
I -
Proceedings of the 1995 International Conference on Robotics and Automation.

A Heuristic and Complete Planner for the Classical Mover’s Problem*

Yong K. Hwang Pang C. Chen
Sandia National Laboratories

Albuquerque, NM 87 185-095 1, USA

Abstract
We present a motion planner for theclassical mover’s prob-
lem in three dimensions that is both resolution-complete and
efficient in that it has performance commensurate with task
difficulty. It is based on the SANDROS search strategy,
which uses a hierarchical, multi-resolution representation
of the configuration space along with a generate-and-test
paradigm for solution paths. This planner can control the
trade-offs between the computation resource and algorith-
mic completeness/solution path quality, and thus can fully
utilize the available computing power. It is useful for navi-
gation of mobile robots, submarines and spacecraft, or part
motion feasibility in assembly planning.

1 Introduction
The classical mover’s problem is the problem of finding a
path for a rigid object between the start and target config-
urations while avoiding obstacles. The solution is usually
given as a sequence of positions and orientations of the
object. This problem is the most basic motion planning
problem, and people solve this problem every day in mov-
ing furnitureand assembling mechanical parts. If robots are
to act autonomously at the skill level of people, they must
posszss the power to solve the classical mover’s problem.
Even when the robots are tele-operated, various levels of
automatic motion planning will greatly speed up the overall
robotic operation by allowing the operator to iss.ue higher-
level commands at a coarser time interval.

Although people solve the classical mover’s problem
quite easily and efficiently, the problem turns out to have
a high complexity. At present the most efficient motion-
planning algorithm has a complexity that is polynomial in
the number of obstacles and exponential in the number of
degrees of freedom of the robot. For the two dimensional
(2D) case with three degrees of freedom (two translational
and one rotational), a brute force search can be used to solve
most problems in a few minutes. For the three dimensional
(3D) case, however, the 6 dimensional configuration space
is too large for a brute force search even when geometry is
simple, and a more powerful search strategy is needed. In
spite of many approaches developed for motion planning,
there is no planner to this date for the 3D classical mover’s
problem that is both complete (guarantees a solution) and

‘This work has been performed at Sandia National Labora-
tories and supported by the U.S. Department of Energy under
Contract DE-AC04-94AL85000.

1

runs in a practical time limit (less than an hour for off-line
and less than a few minutes for on-line applications).

In our pursuit of a heuristically efficient and complete
motion planner, we have noted that there are numerous
feasible solutions for most realistic problems. It is the
small set of pathological problems that have impractical
worst-case time complexities. Based on this observation,
we have developed an efficient motion planning algorithm
that solves most realistic problems in a short time (min-
utes), and requires gradually more computation time as the
problem difficulty increases. This planner is based on the
SANDROS search strategy that we have used for manipula-
tor path planning in [5], and is observed to be quite efficient
for the classical mover’s problem in many examples.

The major difference between the previous and new
SANDROS planners is as follows. For a manipulator, each
degree-of-freedom (dof) controls the configuration of a sub-
set of links (usually one) and the subgoal selection can be
done sequentially, i.e., by specifying the value of the first
joint, and then second, etc. This gives a natural way to gen-
erate big subgoals, e.g., we can select good (large clearance
from obstacles) values for the first joint angle by placing
the first link in wide free space. For a single rigid object,
however, all dofs control the configuration of the single ob-
ject, and all dofs must be specified to do a co1:ision check
or distance computation. This forces us to have only point
subgoals as opposed to big subgoals necessary for the hier-
archical and multi-resolution search paradigm. Developing
an efficient SANDROS planner with point subgoals is the
major contribution of this paper, and this shows that SAN-
DROS is a widely applicable search strategy.

In this paper, we refer to the object being moved as the
(mobile) robot. The set of all robot poses is referred as the
configuration space or C-space. A robot configuration de-
fines a robot pose by specifying its position and orientation.
In general, it is 3-dimensional (2 translationaV1 rotational)
for 2D environments, and 6-dimensional (3 translationaV3
rotational) for 3D environments. The next section reviews
the previous work done on the classical mover’s problem,
and Section 3 describes our motion-planning algorithm.
The performance of our planner is shown in Section 4, and
the conclusions and future work are discussed in Section 5.

2 Previous Work *

There has been a lot of work, both theoretical and exper-
imental, on the classical mover’s problem since late 70’s.
On the theoretical side, the lower bound on the complexity

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

I

I

of a generalized mover’s problem is shown to be PSPACE-
complete [21]. The first upper bound is derived with an
algorithm that is doubly exponential in dof and polynomial
in the number of objects [23]. This algorithm is based on
Collins’ cylindrical decomposition method [6]. The result
is later improved to a single exponential algorithm [8] us-
ing one-dimensional curves at the boundaries of theC-space
obstacles. Since these theoretical algorithms are likely to
require days of running time if implemented, many approx-
imate or heuristic algorithms have been developed.

For the 2D classical mover’s problem, the C-space is
only three dimensional, and a brute force search algorithm
can be used. A brute force search would discretize the
3-dimensional configuration space with about a million
points(100x100x100), check whether there is a collision
at each of these points, and find a connected sequence
of collision-free points in the C-space. Although there
are many algorithms for 2D based on skeletons [19, 151,
cell decomposition [3,20] or potential fields [12], it is our
view that the brute-forcesearch runs fast enough on present
workstations. In fact, such a brute-forcealgorithm has been
implemented in [18,22, 141. We will, however, show a2D
version of our algorithm for illustrative purposes.

For the 3D problems, we describe five algorithms that
are implemented and representative of four different ap-
proaches. The first implemented algorithm for 3D is a grid
search algorithm [9]. It sets up a grid of points in the config-
uration space, and collision checking for a point is done by
evaluating the boundary equations of the C-space obstacles.
It uses several heuristics to guide the search direction so as
to find a solution path in a short time. A skeleton approach
computes a one-dimensional skeleton of the free space, and
a solution is found by computing a path from the start to
a point on a skeleton, a path from the goal to the skeleton,
and then connecting the two points on the skeleton. In [7],
the free space skeleton in the C-space is computed by com-
puting points with maximal distance from obstacles. A
cell decomposition approach [20] is developed using a hi-
erarchical cell decomposition and the robot Jacobian. The
bound on the Jacobian gives the maximum distance trav-
eled by any point on the robot when the robot configuration
is varied inside a unit sphere. Thus, the distance between
the robot and objects divided by the bound on the Jacobian
gives the radius of the collision-free sphere in the C-space.
This algorithm works well for round robots; if the robot is
elongated, the bound on the Jacobian is large and only a
small sphere of free space is obtained per distance compu-
tation. All of the algorithms above guarantee solutions if
exist, and we estimate their average running times at a few
to several hours on today’s computers.

A randomized planner [2] is probabilistically complete in
the sense that if it runs long enough, it will find a solution.
In this algorithm, the robot approaches the goal using a
simple planner. If the robot cannot get tothegoal, therobot-
takes a random walk, and then tries to approach the goal
from there. This algorithm runs fast on most problems, but
will take a long time to find a solution for hard problems.
The main difference between this planner and our algorithm

is that our algorithm keeps a search record so that all parts
of the C-space is eventually searched. Finally, a potential
field approach in [121 performs efficiently when the robot
is approximately convex shaped. It finds a path for a point
robot first, and then moves robot’s reference point along
this path while aligning robot’s longest axis tangentially to
the path to minimize theswept volume. If therobot collides
with an object, it generates feasible robot orientations in the
collision region, and uses these as intermediate subgoals.
This algorithm sacrifices completeness for efficiency (runs
in less than an hour), but fails on problems with highly
concave robots like that in Figure 3. Our algorithm is
motivated&y the efficiency of heuristic planners and the
completeness of exact algorithms. It works like a heuristic
planner initially, but it searches systematically so that it
will eventually exhaustively search the entire C-space if
necessary. Incidentally, if there are more than one problem
to be solved, then learning [4] or preprocessing [131 can be
used to amortize the cost of each problem.

3 Algorithm
We have developed an efficient, resolution-complete algo-
rithm capable of planning motions forarigid object navigat-
ing in 2D or 3D environments. (Our notion of completeness
will be discussed in Section 3.3.) We plan a motion of a
robot in the C-space. To plan, we make the standard as-
sumption-that if a task is solvable, then it has a solution
path representable by a sequence of unit movements in the
C-space, discretized to a preset resolution. To handle the
potentially high dimensional space and search complexity,
we make the following design decisions without sacrificing
completeness.

First, we determine whether a given point in the C-space
is collision-free by computing the distance [1 13 between
the robot at the given configuration and the environment.
One can use contact conditions between the robot and ob-
stacles to get a set of collision-free configurations as done
in [9]. However, equations describing contact boundaries
are nonlinear, and detecting intersections of these bound-
aries is computationally expensive. Instead, we compute
the distance between the robot and obstacles to check col-
lisions, as well as to get a moving direction away from the
obstacles.
- Second, we use a two-level hierarchical planning scheme

to reduce memory requirement as done in [lo]. It would
be difficult to store all the collision-free points even if we
could compute them all, since the C-space typically has an
enormous number of points even at a coarse resolution. We
circumvent this problem by planning at two levels using a a
global and local planner. The global planner keeps track of
reachable, unreachable, and potentially reachable portions
of the C-space, and the local planner checks the reachability
of a portion of the space from a point. If a portion of space
is reachable from a point, then the corresponding collision-
free motion needs not be stored as in [7], since they can be
readily recovered by the local planner at any later stage of
the algorithm. Although this scheme requires re-computing

2

the solution path, it is more efficient than storing thousands
of path segments generated during the search process.

Third, we use a multi-resolution approach to reduce
search time. The high dimensionality of the C-space has
hindered the development of a fast, complete motion plan-
ner. An exhaustive search for acollision-free motion is pro-
hibitive because of the enormous size of the C-space. Yet,
heuristic algorithms that do not examine the entire space
are inevitably incomplete. To achieve both time efficiency
and completeness, we use the global planning module to
first search promising portions of the C-space at a coarse
resolution. It increases the resolution to finer levels only
if a solution is not found at the coarse level, and only in
promising portions of the C-space. The planner searches
the space both heuristically and systematically so that each
motion planning problem can be solved in time according
to its difficulty.

These design decisionsare embodied in a general search
strategy called SANDROS, which has been previously used
to develop a motion planner for robot manipulators [5]. The
acronym stands for Selective And Non-uniformly Delayed
Rejnement Of Subgoals, which indicates the nature of the
search strategy. Given two points s and t representing the
start and goal configurations of arobot, we maintain a set of
subgoals to be used by the robot as guidelines in moving to
the goal configuration. Subgoals represent portions of the
C-space that have relatively large clearances to obstacles,
and hence correspond to configurations that are easy for
the robot to reach using the local planner. initially, we
maintain only a small number of “big” subgoals, each of
which represents a large portion of the C-space. Because
these subgoals are big, they provide only coarse guidelines
for the robot to follow. A collision-free motion can be
found very quickly with only these coarse guidelines if the
problem is easy. However, if a collision-free path cannot
be found with these subgoals, then some of the subgoals
are broken down to several smaller, heuristically selected
subgoals to provide more specific guidelines. The process
of subgoal refinement is delayed as much as possible, and
is performed in a non-uniform fashion.

To recapitulate, the SANDROS planner has two main
modules: a global planner 6 that generates a plausible se-
quence of subgoals to guide the robot, and a LocaLplannerL
that tests the reachability of each subgoal in the sequence.
If C succeeds in reaching each subgoal through the tested
sequence, then a collision-free path is found. If L fails to
reach a subgoal due to collisions, then 6 would first try to
find another sequence without any subgoal refinement. If no
sequence is available, then a subset of the current subgoals
would be refined repeatedly according to the SANDROS
strategy until either a sequence becomes available, or no
further refinement is possible. It should be noted that 6
is completely independent of L, and that there is a trade-
off between the simplicity of L and the guiding effort of
6. If the local planner is as powerful as one of the exact
algorithms mentioned above, then the global planner will
never generate any subgoals because the the local planner’s
range of effectiveness encompasses the entire configuration

3

space. At the.other extreme, if the local planner is a sim- .
ple and inflexible algorithm like connect-with-straight-line,
then the burden of planning rests almost completely on the
global planner in that it will have to generate many sub-
goals before a solution can be found. Finding the optimal
division of labor between L and G is difficult. However,
in principle, L should implement some ‘greedy’ algorithm
with ‘sliding’ capability, so that it can quickly solve most
problems without requiring much memory.

The main difference between the present SANDROS
planner for mobile robots and the previous SANDROS plan-
ner for manipulators lies in the specifications of 6 and L.
In particular, there are subgoal representationhefinement
differences in 6 and sliding strategy difference in L.

3.1 Global Planning
Before starting the global planning process, we first make
sure that the local~planner L is indeed incapable of solv-
ing the task without additional subgoals; otherwise, we are
done. Global planningtakes place in three stages: sequence
generation, sequence verification, and node refinement. In

’ the sequence generation stage, the global planner 6 finds
a “good“ sequence of subgoals by searching through a dy-
namic graph G containing points s and t with additional
points representing subgoals and nodes representing sub-
spaces of subgoals. A node v is simply a cuboid cell of the
C-space. (This representation is different than that for ma-
nipulators [5], which uses hyperplanes to represent partially
specified subgoals.) It can either be focused, or unfocused,
depending on whether a collision-free target point p inside
the cell has been found. A focused node is further classified
as reachable or not yet reachable, depending on whether L
declares the associated point reachable from other reach-
able points. Although G may be changing, we maintain the
invariant that the nodes of G form a partition of the C-space.
Thus, nodes are divided into three sets: the reachable nodes
U, the not-yet-reachable nodes V , and the unfocused nodes
W . The points of G are either reachable (in P) or not-yet-
reachable (in P’). Since the nodes of G forms a partition
of the C-space, each point p has an unique node A(p) of G
that contains p . The set P is further divided into P, and
Pt representing points reachable from s and t , respectively.
For each point in P, a point cost is stored indicating the
cost of reaching it from s or t .

There are two types of edge connections in G: (node)-to-
(node) and (reachable point)-to-(not-yet-reachable node).
Two nodes are connected with an edge iff they are adjacent
in that their contact area is nonzero. The edge cost between
two nodes is defined as the Euclidean distance between the
two associated points if they exist, infinity otherwise. A
point p in P is connected to a node v in V iff the node u
containing p is adjacent to v. We initialize G by setting
P, = {s}, Pt = { t } , U = {root}, and the rest to empty
set. Here root denotes the root node that represents the
entire C-space. To control the node refinement process, we
also maintain a nodequeue Q, initialized to U.

To generate a plausible sequence, we simply apply a
shortest-path graph algorithm [l] on the subgraph of G

. .

induced by V and P, with source vertices P, and sink
vertices Pi. We define the cost of a sequence with end
points in P and intermediate nodes in V as the sum of the
edge costs plus the costs of the end points. This cost serves
only as an estimate of the actual length of a solution going
through the subgoals.

If the graph algorithm does produce a sequence with end
points in P and intermediate nodes in V , then we enter the
sequence verification stage. In this stage, weuse L to deter-
mine theconnectability of the sequence of points associated
with the sequence of nodes. Let s' E P, and t' E Pi be
the end points of this sequence. Let d(q) be the minimum
Euclidean distance between the robot at configuration q and
the obstacles. We begin by choosing the search direction
using d(s') and d(t') as a guide: If the d(t') is smaller than
d(s'), then we will search backward by starting at t'; other-
wise, we will search forward by starting at s'. Heuristically,
the point chosen (s' or t') should have less clearance from
the obstacles, and hence should be extricated first to con-
strain search. Let p be the point chosen and p' be the other
point. To search forward, we call L to check the reacha-
bility of the first node v from pointp; to search backward,
we call L to check the reachability of the last node v from
point p . Either way, let q be the point associated with v. If
L is able to connect p to q, then v is declared reachable, and
we would swap v from V to U, insert q into P, connect q to
the original neighbors of v in V with new edges, and store
a back pointer B(q) = p , so that a path from s or t to q
can be rctraced. Then, we would continue the Verification
stage by checking the connectability between p' and q.

The verification stage ends when either the entire se-
quence is connected, or a node v is found unreachable from
a point p . In the former, we would retrace a path from s
tot through G to yield a motion for the robot. In the latter,
however, we would disconnect p from v, push both A(p)
and v into Q, and return to generating another sequence.

Continuing with the sequence generation process, if the
graph algorithm produces no candidate sequence, then we
would enter the node refinement stage. In this stage, we
modify G continually by refining the nodes in Q until either
a candidate sequence becomes available, or Q becomes
empty. We pop off every node u in Q with the largest
volume, and refine each cell by cutting the longest side in
half. Moreover, if u contains a point p in P, then A(B(p))
is pushed into Q to ensure the eventual chance that every
node of U gets refined. Refinement stops when the longest
side of u is less than a preset length X 2 1.

After refining u into two children C(u), we need to mod-
ify G to reflect the replacement of u by C(u). First, we
determine the node type for each child v. If v contains a
point in P , then insert v into U; if v contains a point in PI,
then insert v into V ; otherwise, sample for a collision-free
point p in the cell of v. If the sampling is successful, then
insert p into P' and v into V ; otherwise, insert v into W .
(For our work, the sampling is uniform, and the number
of samples taken is proportional to the longest side of the
cell.) Next, we disconnect u and connect each child v to its
adjacent nodes. Finally, if v belongs to V , then every point

4

of P in nodes adjacent to v also needs to be connected to v.

3.2 Local Planning
The local planner simulates robot movements in the C-space
in small steps. A step is defined as a configuration change
where a degree of freedom is changed by a preset amount,
which represents the resolution. This preset amount of
change is indicated by a number called stride. The stride in
each dimension is normalized so that the maximum distance
traveled by any point on the robot is about the same for
each stride. A point that is within one step of another is
a neighbor of that point. Collision checking with some
minimum distance threshold is done after the robot takes a
step. We assume that the strides are set sufficiently small
to guarantee collision-free motion for the entire step.

Given two configuration points p and q, the local planner
L attempts to move the robot from p to q. The iterative
procedure is as follows: First, we move toward q by con-
sidering all neighboring points of p that are one step closer
to q thanp is, and move to the pointp' that has the maximum
clearance d(p') > 0. Next, we slide repeatedly by consid-
ering sequentially in each dimension, the two neighboring
pointsonestep away fromeitherdirection. If there isapoint
p" closer to q than p is (under the &,-norm), while having
a larger clearance d(p"), we would move from p' to p" and
set p' top". If no progress can be made, then L would report
a failure; otherwise, the move-toward-and-slide procedure
is repeated until q is reached.

3.3 Completeness
To recapitulate, our algorithm searches for a solution by
repeating the process of finding a promising sequence of
nodes in a graph G, verifying its feasibility with L, and
modifying G with the refinement procedure. The efficiency
of our algorithm comes from the fact that we use a non-
trivial X in the refinement procedure, and that we delay
the refinement of nodes until there is no sequence in the
current G.

It is of course possible to refine every node of G down
to a point first, andjhen plan a path based on the resulting
network of points G. In fact, if we were to use X = 1, then
the resulting network is simply the discretized map of the
free C-space. However, it would be terribly inefficient to
find the shortest plausible sequence of subgoals because of
the size of G. For such a G, L only needs to check whether
an adjacent point is collision-free. Non-trivial X allows us
to combine similar subgoals into one single subgoal so that
G contains only a small number of subgoals that are also
representative of all regions of the free configuration space.
We therefore reduce the size of by using a larger A, and
utilize the power of L.

To further minimize the :umber of nodes in G, we do not
search for a solution from G, the completely refined graph.
Rather, werefineConly if wecannot find a solution with G
at the current refinement level. It remains to show that
SANDROS' interleaving process of search and refinement
will eventually find a solu_tion if there is a solution in the
completely refined graph G. The following theorem shows

that the algorithm is again complete for mobile robots with
nodes represented by cuboid cells rather than hyperplanes.
Note that theorem depends on both the invariant that the
nodes of G form a partition of the C-space and the fact that
new target points are uniquely determined for every node,
regardless of when the node is generated.
Tlicorem 1 Suppose that a task of moving from s to t is
solvable by first refining the C-space into a network of
points G', and then planning a path through G' using L to
connect s to t. Then our algorithm is complete in that it can
also solve the same problem, but with possibly less node
refinement.
Proof If the problem of moving from s to t is solvable
through total refinement, then there must be a loopless se-
quence

with vi E e such that C is able to connect vi with vi+l
for all i < n. Suppose that our algorithm fails to solve
the saye problem, and terminates with a partially refined
G # G. Then consider the sequence

rl = (cP(~o), - - - CP(vn)>,

where cp(vi) denotes the node of G that dominates vi in that
the cell of p(vi) contains that of v i . By contracting any
loop of this sequence repeatedly, we can obtain a loopless
(but not unique) sequence of the form

ro = (s = vo, . . ,vn = t)

rz = (s = w l , . . . , w,,, = t)
with m 5 n, and each wi in G. Since Tz contains no
repetition of nodes and has cost less than that of To, it must
be a sequence verified by G to be infeasible. Because To is
loopless, every fully refined node wi in r2 must correspond
to a unique vj in To. Moreover, for such i < n, wi+l must
dominate vj+l. Hence, for T2 to be infeasible, there must
exist a smallest t 2 1 such that wk strictly dominates v k in
that wk is still not fully refined. On the other hand, such t
cannot exist for the following reason. If W k were reachable
by the end of our algorithm, then W k would eventually be
pushed into Q. (See the last portion of Section 3.1.) If
wk were not reachable, then Wk would have been pushed
into Q immediately after this determination. Either way, W k
would have been refined eventually and totally, and hence
cannot strictly dominate 21k. Therefore, our algorithm must
have also succeeded by contradiction. I

4 Examples
Our algorithm has been implemented for 2D and 3D en-
vironments, and tested with both easy and hard examples.
The examples were run on a typical (100MIPS) worksta-
tion. Figure l(a) shows an L-shaped object moving from
the center of the workcell to the left of the triangle via
the subgoal at the top. Two lightly shaded subgoals are
also generated but not used for the solution path. Figure
l(b) show the solution path (dark curves) and other path
the planner explored during the search (light curves). Note
that for the orientation dimension (z axis), top and bottom

surface represent the same orientation. The computation
time was 1 second. Figure 2a shows a moderately hard
problem of unhooking a clip from a nail, and the subgoals
used are shown. The computation time was less than 1 sec-
ond. Figure 3 shows the same clip, but there are two nails
this time. This problem with many traps in the C-space
was generated to test the completeness of our algorithm. It
took 219 local planning calls and 15 seconds to solve this
problem, generating 1 16 point subgoals (Figure 3(c)). The
C-space resolution was 120x120~240 = 3.5 million points.
We include these examples to illustrate our algorithm, even
though in 2D a brute-force search is sufficient.

The real power of our algorithm shows in 3D environ-
ments, where the size of the C-space is much larger. Figure
4 shows an L-shaped object turning in an L-shaped hall-
way (the two walls in the front are not drawn). Although
this problem is not trivial since the robot has to make two
rotation moves at the corner, our planner was able to solve
this problem with just one local planning call. The com-
putation time was less than 1 second, and it illustrates the
problem-solving capability of our local planner. The next
two problems in Figure 5 and 6 show how to get a T and a
Pi (Greek letter) out of a jail cell. These problems are mo-
tivated by pipe removals in wastesite cleanup. The T took
4 point subgoals and 10 seconds to get out, while the Pi took
32 point subgoals and 135 seconds. The C-space resolution
was 1OOx1OOx75x25Ox25Ox157 = 7.4 trillion points. All
of the examples above show the computation time of our
aigorithm is correlzted with the problem comp!exity.

5 Conclusions and Future Work
We have developed a global motion planner for the classical
mover's problem. This planner is resolution complete, and
at the same time runs in a practical amount of time. Our
planner can continue the search after generating a solution
to get a more optimal path. Our planner can be parallelized
easily either by computing the distance between the robot
and all obstacles in parallel, or by verifying a sequence
of subgoals in parallel. It can also scale the amount of
computation according to the available computing resource.

Our current planner has lots of room for improvement.
The probability of reaching a node needs to be estimated
so that the global planner can generate a test sequence of
subgoals with a higher chance of success. Two local plan-
ners can be used instead one: a fast one that favors moving
toward the goal over obstacle avoidance and a safer but
slower one that favors moving away from obstacles. By
applying the latter after applying the first, the ratio of the
success rate to the computation time can be increased. The
goal of the local planner can be either a point (singleton)
as done in this paper, or can be any point in a node (set) as
done for our SANDROS planner for manipulators [5]. It
is our impression that the local planner wiEh?ive a higher
chance of success when a bigger goal is given. If the goal
is a set, however, we do not have a completeness proof, and
the planner cannot be parallelized (since we do not know
which point in a node the local planner will reach). Further

5

work is needed in this area.
Our planner is applicable to the important task of navigat-

ing mobilerobots, submarines and spacecraft. It can also be
used in object manipulation; one usually plans the path for
the object to be moved and then plans the motions of manip-
ulators, especially when multiple robots are involved [161.
Still another application is in assembly planning to check
the existence of a part motion to its assembled position.
We expect that our planner will play a fundamental role in
many robotic applications.

References

c31

[41

[71

[91

Aho, A., Hopcroft, J., and Ullman, J. The Design and
Analysis of Computer Algorithms, Addison-Wesley,
1974.
Barraquand, J. and Latombe, J.C., “A Montecarlo
Algorithm for Path Planning with Many Degrees of
Freedom,” Proc. of IEEE Int. Conj on Robotics and
Automation, pp. 1712-1717, Cincinnati, OH, 1990.
Brooks, R.A. and Lozano-Perez, T., “A Subdivision
Algorithm in Configuration Space for Findpath with
Rotation,” International Joint Conference on Artificial
Intelligence, Karlsruhe, Germany, 1983.
Chen, P.C., “Improving Path Planning with Learning,”
Proc. ofNinth Int. Conj onMachine Learning. pp. 55-
61, Aberdeen, Scotland, 1992.
Chen, P.C. and Hwang, Y.K., “SANDROS: A Mo-
tion Planner with Performance Proportional to Task
Difficulty,” Proc. of IEEE Znt. Conj on Robotics and
Automation, pp. 2346-2353, Nice, France, 1992.
Collins, G., “Quantifier elimination for real closed
fields by cylindrical algebraic decomposition,” Sec-
ond GI Conference on Automata Theory and Formal
Languages, 33, pp. 134-183, New York: Springer-
Verlag, 1975.
Canny, J.F. and Lin, M.C., “An opportunistic global
path planner,” Proc. of IEEE Int. Conj on Robotics
and Automation, pp. 1554-1561, Cincinnati, OH,
1990.
Canny, J.F., “A New Algebraic Method for Robot
Motion Planning and Real Geometry,” Proceedings of
28th Annual Symposium on Foundations of Computer
Science, pp. 39-48, 1987.
Donald, B., “Motion planning with six degrees of
freedom,” Massachusetts Institute of Technology Ar-
tificial Intelligence Laboratory, AI-TR-791, Mas-
sachusetts Institute of Technology, Cambridge, MA,
1984.
Faverjon, B. and Tournassoud, P., “A 10~51 approach--
for path planning of manipulators with a high number
of degrees of freedom,” Proc. of IEEE Int. Con$ on
Robotics and Automation, pp. 1152-1 159, Raleigh,
NC, 1987.

[l l] Gilbert, E.G., Johnson, D.W. and Keerthi, S.S., “A
Fast Procedure for Computing the Distance Between
Complex Objects in Three-Dimensional Space,” IEEE
Journal of Robotics and Autonution, vol. 4, no. 2,

[12] Hwang, Y.K. and Ahuja, N., “Gross Motion Planning
- A Survey,” ACM Computing Surveys vol24, no 3,
pp. 219-292, September 1992.

[I31 Kavraki, L. and Latombe, J.-C, “Randomized prepro-
cessing of configuration space for fast path planning,”
Proc. of IEEE Int. Con$ on Robotics and Automation,
pp. 2138-2145, San Diego, CA, 1994.

pp. 193-203,1988.

6

[141 Kavraki, L., “Computation of Configuration-Space
Obstacles Using the Fast Fourier Transform,” Proc. of
IEEE Int. Con& on Robotics andAutomation. pp. 255-
261, Atlanta, GA, 1993.

[15] Kedem, K. and Shark, M., “An Automatic Motion
Planning System for a Convex Polygonal Mobile
Robot in 2-D Polygonal Space,” Proceedings of 4th
Annual ACM Symposium on Computational Geome-
try, pp. 329-340, Urbana, IL, 1988.

[16] Koga, Y, L. and Latombe, J.-C, “On multi-arm ma-
nipulation planning,” Proc. of IEEE Int. Con$ on
Robotics and Automation, pp. 945-952, San Diego,
CA, 1994.

[17] Latombe, J.C., Robot Motion Planning, New York:
Kluwer Academic Publishers, 199 I .

[18] Lengyel, J., Reichert, M., Donald, B.R. and Green-
berg, D.P., “Real-Time Robot Motion Planning Us-
ing Rasterizing Computer Graphics Hardware,” Com-
puter Graphics, vol. 24, no. 4, pp. 327-335, August
1990.

[19] Lozano-Perez, T. and Wesley, M.A., “An Algorithm
for Planning Collision-Free Paths Among Polyhedral
Obstacles,” Communications of rhe ACM, vol. 22,
no. 10, pp- 560-570,1979.

[20] Paden, B., Mees, A. and Fisher, M., “Path planning us-
ing a Jacobian-based freespace generation algorithm,”
Proc. of IEEE Int. Conj on Robotics and Automation,
pp. 1732-1737, Scottsdale, AZ, 1989.

[21] Reif, J.H., “Complexity of the Mover’s Problem and
Generalizations, Extended Abstract,” Proceedings of
IEEE Symposium on Foundations of Computer Sci-
ence, pp. 421-427,1979.

[22] Ressler, E., “Planning 2D Solid Robot Motion on A
Discrete Grid,” Course Notes for “Robotics and Ma-
chine Vision”, Cornell University Department of Com-
puter Science, Ithaca, New York, 1992.

[23] Schwartz, J.T. and Shark, M., “On the Piano Movers’
...-,Problem: 11. Techniques for Computing Topological

Properties of Real Algebraic Manifolds,” Courant In-
stitute of Mathematical Sciences, Report No. 39. (also
in Advances in Applied Mathematics, 1983, no. 4, pp.
298-35 1).

(4 (b)
Figure 1: An L-shaped object in planar environment (a) with C-space (b).

(a) (b)
Figure 2 A clip with one nail problem in planar environment (a) with C-space (b).

Figure 3: A clip with two nails problem in planar environment (a) with C-space (b).

I

Figure 3c: Subgoals generated for the
clip-with-2-nails problem.

Figure 4: An L-shaped object moving around a block.

Figure 5: A T-shaped object moving out of a jail box in (a) with generated subgoals in (b).

Figure 6: A Pi-shaped object moving out of a jail box in (a) with generated subgoals in (b).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, rcwm-
mendhtion, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

