
- -
Generation of Multi-Million Element Meshes for Solid

Model-Based Geometries: The Dicer Algorithm

Darryl J. Melander
Brigham Young University

Provo, UT 84602

Timothy J. Tautges
Sandia National Laboratories

PO Box 5800, Albuquerque, NM, 871 12

Steven E. Benzley
Brigham Young University

Provo, UT 84602

R EC E IV ED

19980330 080
ABSTRACT

The Dicer algorithm generates a fine mesh by refining each
element in a coarse all-hexahedral mesh generated by any
existing all-hexahedral mesh generation algorithm. The fine
mesh is geometry-conforming. Using existing all-hexahedral
meshing algorithms to define the initial coarse mesh simplifies
the overall meshing process and allows dicing to take advantage
of improvements in other meshing algorithms immediately.

The Dicer algorithm will be used to generate large meshes in
support of the ASCI program. We also plan to use dicing as the
basis for parallel mesh generation. Dicing strikes a careful
balance between the interactive mesh generation and multi-
million element mesh generation processes for complex 3D
geometries, providing an efficient means for producing meshes
of varying refinement once the coarse mesh is obtained.

INTRODUCTION
When considering the value of a finite element mesh

generation algorithm, the primary criteria have always been
algorithm robustness, the quality of the resulting mesh, the
amount of required user interaction, memory usage, and
algorithm speed. With the increasing need for meshes consisting
of a large number of elements (one million or more), these
criteria become more vital. A meshing algorithm or technique is
needed that is able to generate large, high quality meshes for
solid model-based geometries that is efficient in both memory
and speed while minimizing user intervention.

The accuracy of a finite element analysis depends on the
resolution of the finite element mesh that is used. The resolution
of the mesh is limited by the time it takes for the mesh to be

generated and by the available computer resources. The limiting
factor is most often computer resources, especially the amount of
available memory. Recent advances in computer technology have
raised the ceiling on computing resources, making large meshes
feasible and desirable. The teraflop computer, for example,
contains 9OOO parallel processors and 600 gigabytes of memory,
giving it the capacity to run much larger problems than have been
possible in the past [l]. In addition to the greater capacity of
computing resources, the need for accurate modeling is also
driving us towards finer finite element meshes. In order for
complex systems such as the weapons systems of the ASCI
program to be accurately modeled for reliability, performance,
and safety, much higher resolution is needed in the finite element
models for these systems. As the potential of computer systems
approaches the requirements of vital analyses, algorithms must
be developed to meet the demands of very fine meshes, capable
of generating meshes as large as 100 million elements.

One approach that has been pursued in the CFD community is
to use block-structured meshing. In th is approach, the user
defines a very coarse, all-hexahedral block structure; this

structure is then refined to arrive at the final mesh. Examples of
codes which use this technique are TRUEGRID [2] and ICEM-
CFD [3]. The advantage of this technique is that once the initial
block structure is defined, the generation of the final grid can be
completely automated. Refinement can also be targeted at
specific areas of the model with a careful choice of block
structure. However, the primary disadvantage of this technique is
that the block structure be defined manually. This task is one that
is difficult to learn, and can be impractical for complex solid
models. Since the primary difficulty in deriving all-hexahedral
meshes for complex geometries is finding all-hexahedral

The portion of this work performed at Sandia National Laboratories was supported by the United States Department of Energy under Contract Number
DEACO4-94AL85ooO.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-.
turer, or otherwise docs not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

connectivity [4], block-structured meshing techniques solve only
part of the problem.

The Dicer algorithm attempts to resolve these issues by
refining coarse all-hexahedral meshes generated by other
algorithms. Each element of an existing coarse mesh is treated as
a volume that will receive a fine mesh. Because each coarse
element is hexahedral, assumptions can be made that allow it to
be meshed quickly and consistently. By sharing meshing
responsibilities with existing algorithms, speed and memory
efficiency can be achieved without detrimental effects on mesh
quality. Also, in contrast to the definition of blocks for block
structured meshing applications, the definition of coarse hex
elements can be somewhat automated, and can take advantage of
new developments in all-hex mesh generation as they come
along.

This paper is arranged as follows. Section 2 discusses overall
strategies for generating large, all-hexahedral meshes. Section 3
describes the Dicing algorithm in detail. Section 4 discusses
some overall issues in using the Dicing technique. Section 5
gives examples of where the dicing algorithm has been applied.
Finally, Section 6 discusses future directions and Section 7
summarizes this paper.

STRATEGIES FOR GENERATING LARGE MESHES
Analysts seek meshing algorithms which produce high quality

elements quickly while operating within the memory constraints
of the computer. As one evaluates a mesh generation algorithm,
five issues that must be considered are:

a) robustness (able to properly mesh a variety of different

b) element quality,

c) automation,

d) memory consumption, and
e) algorithm speed.

These challenges of mesh generation are usually amplified as
the number of elements in a mesh increases or the available
resources for generating a mesh decrease. Time-consuming
calculations intended to ensure quality and promote robustness
generally increase at a rate proportional to the number of
elements in the resulting mesh. The amount of memory storage
required also increases proportionally in most cases, including
data structures attached to each element which are used by the
algorithm but not vital to the final mesh (e.g. interior mesh faces
and edges).

There are several possible approaches to generating large finite
element meshes. At one end of the spectrum is the “all in one”
approach, where the entire mesh is generated in a single
execution of a meshing code. The opposite extreme, referred to
as “all in many”, generates a piece of the mesh at a time, most
often for distinct regions or materials in the mesh, then assembles
the entire mesh from the pieces in a separate step. W i l e the all-
in-one approach is very memory intensive, it does retain global
information about the model. The all-in-many approach is not
nearly as memory intensive, but also does not retain global

problems with complications)

information about the model. The dicing algorithm strikes a
compromise between the two approaches by treating the global
problem for the coarse mesh, while refining each coarse element
individually.

THE DICER ALGORITHM
The Dicer algorithm is part of a two-step mesh generation

process we envision to deal with the difficulty of generating large
meshes for complex geometries. First, a relatively coarse all-
hexahedral mesh is generated by the user, in a manner identical
to mesh generation methods currently used. Then, this “coarse”
mesh is refined to a user-defined level of refinement, using a
simple Trans-Finite Interpolation (TFI) algorithm on each of the
coarse hexahedra. Each of these steps is described in greater
detail below.

1. A Coarse All-Hexahedral Mesh is Generated

As the first step to generating a fine finite element mesh, a
coarse mesh is generated using one or more existing all-
hexahedral mesh generation algorithm. The analyst should use
algorithms that result in the best possible quality at a coarse level
of refinement for the geometry in question. Because this coarse
mesh will be used as the basis for the fine mesh, the coarse mesh
should have element sizes and shapes that will be appropriate for
refinement. On the other hand, if CUBIT [5] is used for the
coarse mesh, the coarse elements must be fine enough to resolve
all geometric features of the model, due to the requirement that
all geometric features be meshed with at least one element. Note
that the coarse mesh could also be assembled from meshes
generated in other runs of CUBIT or even meshes generated by
other codes (assuming the mesh from these other codes can be
associated to solid model geomem before refinement).

2. Determine Dicer Loops & Sheets

In order to ensure a conformal mesh, three principles are

a) Coarse element faces that share an edge must also share the
fine mesh along that edge;

b) Coarse hexahedral elements that share a face must also
share the fine mesh on that face;

c) Coarse edges opposite each other on a given coarse face
must receive the same degree of refinement in the fine mesh.

Principle a) and principle b) are necessary to ensure a
conformal fine mesh; these constraints are enforced by storing
only one set of nodes for each coarse edge or face. Principle c)
above ensures that the coarse hexes and faces will be meshable
with a simple TFI algorithm. These principles together result in a
certain amount of pre-processing to ensure that they are
followed.

To find the collection of coarse edges which must have the
same refinement interval, a series of “dicer sheets” is
constructed, using the following algorithm. First, a l l edges are
unmarked. An unmarked coarse edge is added to a new dicer
sheet, and to a list of untraversed edges for that sheet (this list is
initially empty except for that 6rst edge). Then, while the
untraversed list is not empty, a new untraversed edge is taken off

enforced:

the list; for each face connected to this edge, the opposite edge
from the edge being traversed is found and, if not already
marked, is added to the untraversed edge list. Lastly, the edge
being traversed is added to the dicer sheet edge list. When the
untraversed list is empty, the entire dicer sheet has been
traversed, and the edges on that sheet must have the same
refinement. When all edges in the coarse mesh have been
marked, all the dicer sheets have been found. For example,
Figure 1 shows edges that belong to the same dicer sheet.

Figure 1. Edges with a dashed line must have the same
refinement interval.

3. Refinement Intervals Are Specified

After sheet traversal has determined which edges correspond
to each dicer sheet and must have the same refinement interval,
the user must specify the refinement intervals. This can be done
for each dicer sheet individually, for each geometric entity (e.g.
volume), or for the entire model. Assigning a refinement interval
to a volume, for example, would set the refinement interval for
every sheet that has at least one coarse edge within the volume.
Allowing these methods of interval specification gives the user
fine control over the degree of refinement without requiring
tedious work to assign the same interval to a region of constant
refinement.

4. Coarse Elements Are Meshed With a Simple TFI Algorithm

After the refinement interval has been specified for all sheets,
each coarse element may be meshed as follows. The coarse edges
are meshed hs t , using equal interval refinement. The coarse
faces are meshed by gathering the fine nodes, arranging them on
the boundary of a two-dimensional array, and filling the interior
using a simple surface TFI algorithm [6] . The coarse hexes are
meshed in a similar manner: the fine mesh on all six faces is
gathered and arranged on the boundary of a three-dimensional
array, and the interior is filled using a volume TFI algorithm.

The method used to mesh each coarse edge and face is
deterministic, and this can be used to optimize the refinement
process. First, since the refinement intervals have been set for
dicer sheets as a whole, there is no need to check that they are
equal for each pair of opposite edges on a face, and opposite
faces on a hex. Also, the structured topology of the fine mesh on
the coarse mesh faces can be retained; this makes the
construction of the boundary of the three-dimensional node array

simpler, requiring simply a comparison of coarse nodes at a
corner and orientation of the coarse nodes for each face. Note
that the orientation of a fine mesh on a coarse face will have to be
reversed when meshing one of the bounding hexes.

By constructing the bounding node arrays as outlined above,
we are able to use the standard map mesh functions inside
CUBIT for computing the fine mesh.

Geometric boundaries are the only regions that need special
consideration. Because element faces and edges are only
approximations to the underlying geometry, refining these
entities requires that any fine nodes generated in the refinement
be moved to the geometry boundary. Nodes along a coarse mesh
edge "owned" by a bounding geometric curve should be moved
to that curve before the attached coarse face is refined, and nodes
on a coarse mesh face owned by a geometric surface should be
moved to that surface before the associated hexahedral element is
refined. This will encourage a higher quality mesh on the model
as a whole. Figure 2 shows coarse elements and the associated

Figure 2. Elements refined along a curved surface follow
the original curve, not the coarse element edge.

fine elements along a curved surface that has been refined using
the Dicer algorithm.

DISCUSSION
In the generation of large finite element meshes, the Dicer

algorithm offers several benefits over simply generating a fine
mesh in one step with an existing algorithm. The advantages
relate to robustness, element quality, automation, memory usage,
and algorithm speed.

Dicing holds a robustness advantage over using advanced 3D
unstructured meshing algorithms, in particular whisker weaving
[7], for generating the fine mesh. This is due to the fact that
whisker weaving performs poorly when generating relatively fine
mesh.

Widespread use of the TFI algorithm can minimize the overall
number of irregular nodes in the mesh, since TFI produces a
structured mesh. However, using "I to mesh complex
geometries can result in poorly shaped elements. By using a
combination of other algorithms and TFI, the user can strike a
balance between element shape quality and number of irregular
nodes.

As stated earlier, the dicing algorithm is analogous to block
structured meshing, differing only in its use of 3D meshing

algorithms to define the block structure. This difference is
important for several reasons. First, the generation of blocks can
in some cases be automated, or at least can be simplified; this
dramatically reduces the user interaction required to define the
block structure. Secondly, the number of blocks is not
determined by the tenacity of the user, but rather by available
memory space and required geometric refinement. Finally, using
a coarse mesh-based approach allows the user to take advantage
of new meshing algorithms that are developed in parallel to this
effort, for example the whisker weaving algorithm [7]. The only
requirement on generating the coarse mesh is that it yield a mesh
that is associated with the geometry, so that refined mesh can be
moved to that geometry.

As discussed in the preceding section, storing the mesh in
array-based structures allows us to retain array information
useful in constructing the bounding node arrays for meshing the
next higher order coarse element. Using this storage scheme
reduces execution time, but also can lead to reduced memory
usage. For example, if the bounding fine mesh is known for a
given coarse hex, the interior mesh entities may possibly be
inferred without needing to actually generate and store them.
This could lead to dramatically reduced storage requirements of
very large meshes. Note that this assumes that a deterministic
algorithm is used to generate the fine mesh.

If the entire fine mesh were generated at once, and assuming
the geometry was non-trivial, these elements would need to be
generated with algorithms more complex than TFI. Since these
algorithms are typically more computationally expensive than
TFI, the mesh generation speed would be decreased. Using
dicing, we generate the majority of elements using the most
efficient algorithm available to us. Also, the coarse mesh
effectively divides a solid model into regions that may be
processed independently, after the interface mesh has been
computed. Structuring the dicing algorithm to refine the coarse
edges, faces and hexes in that order promotes the use of parallel
processing to speed that task. We have plans to pursue parallel
mesh generation using the dicing algorithm.

EXAMPLES
The dicing algorithm has been implemented inside the CUBE

mesh generation toolkit [5]. Both surface and volume dicing are
available; however, due to database issues, this code does not yet
have the capability to save the fine mesh to a disk file.

An example of surface dicing is shown in Figure 3. Here, the
geometry is 6rst meshed coarsely using the paving algorithm,
then diced with a refinement interval of 10 everywhere.

Figure 4 shows a diced mesh where a non-constant refinement
has been used. Note how the dicer loop refined to 5 intervals
propagates around the surface.

In Figure 5, a simple volume has been meshed with the multi-
sweep algoritbm[5], then diced with a constant refinement
interval of 5.

mpmTRE DIRECTIONS
Future plans.for the dicing algorithm include integrating it

Figure 3. Thunderbird with coarse mesh (left) and constant dic-
ing refinement of 10 (right).

Figure 4. Surfaces meshed with non-constant refinement (left -
coarse mesh; right - partially refined mesh).

Figure 5. Volume dicing on a simple geometry; coarse mesh
(left), fine mesh (right); only the surface mesh is shown for
Clarity.
with higher level mesh storage techniques and enabling the
dicing of non-hex elements.

The primary purpose of developing the dicing algorithm
within CUBIT is to enable the construction of very large meshes,
i.e. meshes of 10-100 million elements. Therefore, it will be of
paramount importance to reduce the storage requirements of the
fine mesh in CUBIT. We envision several methods for doing this.
First, only critical data for this mesh will be kept, rather than the
full data usually kept for mesh in CUBE. Second, we plan to
explore higher level methods for storing mesh data, for example
storing the data as a bounding mesh plus an algorithm. Finally,
we also expect to require some out of core storage of mesh data,

.

done in such a way as to minimize repeated reads and writes
frondto the disk. All these methods will be encapsulated in a
C++ class framework so that details of the storage technique are
hidden from the code using the mesh.

Currently, most of the hex meshing algorithms in CUBIT
produce all hexahedral meshes. However, there are several
algorithms under development which produce not only hexes but
also limited numbers of tetrahedra and knife elements [8]. Since
knife elements are bounded completely by quadrilaterals, the
propagation of dicing into and out of these elements should be
possible. Dicing knife elements will produce a mixture of fine
hex elements and finer knife elements. Dicing meshes containing
tetrahedra will not be as straightforward. Since tetrahedra will be
used to close small voids in the mesh not handled by an all-hex
meshing algorithm, they should appear in small pockets rather
than interspersed through the mesh. Therefore, the approach
envisioned now would be to simply re-tetrahedralue these voids,
starting with the fine mesh boundary instead of the coarse mesh
boundary.

SUMMARY
The Dicer algorithm is a finite element mesh refinement

algorithm that allows meshes consisting of large numbers of
elements to be generated quickly while minimizing memory
storage requirements. The Dicer algorithm generates a fine mesh
by refining each element in a coarse mesh generated by any
existing all-hexahedral mesh generation algorithm. Each coarse
element is refined by treating it as a semi-independent
hexahedral element. Mesh conformity is achieved by propagating
refinement intervals across opposite edges and faces in the coarse
all-hex mesh. Fine elements are generated quickly because the
simple geometry of a hexahedral element allows it to be mapped
with only minimal calculations. The hexahedral geometry of
coarse elements also allows the fine mesh to be stored efficiently
in arrays.

The Dicer algorithm will be used to generate large meshes in
support of the ASCI program. We also plan to use dicing as the
basis for parallel mesh generation. Dicing strikes a careful
balance between the interactive mesh generation and multi-
million element mesh generation processes for complex 3D
geometries, providing an efficient means for producing meshes
of varying refinement once the coarse mesh is obtained. Using
multiple levels of refinement the same problem may enable the
use of multi-level solution techniques on unstructured hexahedral
meshes as well.

REFERENCES
1. “”Intel Captures $46m Teraflop Supercomputer Devel-

opment‘‘, press release, Intel Corp, Sept. 7, 1995. See http://
www.ssd.intel.condsuccess/~opl .html.

2. “TrueGrid Hex Meshing for Structures and Fluids”;
see http://www.truegrid.com.

rithm”, in Proceedings of the 5th International Conference on
Numerical Grid Generation in Computational Field Simulations,
p. 659-670, Mississippi State University, MS, Apnl1-5,1996.

5. Ted D. Blacker et al., “CUBIT Mesh Generation Envi-
ronment, Volume 1: User’s Manual”, SAND94-1100, Sandia Na-
tional Laboratories, Albuquerque, New Mexico, May 1994.

6. W. A. Cook, W. R. Oakes, ‘‘Mapping Methods for Gen-
erating Three-Dimensional Meshes”, Computers in Mechanical
Engineering, Aug. 1982, pp 67-72.

7. Timothy J. Tautges, Ted D. Blacker, Scott Mitch-
ell, “The Whisker Weaving Algorithm: a Connectivity-Based
Method for Constructing All-Hexahedral Finite Element Mesh-
es”, Int. j. numer: methodr eng., 39,3327-3349 (1996).

8. Timothy J. Tautges, Scott Mitchell, ‘Whisker Weav-
ing: Invalid Connectivity Resolution and Primal Construction Al-
gorithm”, Proceedings of the 4th International Meshig
Roundtable, Sandia National Laboratories report SAND95-2130,
Oct. 16-17,1995, Albuquerque, NM.

3. “ICEM CFD Hexa”; see http://icemcfd.comhexa.html.

4. Timothy J. Tautges, Scott A. Mitchell, “Progress Re-
port on the Whisker Weaving All-Hexahedral Meshing Algo-

http://www.truegrid.com
http://icemcfd.comhexa.html

M98000191
I llllllll lllllill 11111 11111 lllll lllll11111lllllllll11ll

Publ. Date (1 1) 1 &S70Q ,., J

Sponsor Code (18) b? x I'
U C Category (1 9) uc- 70 A p & R

DOE

