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This paper represents a portion of our work on specification, design, and 
implementation of safety-critical systems. Obviously, it is very desirable to have rigorous proofs of 
functional, safety, and security properties for nuclear and chemical reactors, defense, medical, and 
communication systems. A natural approach to this problem, once all the requirements are captured, 
would be to state the requirements formally and then either to prove (preferably via automated tools) 
that the system conforms to spec (program verification), or to try to simultaneously generate the system 
and a mathematical proof that the requirements are being met (program derivation). An obstacle to this 
is frequent presence of partially defined operations within the software and its specifications. Indeed, the 
usual proofs via first order logic presuppose everywhere defined operations. Recognizing this problem, 
David Gries, in “The Science of Programming”, 1981, introduced the concept of partial functions into 
the mainstream of program correctness and gave hints how his treatment of partial functions could be 
formalized. Still, however, existing theorem provers and software verifiers have difficulties in checking 
software with partial functions, because of absence of uniform first order treatment of partial functions 
within classical 2-valued logic. 

Several rigorous mechanisms that took partiality into account were introduced [Wirsing 1990, Breu 
1991, VDM 1986, 1990, etc.]. However, they either did not discuss correctness proofs or departed from 
first order logic. To fill this gap, we provide a semantics for software correctness proofs with partial 
functions within classical 2-valued 1st order logic. We formalize the Gries treatment of partial functions 
and also cover computations of functions whose argument lists may be only partially available. An 
example is nuclear reactor control relying on sensors which may fail to deliver sense data. Our approach 
is sufficiently general to cover correctness proofs in various implementation languages (C/C++, Eiffel, 
etc.) 

ABSTRACT 

KEYWORDS: correctness proofs, partial operations, 1 st order logic, Hoare triple, Dijkstra language. 

1. INTRODUCTION 

1.1. The Goals of the Paper 
1.1.1. Extending Logical Connectors 

Consider a typical safety-critical system: a nuclear reactor control system. One of its safety subsystems 
must issue a shutdown command once the sensors detect that neutron density is above certain critical 
value crit. For simplicity, suppose there are 2 sensors whose measurements are m and n. If the Boolean 
value of F(m,n)=(n>crit OR m2crit) is true, the shutdown must follow. If any of the sensors fail to 
deliver a value, the corresponding inequalities do not make mathematical sense, and therefore the logical 
value of the Boolean expression is undefined in the classical 2-valued (true, false) logic. This means 
that we have to extend the meaning of the logical connector OR to the case when one of its Boolean 
inputs is undefined. Logical connectors such as OR can be extended over 3-valued Boolean domain in a 
variety of ways. E.g., [Gries 19811 and [Jones 19901 introduced a 3rd Boolean value “undefined”, 
however, while Gries provided an asymmetric extension of OR, Jones provided a symmetrical one. The 
above example corresponds to the “symmetric” extension of OR. Since a single safety-critical system 
may need several different extensions of each classical Boolean connector, we need to provide a uniform 
treatment of all such extensions. This is one of the goals of this paper. 

1.1.2. Formalizing the D. Gries Technique for Correctness Proofs 
Consider the following example from [Gries 19811. What is the logical value of (x = 0 OR y/x = 5) 

when x = O?. The first disjunct holds, while the second has no standard meaning since y/O is undefined. 
If, however, we choose an arbitrary value “w” for y/O thus extending division to a total function, the 
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logical value of (x = 0 OR y/x = 5) will be true independently of the choice of w. This is the essence of 
the following idea of Gries: 

If all partial functions in a formula are somehow extended to total functions, then we can try to prove 

If during the proof we would never take an advantage of the values extending the partial functions into 
the formula as if the functions were indeed total; 

total, the proof would be valid. 

This technique is very convenient since it enables the classical 2-valued first order logic to be applied 
formulas with partial functions. However, in order to make this technique both rigorous and amenable to 
automation, the following questions must be answered: 

which formulas may be treated in this fashion? 
0 since the classical Tarski’s semantics of classical first-order logic formulas does not treat partial 

0 is there a rigorous meta-proof of the validity of the technique? 
functions, in which sense can we speak about the validity of the proofs within the Gries technique? 

Another goal of the paper is to provide positive answers to the above questions. 

1.1.3. Functions whose Argument Lists May Be only Partially Available 
Curiously enough, the mere usage of partial functions introduces another problem with semantics of 

proofs within the realm of total functions. Consider the “selection” function (b ? x : y) from UC++. It is 
obviously a total function. However, what is the meaning of (true ? 1 : l/O)? It is 1, even if the third 
argument is undefined. Thus, although, by itself, (b ? x : y) is total, its usage does not conform to the 
classical Tarski’s semantics, since it does not allow undefined arguments. The third goal of the paper is 
to extend the classical 2-valued 1st order logic to such usages of total functions. 

1.1.4. Meaning and Correctness Proofs of Hoare Triples with Partial Functions 
In order to allow for partial functions within Hoare triples of the form { P}B{ Q) , we extend their 

“total correctness” meaning as follows: 
0 the assertion {P}B{Q} is 

- true, if precondition P is both defined and true, then the program 5% terminates and upon its 
completion the postcondition Q is both defined and true. 

- false, otherwise. 

Although the Hoare triples are the major mechanism for proving correctness of terminating programs, 
the current state of the correctness proofs practice does not adequately address Hoare triples with partial 
functions. Consider an example from [Kaldewaij 19901, an excellent book on program correctness and 
derivation. It is suggested there (and in many other books and papers, e.g., [Gries 1980; Cohen 1990; 
Yakhnis, Farrell, Shultz 19941, etc.) that in order to prove a Hoare triple of the form P{ x:=E}Q, one has 
to show that P 3 Def.E A Q(x/E), where Q(X/E) is the result of substitution of E for x, holds. There 
are three problems with such treatment: 
0 

0 

0 

the expression transformer Def is not formally defined. This makes the approach less amenable to 
automation; 
the meaning of connector A must be extended to cover undefined inputs. This is done in a limited form 
in several works (e.g., [Gries 1980; Yakhnis, Farrell, Shultz 19941); 
even if A is extended, the formula would become undefined if P or Q contain partial functions. 
Moreover, the occurrence of partial functions in P or Q is quite common. 

For instance, consider a program using a one dimensional array f of length 100. Then f is a partial 
function (over integers) whose domain is the segment [1..100]. If we would want to require some 
property of f upon the completion of the program then f must be included in the postcondition Q. E.g., 
{ true}n := 101 { f(n)>O} is false, since upon the execution of n := 101 the postcondition f(n)>O is not 
defined. Kaldewaij’s formula gives us true * Def.( 101) A f(102)>0, which is equivalent to f( 101)>0 
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which is neither true nor false. Thus an automatic checking based on this proof rule would not yield a 
definite answer. 

Our final goal is to provide a formal definition of Def and to modify the Hoare and Dijkstra proof rules 
for all the program connectors, so that one would be able to find by automatic means the logical values 
of the Hoare triples in the presence of partial functions. 

1.2. The Existing Research on Partial Functions 
Many researchers worked in the area of partial functions and their applications in computing [Stephen 

Kleene 1936-1950, David Gries 1981, 1983, Horst Reichel 1987, Cliff Jones (VDM) 1986, 1990, Martin 
Wirsing 1990, Ruth Breu 1991, Yuri Gurevich 19921. 

In order to reason about partial functions, 3-valued logic was used by Kleene in his classical 
“Introduction to Mathematical Logic”, 1952. Kleene described several 3-valued logics developed by him 
(1938) and others (e.g., the Lukacevich logic 1920). One of this 3-valued logics is identical to that of 
Jones 1986, 1990, however, Kleene’s purpose was to elucidate partial functions in recursion theory, 
rather than to reason about software. Beginning from Gries all the authors used 3-valued logics 
described in [Kleene 19521 and introduced various versions of explicit domains for partial functions. 

to accommodate computations with functions whose argument lists may be only partially available, we 

we represent the explicit domains for atomic functions in a form suitable for uniform automated 

0 we proved that all 3-valued logics of atomic Boolean functions [described in Kleene 19521 can be 

we provide a uniform reduction of Hoare triples with partial functions to formulas of classical 2- 

Our explicit domains are substantially different from the ones previously considered: 

impose an additional structure on the explicit domains; 

computation of domains for compound terms built up from the atomic partial functions; 

reformulated using classical 2-valued 1 st order logic; 

valued 1st order logic making them more amenable to automated proofs. 

1.3. Outline of Our Selected Results 
As we have demonstrated in the previous examples, while overall computation may be correct, some 

of the subordinate computations may not yield any definite result or even may not terminate. We would 
like to make definite conclusions about correctness of such software in a uniform way within 2-valued 
1st order logic. This would be the basis for automated verification of correctness of software. We model 
computations that may not yield any definite result or may not terminate by means of partial functions. 
Partial functions were dealt with in mathematics rigorously for quite a long time. However, with respect 
to software there is more difficulty in handling them. This is because, while in mathematics 
overstepping the domain of a partial function is prohibited and is watched over very closely, 
computation of a partial function outside its domain on computers is a common occurrence. Another 
common occurrence is a computation of a “total function” on an invalid input which is the same as 
regarding the function as partial on a larger domain. This makes it a challenge to reason in an uniform 
and practical way about using partial functions in software engineering. 

The simplified outline of our approach is as follows. For every pair consisting of a piece of software 
and a requirement imposed upon it (either of which may contain partial functions), we construct a 
classical 2-valued 1st order logic formula such that: 

all the symbols denoting partial functions are considered as if they denote total functions. Each total 
denotation coincides with the corresponding partial one over the domain of the partial denotation; 
if it has classical 1st order logic proof then the software is correct with respect to the requirement; 
if its negation has such proof, then the software is faulty with respect to the requirement; 
if neither of the 2 proofs above exist, then nothing can be said about the software; 
Now, in order to check automatically such software, we need to run an automatic theorem prover on 
the formula. 

We proceed as follows. We extend the universe over which we consider the functions occurring in a 
piece of software by a single value denoting undefined value 1. To every partial atomic function, say, 
f(x, y) we attach another atomic function Edom.f(z, x, w, y) which is boolean-valued and total over the 
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extended universe and represents a classical formula of 1st order 2-valued logic. We do not distinguish 
later between that formula and the function. Here z, and w are Boolean variables (i.e., they are taken 
from 5 = {true, false}) and “Edom” stands for “explicit domain”. The meaning of Edom.f(z, x, w, y) is 
the following: 

the standard set-theoretical domain may be computed as D0m.f = { (x, y) I Edom.f(true, x, true, y) = 

0 if Edom.f(true, h, false, y) = true then (xo, y ) ~  Dom.f, f(xo, y) does not depend on y and, moreover, 

0 if Edom.f(false, x, true, y,,) = true then (x, yo)€ Dom.f, f(x, yo) does not depend on x and, moreover, 

. 

true}; 

f(x,, y) may be computed without knowing y; 

f(x, yo) may be computed without knowing x. 

For every compound term t = f(tl, ..., tk) (where t,, ..., tk are other terms) we inductively define the 
expression transformer Def by Def.t = Edorn.f(Def.t,, tl, ..., Def.t, tk)’ It follows by induction that Def.t 
is a total Boolean valued function over the extended universe representing a formula of classical 2- 
valued 1st order logic. 

Theorem 1. If Def.t = true then the value of t  may be computed without attempts to find the values of 
atomic partial functions outside of their domains. 

I7 
Theorem 2. Let cp be a formula of classical 2-valued 1st order logic (cp does not have free variables. 

Note that formulas representing Hoare triples are of this kind.) Suppose that some of the functional 
symbols of cp are interpreted as partial functions over the original universe. Then the following holds: 
0 If a classical 2-valued 1st order logic proof of Def.cp (1Def.q) exists, then Defq (-Def.cp) is true over 

the original universe. 

Remark 1. Without Theorem 2 the existence of the classical proof mentioned above implies only that 
0 

n 
the formula Def.9 (7Def.cp) is true over the extended universe. 

U 

We say that cp is total if Def.cp is true. Otherwise, we say that cp is not defined. 
Theorem 3. Let cp be as in Theorem 2. If cp is total then: 
if a classical 2-valued 1st order logic proof of cp (-19) exists, then cp ( 1 9 )  is true over the original 

universe. 

Theorem 4. A Hoare triple { P}B{ Q} holds if there is a well-formed classical 2-valued 1st order logic 
proof of Def(P) A P + wpp(B, Q) using our proof rules. Here, wpp(B, Q) is the “weakest precondition 
for 223, Q in the presence of partial functions”. The table rules defining wpp is at the end of the paper. 

0 
Thus in order to check a piece of software 5% with respect to a precondition P and postcondition Q, it 

is sufficient to run a theorem prover on the formula from Theorem 4 for the corresponding Hoare triple. 
If there is a classical proof of the formula, the software is correct. If there is a classical proof of the 
negation of the formula, the software is faulty. Otherwise, it is inconclusive. 

1 A. Sorted Partial Algebras 
In our approach we rely on the notion of sorted partial algebras or equivalent notions, as described in 

several works (Breu, R. 1991; Wirsing, M. 1990; Gurevich 1992, etc.). We will provide a brief 
introduction to these notions. 

According to a standard definition, a (mathematical) structure (sometimes also called “mathematical 
model”) is a combination of a set (called the universe) and a collection of functional and relational 
symbols (called the signature), where each element of the signature is associated with an n-ary function 
or relation (for various n’s) defined in terms of the universe. In addition, it is assumed that each function 
of arity n is defined everywhere on UX ... XU (n times) (also denoted as u), where U is the universe (i.e., 
each functions is total). The signature, the logical symbols (i.e., 1, A, v, +, etc.), and a collection of 
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variables, form the first order language associated with the structure. First order structures disallow 
quantifications (V and 3) over functions and relations. 

In order to somewhat relax the prohibitions on partial functions and quantifications over functions and 
relations the notion of sorted structures was developed. A sorted structure has several distinguished 
subsets (Le., unary relations) of the universe called “sorts”. The “totality” requirement for functions 
within sorted structures is relaxed in such a way that a function is allowed to be defined on a Cartesian 
product of various sorts (vs. products of the universe). In addition, within the first order language 
associated with a sorted structure, each variable x is explicitly attached to a sort S (written x:S) such that 
x is allowed to assume values only from S. Thus, if a sort consists of a collection of relations over some 
other sorts, the quantifications over this collection of relations is allowed. In order to differentiate the 
functions associated with the elements of the signature from other functions constructed within the 
structure, we’ll call the former “built-in functions”. 

A sorted (total) algebra is a structure where all the relations are treated as Boolean-valued functions 
(Gurevich 1992). (Le., this would require an explicit sort of Booleans El = {true, false}.) For sorted 
algebras, each variable x must be associated with a unique sort, say S (denoted x:S), whereas each 
constant c may be associated with any sort S such that CE S (similarly, denoted c:S). 

A sorted partial algebra is a sorted algebra where functions are allowed to be defined on subsets of 
Cartesian products of one or more sorts. 

2. 

’ 

SORTED PARTIAL ALGEBRAS WITH EXPLICIT DOMAINS I 

2.1. Sorted Partial Algebraic First Order Languages with Explicit 
Domains (SPAED-1 -Languages) 

We will introduce a new notion of SPAED-1-languages which is a slight modification of standard first 
order languages. 

DEFINITION 2-1 (SPAED-1-Languages) The alphabet of an SPAED-1-language will consist of an 
algebraic signature, the quantifiers, sorted individual variables, and derivative symbols. Let’s define an 
SPAED- 1-language 53 

The algebraic signature of %is a triple C = (Sorts, Func) where: 
- Sorts is a finite collection of sorts. Each sort is intended to denote a set. A sort S is intended to 

denote a set called the “sort carrier” of S. Sorts may be partially ordered via a binary relation “5“ 
denoting the set inclusion of the sort carriers (Le., if S, S’ are sorts and s, 5’ are their respective 
carriers, then if SIS ’  then 5 E 3’. Sorts = SortsLuSortsN, where SortsL is the set of “logical” sorts 
and SortsN is the set of “nonlogical” sorts. SortsL at least includes the sort of Booleans B and the 
universal sort U. U is intended to denote the union of all sort carriers. Each sort S is associated with 
its characteristic function (S, (U+B)), where intuitively, S(x) = t means XE S; 

- Func is a finite collection of pairs (f, z), with z of the form (Sly ..., S,+S), where Sly ..., S,, S are 
sorts. Intuitively, (f, z) is intended to denote a function “fslx...xs0+s, where s,, ..., s,, s are the 
respective sort carriers. We abbreviate SI, ..., S, as “ 3  or 3 when there is no confusion and 
s,x ... xs, as xn s or xs. f is called an n-ary function symbol of type z, z is called the minimal type 
off,  (Sly ..., S,) are called the argument sorts, and S is called the value sort. If Sly ..., So+S is the 
minimal type o f f  and SIIS’,, ..., S,IS’,, SIS’, then we say that f is of type S’l, ..., S’,,+S’ 
(abbreviated as tS’,, ..., S’,,+S’). Function symbols of arity 0 are called constants; for the constants 
we sometimes abbreviate c:(+S) as c:S. Func = FuncLuFuncN, where FuncL is the set of “logical” 
function symbols and Funp is the set of “nonlogical” function symbols. Fun8 at least includes the 
standard Boolean operations (t, (+B)), (f, (+El)), (-, (B+El)) and (v, (B, B+B)), etc., as well as 
the equality on some of the sorts (=s, (S, S+B)). It also includes nonstrict Boolean operations 
introduced later in this section. 
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The quantifiers are: 
- strict: V and 3; 
- nonstrict: V and 7 .  The meaning of the nonstrict quantifiers will be explained later within the 

Each sorted variable x, in contrast to variables in formal languages without sorts, is explicitly attached 
to a sort S (written x:S) such that x is allowed to assume values only from S. 
The derivative symbols consist of all symbols of the form Edom.f, where f:(S,, ..., S,+S) is a 
functional symbol from Func. Edom stands for “explicit domain”; since Ed0m.f tells for which 
arguments the function f may be evaluated. Syntactically, we treat Ed0m.f as a Boolean-valued 2n-ary 
function symbol of type (El, S,, ..., .5, S,+B). However, whereas the function symbol f is intended to 
denote either a partial or a total function, Ed0m.f will denote only a total function. Intuitively, the 
meaning of Ed0m.f is as follows: 
- if Edom.f(b,, t,, ..., b,, t,) = k then we know the value of f(t,, ..., t,) (in other words, f(tl, ..., t,) is 

defined). Moreover, in order to find the value of f(t,, ..., t,), we need not know the values of all such 
ti where bi = f; 

- if Edom.f(b,, t,, ..., b,, t,) = f and {i I bi = f }  f 0 then, provided that we do not know the values of 
all such ti where bi = 7, we also do not know the value of f(t,, ..., t,); 

- if Edom.f(b,, t,, ..., b,, t,) = f and {i I bi = f }  = 0 then we do not know the value of f(t,, ..., t,) (in 
other words, f(x,, ..., xn) is undefined). 

- if D0m.f represents the set of all vectors (x,, ..., x,) where the function is defined then D0m.f = {(x,, 
..., x,) I Edom.f(k, x,, ..., t, xn) = i}. 

0 We will say that 9 i s  an SPAED-1-Language or that S i s  a E-SPAED-1-Language or, if there is no 

ns 

definition of the expression transformer Def. 

confusion, that Z i s  a C-Language. 

Now we’ll define the expressions of 23. 
DEFINITION 2-2 (Expressions and their Sorts) The expressions are defined inductively as follows: 

0 a variable x:S or a constant c:S are expressions of sort S; 
0 if (f, (ns+S) )~  Func and t,, ..., t, are expressions (note that we do not require t,:S,, ..., tn:S,) then: 

- f(tl, ..., t,) is an expressions of sort S (abbreviated as f( I)); 
- if b,:IEB, ..., b,:B are expressions then Edom.f(b,,t,, ..., b,,t,) is an expression of sort B (abbreviated 

as Edom.f( 6,  f)); 
if b is a Boolean-valued expression, then (Vx:S, b), (3x:S, b), (f?x:S, b), and (qx:S, b) are Boolean- 
valued expressions. Each free occurrence of the variable x:S in t becomes a bound occurrence in 
(Vx:S, b), (3x:S, b), (vx:S, b), and (!!x:S, b). 

To say that e is an expression of sort S, we’ll write e:S. We also have the following convention: if 
S’(x), see next section) and e:S, then also e:S’. We designate ScS’ (i.e., if we can prove Vx:U, S(x) 

the set of the free variables of e as FV(e). 
0 

0 
DEFINITION 2-3 (Terms) Terms are expressions without occurrences of explicit domains or 

quantifiers. 
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22. Formal Sorted Partial Algebras with Explicit Domains (FSPED- 
Algebras) 

2.2.1. The Logical Axiom Schema for Explicit Domains 
As usual, Boolean expressions are called formulas, and those without bound variables are called 

closed formulas. The latter may serve as axioms. A formal language with attached axioms is called a 
formal system. We’ll call formal systems based on a SPAED-1-languages formal sorted partial algebras 
with explicit domains (FSPED-algebras). The axioms attached to an FSPED-algebra consist of logical 
and nonlogical axioms. The logical axioms include all the usual first order logical axioms for algebraic 
formal languages (e.g., see [Gries, Schneider 19931). In addition, logical axioms include the following 
axioms pertaining to the explicit domain (Edom) notation: 

(Al) (Axioms for all the explicit domains) Let (f, (“~+S))E Func, {j,, ..., jm}c{ 1, ..., n}, {il, ..., 
ik} = { 1, ..., n}-{ j,, ..., jm}, x,:S,, ..., x,:S,, bi, = t, ..., bik = t, bjl = f, ..., bjm = f, and zi, :B, ..., Zik:B. 
Let US abbreviate Edom.f((6, ?)[Zi,/bi,, ..., Zik/biJ) as Edom.f( Z,, 6,, z). Then the following is an 
axiom: - 
- Vxi,, ..., xik3z:B((Vxjl, ..., xj,, Edom.f(b, ?) = Z) A (Z = t 3 3y:SVXjl, ..., Xj,, f(?) = Y) A (Z = f 
a Vzi,, ..., zikVxjl, ..., Xj,, Edom.f(Z,, gJ, 2) = 7)). Intuitively, it means that Edom.f(6, ?) does 
not depend on values of Xj,, ..., Xj,, that if Edom.f(b, 2) = t then f( ?) does not depend on values of 
Xj,, ..., Xj, and that if Edom.f(6, 2) = f then Edom.f(z,, gJ, 2) does not depend on either values of 
zil, ..., Zik or values of Xjl, ..., X’ 

Jm’ 

2.2.2. Logical Axioms for Strict Functions 

DEFINITION 2 4  (Strict Total Functions) f:(S,, ..., S,+S) is called a strict total function if Vzl:B, ..., 
zn:B, x,:S,, ..., x,:S,(Edom.f(z,, x,, ..., z,, xn) = (zl A ... A z,,)); (in other words, f is strict total i f f  is 
defined when all the arguments are defined. 

(A2) (Axioms for Boolean constants) 
0 

- Edorn.t=t 
- Edom.f=t; 

0 A3) 
- VzB, x:U, Edom.S(z, x) = z; 

(A3) 

(Axioms for characteristic functions of the form (S, (U+B))) 

A,  v, e-, j, and =s are strict total functions. In other words, if * : ( S ,  S+B) is the type 
declaration of any of A, v, w, 3, and =s, then 
- Vz:B, x:S, w:B, y:S, Edom.B(z, x, w, y) = z A w; 

REMARK 2-1 Although we require Ed0m.f = t and Ed0m.f = t, we will not require that for every 
constant c, Ed0m.c = t. The advantage of having constants of unknown value will be discussed in the 
section on skeletons and bundles of SPED-algebras and also in the sections dealing with evolving partial 
algebras with explicit domains. 

0 
2.2.3. Logical Axioms for Nonstrict Functions 

We will introduce several nonstrict total functions: 
0 Symmetric nonstrict Boolean: A ~ ,  v,, ’s; 

Right nonstrict Boolean: A,, v,, *r; 

Left nonstrict Boolean: A~,  vl, jl; 

7 
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Conditional function (?, (B,U,UJ+U)) (we’ll write (b ? x, y) in lieu of ?(b, x, y)). 

Their properties are expressed in the following logical axioms: 

words, let *:(S, S+B) be any of A, v, or +, and let u be any of s, r, or 1. Then: 
(A50 As functions, A,, v,, qS, A,, v,, J,,A~, vl, 3, are identical to (respectively) A, v, a. I other 

- Vx:B, y:B, x$kuy = x*y; 
(A5d) The explicit domains of A,, v,, +,, 4, v,, =+,A,, v,, a, are defined as follows: 
- Vz:B, x:B, w:B, y:B, Edom.v,(z, x, w, y) = (z A w) v (z A x) v (w A y); 
- Vz:B, x:B, w:B, y:B, Edom.v,(z, x, w, y) = (z A w) v (z AX); 
- Vz:B, x:B, w:5, y:B, Edom.v,(z, x, w, y) = (z A w) v (w A y); 
- Vz:B, x:B, w:@ y:B, Edom.h,(z, x, w, y) = (z A w) v (z A -,x) v (w A -,y); 
- Y z : ~ ,  x:5, w:B, y:B, Edom.A,(z, x, w, y) = (z A w) v (z A 5); 

- Vz:B, x:B, w:5, y:B, Edom.+,(z, x, w, y) = (z A w) v (z A 5) v (w A y); 
- Vz:B, x:B, w:B, y:B, Edom.*,(z, x, w, y) = (z A w) v (z A -x); 
- Vz:B, x:B, w:B, y:B, Edom.+,(z, x, w, y) = (z A w) v (w A y); 

- YZ:B, x:B, W:B, y:B, Edom.A,(z, X, W, y) = (Z A W) V (W A -IY); 

(A6) Conditional function (?, (B,U,U+U)) is defined as follows: 

{; (b ? x, y) P i f b = t ;  
if b = f. 

Note that in order to compute (b ? x, y), when b = t, we don’t have to know the value of y; whereas 
when b = f, we don’t have to know the value of x. Accordingly, we’ll define the explicit domain of ? via 
the following axiom: 

- Vz:B, b:B, v:B, x:U, w:B, y:U, Edom.?(z, b, v, x, w, y) P z A (b * v) A (yb + w). 

Logical axioms are standard in the sense that every FSPED-algebra includes them. In contrast, 
nonlogical axioms represent properties of functions and sorts of particular FSPED-algebras, e.g., various 
inclusion relationships on sorts. 

2.2.4. Classical First Order Proofs within FSPED-Algebras 
In keeping with the Gries idea, we would like the notion of proofs within FSPED-algebras to be the 

same as for conventional first order theories (with the addition of the logical axioms described above). 
Recall that, in contrast with conventional first order theories, within FSPED-algebras it is possible to 
refer during the proof to the value of f(tl, ..., t,) when (t,, ..., tn)e Dom.f, which means that f(tl, ..., t,) is, 
in fact, undefined. That wood seem to invalidate the proof. To deal with this problem, Gries used an 
informal notation Def(e) to denote that the expression e is defined. We’ll formalize this approach by 
giving a rigorous definition of the expression transformer Def via our explicit domain notation. 

DEFINITION 2-5 (Expression Transformer Def) For an expression e:S, the expression Def(e) is 
defined inductively as follows: 

if e is a variable x:S, then Def(e) P t; 
if (f, (SI, ..., S,+S))E Func and t,, ..., t,, are expressions then: 
- Def(f( I)) P Edom.f(Def(t,), t,, ..., Def(t,), t,) is an expressions of sort S; 
- if b1:5, ..., b,:B are expressions, then Def(Edom.g( 6,s)) 4 A(Def(bi) A, (bi + Def(t,))); 

i=l 

if b is a Boolean-valued expression, then 
- Def(Vx:S, b) A Vx:S, Def(b); 
- Def(3x:S, b) & Vx:S, Def(b); 

8 
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ns - Def( Vx:S, b) A (Vx:S, Def(b)) v 3x:S(Def(b) A, Tb); 

- Def( 3x:S, b) 4 (Vx:S, Def(b)) v 3x:S(Def(b) A, b). 

DEFINITION 2-6 (Applying 1st Order Proofs to Formulas with Partial Functions) In order to prove 
formulas within FSPED-algebras, we propose the following procedure: 

First, we will use conventional first order proofs (with the addition of the logical axioms described 
above) in the sense that we will allow within the proofs references to f(t,, ..., t,), regardless of 
Edom.f(i,t,, ..., i,t,) = t or Edom.f(f,t,, ..., i,t,) = f. As usual, if a formulacp is derived from the logical 
axioms only, we write cp; if cp is derived using both the logical axioms and a collection Y of 
nonlogical axioms, we write Y f- or K 19, where K the name of the FSPED-algebra. 

ns 

Second, given a closed formula 9, we will try to prove Def(<p) (i.e., Def(<p) = t). 
Third, when we have a first order proof that Def(9) = t, then we'll try to prove cp. If we would fail to 
prove that Def(cp) = t, then we'll not attempt to prove cp. 

In the following sections we'll establish the soundness of this approach, i.e., that a formula proved in 
this way is true on all structures implementing the FSPED-algebra. 

DEFINITION 2-7 (Total Closed Expressions) Let e be a closed expression in the language of an 
FSPED-algebra K. If K 1 Def(e), we'll call e total (with respect to K). If 1 Def(e) then we'll call e 
logically total. 

0 

THEOREM 2-1 Def(e) is a logically total formula. In other words, for any expression e, 

Proof. By induction on length of expressions. 
1 Def(Def(e)). 

0 
PROPOSITION 2-1 If b:B then (,Def(b) v, b), (Def(b) A, b), and (Def(b) J~ b) are logically total 

formulas. 
0 

2.3. Sorted Partial Algebras with Explicit Domains (SPED-Algebras) 

2.3.1. Evaluating Expressions via Interpreting Signatures 

DEFINITION 2-8 (SPED-Algebras and Interpreting Signatures) A SPED-algebra is a pair % = (E, 
an), where E = (Sorts, Func) is a signature and %a is a mapping (called the interpretation of C in 8) 
such that: 

for any sort S, %[SI is a set called the carrier of S; 

%[E] = {%[in, %[fJ}, where %[in f %if]. For our convenience, we will not distinguish between 5 and 
9qB], between t and %[in, and between f and %[f]; 

0 for any function symbol f with (f, (0 ~ + S ) ) E  Func: 
- %If] is a function %[f]:~[[S,]x ... x~[S,]-'%[Sn called an operation in 8; 
- '%[Edom.f] is a function %[Edom.f]:Bx'%[SS]x ... xBx%[S,]+B called the explicit domain of the 

operation %If]; 
- Dom(%[f]) = { Zl X ~ E  S, A ... A %E S, A '%[Edom.fj(i, xl, ..., t, xn) = i), where Dom(g) is the domain 

of a partial function g in the usual sense; 

wun = usa[sj; 
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all the logical axioms are satisfied. An adaptation (in terms of SPED-algebras) of the Tarski definition 
of satisfaction is given below. 

Now assume that every element of %[U] has a name and thus may be considered to be a constant with 
explicit domain equal to f. We would like to find values associated with as many expressions of the 
form e[a,/x,, ..., an/%], where a,:S,, ..., an:Sn are constants with explicit domain equal to t and where 
FV(e)c{x,, ..., xn}, as possible. For total algebras such values are computed via the Tarski evaluation. 
Since we treat our partial functions as total functions with unknown values beyond their explicit domain, 
we say that the Tarski evaluation of e[a,/x,, ..., aJxJ always exists but may be undefined. We designate 
such values as %[e[a,/x,, ..., an/xn]]. Below is our modification of Tarski evaluation describing how to 
find %[e[a,/x,, ..., aJxn]n and how to determine whether this value is defined. We will assume that e:S is 
an expression, x,:S,, ..., xn:Sn are variables, a,:S,, ..., a$, are constants, and that FV(e)c{x,, ..., xn}. 

DEFINITION 2-9 (Evaluation of Expressions) We would like to evaluate e[a,/x,, ..., an/xn] and the 
predicate Dep(e[a,/x,, ..., an/x,]). 

if e is a constant c:S, then: 
- %[e[a,/x,, ..., a,,/xn]] P %[c]; 
- Dep(e[a,/x,, ..., an/x,,]) P %[Edom.c]; 

- %[e[a,/x,, ..., an/xn]] A ai; 
- Dep(e[a,/x,, ..., a&,]) P t; 

0 if e = f( f),  (f, (mS+S) )~  Func, t,, ..., t, are expressions, and %[ti[a,/x,, ..., ~,/x,]]E %[Si] for i = 1, ..., 
m, then: 
- %[e[a,/x, , ..., an/xn]] 2 %[f](%[t, [a,/x,, ..., an/xn]], ..., %ltm[a,/x,, ..., an/xn]J); 
- Dep(e[a,/x,, ..., an/xn]) P %[Edom.f](Def%,[a,/x,, ..., an/xn]), %[t,[a,/x,, ..., a&,]], ..., DeP(t,[aix,, 

..., an/xnl), %Ut,[a,/x,, ..., an/xnlll>; 

if e is a variable xi:Si, then: 

0 if e = Vx:S, b (where b:B is an expression), then: 
- %[e[a,/x,, ..., aJx,]] P f if for every constant a:S, %[b[al/xl, ..., aJx,, a/xl]= f ;  
- %[e[a,/x,, ..., aJx,]J P f otherwise; 
- DeP(e[a,/x,, ..., an/xn]) P t if for every constant a:S, DeP(b[a,/x,, ..., an/xn, dx]) = t; 
- Dep(e[a,/x,, ..., an/xn]) P f otherwise; 

- %[e[a,/x,, ..., a,/x,]] P f if for some constant a:S, %[b[a,/x,, ..., an/xn, a/x]]= f ;  
- %[e[a,/x,, ..., an/xn]B 4 f otherwise; 
- Def"x(e[a,/x,, ..., an/xn]) P f if for every constant a:S, Dep(b[a,/x,, ..., an/%, a/x]) = f;  
- Def'(e[a,/x,, ..., an/xn]) P f otherwise; 

- %[e[a,/x,, ..., a,,/x,]] 4 t if for every constant a:S, %[b[a,/x,, ..., aJxn, dxl] = f ;  
- %[e[a,/x,, ..., an/xn]J 4 f otherwise; 
- Dep(e[al/xl, ..., a /x,]) 4 f if for every constant a:S, Dep'(b[a,/x,, ..., an/xn, a/x]) = or if for some 

constant a:S, (De$(b[a,/x,, ..., aJx,, a/x]) = f and %fb[a,/x,, ..., an/%, dxl] = f); 
- Def'(e[a,/x,, ..., an/xn]) P f otherwise; 

- %[e[al/x,, ..., aJx,]] P t if for some constant a:S, %[b[a,/x,, ..., an/xn, a/xl]I = t; 
- %:([e[a,/x,, ..., a,,/xn]] P f otherwise; 
- Dep(e[a,/x,, ..., a$xn]) = * t if for every constant a:S, Dep(b[a,/x,, ..., an/%, a/x]) = t or if for some 

constant a:S, (De (b[a,/x,, ..., a&,, dx]) = f and %[b[a,/x,, ..., an/xn, dxln = t); 
- DeP(e[a,/x,, ..., a,/x,]) 4 f otherwise. 

if e = 3x:S, b (where b:B is an expression), then: 

ns 
if e = Vx:S, b (where b:B is an expression), then: 

ns 
0 if e = 3x:S, b (where b:B is an expression), then: 

1 
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2.3.2. Models of FSPED-Algebras 

DEFINITION 2-10 (Satisfaction of Formulas) We say that a closed formula cp is satisfied by 3 
(denoted % cp) if %b] = t and Dep(cp) = t. 

0 
Recall that we require that all the logical axioms be satisfied in the above sense. 
DEFINITION 2-1 1 (Models or Implementations of FSPED-Algebras) We say that a SPED-Algebra % 

implements a FSPED-algebra K (or % is a model of 8 )  if for each nonlogical axiom cp of K , 31 cp. 

THEOREM 2-2 Suppose that a SPED-algebra % implements a FSPED-algebra K and that e is a total 
closed expression in K . Then Def'(e) = t. 

THEOREM 2-3 (Soundness) Suppose that a SPED-algebra % implements a FSPED-algebra K and 
that cp is a total closed formula in E3 such that K 19. Then % kcp. 

0 
REMARK 2-2 Sometimes, when there is no confusion, we'll write S instead of %[SI, f instead of %[fl, 

Ed0m.f instead of '%[Edom.f], and Def(e) instead of Def"x(e). 
n 
U 

24. Semantics for Partial Functions 
2.4.1. Skeletons of SPED-Algebras 

DEFINITION 2-12 (Skeletons of SPED-Algebras) Let % = (E, %[B be a SPED-algebra, where E = 
(Sorts, Func). On the basis of % we going to construct the following Sped-algebra '8' = (Z', '%'fl), 
where Z' = (Sorts', Func'), which we'll call the skeleton of %: 

signature E': 
- I is a new function symbol (i.e., Le Func); 
- Sorts' 4 Sortsu{S' I SE Sorts}; 
- U' is the universe of E'; 
- Func' A {(f', (SL1, ..., S',+S')) I (f, (Sl, ..., S,+S))EFunc}u{(I, (4l.J'))); 

- %%I]e %[UJ]. From now on we will not distinguish between I and 3qJ-n; 
- %qEdom.Ij 4 f; 

the interpretation map %'fl on constant I and its explicit domain: 

the interpretation map %'I[ll on sorts: 
- for each SE Sorts, %?US] P %US]; 
- for each SE Sorts, %'US'] P %uS]u{L}; 
the interpretation map '%'[cI1 on function symbols and explicit domains: 

(we abbreviate zl, xl, ..., z,, x, as 5,Ti and xl, ..., x,, as Ti) 
- on function symbols: 

for each (f, (Sl, ..., S,+S))E Func, for all X ~ E  '%'[s1j, ..., X,E %LfS'n], if { jl, ..., j,} = {i I 5 = I} 
and z1 = t, ..., z,, = t, then 

1 
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'%if]< si'), if '%[Edom.fj( Z', 2') = t, where 2' = Z[f/Zj,, ..., f/zj,] and si' = 

si[yjl/xjl, ..., yj,/xj,] for arbitrary YjF '%[SjJ, ..., yj,€'%uS. Jm B; 
J-, otherwise. 

'%qfq( si) b 

- on explicit domains: 
I I  I' for each (f, (Sl, ..., S,+S))EFunc, Z,E [EB, X,E 

= f }  then 
US ,], ..., Z,E B, X,E '% [S ,], if {jl, ..., j,} = {i I zi 

if for some ie [l..n], zi = -f: and xi = I; 

%:[[Edom.fJ(z,%') otherwise, where = 2' = Z[yjI/XjI, ..., yj,/~j,I 
for arbitrary yjlE '%USj,], ..., yjmE '%[Sjml 

{ f  '%'[IEdom.f']( 2, Z)  P 

0 

0 
COROLLARY. e)' is a SPED-algebra. 

THEOREM 2-4 Let cp closed formula in the language of %, such that Def(cp) = t. Then cp is satisfied in 
% if and only if cp is satisfied in %'. 

2.4.2. Bundles of SPED-Algebras 
DEFINITION 2-13 (Bundles of SPED-Algebras) Let '% = (E, '%[ID be a SPED-algebra, where E = 

{Sorts, Func) and let Le %[UJ. We call the class of all such SPED-algebras %' = {E, '%a) where a'' is 
identical with a', a bundle of SPED-algebras. 

0 
0 

COROLLARY. All the SPED-algebras in a bundle satisfy the same set of total statements. 

REMARK 2-3 (Bundles, Skeletons, and the original D. Gries Idea) Since a bundle of SPED-algebras 
contains all possible algebras where the values of functions outside their domains defined in every 
which way, the bundle embodies the idea that a partial function may be thought of as a total function 
such that the values outside its domain somehow exist, but are unknown. On the other hand, the 
skeletons represent traditional treatment of partiality via 3-valued logic. We have just shown that they 
coincide. 

3. SEMANTICS OF PROGRAM CORRECTNESS 

3.1. Semantics of Programs with Partial Operations via Evolving Sorted 
Partial Algebras with Explicit Domains (ESPED-Algebras) 

I 
Given a specification, our intuitive concept of a program satisfying this specification is a state machine 

transforming the states defined by the data structure of the specification. Although there many 
descriptions of formal program semantics (Hare1 1979; and Loeckx, Sieber 1987, etc., etc.), the most 
convenient for us is the "evolving algebras" semantics developed by Y. Gurevich (Gurevich 1993). 
We'll modify the original evolving algebras to accommodate our explicit domains. 

DEFINITION 3-1 (ESPED-Signature) ESED-signature is a triple X e  = (Sorts, Func,, Func,), such that 
Ed = (Sorts, Func,uFunc,) is a signature as before and Func, and Func, are disjoint. We call Func, the 
set of static function symbols and Func, the set of dynamic function symbols. We'll call the dynamic 

1 
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Instructions 
Skip 

’ 

function symbols program variables. The program variables of 0 arity are called not indexed and the rest 
of elements of Func, are called indexed. 

DEFINITION 3-2 (ESPED-Algebras) An ESPED-algebra is a quintuple (5 = (Ee, SV, 23, G, @, where 
E, = (Sorts, Func,, Func,) is aESPED-signature, SV is a subset of Func, called the list of specification 
variables, ‘$3 = (Z,, Ba) SPED-algebra (where Es = (Sorts, Func,)), (5 = { % = (Ed, %.[ID I BIZ = B} 
(where E,, = (Sorts, Func,uFunc,) and (we 
define algorithms below). We call ‘$3 the base algebra and (5 the set of program states or superuniverse 
(due to Gurevich). 

(5 may be thought of as a state transition system (STS). Given an initial state from the superuniverse, it 
will commence a series of state jumps producing a run. The state jumps are governed by the algorithm 
9 The additional restrictions on the state runs is that the specification variables must not be explicitly 
present in the algorithms and thus must not be changed during the state jumps (see remark below). 

REMARK 3-1 Note that for a program variable f i t  is possible that in a given initial state %, the value 
of %uEdom.f](z,, xl! ..., z,, xJ, where n20, would be equal to f for all arguments. This provides a 
semantics to the notion of “uninitialized program variables”. In the following sections the question of 
correctness of sequential programs with uninitialized program variables is completely solved. 

Now about syntactic variables. Although the their original treatment [Gries 1981, Morgan 1991, etc.] 
assumed that their values should not be changed, there are cases when they could be thought as 
functions of the program state and thus may be changed without explicitly appearing in a program. Thus 
in [Yakhnis, Farrell, Shultz 19941 the syntactic variables are subdivided into static syntactic variables 
and dynamic syntactic variables. The latter are beyond the scope of this discourse. 

A formal definition of STS capable of producing either finite or infinite runs is given in [Yakhnis, 
Stilman 1994, 19951. Here we’ll limit our discussion only to finite runs of ESPED-algebras representing 
sequential programs. We’ll discuss concurrent and/or infinitely running ESPED-algebras in [A. Yakhnis, 
V. Yakhnis, Semantics of Concurrent Communicating Objects, in preparation]. 

DEFINITION 3-3 (Semantics of Programs) A semantics for a program in most programming language 
is an ESPED-algebra assigned in a natural way. 

We would like to construct algorithms using as a base five simplified constructs from the Dijkstra 
language. Living the Skip and Composition instructions intact, we modified the Assignments, IF, and 
Loop via taking advantage of our expressions transformer Def. For ease in provability, we incorporated 
the invariant and the bound function directly within the Simple Loop (as was done in [Yakhnis, Farrell, 
Shultz 19941). Also, we added a modified form of the Pseudocode Instruction from [Yakhnis, Farrell, 
Shultz 19941. Although the algorithm behavior below is described intuitively, it is quite easy to 
formalize using the machinery developed above. E.g., “compute the value of Def(E) in the initial 
program state” means “on the basis of DEFINITION 2-9 find the result of evaluation of Def’(E) in 
respect to the algebra % representing the initial state”. 

S 

is a restriction of % to Q, and F i s  a algorithm on 
I 

~ 

Behavior during Execution 
Step 1. Do nothing; 

skip 
Composition 

Step 2. Terminate. 
Step 1. Execute E 

/* F a n d  Fare algorithms */ 

EF Step 3. Terminate. 

Step 2. Execute I 

1 
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Simple Assignment 

/* x:S is a variable and E:S is an 
expression */ 

x :=E  

Strict Indexed Assignment 

/* let fS,, ..., S,+S be an indexed 
program variable, t,:S,, ..., t,:S,, E:S 
be expressions */ 

f(t,, ..., t,) := E 

Simple IF 

/* y is a Boolean expression and 
F a n d  F a r e  algorithms. */ 

i f y + F  

fi 
u-ly+ F 

Simple Verifiable Loop 

/* y is a Boolean expression, cp is 
a logical assertion, E is an integer- 
valued specification expression and 
F i s  an algorithm. It is established 
that cp is an invariant of F a n d  that 
E is a bound function. */ 

do y+ 
invariant cp 
bound function E 
9- 

od 

Pseudocode Instruction 

/* SV is a list of program 
variables called “specification 
variables”, c p ,  y~ are logical 
assertions */ 

Step 1 .  Compute the value of Def(E) in the initial program state. 
If Def(E) = f then crash. Otherwise go to the next step; 

Step 2. Get the new program state by replacing the value of the 
program variable x by the value of E, replacing Ed0m.x by i, 
and leaving the values of all other variables unchanged; 

Step 3. Terminate. 
Step 1. Compute the values of Def(t,), ..., Def(t,), Def(E) in the 

initial program state. If any is equal to f then crash. Otherwise go 
to the next step; 

Step 2. Get the new program state by replacing the value of f(tl, 
..., t,) by the value of E, replacing the value of Edom.f(t, t,, ..., f:, 
t,) by f: and leaving the values of all other variables unchanged; 

Step 3. Terminate. 
Step 1. Evaluate Def(y) in the initial program state. If Def(y) = f 

then crash. Otherwise go to the next step; 

Step 2. If y it evaluates as t, execute KOtherwise execute E 
Step 3. Terminate. 

/* The following must be proved beforehand: 

invariant of the loop; 
0 (cp js E20) A, {E=X} F{E<X}, where X is an integer program 

variable not occurring inKThus  E is a bound function of the 

{ c p  A, y) F{cp) A, (Def(cp) *, cp jS Def(y)>, i.e.9 <p is an 

loop. */ 

Step 1. Evaluate Def(cp) in the initial program state. If Def(cp) = 
f, then crash. Otherwise go to step 2; 

Step 2. Evaluate the loop guard y. If y evaluates as f, then 
terminate. Otherwise go to step 3; 

Step 3. Execute the loop body KWhen and if Fterminates, go 

Step 1. Evaluate Def(cp) in the initial program state. If Def(cp) = 
f, or if Def(cp) = f: and cp = f then crash. Otherwise go to step 2; 

Step 2. Let CP be the set of all program states such that: 

initial state; 

If Q, is not empty then choose any state from Q, as the final state 

the values of all the specification variables are the same as in the 

the state satisfies y ~ .  

and terminate. Otherwise crash. 

1 
A 
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REMARK 3-2 There are two 
Nontrict Indexed Assignment, 
of an indexed program variable, 
are undefined. We believe that 

other kinds of assignments, Strict Indexed Subspace Assignment and 
. The former assigns a single value to a subspace of the argument space 
whereas the latter permits to assign a value when some of the arguments 
these provable constructs would increase the expressive power of the 

modern programming languages. 
[7 

32. Extending Dijkstra-Gries Program Correctness Rules to Programs 
with Partial Operations 

Using our formalization of the Gries idea, we will first extend the Dijkstra weakest precondition (wp) 
expression transformer to programs with partial operations. We’ll denote the new transformer wpp for 
“weakest mecondition with ~artial I”. We assume that Q is a logical assertion; the rest of the symbols 
are from the above semantic ldefini 

Instruction 9 
Skip 

Composition 

Simple Assignment 

Strict Indexed Assignment 

skip 

K Y  

x : = E  

f(t,, ..., t,) := E 

Simple IF 
i f y + F  
u s y +  F 
fi 

do y+ 
Simple Verifiable Loop 

invariant <p 
bound function E 
F- 

Pseudocode Instruction 
od 

IW, <p, VI1 

Def(E) A, Def(Q[E/x]) A, Q[E/x] 

Let f[t,, ..., t p E ]  be a function identical to f, except that f(tl, ..., 
t,) = E. Then: 

wpp(f(t,, ..., t,) := E, Q) 4 Def(t,) A, ... A, Def(t,) A, Def(E) A, 

DefW A, (Y * WPP(KQ)) A, (TY * WPP(X Q)) 
Def(Q[f[t,, .-., t ,~E l / f l )  A, Q[f[tl, . - -? t,HEl/fl 

.cp 
e f  otherwise. 

if Def(cp) A, cp A 1 y  + Def(Q) A, Q; 

’9 
’ f  otherwise. 

if Def(cp) A, cp j Def(Q) A, Q; 

3.3. Hoare Triples With Partial Functions 
We consider Hoare triples {P}%{Q} where the assertions P (the “precondition”) and Q (the 

“postcondition”) and the program B may have occurrences of partial functions and also where the 
program 9% may have uninitialized program variables. We limit ourselves to discussing the “total 
correctness” semantics of Hoare triples since within safety-critical systems the “partial correctness” 
semantics is of limited value. 

We will treat 3% as an ESPED-algebra and we’ll assume that % describes all the symbols from P and 
Q. Now, within the total correctness semantics we say that { P}B{ Q} holds if the following is true: 

for each initial state satisfying Def(P) P the program run will posses the following qualities: 
- it would be finite; 
- for every state in the run the values of the syntactic variables would be identical with those on the 

initial state; 
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- during each state transition there would be no attempt to evaluate a function outside its current 
domain; 

- the final state would satisfy Def(P) A, P. 

THEOREM 3-1 (Total Correctness Semantics of Hoare Triples) If Def(P) A, P 3 wpp(B, Q)  

Proof. Induction on the length of the algorithms. 

COROLLARY If all the initial states are models of a an FSPED-algebra R , then if K 1 Def(P) A, P + 

The last theorem and its corollary provide a solid foundation for automating proofs of safety-critical 

evaluates as on each SPED-algebra representing an initial state, then { P}B{ Q} holds. 

0 

0 
wpp(S3, Q) then { P} %{ Q} holds. 

systems. 

4. CONCLUSION 

4.1. What We Have Achieved 
Formalized the original Gries idea about proofs of program correctness with partial functions. Thus 
various works on program derivation [Gries 1982, Kaldewaij 1990, Morgan 1991, etc.] are extended in 
the ream of partial functions. 
Formalized the notions of functions with argument lists of variable length. Thus such languages as 
C/C++ would be able to enter in the realm of program correctness proofs. 
Provided a solid foundation for automating proofs of safety-critical systems. 

42. Our Future Work 
In [A. Yakhnis, V. Yakhnis, Semantics of Concurrent Communicating Objects, in preparation] we’ll 
provide semantics of correctness proofs of: 
- concurrent software; 
- perpetually running software; 
- object classes with partial operations; 
- communicating truly concurrent objects. 
In [A. Yakhnis, V. Yakhnis, First-Order Basis for Automated Checking of Software Build from Partial 
and Nondeterministic Operations, to be submitted to CADE-13 Workshop on Mechanization Of 
Partial Functions, July 30, 19961 we’ll provide the following features of our methodology (which were 
omitted from the present paper because of space limitation): 
- precise semantics of the stepwise refinement process with partial operations via homomorphisms of 

SPED-algebras ; 
- partial nondeterministic functions; 
- correctness of generic algorithms with partial functions and in the presence of dynamic 

specification variables. 
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