first computing the background 
configuration and then increasing fi in the frame of the two-dimensional approximate equilibrium model. 

It is useful to note that the results from the TWIST code show the three-dimensional character of 
the perturbed solution directly since the full three-dimensional geometry is built into the metric. Similar 
representations can be obtained from the other two-dimensional codes since we know the minimizing 
displacement and can evaluate 

= * o ( r ) + $ - V * 0 ( r ) + * 4 ( r ) . 

In the TWIST code Fourier decomposition is used in the poloidal and toroidal directions and special 
finite-difference schemes5 8 (close to the hybrid finite-elements of the ERATO code 6 0) were employed in 
the radial direction. Calculation could be done both for internal modes and for external ones where 
the vacuum region is treated as if it were zero-current pressureless plasma. The code has been tested 
extensively for axisymmetric equilibrium configurations and has shown good convergence properties. This 
study is the first major comparison with other stellarator stability codes. 

Application of this code was made to the LHD configuration with the pressure given by Eq. (2). 
The equilibrium was calculated with the POLAR-2D code 5 9 on a 64 x 64 mesh using an interpolation of 
the straight magnetic field line metric tensor of the vacuum configuration as input. This vacuum field 
background configuration had been computed with the POLAR-3D code 5 7 on a rather rough mesh -
24 x 24 x 24. This procedure was chosen because of restrictions in computer resources for the actual 
three-dimensional equilibrium calculations. On the other hand, the results that were obtained allow 
us to see the accuracy of the approximate models that are obtained even when the background three-
dimensional equilibrium configuration is far from the finite-/? one. Using a background configuration that 
is closer to the desired one and taking into account more than one of the largest toroidal components in 
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the Fourier representation of the metric tensor should improve the comparison results. The convergence 
studies showed that 9 poloidal harmonics and up to 90 radial mesh points are sufficient for calculating 
with an accuracy of about 1%. The eigenvalues associated with the fastest growing n = 2 instability are 
tabulated in the second column of Table II and shown in Fig. 3 and the eigenfunction for the ft> = 4.2% 
case is in Fig. 4ft. The results for the n = 3 instability with this pressure distribution are given in the 
second column of Table IV and in Figs. 9 and 106. 

The free boundary case is approached in this code by considering an outer boundary a factor of 4 
larger than the plasma-vacuum interface and in general has a much larger growth rate. For an n — 1 
mode the value of A increases from 8.73 x 10" 5 to 1.727 x 1 0 - 2 for the & = 6.6% case. 

V. THE RESORM CODE 

The RESORM code 3 8 is a two-dimensional initial value code which is based on the "Stellarator 
Expansion". The bade equations of the code are the linearized incompressible reduced MHD equations, 

£ - -(4)"-~ 
p r ^ p . = -BVA.A+VAx VJ^ , -V0 + J^Vfix Vp-V<£. (11) 

dt 
dp = (RY 
m \itoJ V $ x V P e q • Vtf>, (12) 

for the three scalar functions A. the poloidal magnetic flux divided by 27r, $. the velocity stream function, 
and p, the plasma pressure. Here the magnetic differential operator is 

and * e « , J*«i and Pe, denote the equilibrium poloidal flux, the toroidal component of the equilibrium 
current density and the equilibrium pressure, respectively. The averaged curvature of the magnetic field 
line SI is given by Eq. (7) and the operator A. is defined by 

m- ' - < • 
The relation between the stream function and the perturbed plasma velocity perpendicular to the mag­
netic field v i is given by 

V_L= (—J V*x V0. 

These three-field equations differ from the reduced MHD equations for stellarators that were derived 
by Strauss. 3 4 by keeping higher order toroidal corrections tlirough the factor R/Rt>. 

Since they employ the same physics model and approximations that the KSTEP code does, the 
RESORM code can examine the stability of 3D equilibria by utilizing the interface code between the 
VMEC code 1 4 and the KSTEP stability code. 3 0 The normalization of the growth rate of the perturbation 
is also the same as the one in the KSTEP code. 

The eigenvalues for the n = 2 case where p is given by Eq. (2) are tabulated in the third column of 
Table II and shown in Fig. 3 and 46. The eigenvalues and eigenfunctions for the r» = 3 case where p is 
given by Eq. (4) are in the second column of Table V and in Figs. 11 and 126. 
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VI. THE CHAFAR CODE 

The CHAFAR code 3 8 is also an initial value code based on the 'Stellarator Expansion." The major 
innovation in this code is the application of the averaging in a straight magnetic field line (Boozer) 
coordinate system associated with the exact three-dimensional finite-/? equilibrium. Thus the code can 
be used for treatment of systems like heliacs and helias in which the magnetic axis is strongly non-planar. 
It utilizes the standard low-/3. small non-axisymmetry expansion and introduces a stream function for the 
perturbed velocity to eliminate the fast and slow magnetosonic waves. Although the derivation is based 
on the standard ordering of the stellarator expansion, the geometrical terms are taken exactly from the 
equilibrium. In particular, the displacement vector component orthogonal to B is 

€x = § V 0 x V., (13) 

and the field line curvature term is given by dtt/dp. where 

2*./o v W, (14) 

p = (2tj>/Bo)i with $ the toroidal flux divided by 2JT, V is the inverse Jacobian of the transformation to 
Boozer coordinates,3* and <j> is the toroidal angle-like Boozer coordinate. The expressions (13) and (14) 
correspond to the expressions (5) and (7) in the stellarator expansion formulation of the KSTEP code. 
The differences between these expressions lead to a change in the effective curvature. The model has 
been implemented into the initial value incompressible MHD code FAR 3 5 which utilizes a fully implicit 
scheme that allows a very fast determination of the linear growth rate. The perturbed quantities are 
represented as Fourier series in $ and 4>- and a finite difference scheme is used for the variable p. 

We have carried through the calculation for the LHD configuration with the pressure given by Eq. (2). 
looking at the n = 2 mode and using 7 Fourier components in 9. Convergence studies have been carried 
out in the number of computational surfaces, going from 200 to 800. The converged eigenvalues are 
tabulated in the fourth column of Table II and plotted in Fig. 3. The eigenvalue A is approximately ten 
times smaller than those obtained with the KSTEP and TWIST codes, which is due to the change in the 
effective curvature which was described above. The normal component of the eigenfunctioii is given in 
Fig. id for the case where #> = 4%-

VII. THE TERPSICHORE CODE 

The TERPSICHORE code. 4 2- 4 4- 4 9 was constructed by the group at Ecole Polytechnique Federate de 
Lausanne in cooperation with members of the Max-Planck-Institut fur Plasmaphysik at Garching. It 
extremizes the Lagrangian associated with the linear behavior of small displacements from equilibrium, 

£ = a)2 (dTP\Z\2-W, (15) 

W=\jdr[\C\2- A(f- • Vs)2 + 7P( V • if], (16) 
- J P 

C = V x ( € x B ) + ^ p C ' V s . 

.4 = 2\Vs[-4(J x Vs) • (B • V)Vs. 

with 

«= jatrw x v ^ + v 3 - ^ + ( 5 5 ^ 1 " " ) B ' ( 1 7 ) 
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where 0 and tj> are the poloidal and toroidal angles in Boozer coordinates, s is an arbitrary magnetic surface 
label, y/g is the Jacobian. J(s) is the toroidal current inside the surface s. and $ is the toroidal flux. Since 
the kinetic energy term in Eq. (15) does not affect the value of A> at which the configuration becomes 
unstable, it was simplified as in the PEST-2 tokamak stability code formulation51 for computational 
efficiency. The component \i is chosen to make V • £ = 0 to remove the term associated with plasma 
compressibility (the slow magnetosonic wave). The components £* and »j are Fourier decomposed in 9 
and <t>, and a finite hybrid element radial discretization scheme is applied. A careful choice of the basis 
functions that are used 6 2 has improved the convergence properties of the code over that observed in the 
original ERATO code.*0 The code has been well optimized so that it is fast: an earlier version has, won 
a competition sponsored by Cray Research, Inc. for well constructed codes. 

A distinct advantage of three-dimensional codes over two-dimensional ones is that the effect of toroidal 
mode coupling can be studied. The effect can be seen even for the LHD configuration that we study here. 

We used the pressure distribution of Eq. (3) for this study. The converged "lixed boundary" eigen­
values for the fastest growing n = 2 mode are given in tK- second column of Table III and in Fig. 5. The 
eigenfunctionfor/3() = 4% is in Fig. 66. The corresponding "free boundary" eigenvalues and eigenfunctrons 
are given in Table III and Figs, r and 86. 

VIII. THE CAS3D CODE 

The CAS3D series of codes 4 3 , 4 5 - 4 6 was constructed at the Max-Planck-lnstitut tiir Plasmaphysik at 
Garching to study the global MHD stability properties of helias type stellarators. It is a fully three-
dimensional code which utilizes a SW formulation to investigate the behavior of small perturbations from 
an equilibrium configuration which is obtained with the VMEC code. 1 4 The potential energy is again 
given by Eq. (16). As in most of the models, it is clear that the last term in Eq. (16), corresponding to 
slow magnetosonic waves (plasma compression), is always stabilizing and does not affect the value of j) 
at which the system is marginal. The component of £ along B can be and is chosen to eliminate this 
term. In a similar manner, the component of C along B which is associated with the fast magnetosonic 
wave (field compression) is also stabilizing. Studies of the contributions from the various terms shows 
that the minimizing perturbation always makes this term extremely small. Thus, although the code can 
be run keeping these fast magnetosonic modts. it is desirable to determine the component of £ in the 
B x Vs direction as a function of £ • Vs analytically to eliminate this term. Tflis is easily accomplished 
since we use Fourier decomposition in the poloidal and toroidal directions and finite elements in the Vs 
direction to represent the perturbations and derivatives of the surface components of £ with respect to 
s do not enter the expression for 5W. Since the actual growth rates are not important, we use only the 
4 • Vs component of the perturbation in the kinetic energy term. 

The CAS3D code also has the distinct advantage over two-dimensional codes that the effect of toroidal 
mode coupling can be studied. It is obvious that only certain toroidal Fourier harmonics are coupled by 
the equilibrium properties so that mode families exist, each characterized by a dominant n = 1, n = 2. 
etc., component, and that the different families can be studied separately. This coupling is particularly 
important for configurations with a small number of field periods. The effect can be seen even for the 
LHD configuration that we study here. 

We have used this code to study the LHD configuration with the pressure distribution given by Eq. (4) 
for the mode with n = 3 and its associated toroidal harmonics. The eigenvalues are given as functions of 
jSo in the third column of Table V and in Fig. 11. and the radial component of the eigenfunction is given 
in Fig. 12c for the case where fa — 4%. When only one toroidal harmonic is retained, the eigenmode is 
stabilized and A changes from —2.88 x 1 0 - 3 to -6.8 x 10~ 4 for this case. 
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IX. DISCUSSION 

It is difficult to cany through a study of this type where the authors are located in different places 
and have different limitations and problems with their codes. For this reason, we were not able to study 
exactly the same equilibrium or to produce results that have the same basis. Indeed, the different codes 
did not use the same kinetic energy normalization or definition of /3o and treated the behavior of the fast 
and slow magnetosonic waves in somewhat different manners. We have been able to carry through the 
comparison of two or more codes for each pressure distribution that was used so that some understanding 
of the output of each code has been obtained. We should be pleased to see that all of the codes found 
the same relatively localized n = 2 and n = 3 modes near where they should be expected to be the most 
unstable modes, with the eigenvalues A having the same behavior as Pa is changed. The behaviors of 
the displacement vector in the Vs direction found by the different codes are also similar. It is useful to 
observe that the codes show the same change in behavior of the mode as ftp is increased. For example, 
with the pi pressure distribution, the n = 2 mode shows a strong nonmonotonicity (see Fig. 3). It has a 
strong m = 3 component which peaks at /0c ** 7% and then falls off. An m = 4 dominated mode starts 
growing as /?o is increased to even higher values. 

We conclude from this study that all of the tools that have been developed for stellarator stability 
studies are capable of treating this LHD stcllarator model accurately. This is a strong test of the codes 
since the standard LHD equilibrium is stable, or close to stable, so that a pressure distribution with 
Vp localized to the outer region had to be assumed to even find an unstable mode. It should also be 
remarked that other codes which were not treated in this study have been compared to some of the ones 
which were exerdsed here. Thus, the tools that are available for study of stellarator stability are quite 
extensive. 

It is obvious that the different codes are useful for different applications. For example, the KSTEP 
and RESORM codes can not be used for heliac and helias type configurations where the magnetic axis is 
strongly nonplanar. On the other hand, these codes are particularly useful for treatment of configurations 
like HELIOTRON E, ATF, and LHD which have many field periods.The TWIST, CHAFAR, CAS3D, 
and TERPSICHORE codes are well adapted for a study of them, although the small number of helical 
field periods in these devices makes the averaging to a 2-D model somewhat suspect. It was noted 
e a r l i e r 2 8 , 3 2 4 6 , 6 3 that the behavior of the low-n modes is usually similar to that of the high-n modes so 
that one should expect to see some correspondence between the eigenvalues and the Mercier criterion, 
D\ or resistive interchange criterion, 7?R. The same conclusion tends to be true for ballooning modes 
although these modes may be especially serious because of the destruction of local shear by the plasma 
currents in high-/3 equilibria. 2 3" 2 7 This differs from tokamak studies where the toroidal current provides 
a strong driving mechanism for global modes making them tend to be the most limiting instabilities. 

We should emphasize again that our choice of an LHD model for this comparison study should not be 
taken to imply that tbis system will suffer from poor MHD stability properties. Indeed, in our stability 
studies we found that the standard operating configuration is stable, or extremely close to stable. We 
therefore had to adopt an unusually flat pressure profile in order to push the large pressure gradient into 
a region of unfavorable magnetic field line curvature so that an unstable mode could grow. We used a 
"fixed boundary" model for the plasma, in which the shape and position of the plasma-vacuum interface 
was preserved as /3 0 was increased. We should note again that "free-boundary" equilibrium calculations 
have shown 4 9 that the finite-/? alterations of the plasma surface should improve the system's stability 
properties over those of our model. r»ic*-r A I M C D 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 
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Tables 

TABLE I. Shape of the plasma boundary for an LHD equilibrium with a 15 cm inward shift 

m n R Z 
0 •3 -7.9800E-04 8.4445E-04 
0 -2 4.1327E-03 -3.0926E-04 
0 -1 5.1337E-04 -1.0588E-02 
0 0 3.7447E-00 O.OOOOE-00 

-3 2.0726E-05 5.0860E-06 
-2 6.2691E-04 -6.4388E-04 
-1 -3.3552E-03 -3.3914E-03 
0 6.0354E-01 -6.0471E-01 
1 -1.8553E-01 -1.8557E-01 
2 3.7961E-04 -8.9118E-04 
3 -3.5841E-04 -3.7405E-04 

2 -3 -4.7804E-05 3.7281E-05 
2 -2 -1.2175E-03 1.3435E-03 
2 -1 2.4161E-03 -3.7336E-03 
2 0 -2.9558E-03 6.8692E-03 
2 1 -4.9662E-03 •1.2225E-02 
2 2 3.2055E-03 4.4494E-03 
2 3 3.1796E-04 -9.1183E-05 
3 -3 -6.6504E-06 2.6090E-05 
3 -2 -3.0066E-05 -7.4684E-05 
3 -1 1.0442E-03 -8.3010E-04 
3 0 2.5582E-03 3.1130E-03 
3 1 9.8731E-05 -1.6454E-03 
3 2 2.6068E-03 2.6C06E-03 
3 3 9.0982E-05 7.3865E-05 
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TABLE II. Instability eigenvalues for the fastest growing 'fixed boundary" mode with toroidal mode 
number n = 2 in an LHD configuration with the outer boundary given by the parameters of Table I and 
the pressure distribution of Eq. (2), p = po(l — ^ 2 ) 2 , with ij> the poloidal flux. 

A KSTEP TWIST RESORM CHAFAR 
3.00% -8.55 x lO" 4 -8.168 x 10" 4 -3.814 x 10~ 5 

3.24% -8 .8 x 10" 4 

4.00% -4.80 x 10" 3 -4.83 x 1 0 - 3 -2.813 x 10~» 
4.32% -4.57 x 1 0 - 3 

5.00% -9.76 x 10" 3 -1.016 x 10" 2 -6.968 x 10~4 

5.44% -9.33 x H T 3 

6.00% -1.344 x 10" 2 -1.418 x 10" 2 -1.157 x 10~ 3 

6.60% -1.30 x 10" 2 

7.00% -1.479 x 10- 2 -1.549 x 10" 2 -1.506 x 10"3 
7.81% -1.38 x 10~ 2 

8.00% -1.350 x 10" 2 -1.357 x 10" 2 -1.460 x 10" 3 

8.75% -1.24 x 10- 2 

9.00% -1.067 x 10" 2 -1.036 x 10" 2 -1.022 x 10 - 3 

10.0% -7.84 x 10- 3 -0.780 x lO" 2 -6.469 x 10- 4 

11.0% -6.03 x 10- 3 -4.899 x 1 0 - 4 

12.0% -5.61 x 10" 3 -5.621 x 10~ 4 

13.0% -6.04 x 1 0 - 3 -7.560 x 10" 4 

14.0% -7.89 x 10" 3 -1.146 x 10" 3 

15.0% -1.544 x 10" 2 -1.763 x 10" 3 
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TABLE III. Instability eigenvalues for the fastest growing "fixed boundary" mode with toroidal mode 
number n = 2 in an LHD configuration with the outer boundary given by the parameters of Table I and 
the pressure distribution of Eq. (3), p = po(l — ^ 2 ) 2 ,wi th j> the toroidal flux. 

FIXED BOUNDARY FREE BOUNDARY 
A. KSTEP TERPSICHORE KSTEP TERPSICHORE 

2% -9.04 x 10" s -1.11 x 10" 4 

2.07% -3.00 x lO" 8 -9.00 x 10" 6 

2.44% -8.80 x 10" 5 -1.44 x 10" 4 

2.97% -4.30 x 10" 4 -7.26 x 10" 4 

3% -7.47 x 10~4 -9.20 x 10" 4 

3.86% -1.39 x 10~ 3 -2.57 x 10" 3 

4% -2.36 x 10" 3 -3.00 x 10" 3 

4.72% -2.19 x 10" 3 -4.70 x 10" 3 

5% -3.37 x 10" 3 -4.41 x 10" 3 

5.55% -2.44 x 10" 3 -7.06 x 10~ 3 

6% -3.16 x 10" 3 -4.18 x 10~ 3 

6.36% -2.01 x 10" 3 -9.97 x 10~ 3 

7% -2.59 x lO" 3 -7.06 x 10" 3 

7.14% -1.60 x 10~ 3 -1.29 x 10~ 2 

7.89% -2.25 x 10- 3 -1.50 x 10" 2 

8% -3.11 x 10" 3 -1.87 x 10" 2 

8.62% -9.80 x 10" 4 -1.59 x 10" 2 

9% -1.41 x 10" 3 -4.13 x 10- 2 

10% -3.43 x 10" 3 
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TABLE IV. Instability eigenvalues for the fastest growing "fixed boundary" mode with toroidal mode 
number n = 3 in an LHD configuration with the outer boundary given by the parameters of Table I and 
the pressure distribution of Eq. (2),p = po(l - ^ 2 ) 2 , with $ the poloidal flux. 

A> KSTEP TWIST 
2.00% -1.54 x 10" s 

3.00% -2.01 x 10"3 

3.24% -1.99 x 10- 3 

4.00% -9.11 x 10~ 3 

4.32% -7.81 x 10"3 

5.00% -1.68 x 10~ 2 

5.44% -1.37 x 10"2 

6.00% -2.14 x 10" 2 

6.60% -2.20 x 10" 2 -1.66 x 10"2 

7.00% -2.15 x 10" 2 

7.81% -1.56 x 10" 2 

8.00% -1.84 x 10~ 2 

8.75% -1.87 x 10"2 

9.00% -1.49 x 10"2 

10.00% -1.16 x 10"2 
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TABLE V. Instability eigenvalues for the fastest growing "fixed boundary" mode with toroidal mode 
number n = 3 in an LHD configuration with the outer boundary given by the parameters of Table I and 
the pressure distribution of Eq. (4), p = ^ p^ - [5 ( l - V ' 2 ) 2 + 3(1 - V')]- with «/> the toroidal flux and V{if>) 
the volume. 

A, KSTEP RESORM CAS3D 
1.96% -2.01 x I D - 5 

1.97% -4.51 x 10" 5 -2.17 x 10" 5 

2.12% -7.29 x 10" 5 

2.21% -7.55 x 10" 5 

2.30% -1.80 x 10~ 4 

2.43% -3.43 x 1 0 - 4 -2.55 x 1 0 - 4 

2.48% -3.53 x 10" 4 

2.65% -5.97 x 10- 4 

2.82% -9.11 x 10~ 4 

2.88% -1.08 x 10- 3 -8.62 x 10" 4 

3.31% -1.74 x 10~ 3 

3.66% -3.26 x 10~ 3 

3.74% -3.59 x 10- 3 -2.88 x 10" 3 
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Figures 

FIG. 1. p(t/>) as a function of the normalized poloidal flux for the different pressure distributions with 
A) = 4%; pi corresponds to Eq. (2), pu to Eq. (3), and pm to Eq.(4). 

FIG. 2. The rotational transform t(ij>) as a function of the normalized poloidal flux for the different 
pressure distributions with A> = 4%. 

FIG. 3. The eigenvalues A as functions of A, for an n = 2 "fixed boundary' mode in the LHD equilibrium 
with p given by Eq. (2) as calculated by the KSTEP code, the TWIST code, the RESORM code, and 
the CHAFAE code. The eigenvalues from the CHAFAR have been mutiplied by a factor of 10. 

FIG. 4. Fourier components of the minimizing displacement vector normal to the magnetic surfaces, 
£ • Vt/>, as functions of the normalized poloidal flux i/> for the n = 2 "fixed boundary" mode in the 
LHD equilibrium where p is given by Eq. (2) with ft a 4%. (a) KSTEP, (6) TWIST, (c) RESORM, 
and (rf) CHAFAR. 

FIG. 5. The eigenvalues A as functions of A> for an n = 2 "fixed boundary" mode in the LHD equilibrium 
with p given by Eq. (3) as calculated by the KSTEP and TERPSICHORE codes. 

FIG. 6. Fourier components of the minimizing displacement vector normal to the magnetic surfaces 
$ • VV' as functions of the normalized poloidal flux t/> for the n = 2 "fixed boundary' mode in the 
LHD equilibrium where p is given by Eq. (3) with A> « 4%. (a) KSTEP, (b) TERPSICHORE. 

FIG. 7. The eigenvalues A as functions of/Jo for an n = 2 "free boundary' mode in the LHD equilibrium 
with p given by Eq. (3) as calculated by the KSTEP and TERPSICHORE codes. 

FIG. 8. Fourier components of the minimizing displacement vector normal to the magnetic surfaces 
£• VV> as a function of the normalized poloidal flux t/> for the n = 2 -free boundary' mode in the LHD 
equilibrium where p is given by Eq. (3) with A) » 7%. (a) KSTEP, (6) TERPSICHORE. 

FIG. 9. The eigenvalues A as functions of A) for an n = 3 "fixed boundary" mode in the LHD equilibrium 
with p given by Eq. (2) as calculated by the KSTEP and the TWIST codes. 

FIG. 10. Fourier components of the minimizing displacement vector normal to the magnetic surfaces 
€ • V«/> as functions of the normalized poloidal flux V for the n = 3 "fixed boundary" mode hi the 
LHD equilibrium where p is given by Eq. (2) with A = 6.6%. (a) KSTEP, (6) TWIST. 

FIG. 11. The eigenvalues A as functions of/30 for an n = 3 "fixed boundary" mode in the LHD equilibrium 
with p is given by Eq. (4) as calculated by the KSTEP code the RESORM code, and the CAS3D 
code. 

FIG. 12. Fourier components of the minimizing displacement vector normal to the magnetic surfaces 
£ • VV> as functions of the normalized poloidal flux i> for the n = 3 "fixed boundary" mode in an LHD 
equilibrium where p is given by Eq. (4) with A) ~ *%• (a) KSTEP, (6) RESORM, (c) CAS3D. 
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