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Abstract 
We present a motion planner for theclassical mover’s prob- 
lem in three dimensions that is both resolution-complete and 
efficient in that it has performance commensurate with task 
difficulty. It is based on the SANDROS search strategy, 
which uses a hierarchical, multi-resolution representation 
of the configuration space along with a generate-and-test 
paradigm for solution paths. This planner can control the 
trade-offs between the computation resource and algorith- 
mic completeness/solution path quality, and thus can fully 
utilize the available computing power. It is useful for navi- 
gation of mobile robots, submarines and spacecraft, or part 
motion feasibility in assembly planning. 

1 Introduction 
The classical mover’s problem is the problem of finding a 
path for a rigid object between the start and target config- 
urations while avoiding obstacles. The solution is usually 
given as a sequence of positions and orientations of the 
object. This problem is the most basic motion planning 
problem, and people solve this problem every day in mov- 
ing furnitureand assembling mechanical parts. If robots are 
to act autonomously at the skill level of people, they must 
posszss the power to solve the classical mover’s problem. 
Even when the robots are tele-operated, various levels of 
automatic motion planning will greatly speed up the overall 
robotic operation by allowing the operator to iss.ue higher- 
level commands at a coarser time interval. 

Although people solve the classical mover’s problem 
quite easily and efficiently, the problem turns out to have 
a high complexity. At present the most efficient motion- 
planning algorithm has a complexity that is polynomial in 
the number of obstacles and exponential in the number of 
degrees of freedom of the robot. For the two dimensional 
(2D) case with three degrees of freedom (two translational 
and one rotational), a brute force search can be used to solve 
most problems in a few minutes. For the three dimensional 
(3D) case, however, the 6 dimensional configuration space 
is too large for a brute force search even when geometry is 
simple, and a more powerful search strategy is needed. In 
spite of many approaches developed for motion planning, 
there is no planner to this date for the 3D classical mover’s 
problem that is both complete (guarantees a solution) and 
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runs in a practical time limit (less than an hour for off-line 
and less than a few minutes for on-line applications). 

In our pursuit of a heuristically efficient and complete 
motion planner, we have noted that there are numerous 
feasible solutions for most realistic problems. It is the 
small set of pathological problems that have impractical 
worst-case time complexities. Based on this observation, 
we have developed an efficient motion planning algorithm 
that solves most realistic problems in a short time (min- 
utes), and requires gradually more computation time as the 
problem difficulty increases. This planner is based on the 
SANDROS search strategy that we have used for manipula- 
tor path planning in [5], and is observed to be quite efficient 
for the classical mover’s problem in many examples. 

The major difference between the previous and new 
SANDROS planners is as follows. For a manipulator, each 
degree-of-freedom (dof) controls the configuration of a sub- 
set of links (usually one) and the subgoal selection can be 
done sequentially, i.e., by specifying the value of the first 
joint, and then second, etc. This gives a natural way to gen- 
erate big subgoals, e.g., we can select good (large clearance 
from obstacles) values for the first joint angle by placing 
the first link in wide free space. For a single rigid object, 
however, all dofs control the configuration of the single ob- 
ject, and all dofs must be specified to do a co1:ision check 
or distance computation. This forces us to have only point 
subgoals as opposed to big subgoals necessary for the hier- 
archical and multi-resolution search paradigm. Developing 
an efficient SANDROS planner with point subgoals is the 
major contribution of this paper, and this shows that SAN- 
DROS is a widely applicable search strategy. 

In this paper, we refer to the object being moved as the 
(mobile) robot. The set of all robot poses is referred as the 
configuration space or C-space. A robot configuration de- 
fines a robot pose by specifying its position and orientation. 
In general, it is 3-dimensional (2 translationaV1 rotational) 
for 2D environments, and 6-dimensional (3 translationaV3 
rotational) for 3D environments. The next section reviews 
the previous work done on the classical mover’s problem, 
and Section 3 describes our motion-planning algorithm. 
The performance of our planner is shown in Section 4, and 
the conclusions and future work are discussed in Section 5. 

2 Previous Work * 

There has been a lot of work, both theoretical and exper- 
imental, on the classical mover’s problem since late 70’s. 
On the theoretical side, the lower bound on the complexity 
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of a generalized mover’s problem is shown to be PSPACE- 
complete [21]. The first upper bound is derived with an 
algorithm that is doubly exponential in dof and polynomial 
in the number of objects [23]. This algorithm is based on 
Collins’ cylindrical decomposition method [6]. The result 
is later improved to a single exponential algorithm [8] us- 
ing one-dimensional curves at the boundaries of theC-space 
obstacles. Since these theoretical algorithms are likely to 
require days of running time if implemented, many approx- 
imate or heuristic algorithms have been developed. 

For the 2D classical mover’s problem, the C-space is 
only three dimensional, and a brute force search algorithm 
can be used. A brute force search would discretize the 
3-dimensional configuration space with about a million 
points(100x100x100), check whether there is a collision 
at each of these points, and find a connected sequence 
of collision-free points in the C-space. Although there 
are many algorithms for 2D based on skeletons [19, 151, 
cell decomposition [3,20] or potential fields [12], it is our 
view that the brute-forcesearch runs fast enough on present 
workstations. In fact, such a brute-forcealgorithm has been 
implemented in [18,22, 141. We will, however, show a2D 
version of our algorithm for illustrative purposes. 

For the 3D problems, we describe five algorithms that 
are implemented and representative of four different ap- 
proaches. The first implemented algorithm for 3D is a grid 
search algorithm [9]. It sets up a grid of points in the config- 
uration space, and collision checking for a point is done by 
evaluating the boundary equations of the C-space obstacles. 
It uses several heuristics to guide the search direction so as 
to find a solution path in a short time. A skeleton approach 
computes a one-dimensional skeleton of the free space, and 
a solution is found by computing a path from the start to 
a point on a skeleton, a path from the goal to the skeleton, 
and then connecting the two points on the skeleton. In [7], 
the free space skeleton in the C-space is computed by com- 
puting points with maximal distance from obstacles. A 
cell decomposition approach [20] is developed using a hi- 
erarchical cell decomposition and the robot Jacobian. The 
bound on the Jacobian gives the maximum distance trav- 
eled by any point on the robot when the robot configuration 
is varied inside a unit sphere. Thus, the distance between 
the robot and objects divided by the bound on the Jacobian 
gives the radius of the collision-free sphere in the C-space. 
This algorithm works well for round robots; if the robot is 
elongated, the bound on the Jacobian is large and only a 
small sphere of free space is obtained per distance compu- 
tation. All of the algorithms above guarantee solutions if 
exist, and we estimate their average running times at a few 
to several hours on today’s computers. 

A randomized planner [2] is probabilistically complete in 
the sense that if it runs long enough, it will find a solution. 
In this algorithm, the robot approaches the goal using a 
simple planner. If the robot cannot get tothegoal, therobot- 
takes a random walk, and then tries to approach the goal 
from there. This algorithm runs fast on most problems, but 
will take a long time to find a solution for hard problems. 
The main difference between this planner and our algorithm 

is that our algorithm keeps a search record so that all parts 
of the C-space is eventually searched. Finally, a potential 
field approach in [ 121 performs efficiently when the robot 
is approximately convex shaped. It finds a path for a point 
robot first, and then moves robot’s reference point along 
this path while aligning robot’s longest axis tangentially to 
the path to minimize theswept volume. If therobot collides 
with an object, it generates feasible robot orientations in the 
collision region, and uses these as intermediate subgoals. 
This algorithm sacrifices completeness for efficiency (runs 
in less than an hour), but fails on problems with highly 
concave robots like that in Figure 3. Our algorithm is 
motivated&y the efficiency of heuristic planners and the 
completeness of exact algorithms. It works like a heuristic 
planner initially, but it searches systematically so that it 
will eventually exhaustively search the entire C-space if 
necessary. Incidentally, if there are more than one problem 
to be solved, then learning [4] or preprocessing [ 131 can be 
used to amortize the cost of each problem. 

3 Algorithm 
We have developed an efficient, resolution-complete algo- 
rithm capable of planning motions forarigid object navigat- 
ing in 2D or 3D environments. (Our notion of completeness 
will be discussed in Section 3.3.) We plan a motion of a 
robot in the C-space. To plan, we make the standard as- 
sumption-that if a task is solvable, then it has a solution 
path representable by a sequence of unit movements in the 
C-space, discretized to a preset resolution. To handle the 
potentially high dimensional space and search complexity, 
we make the following design decisions without sacrificing 
completeness. 

First, we determine whether a given point in the C-space 
is collision-free by computing the distance [ 1 13 between 
the robot at the given configuration and the environment. 
One can use contact conditions between the robot and ob- 
stacles to get a set of collision-free configurations as done 
in [9]. However, equations describing contact boundaries 
are nonlinear, and detecting intersections of these bound- 
aries is computationally expensive. Instead, we compute 
the distance between the robot and obstacles to check col- 
lisions, as well as to get a moving direction away from the 
obstacles. 
- Second, we use a two-level hierarchical planning scheme 

to reduce memory requirement as done in [lo]. It would 
be difficult to store all the collision-free points even if we 
could compute them all, since the C-space typically has an 
enormous number of points even at a coarse resolution. We 
circumvent this problem by planning at two levels using a a 
global and local planner. The global planner keeps track of 
reachable, unreachable, and potentially reachable portions 
of the C-space, and the local planner checks the reachability 
of a portion of the space from a point. If a portion of space 
is reachable from a point, then the corresponding collision- 
free motion needs not be stored as in [7], since they can be 
readily recovered by the local planner at any later stage of 
the algorithm. Although this scheme requires re-computing 
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the solution path, it is more efficient than storing thousands 
of path segments generated during the search process. 

Third, we use a multi-resolution approach to reduce 
search time. The high dimensionality of the C-space has 
hindered the development of a fast, complete motion plan- 
ner. An exhaustive search for acollision-free motion is pro- 
hibitive because of the enormous size of the C-space. Yet, 
heuristic algorithms that do not examine the entire space 
are inevitably incomplete. To achieve both time efficiency 
and completeness, we use the global planning module to 
first search promising portions of the C-space at a coarse 
resolution. It increases the resolution to finer levels only 
if a solution is not found at the coarse level, and only in 
promising portions of the C-space. The planner searches 
the space both heuristically and systematically so that each 
motion planning problem can be solved in time according 
to its difficulty. 

These design decisionsare embodied in a general search 
strategy called SANDROS, which has been previously used 
to develop a motion planner for robot manipulators [5]. The 
acronym stands for Selective And Non-uniformly Delayed 
Rejnement Of Subgoals, which indicates the nature of the 
search strategy. Given two points s and t representing the 
start and goal configurations of arobot, we maintain a set of 
subgoals to be used by the robot as guidelines in moving to 
the goal configuration. Subgoals represent portions of the 
C-space that have relatively large clearances to obstacles, 
and hence correspond to configurations that are easy for 
the robot to reach using the local planner. initially, we 
maintain only a small number of “big” subgoals, each of 
which represents a large portion of the C-space. Because 
these subgoals are big, they provide only coarse guidelines 
for the robot to follow. A collision-free motion can be 
found very quickly with only these coarse guidelines if the 
problem is easy. However, if a collision-free path cannot 
be found with these subgoals, then some of the subgoals 
are broken down to several smaller, heuristically selected 
subgoals to provide more specific guidelines. The process 
of subgoal refinement is delayed as much as possible, and 
is performed in a non-uniform fashion. 

To recapitulate, the SANDROS planner has two main 
modules: a global planner 6 that generates a plausible se- 
quence of subgoals to guide the robot, and a LocaLplannerL 
that tests the reachability of each subgoal in the sequence. 
If C succeeds in reaching each subgoal through the tested 
sequence, then a collision-free path is found. If L fails to 
reach a subgoal due to collisions, then 6 would first try to 
find another sequence without any subgoal refinement. If no 
sequence is available, then a subset of the current subgoals 
would be refined repeatedly according to the SANDROS 
strategy until either a sequence becomes available, or no 
further refinement is possible. It should be noted that 6 
is completely independent of L,  and that there is a trade- 
off between the simplicity of L and the guiding effort of 
6. If the local planner is as powerful as one of the exact 
algorithms mentioned above, then the global planner will 
never generate any subgoals because the the local planner’s 
range of effectiveness encompasses the entire configuration 
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space. At the.other extreme, if the local planner is a sim- . 
ple and inflexible algorithm like connect-with-straight-line, 
then the burden of planning rests almost completely on the 
global planner in that it will have to generate many sub- 
goals before a solution can be found. Finding the optimal 
division of labor between L and G is difficult. However, 
in principle, L should implement some ‘greedy’ algorithm 
with ‘sliding’ capability, so that it can quickly solve most 
problems without requiring much memory. 

The main difference between the present SANDROS 
planner for mobile robots and the previous SANDROS plan- 
ner for manipulators lies in the specifications of 6 and L. 
In particular, there are subgoal representationhefinement 
differences in 6 and sliding strategy difference in L. 

3.1 Global Planning 
Before starting the global planning process, we first make 
sure that the local~planner L is indeed incapable of solv- 
ing the task without additional subgoals; otherwise, we are 
done. Global planningtakes place in three stages: sequence 
generation, sequence verification, and node refinement. In 

’ the sequence generation stage, the global planner 6 finds 
a “good“ sequence of subgoals by searching through a dy- 
namic graph G containing points s and t with additional 
points representing subgoals and nodes representing sub- 
spaces of subgoals. A node v is simply a cuboid cell of the 
C-space. (This representation is different than that for ma- 
nipulators [5], which uses hyperplanes to represent partially 
specified subgoals.) It can either be focused, or unfocused, 
depending on whether a collision-free target point p inside 
the cell has been found. A focused node is further classified 
as reachable or not yet reachable, depending on whether L 
declares the associated point reachable from other reach- 
able points. Although G may be changing, we maintain the 
invariant that the nodes of G form a partition of the C-space. 
Thus, nodes are divided into three sets: the reachable nodes 
U, the not-yet-reachable nodes V ,  and the unfocused nodes 
W .  The points of G are either reachable (in P )  or not-yet- 
reachable (in P’). Since the nodes of G forms a partition 
of the C-space, each point p has an unique node A(p) of G 
that contains p .  The set P is further divided into P, and 
Pt representing points reachable from s and t ,  respectively. 
For each point in P, a point cost is stored indicating the 
cost of reaching it from s or t .  

There are two types of edge connections in G: (node)-to- 
(node) and (reachable point)-to-(not-yet-reachable node). 
Two nodes are connected with an edge iff they are adjacent 
in that their contact area is nonzero. The edge cost between 
two nodes is defined as the Euclidean distance between the 
two associated points if they exist, infinity otherwise. A 
point p in P is connected to a node v in V iff the node u 
containing p is adjacent to v. We initialize G by setting 
P, = {s}, Pt = { t } ,  U = {root}, and the rest to empty 
set. Here root denotes the root node that represents the 
entire C-space. To control the node refinement process, we 
also maintain a nodequeue Q, initialized to U. 

To generate a plausible sequence, we simply apply a 
shortest-path graph algorithm [l] on the subgraph of G 
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induced by V and P,  with source vertices P, and sink 
vertices Pi. We define the cost of a sequence with end 
points in P and intermediate nodes in V as the sum of the 
edge costs plus the costs of the end points. This cost serves 
only as an estimate of the actual length of a solution going 
through the subgoals. 

If the graph algorithm does produce a sequence with end 
points in P and intermediate nodes in V ,  then we enter the 
sequence verification stage. In this stage, weuse L to deter- 
mine theconnectability of the sequence of points associated 
with the sequence of nodes. Let s' E P, and t' E Pi be 
the end points of this sequence. Let d(q) be the minimum 
Euclidean distance between the robot at configuration q and 
the obstacles. We begin by choosing the search direction 
using d(s') and d(t') as a guide: If the d(t') is smaller than 
d(s'), then we will search backward by starting at t'; other- 
wise, we will search forward by starting at s'. Heuristically, 
the point chosen (s' or t') should have less clearance from 
the obstacles, and hence should be extricated first to con- 
strain search. Let p be the point chosen and p' be the other 
point. To search forward, we call L to check the reacha- 
bility of the first node v from pointp; to search backward, 
we call L to check the reachability of the last node v from 
point p .  Either way, let q be the point associated with v. If 
L is able to connect p to q, then v is declared reachable, and 
we would swap v from V to U, insert q into P, connect q to 
the original neighbors of v in V with new edges, and store 
a back pointer B(q) = p ,  so that a path from s or t to q 
can be rctraced. Then, we would continue the Verification 
stage by checking the connectability between p' and q. 

The verification stage ends when either the entire se- 
quence is connected, or a node v is found unreachable from 
a point p .  In the former, we would retrace a path from s 
tot  through G to yield a motion for the robot. In the latter, 
however, we would disconnect p from v, push both A(p) 
and v into Q, and return to generating another sequence. 

Continuing with the sequence generation process, if the 
graph algorithm produces no candidate sequence, then we 
would enter the node refinement stage. In this stage, we 
modify G continually by refining the nodes in Q until either 
a candidate sequence becomes available, or Q becomes 
empty. We pop off every node u in Q with the largest 
volume, and refine each cell by cutting the longest side in 
half. Moreover, if u contains a point p in P,  then A(B(p))  
is pushed into Q to ensure the eventual chance that every 
node of U gets refined. Refinement stops when the longest 
side of u is less than a preset length X 2 1. 

After refining u into two children C(u),  we need to mod- 
ify G to reflect the replacement of u by C(u). First, we 
determine the node type for each child v. If v contains a 
point in  P ,  then insert v into U; if v contains a point in PI, 
then insert v into V ;  otherwise, sample for a collision-free 
point p in the cell of v. If the sampling is successful, then 
insert p into P' and v into V ;  otherwise, insert v into W .  
(For our work, the sampling is uniform, and the number 
of samples taken is proportional to the longest side of the 
cell.) Next, we disconnect u and connect each child v to its 
adjacent nodes. Finally, if v belongs to V ,  then every point 
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of P in nodes adjacent to v also needs to be connected to v. 

3.2 Local Planning 
The local planner simulates robot movements in the C-space 
in small steps. A step is defined as a configuration change 
where a degree of freedom is changed by a preset amount, 
which represents the resolution. This preset amount of 
change is indicated by a number called stride. The stride in 
each dimension is normalized so that the maximum distance 
traveled by any point on the robot is about the same for 
each stride. A point that is within one step of another is 
a neighbor of that point. Collision checking with some 
minimum distance threshold is done after the robot takes a 
step. We assume that the strides are set sufficiently small 
to guarantee collision-free motion for the entire step. 

Given two configuration points p and q, the local planner 
L attempts to move the robot from p to q. The iterative 
procedure is as follows: First, we move toward q by con- 
sidering all neighboring points of p that are one step closer 
to q thanp is, and move to the pointp' that has the maximum 
clearance d(p') > 0. Next, we slide repeatedly by consid- 
ering sequentially in each dimension, the two neighboring 
pointsonestep away fromeitherdirection. If there isapoint 
p" closer to q than p is (under the &,-norm), while having 
a larger clearance d(p"), we would move from p' to p" and 
set p' top". If no progress can be made, then L would report 
a failure; otherwise, the move-toward-and-slide procedure 
is repeated until q is reached. 

3.3 Completeness 
To recapitulate, our algorithm searches for a solution by 
repeating the process of finding a promising sequence of 
nodes in a graph G, verifying its feasibility with L, and 
modifying G with the refinement procedure. The efficiency 
of our algorithm comes from the fact that we use a non- 
trivial X in the refinement procedure, and that we delay 
the refinement of nodes until there is no sequence in the 
current G. 

It is of course possible to refine every node of G down 
to a point first, andjhen plan a path based on the resulting 
network of points G. In fact, if we were to use X = 1, then 
the resulting network is simply the discretized map of the 
free C-space. However, it would be terribly inefficient to 
find the shortest plausible sequence of subgoals because of 
the size of G. For such a G, L only needs to check whether 
an adjacent point is collision-free. Non-trivial X allows us 
to combine similar subgoals into one single subgoal so that 
G contains only a small number of subgoals that are also 
representative of all regions of the free configuration space. 
We therefore reduce the size of by using a larger A, and 
utilize the power of L. 

To further minimize the :umber of nodes in G, we do not 
search for a solution from G, the completely refined graph. 
Rather, werefineConly if wecannot find a solution with G 
at the current refinement level. It remains to show that 
SANDROS' interleaving process of search and refinement 
will eventually find a solu_tion if there is a solution in the 
completely refined graph G. The following theorem shows 



that the algorithm is again complete for mobile robots with 
nodes represented by cuboid cells rather than hyperplanes. 
Note that theorem depends on both the invariant that the 
nodes of G form a partition of the C-space and the fact that 
new target points are uniquely determined for every node, 
regardless of when the node is generated. 
Tlicorem 1 Suppose that a task of moving from s to t is 
solvable by first refining the C-space into a network of 
points G', and then planning a path through G' using L to 
connect s to t. Then our algorithm is complete in that it can 
also solve the same problem, but with possibly less node 
refinement. 
Proof If the problem of moving from s to t is solvable 
through total refinement, then there must be a loopless se- 
quence 

with vi E e such that C is able to connect vi with vi+l 
for all i < n. Suppose that our algorithm fails to solve 
the saye problem, and terminates with a partially refined 
G # G. Then consider the sequence 

rl = (cP(~o), - - - CP(vn)>, 

where cp(vi) denotes the node of G that dominates vi in that 
the cell of p(vi) contains that of v i .  By contracting any 
loop of this sequence repeatedly, we can obtain a loopless 
(but not unique) sequence of the form 

ro = (s = vo, . . ,vn = t )  

rz = (s = w l , .  . . , w,,, = t )  
with m 5 n, and each wi in G. Since Tz contains no 
repetition of nodes and has cost less than that of To, it must 
be a sequence verified by G to be infeasible. Because To is 
loopless, every fully refined node wi in r2 must correspond 
to a unique vj in To. Moreover, for such i < n, wi+l must 
dominate vj+l. Hence, for T2 to be infeasible, there must 
exist a smallest t 2 1 such that wk strictly dominates v k  in 
that wk is still not fully refined. On the other hand, such t 
cannot exist for the following reason. If W k  were reachable 
by the end of our algorithm, then W k  would eventually be 
pushed into Q. (See the last portion of Section 3.1.) If 
wk were not reachable, then Wk would have been pushed 
into Q immediately after this determination. Either way, W k  
would have been refined eventually and totally, and hence 
cannot strictly dominate 21k. Therefore, our algorithm must 
have also succeeded by contradiction. I 

4 Examples 
Our algorithm has been implemented for 2D and 3D en- 
vironments, and tested with both easy and hard examples. 
The examples were run on a typical (100MIPS) worksta- 
tion. Figure l(a) shows an L-shaped object moving from 
the center of the workcell to the left of the triangle via 
the subgoal at the top. Two lightly shaded subgoals are 
also generated but not used for the solution path. Figure 
l(b) show the solution path (dark curves) and other path 
the planner explored during the search (light curves). Note 
that for the orientation dimension (z axis), top and bottom 

surface represent the same orientation. The computation 
time was 1 second. Figure 2a shows a moderately hard 
problem of unhooking a clip from a nail, and the subgoals 
used are shown. The computation time was less than 1 sec- 
ond. Figure 3 shows the same clip, but there are two nails 
this time. This problem with many traps in the C-space 
was generated to test the completeness of our algorithm. It 
took 219 local planning calls and 15 seconds to solve this 
problem, generating 1 16 point subgoals (Figure 3(c)). The 
C-space resolution was 120x120~240 = 3.5 million points. 
We include these examples to illustrate our algorithm, even 
though in 2D a brute-force search is sufficient. 

The real power of our algorithm shows in 3D environ- 
ments, where the size of the C-space is much larger. Figure 
4 shows an L-shaped object turning in an L-shaped hall- 
way (the two walls in the front are not drawn). Although 
this problem is not trivial since the robot has to make two 
rotation moves at the corner, our planner was able to solve 
this problem with just one local planning call. The com- 
putation time was less than 1 second, and it illustrates the 
problem-solving capability of our local planner. The next 
two problems in Figure 5 and 6 show how to get a T and a 
Pi (Greek letter) out of a jail cell. These problems are mo- 
tivated by pipe removals in wastesite cleanup. The T took 
4 point subgoals and 10 seconds to get out, while the Pi took 
32 point subgoals and 135 seconds. The C-space resolution 
was 1OOx1OOx75x25Ox25Ox157 = 7.4 trillion points. All 
of the examples above show the computation time of our 
aigorithm is correlzted with the problem comp!exity. 

5 Conclusions and Future Work 
We have developed a global motion planner for the classical 
mover's problem. This planner is resolution complete, and 
at the same time runs in a practical amount of time. Our 
planner can continue the search after generating a solution 
to get a more optimal path. Our planner can be parallelized 
easily either by computing the distance between the robot 
and all obstacles in parallel, or by verifying a sequence 
of subgoals in parallel. It can also scale the amount of 
computation according to the available computing resource. 

Our current planner has lots of room for improvement. 
The probability of reaching a node needs to be estimated 
so that the global planner can generate a test sequence of 
subgoals with a higher chance of success. Two local plan- 
ners can be used instead one: a fast one that favors moving 
toward the goal over obstacle avoidance and a safer but 
slower one that favors moving away from obstacles. By 
applying the latter after applying the first, the ratio of the 
success rate to the computation time can be increased. The 
goal of the local planner can be either a point (singleton) 
as done in this paper, or can be any point in a node (set) as 
done for our SANDROS planner for manipulators [5]. It 
is our impression that the local planner wiEh?ive a higher 
chance of success when a bigger goal is given. If the goal 
is a set, however, we do not have a completeness proof, and 
the planner cannot be parallelized (since we do not know 
which point in a node the local planner will reach). Further 
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work is needed in this area. 
Our planner is applicable to the important task of navigat- 

ing mobilerobots, submarines and spacecraft. It can also be 
used in object manipulation; one usually plans the path for 
the object to be moved and then plans the motions of manip- 
ulators, especially when multiple robots are involved [ 161. 
Still another application is in assembly planning to check 
the existence of a part motion to its assembled position. 
We expect that our planner will play a fundamental role in 
many robotic applications. 
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( 4  (b) 
Figure 1: An L-shaped object in planar environment (a) with C-space (b). 

(a) (b) 
Figure 2 A clip with one nail problem in planar environment (a) with C-space (b). 

Figure 3: A clip with two nails problem in planar environment (a) with C-space (b). 
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Figure 3c: Subgoals generated for the 
clip-with-2-nails problem. 

Figure 4: An L-shaped object moving around a block. 

Figure 5: A T-shaped object moving out of a jail box in (a) with generated subgoals in (b). 

Figure 6: A Pi-shaped object moving out of a jail box in (a) with generated subgoals in (b). 
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