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ABSTRACT 

The Dicer algorithm generates a fine mesh by refining each 
element in a coarse all-hexahedral mesh generated by any 
existing all-hexahedral mesh generation algorithm. The fine 
mesh is geometry-conforming. Using existing all-hexahedral 
meshing algorithms to define the initial coarse mesh simplifies 
the overall meshing process and allows dicing to take advantage 
of improvements in other meshing algorithms immediately. 

The Dicer algorithm will be used to generate large meshes in 
support of the ASCI program. We also plan to use dicing as the 
basis for parallel mesh generation. Dicing strikes a careful 
balance between the interactive mesh generation and multi- 
million element mesh generation processes for complex 3D 
geometries, providing an efficient means for producing meshes 
of varying refinement once the coarse mesh is obtained. 

INTRODUCTION 
When considering the value of a finite element mesh 

generation algorithm, the primary criteria have always been 
algorithm robustness, the quality of the resulting mesh, the 
amount of required user interaction, memory usage, and 
algorithm speed. With the increasing need for meshes consisting 
of a large number of elements (one million or more), these 
criteria become more vital. A meshing algorithm or technique is 
needed that is able to generate large, high quality meshes for 
solid model-based geometries that is efficient in both memory 
and speed while minimizing user intervention. 

The accuracy of a finite element analysis depends on the 
resolution of the finite element mesh that is used. The resolution 
of the mesh is limited by the time it takes for the mesh to be 

generated and by the available computer resources. The limiting 
factor is most often computer resources, especially the amount of 
available memory. Recent advances in computer technology have 
raised the ceiling on computing resources, making large meshes 
feasible and desirable. The teraflop computer, for example, 
contains 9OOO parallel processors and 600 gigabytes of memory, 
giving it the capacity to run much larger problems than have been 
possible in the past [l]. In addition to the greater capacity of 
computing resources, the need for accurate modeling is also 
driving us towards finer finite element meshes. In order for 
complex systems such as the weapons systems of the ASCI 
program to be accurately modeled for reliability, performance, 
and safety, much higher resolution is needed in the finite element 
models for these systems. As the potential of computer systems 
approaches the requirements of vital analyses, algorithms must 
be developed to meet the demands of very fine meshes, capable 
of generating meshes as large as 100 million elements. 

One approach that has been pursued in the CFD community is 
to use block-structured meshing. In th is  approach, the user 
defines a very coarse, all-hexahedral block structure; this 

structure is then refined to arrive at the final mesh. Examples of 
codes which use this technique are TRUEGRID [2] and ICEM- 
CFD [3]. The advantage of this technique is that once the initial 
block structure is defined, the generation of the final grid can be 
completely automated. Refinement can also be targeted at 
specific areas of the model with a careful choice of block 
structure. However, the primary disadvantage of this technique is 
that the block structure be defined manually. This task is one that 
is difficult to learn, and can be impractical for complex solid 
models. Since the primary difficulty in deriving all-hexahedral 
meshes for complex geometries is finding all-hexahedral 
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connectivity [4], block-structured meshing techniques solve only 
part of the problem. 

The Dicer algorithm attempts to resolve these issues by 
refining coarse all-hexahedral meshes generated by other 
algorithms. Each element of an existing coarse mesh is treated as 
a volume that will receive a fine mesh. Because each coarse 
element is hexahedral, assumptions can be made that allow it to 
be meshed quickly and consistently. By sharing meshing 
responsibilities with existing algorithms, speed and memory 
efficiency can be achieved without detrimental effects on mesh 
quality. Also, in contrast to the definition of blocks for block 
structured meshing applications, the definition of coarse hex 
elements can be somewhat automated, and can take advantage of 
new developments in all-hex mesh generation as they come 
along. 

This paper is arranged as follows. Section 2 discusses overall 
strategies for generating large, all-hexahedral meshes. Section 3 
describes the Dicing algorithm in detail. Section 4 discusses 
some overall issues in using the Dicing technique. Section 5 
gives examples of where the dicing algorithm has been applied. 
Finally, Section 6 discusses future directions and Section 7 
summarizes this paper. 

STRATEGIES FOR GENERATING LARGE MESHES 
Analysts seek meshing algorithms which produce high quality 

elements quickly while operating within the memory constraints 
of the computer. As one evaluates a mesh generation algorithm, 
five issues that must be considered are: 

a) robustness (able to properly mesh a variety of different 

b) element quality, 

c) automation, 

d) memory consumption, and 
e) algorithm speed. 

These challenges of mesh generation are usually amplified as 
the number of elements in a mesh increases or the available 
resources for generating a mesh decrease. Time-consuming 
calculations intended to ensure quality and promote robustness 
generally increase at a rate proportional to the number of 
elements in the resulting mesh. The amount of memory storage 
required also increases proportionally in most cases, including 
data structures attached to each element which are used by the 
algorithm but not vital to the final mesh (e.g. interior mesh faces 
and edges). 

There are several possible approaches to generating large finite 
element meshes. At one end of the spectrum is the “all in one” 
approach, where the entire mesh is generated in a single 
execution of a meshing code. The opposite extreme, referred to 
as “all in many”, generates a piece of the mesh at a time, most 
often for distinct regions or materials in the mesh, then assembles 
the entire mesh from the pieces in a separate step. W i l e  the all- 
in-one approach is very memory intensive, it does retain global 
information about the model. The all-in-many approach is not 
nearly as memory intensive, but also does not retain global 

problems with complications) 

information about the model. The dicing algorithm strikes a 
compromise between the two approaches by treating the global 
problem for the coarse mesh, while refining each coarse element 
individually. 

THE DICER ALGORITHM 
The Dicer algorithm is part of a two-step mesh generation 

process we envision to deal with the difficulty of generating large 
meshes for complex geometries. First, a relatively coarse all- 
hexahedral mesh is generated by the user, in a manner identical 
to mesh generation methods currently used. Then, this “coarse” 
mesh is refined to a user-defined level of refinement, using a 
simple Trans-Finite Interpolation (TFI) algorithm on each of the 
coarse hexahedra. Each of these steps is described in greater 
detail below. 

1. A Coarse All-Hexahedral Mesh is Generated 

As the first step to generating a fine finite element mesh, a 
coarse mesh is generated using one or more existing all- 
hexahedral mesh generation algorithm. The analyst should use 
algorithms that result in the best possible quality at a coarse level 
of refinement for the geometry in question. Because this coarse 
mesh will be used as the basis for the fine mesh, the coarse mesh 
should have element sizes and shapes that will be appropriate for 
refinement. On the other hand, if CUBIT [5] is used for the 
coarse mesh, the coarse elements must be fine enough to resolve 
all geometric features of the model, due to the requirement that 
all geometric features be meshed with at least one element. Note 
that the coarse mesh could also be assembled from meshes 
generated in other runs of CUBIT or even meshes generated by 
other codes (assuming the mesh from these other codes can be 
associated to solid model geomem before refinement). 

2. Determine Dicer Loops & Sheets 

In order to ensure a conformal mesh, three principles are 

a) Coarse element faces that share an edge must also share the 
fine mesh along that edge; 

b) Coarse hexahedral elements that share a face must also 
share the fine mesh on that face; 

c) Coarse edges opposite each other on a given coarse face 
must receive the same degree of refinement in the fine mesh. 

Principle a) and principle b) are necessary to ensure a 
conformal fine mesh; these constraints are enforced by storing 
only one set of nodes for each coarse edge or face. Principle c) 
above ensures that the coarse hexes and faces will be meshable 
with a simple TFI algorithm. These principles together result in a 
certain amount of pre-processing to ensure that they are 
followed. 

To find the collection of coarse edges which must have the 
same refinement interval, a series of “dicer sheets” is 
constructed, using the following algorithm. First, a l l  edges are 
unmarked. An unmarked coarse edge is added to a new dicer 
sheet, and to a list of untraversed edges for that sheet (this list is 
initially empty except for that 6rst edge). Then, while the 
untraversed list is not empty, a new untraversed edge is taken off 
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the list; for each face connected to this edge, the opposite edge 
from the edge being traversed is found and, if not already 
marked, is added to the untraversed edge list. Lastly, the edge 
being traversed is added to the dicer sheet edge list. When the 
untraversed list is empty, the entire dicer sheet has been 
traversed, and the edges on that sheet must have the same 
refinement. When all edges in the coarse mesh have been 
marked, all the dicer sheets have been found. For example, 
Figure 1 shows edges that belong to the same dicer sheet. 

Figure 1. Edges with a dashed line must have the same 
refinement interval. 

3. Refinement Intervals Are Specified 

After sheet traversal has determined which edges correspond 
to each dicer sheet and must have the same refinement interval, 
the user must specify the refinement intervals. This can be done 
for each dicer sheet individually, for each geometric entity (e.g. 
volume), or for the entire model. Assigning a refinement interval 
to a volume, for example, would set the refinement interval for 
every sheet that has at least one coarse edge within the volume. 
Allowing these methods of interval specification gives the user 
fine control over the degree of refinement without requiring 
tedious work to assign the same interval to a region of constant 
refinement. 

4. Coarse Elements Are Meshed With a Simple TFI Algorithm 

After the refinement interval has been specified for all sheets, 
each coarse element may be meshed as follows. The coarse edges 
are meshed hs t ,  using equal interval refinement. The coarse 
faces are meshed by gathering the fine nodes, arranging them on 
the boundary of a two-dimensional array, and filling the interior 
using a simple surface TFI algorithm [ 6 ] .  The coarse hexes are 
meshed in a similar manner: the fine mesh on all six faces is 
gathered and arranged on the boundary of a three-dimensional 
array, and the interior is filled using a volume TFI algorithm. 

The method used to mesh each coarse edge and face is 
deterministic, and this can be used to optimize the refinement 
process. First, since the refinement intervals have been set for 
dicer sheets as a whole, there is no need to check that they are 
equal for each pair of opposite edges on a face, and opposite 
faces on a hex. Also, the structured topology of the fine mesh on 
the coarse mesh faces can be retained; this makes the 
construction of the boundary of the three-dimensional node array 

simpler, requiring simply a comparison of coarse nodes at a 
corner and orientation of the coarse nodes for each face. Note 
that the orientation of a fine mesh on a coarse face will have to be 
reversed when meshing one of the bounding hexes. 

By constructing the bounding node arrays as outlined above, 
we are able to use the standard map mesh functions inside 
CUBIT for computing the fine mesh. 

Geometric boundaries are the only regions that need special 
consideration. Because element faces and edges are only 
approximations to the underlying geometry, refining these 
entities requires that any fine nodes generated in the refinement 
be moved to the geometry boundary. Nodes along a coarse mesh 
edge "owned" by a bounding geometric curve should be moved 
to that curve before the attached coarse face is refined, and nodes 
on a coarse mesh face owned by a geometric surface should be 
moved to that surface before the associated hexahedral element is 
refined. This will encourage a higher quality mesh on the model 
as a whole. Figure 2 shows coarse elements and the associated 

Figure 2. Elements refined along a curved surface follow 
the original curve, not the coarse element edge. 

fine elements along a curved surface that has been refined using 
the Dicer algorithm. 

DISCUSSION 
In the generation of large finite element meshes, the Dicer 

algorithm offers several benefits over simply generating a fine 
mesh in one step with an existing algorithm. The advantages 
relate to robustness, element quality, automation, memory usage, 
and algorithm speed. 

Dicing holds a robustness advantage over using advanced 3D 
unstructured meshing algorithms, in particular whisker weaving 
[7], for generating the fine mesh. This is due to the fact that 
whisker weaving performs poorly when generating relatively fine 
mesh. 

Widespread use of the TFI algorithm can minimize the overall 
number of irregular nodes in the mesh, since TFI produces a 
structured mesh. However, using "I to mesh complex 
geometries can result in poorly shaped elements. By using a 
combination of other algorithms and TFI, the user can strike a 
balance between element shape quality and number of irregular 
nodes. 

As stated earlier, the dicing algorithm is analogous to block 
structured meshing, differing only in its use of 3D meshing 



algorithms to define the block structure. This difference is 
important for several reasons. First, the generation of blocks can 
in some cases be automated, or at least can be simplified; this 
dramatically reduces the user interaction required to define the 
block structure. Secondly, the number of blocks is not 
determined by the tenacity of the user, but rather by available 
memory space and required geometric refinement. Finally, using 
a coarse mesh-based approach allows the user to take advantage 
of new meshing algorithms that are developed in parallel to this 
effort, for example the whisker weaving algorithm [7]. The only 
requirement on generating the coarse mesh is that it yield a mesh 
that is associated with the geometry, so that refined mesh can be 
moved to that geometry. 

As discussed in the preceding section, storing the mesh in 
array-based structures allows us to retain array information 
useful in constructing the bounding node arrays for meshing the 
next higher order coarse element. Using this storage scheme 
reduces execution time, but also can lead to reduced memory 
usage. For example, if the bounding fine mesh is known for a 
given coarse hex, the interior mesh entities may possibly be 
inferred without needing to actually generate and store them. 
This could lead to dramatically reduced storage requirements of 
very large meshes. Note that this assumes that a deterministic 
algorithm is used to generate the fine mesh. 

If the entire fine mesh were generated at once, and assuming 
the geometry was non-trivial, these elements would need to be 
generated with algorithms more complex than TFI. Since these 
algorithms are typically more computationally expensive than 
TFI, the mesh generation speed would be decreased. Using 
dicing, we generate the majority of elements using the most 
efficient algorithm available to us. Also, the coarse mesh 
effectively divides a solid model into regions that may be 
processed independently, after the interface mesh has been 
computed. Structuring the dicing algorithm to refine the coarse 
edges, faces and hexes in that order promotes the use of parallel 
processing to speed that task. We have plans to pursue parallel 
mesh generation using the dicing algorithm. 

EXAMPLES 
The dicing algorithm has been implemented inside the CUBE 

mesh generation toolkit [5]. Both surface and volume dicing are 
available; however, due to database issues, this code does not yet 
have the capability to save the fine mesh to a disk file. 

An example of surface dicing is shown in Figure 3. Here, the 
geometry is 6rst meshed coarsely using the paving algorithm, 
then diced with a refinement interval of 10 everywhere. 

Figure 4 shows a diced mesh where a non-constant refinement 
has been used. Note how the dicer loop refined to 5 intervals 
propagates around the surface. 

In Figure 5, a simple volume has been meshed with the multi- 
sweep algoritbm[5], then diced with a constant refinement 
interval of 5. 

mpmTRE DIRECTIONS 
Future plans.for the dicing algorithm include integrating it 

Figure 3. Thunderbird with coarse mesh (left) and constant dic- 
ing refinement of 10 (right). 

Figure 4. Surfaces meshed with non-constant refinement (left - 
coarse mesh; right - partially refined mesh). 

Figure 5. Volume dicing on a simple geometry; coarse mesh 
(left), fine mesh (right); only the surface mesh is shown for 
Clarity. 
with higher level mesh storage techniques and enabling the 
dicing of non-hex elements. 

The primary purpose of developing the dicing algorithm 
within CUBIT is to enable the construction of very large meshes, 
i.e. meshes of 10-100 million elements. Therefore, it will be of 
paramount importance to reduce the storage requirements of the 
fine mesh in CUBIT. We envision several methods for doing this. 
First, only critical data for this mesh will be kept, rather than the 
full data usually kept for mesh in CUBE. Second, we plan to 
explore higher level methods for storing mesh data, for example 
storing the data as a bounding mesh plus an algorithm. Finally, 
we also expect to require some out of core storage of mesh data, 



. 

done in such a way as to minimize repeated reads and writes 
frondto the disk. All these methods will be encapsulated in a 
C++ class framework so that details of the storage technique are 
hidden from the code using the mesh. 

Currently, most of the hex meshing algorithms in CUBIT 
produce all hexahedral meshes. However, there are several 
algorithms under development which produce not only hexes but 
also limited numbers of tetrahedra and knife elements [8]. Since 
knife elements are bounded completely by quadrilaterals, the 
propagation of dicing into and out of these elements should be 
possible. Dicing knife elements will produce a mixture of fine 
hex elements and finer knife elements. Dicing meshes containing 
tetrahedra will not be as straightforward. Since tetrahedra will be 
used to close small voids in the mesh not handled by an all-hex 
meshing algorithm, they should appear in small pockets rather 
than interspersed through the mesh. Therefore, the approach 
envisioned now would be to simply re-tetrahedralue these voids, 
starting with the fine mesh boundary instead of the coarse mesh 
boundary. 

SUMMARY 
The Dicer algorithm is a finite element mesh refinement 

algorithm that allows meshes consisting of large numbers of 
elements to be generated quickly while minimizing memory 
storage requirements. The Dicer algorithm generates a fine mesh 
by refining each element in a coarse mesh generated by any 
existing all-hexahedral mesh generation algorithm. Each coarse 
element is refined by treating it as a semi-independent 
hexahedral element. Mesh conformity is achieved by propagating 
refinement intervals across opposite edges and faces in the coarse 
all-hex mesh. Fine elements are generated quickly because the 
simple geometry of a hexahedral element allows it to be mapped 
with only minimal calculations. The hexahedral geometry of 
coarse elements also allows the fine mesh to be stored efficiently 
in arrays. 

The Dicer algorithm will be used to generate large meshes in 
support of the ASCI program. We also plan to use dicing as the 
basis for parallel mesh generation. Dicing strikes a careful 
balance between the interactive mesh generation and multi- 
million element mesh generation processes for complex 3D 
geometries, providing an efficient means for producing meshes 
of varying refinement once the coarse mesh is obtained. Using 
multiple levels of refinement the same problem may enable the 
use of multi-level solution techniques on unstructured hexahedral 
meshes as well. 
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