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ABSTRACT 
The primary purpose of this paper is to provide a careful 
evaluation of the diffusion velocity concept with regard to 
its ability to predict the diffusion of vorticity near a moving 
wall. A computer code BDIF has been written which sim- 
ulates the evolution of the vorticity field near a wall of in- 
finite length which is moving in an arbitrary fashion. The 
simulations generated by this code are found to give excel- 
lent results when compared to several exact solutions. We 
also outli i  a two-dimensional unsteady viscous boundary 
layer model which utilizes the diffusion velocity concept 
and is compatible with vortex methods. A primary goal of 
this boundary layer model is to minimiie the number of 
vortices generated on the surface at each time step while 
achieving good resolution of the vorticity field near the 
wall. Preliminary results have been obtained for simulating 
a simple twedimensional laminar boundary layer. 

INTRODUCTION 

Background 
Our ultimate reason for doing this work is to be able to de- 
velop a robust algorithm which is compatible with vortex 
methods while at the same time yielding good resolution of 
the vorticity/velocity field near the wall. Several attempts 
have been made in the past to couple inviscid vortex mod- 
els with classical integral boundary layer formulations. 
Typical of these is the work due to Spalart and Leonard [ll 
and Spalart [2]. The integral solutions were started from a 
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known stagnation point and proceeded in the stream-wise 
direction until separation was indicated. Slightly upstream 
of the separation point. vortices were introduced to replace 
the vorticity in the boundary layer and were then allowed 
to convect freely in the flow. While the method gives good 
results for simple boundary layer flows, it is diffiiult (if not 
impossible) to apply to complicated unsteady flows in 
which the= are multiple stagnation, separation, and reat- 
tachment points which are moving as a function of time. 

There are several methods in which the viscous diffusion 
process (not necessarily in thin boundary layers) has been 
modeled using Lagrangian vortex elements. These meth- 
ods include the Gaussian random walk method 131, the dif- 
fusing core method[41, the particle strength exchange 
(PSE) method 153, and the diffusion velocity method origi- 
nally proposed by Ogami and Akamatsu [61 and improved 
by Kempka and Strickland 171. The relative merits of these 
methods are discussed in [71. 

Chorin E81 applied the “random walk”method to boundary 
layers utilizing vortex sheets near the wall. His method pre- 
dicts a zero pressure gradient laminar boundary layer quite 
well but does not successfully predict separating boundary 
layers. This is probably due tohis use of boundary layer as- 
sumptions near the separation point. For instance, the equa- 
tion he used to calculate the stream-wise velocity as a func- 
tion of distance from the wall neglects the stream-wise gra- 
dient of the normal velocity. Near the separation point this 
gradient is the same order of magnitude as the vorticity and 
cannot be neglected. 

Koumoutsakos, Leonard, and Pepin E91 recently applied 
the PSE method to flow around both an oscillating and im- 
pulsively started circular cylinder. They obtained excellent 
results for the range of Reynolds numbers studied (40 to 
l0,OOO). It appears that the number of vortices N ,  used in 
their work scales roughly as a. This scaling is consis- 

1 



tent with the assumption that the thickness of the boundary 
layer 6 ,  nan-dimensianalized by a length L ,  scales as 
l/*e and that the overlapping vortex elements are circu- 
lar. The primary disadvantage of the PSE method is that the 
region near the boundary must initially be flooded with 
vortex elements whose size, number, and extent must be ju- 
dicially chosen. As these elements convect in the flow, ad- 
ditional adjustments must be made in order to maintain a 
sufficient number of elements near the boundaries which 
are sized to properly resolve the boundary layer. 

It should be noted at this point, that a topological problem 
exists if one tries to use circular vortex blobs to simulate 
boundary layers at high Reynold’s Numbers. Consider a 
two-dimensional unsteady flow field which contains 
boundaries which are impenetrable. In order to solve the 
flow field, we first discretize the boundary into a number of 
curved or flat panels of length 0 (h) . From a knowledge 
of the existing vorticity field (which may be zero initially) 
and the motion of the boundaries we aie then able to calcu- 
late the vorticity flux which must OCCUT during the next 
time step to maintain the normal and tangential velocity 
boundary conditions. Our first inclination, in applying the 
vortex method to this problem, is to model the new vortic- 
ity generated at the wall by circular vortex blobs, prefera- 
bly of diameter 0 (h) . However, for high Reynolds num- 
ber flows, the vorticity will not diffuse away from the wall 
by a distance 0 (h) . If we nevertheless persist in placing 
overlapping circular blobs on the boundary at a distance 
away from the wall of 0 ( h )  , we are actually obtaining a 
solution for a lower local Reynolds number. In order to ac- 
curately model the diffusion process using circular blobs, 
we must place a large number of overlapping circular vor- 
tices along the wall whme diameters will be some fraction 
of the boundary layer thickness. For high Reynolds number 
flows the boundary layer thickness may itself be some frac- 
tion of h . In such cases, the number of vortex blobs re- 
quired becomes prohibitive. We note that Chorin’s use of 
vortex sheets in reference E81 was motivated by this very 
problem which became apparent in his earlier work 131 in 
which he used circular vortex blobs with finite cores. 

General Methodology 
We now outline a two-dimensional unsteady viscous 
boundary layer model which is compatible with vortex 
methods. We first define two regions, a wall region for 
y < h and an outer region for y > h where y is the normal 
distance away from the wall and h is the local panel length. 
It is assumed that the boundary is properly paneled in order 
to resolve the wall boundary conditions. In the wall region, 
elements used to represent the vorticity field must be elon- 
gated in the stream-wise direction as compared with their 
thickness normal to the wall. In the outer region, the vortex 
elements are circular with diameters of 0 (h) . In the wall 
region, diffusion may be assumed to be unidimensional so 

long as the wall curvature is not too severe while in the aut- 
er region diffusion wil l  be considered as twdimensional. 
Finally, in the wall region, a Lagrangian re-map scheme is 
used to obtain the evolution of the vorticity field while in 
the outer region a viscous vortex blob method is used. The 
vortex elements defined in each region are able to smoothly 
interact with the elements of the other region or transition 
fiom one region to the other. This method is intended to 
yield good resolution of the diffusion and convectim pre 
cesses for y S h without generating any “free”vatex blobs 
which are smaller than 0 (h) . 
The general solution scheme for the wall region is to first 
diffuse vorticity into the layer, allow diffusion of the exist- 
ing vorticity to OCCUT, convect the flow, re-map the vortic- 
ity distribution back onto lines normal to the wall which are 
spaced at intervals h , and repeat for the next time step. In 
most regions of high Reynolds number boundary layer 

ing layer will not extend beyond y = h . For cases where 
sufficient vorticity moves across y = h we convert the 
vorticity into “ftee” circular vortex blobs of support 
0 (h) . Conversely, vortex blobs may penetrate the wall 
layer in which case the vorticity from such blobs is “cap- 
tured” and placed in the wall layer. 

As mentioned previously, the vorticity flux which moves 
through the wall during a given time step is obtained by en- 
forcing the normal and tangential velocity boundary mdi- 
tions. A first order approach is to assume that the vorticity 
is impulsively introduced into the layer at the middle of 
each time step. Koumoutsakos, Leonard, and Pepin [91 de- 
veloped a method which allows one to calculate the two-di- 
mensional distribution of this new vorticity in the region 
near the wall. For unidimensional diffusion, the distribu- 
tion of new vorticity is identical with the distribution of 
vorticity for an impulsively started flat plate. We will ex- 
pand upon this topic in the section “Generation of Vorticity 
at the Wall“ on page 4. 

The diffusion process is modeled by using one-dimension- 
al overlapping hear  vortex elements as indicated in 
Figure 1. It is possible to use other one-dimensional vortex 
elements in this region such as Gaussian or “skewed” 
Gaussian elements (i. e. different core radii for positive and 
negative positions with respect to the element center). 
However, the linear elements provide a much simpler mod- 
el and do not suffer from typical problems near walls of dis- 
tributions which do not have compact support @e. part of 
the distribution extends across the wall). These elements 
diffuse according to the “diffusion” velocity IZ, at theii 
edges and center. In order to conserve circulation strength, 
the area of each triangle under the w, y curve remains con- 
stant as a fundon of time. Details of the diffusion velocity 
umcept will be given in the section ‘The Diffusion Veloc- 
ity Concept” on page 3. 

flows only the wall region will be required since the diff~s- 
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Figure 1. Typical Wall Layer Diffusion Elements 

Our next task is to convect the flow in the wall layer. For 
convection purposes we use quadrilateral Lagrangian ele- 
ments as shown in Figure 2. Due to the rapid distortion of 
the elements in the wall layer (especially next to the wall), 
the vorticity distribution is re-mapped at each iteration 
back onto lines which are normal to the wall. 

Figure 2. Typical Wall Layer Convection Elements 

The tangential convection velocity may be obtained from 
the following equation which is based upon the defrnition 
of vorticity in terms of velocity. 

( 1) 

The normal component of the convection velocity may be 
obtained from the continuity equation as: 

W W 

Y 

v =  v w -  -dy. 
W 1;: 

For most regions of the wall layer (away from separation or 
reattachment points) the last integral in Equation 1 is neg- 
ligible. This allows one to obtain solutions to Equations 1 
and 2 in a very simple manner, solving first for u in terms 
of the known vorticity distribution normal to the wall and 
then for v in terms of the local stream-wise gradient of u . 
For regions where the last integral in Equation 1 cannot be 
neglected, several options have been examined which will 
be presented in a future paper. In each of the options, we 
plan to use local information in the formulation which ne- 
gates the need to perform calculations in this layer which 
requires information directly from all of the other vortex el- 
ements and vartex blobs in the global flow field. 

In the outer region ( y  > h ), the flow is modeled by two-di- 
mensional vortex blobs. The centers of the vortices are con- 
vected at a velocity which is the sum of the local diffusion 
velocity and the local fluid velocity. In addition, the core 
radii of the vortices expand to account for the non-solenoi- 
dal nature of the diffusion velocity (see reference [71). We 
thus invoke the Biot-Savart law and the diffusion velocity 
concept to obtain the velocity and core expansion rate of 
e 9  vortex. To reduce the computation time from order 
N, to order N, or N , W v ,  where N, is the number of 
free vortices, we use the fast adaptive multipole method 
due to Carrier, Greengard, and Rokhlin [lo]. 

In closing this section, we acknowledge that the above out- 
line which we have given for the solution of two-dimen- 
sional boundary layers using a vortex method is very 
sketchy. As stated earlier, the primary work presented in 
this report concerns the simulation of viscous diffusion in 
the wall layer using the diffusion velacity concept. Our 
purpose for including the above outline is to orient the 
reader to the role which the diffusion sub-model will play 
in a more general scheme. In the following sections, we 
will describe in some detail the method of solution associ- 
ated with the diffusion process in the wall layer. 

METHOD OF SOLUTION 

The Diffusion Velocity Concept 
In order to illustrate the diffusion velocity concept, consid- 
er the two-dimensional viscous flow field depicted in Fig- 
ure 3. The diffusion velocity is specified such that the cir- 
culation within a given boundary remains constant if that 
boundary moves at the diffusion velocity plus the local flu- 
id velocity. In order to formulate the diffusion velocity we 
first note that the circulation around a m e  enclosing an 
area A is: 
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Taking the time derivative of Equation 3 and setting it 
equal to zero yields: 

dr - = o  
dt  or 

- d + ( G * V ) & + d ( V * G )  - (d*V)ii]*AdA = 0 
p t  

where 5 is the velocity at which the m a  A is moving. We 
now let ii = h + h, , where the local fluid Velocity is h and 
the local diffusion velocity is h, . 

P/ 
I 
I r =  constant 

Figure 3. Diffusion Velocity Concept 

Equation 4 is satisfied when the integrand is equal to zero: 

a -6, ( i l . V ) d + d ( V * i i )  - (&*V)i i  = 0. (5) at 

We also have at our disposal the vorticity form of the Navi- 
er-Stokes equation: 

a -&+ ( h * V ) & + & ( V * h )  - ( & * V ) h  = vV2&.(6) at 

Subtracting Equation 6 from Equation 5 yields the govern- 
ing equation for the diffusion velocity in terms of the vor- 
ticity field and kinematic viscosity: 

Using the vector identities, 

V X  ( V X & )  = V ( V * & )  - V 2 d  , V * &  = 0,and 

-6 (V h,) ,Quation 7 can be written in a form in which 
the diffusion velocity appears only once, 

v x  ( a d d & )  = ( d * V ) h , -  (i2,.V)&+hd(V.&) 

- v x  ( d d x 6 )  = v v x  ( v x & ) .  

This equation implies that to within an arbitrary constant: 

( 8) 

h , x t  = - v v x & .  ( 9) 

The arbitrary constant can be shown to be equal to zero. We 
now restrict ourselves to two dimensions and rewrite Equa- 
tion 9 as: 

V h, = --vw w '  

where w is the vorticity which is perpendicular to the two- 
dimensional plane. In order to determine the time rate of 
change of the vorticity as we move along at the velocity ii 
(denoted by b/b t ) we write Equation 5 for the twedimen- 
sional case: 

be - = -&(V.ii) = -&(V.h,). bt 
We see fiom this equation that the time rate of change of 
vorticity is a function of the divergence of the diffusion ve- 
locity since V h = 0 for incompressible flow. 

Since we are dealing with boundary layers, the diffusion in 
the direction tangential to the wall (the x direction) may be 
ignored. Thus we only concern ourselves with the diffusion 
velocity in the direction normal to the wall (the y direction) 
which will be denoted by U, . 

The evolution equation for w may be obtained from Equa- 
tion 11 as: 

We will also be interested in the flux of circulation y per 
unit length of x across some point y . This flux is simply 
the product uf the diffusion velocity and the vorticity or: 

In summary, Equations 12,13, and 14 form the set of equa- 
tions which we will use for solution of the viscous diffusion 
in the region near the wall. 

Generation of Vorticity at the Wall 
The circulation per unit length y which must be generated 
at the wall in order to maintain the no-slip condition is 
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equal to the slip velocity Us which becomes manifest at a 
particular location on the wall during a time period A t .  A 
generalized method to obtain Us (or y on the wall) is giv- 
en in reference [12]. In order to gain insight into the actual 
distribution of varticity, we begin by examining a point on 
a moving boundary in a time dependent flow. We assume 
that initially the fluidvelocity is equal to zero relative to the 
selected point an the wall and we examine the nature of the 
slip velocity over a short period of time At . As fluid is con- 
vected from other points in the flow over the pint  on the 
wall there is no reason to expect that the fluid velocity rel- 
ative to the point on the wall will remain zero unless we in- 
troduce vorticity into the flow. For example, we may have 
stream-wise pressure gradients along the wall. This causes 
the circulation in the boundary layer which is convecting 
from upstream to either be too high or too low to prodm a 
zero slip velocity at the wall. In addition, the wall itself 
might be moving in an unsteady fashion. We can define the 
wall slip velocity Us which will arise over a time At (bar- 
ring any flux of vorticity through the wall) as: 

where U,, is the tangential surface velocity or tangential 
velocity boundary condition and U, is the tangential fluid 
velocity which are both psitive in &e direction of the unit 
surface tangent vector zs . In order to restore the neslip 
mdition at the wall during the increment of time A t ,  a 
flux of vorticity must occur through the wall into the fluid. 
This flux can be written in terms of the diffusion velocity 
U, and the wall slip velocity Us as: 

wU,At = AUs ( 16) 

It should be pointed out that an interpretation of Equation 
19 can be obtained directly from the two-dimensional 
boundary layer form of the Navier-Stokes equations. The 
twdimensional boundary layer form ofthe Navier-Stokes 
equations can be written as: 

By comparing Equation 19 with Equation 20 evaluated at 
the wall it can be seen that the time rate of change of the 
wall slip velocity is equivalent to the combined effects of 
the pressure gradient term and the wall surface motion. It is 
also clear that Equation 19 is much more convenient for 
calculating the normal gradient of the vorticity at the wall 
when using vorticity methods as compared to Equation 20 
evaluated at the wall. 

We have examined several numerical models for introduc- 
ing the vorticity into the flow at the wall. The simplest 
method is to add al l  of the circulation which is generated at 
the wall during a given time step to the first linear vortex 
element next to the wall (the right triangle next to the wall 
in Figure 1) and then allow the entire distribution to diffuse 
over the time step. The= are a number of variations on this 
basic scheme in which the vorticity is introduced in smaller 
amounts on more than one occasion during the time step. In 
a recent paper by Koumautsakos, Leonard, and Pepin 191 
umcerning vorticity generation at a wall, an algorithm for 
updating the particle strengths in a PSE method was pre- 
sented for finite panels with curvature. In the context of the 
present unidimensional model, the vorticity which would 
be i n t r o d d  into the domain from the wall during a time 
At would have a distribution equal to: 

or 

ms mu, = - dt  ' 

We notice that Equation 17 is simply an application of 
Equation 14 with y = U, . It should be noted that if the sur- 
face n-al vector which is pointing into the flow of inter- 
est is qs. the positiveAk20n associated with 6 in 
Equation 17 is given by zs x qs . Since the diffusion veloc- 
ity U, at the wall is given by: 

then the vorticity gradient at the wall is given by: 
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where wt + *' is the vorticity at the time t + A and 0' is 
the vorticity at time t . We note that Equation 21 is identical 
to the exact solution for an impulsively started flat plate 
[ll]. Adding all d the circulation to the first element at the 
beginning of the time step is roughly equivalent to using 
Equation 21 at the end of the time step. 

Since the diffusion equation is linear, we may obtain the 
vorticity distribution associated with the flux from the wall 
at the end of the time step by superimposing the impulsive 
solutions via the following convolution integral. 



Defining y’ =yl&t, Equation 22 can be integrated nu- 
merically to obtain the curve shown in Figure 4 which is la- 
beled as “Exact”. The resulting distribution can be fitted 
with a curve given by: 

must be considered. In the first case, the vorticity and its 
slope are both approaching zero. In the second case, the 
vorticity is zero but the slope is non-zero. 

Where 

q = 0.884y+ + 0.161~+~ 

Far comparison, the distribution given by a single impulse 
at the mid time step is also plotted in Figure 4 identifiid in 
the legend by 0.5At. The major difference in the two 
curves is their distributions near the wall. From Equation 
19 it is seen that the slope of the (Aw’, y’) curve at the 
wall must be equal tominus one, not zero as is given by the 
impulsive start representation. We note that the proper 
slope is obtained when using Equation 23. 

Far simulations where A t  3 0, the global vorticity distri- 
bution will tend to be the same for the various representa- 
tions of the wall flux distribution. On the other hand, we 
have found that one has to sometimes take much smaller 
time steps when using the impulsive representation in arder 
to obtain satisfactory distributions near the wall. we there- 
fore recommend the use of Equation 23. 

1.0 

0.8 

0.6 
Am+ 

0.4 

0.2 

0.0 
0 1 2 3 4 5 

Y+ 

Figure 4. Distribution of Wall Vorticity 

The Diffusion Velocity for Zero Vorticity 
In order to use Equation 12, it is important to obtain an un- 
derstanding of its behavior for the case where w = 0. We 
note that there are two basic zero vorticity cases which 

i 
w 

lb Y 

Fqure 5. Zero Vorticity Cases 

We first examine the case shown in Figure 5a. The diffu- 
sion velocity in the region where o + 0 is indetermb.uk 
for this case since awlay is also approaching zero. In arder 
to form a numerical model for this case, we assume a linear 
vorticity distribution as shown in Figure 6. Since our pri- 
mary interest is in the diffusion of this linear element, we 
write an equation for the mean diffusion velocity UdM at 
y = h/2 and equate that to the average of the diffusion ve- 
locities at the ends of the element. 

I 

Figure 6. Diffusion Velocity For Zero Vorticity and 
Vanishing Slope. 
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Solving Equation 25 for U, yields: 

To test the applicability ofEquation26, we examine its pre- 
dictive quality with regard to diffusion of vorticity in a flow 
in which the wall is impulsively started from rest to a ve- 
locity of U, , sometimes referred to as “Stokes’ first prob- 
lem” [l 11. We will model the entire vdci ty  field with a 
single linear element, realizing that this is a very crude 
model for such a flow. In an actual simulation, this linear 
element would represent only a small region of the flow at 
the edge of the boundary layer. In Figure 6, we place the 
wall at y = 0 and let oL be equal to the vorticity at the 
wall. Recasting Equation 26 in tem of the time rate of 
change of h , we obtain: 

dh v - = 4i; - UdL. dt 

In modeling an impulsively started flow, UdL will be equal 
to zero since the wall boundary umdition dictates that 
ao /dy  = 0 fory = 0 andt>O.Weenfmthisbound- 
ary condition without regard for the fact that a o l a y  # 0 for 
y > 0. Therefore, Equation 27 can be integrated to yield h 
as a function of time with the initial umdition that h = 0 
whent = 0: 

h = 2&t. 

The vorticity distribution can now be written as: 

where U, = wLh/2 is the velocity ofthe impulsively start- 
ed plate. The exact solution for the vorticity distribution is 
given by: 

EQuations 29 and 30 are plotted in Figure 7. As may be seen 
from this figure, the vorticity distribution obtained from the 
one element linear approximation is surprisingly close to 
that of the exact solution and in fact, fluid velocity p r d e s  
obtained by integrating these curves would appear to be 
even more similar. Based on this limited test, we conclude 
that Equation 26 will probably give satisfactory results for 
representing an element (in a general numerical model) 
where o and aw/ay are both approaching zero. 

Next, consider the case depicted in Figure 5b in which 
o = 0 but f 0. From Equation 12, it may be seen 
that there is a jump in the value of ud from a very large 

positive value to a very large negative value as one moves 
from left to right across the o axis along the y axis. This 
indicates that negative vorticity is flowing to the right 
while positive vorticity flows to the left across the origin. 
The strength y2h of the vortex sheet between y = f h  is 
constant with respect to time, since those boundaries are 
moving at their respective diffusion velocities. The vortic- 
ity sheet strength yR for the right hand layer (0 < y < h ) is 
decreasing, on the other hand, at a rate given by: 

The vorticity sheet strength yL for the left hand layer 
( h  5 y 5 0) is increasing (in a positive sense) at an equal 
rate. Thus, we observe that positive and negative vorticity 
is being destroyed in equal amuunts. We also note that the 
absolute values of the strengths for the left and right hand 
sheets are decreasing in equal amounts as the elements col- 
lapse toward the origin. 

0 2 3 4 5 
Y z 

Figure 7. One Element Linear Approximation To 
“Stokes First Problem.” 

J 

Figure 8. Zero Vorticity With Non-zero Slope 
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We now turn to the calculation of the velocity of the point 
( y ,  a) = (0,O) . The approach that we take is to obtain 
an average or integral value of the diffusion velocity for the 
“element” between y = f h  and then take the limit as 
h + 0. The average diffusion velocity Udo for this ele- 
ment can be written as: 

For o = 0 we see that the argument of the trigonometric 
functions must be equal to a constant (either 744 or 5/4n). 
The velocity of the point where o = 0 is then obtained by 
differentiating the argument of the trigonometric functions 
to obtain: 

21 = 6 n .  ( 37) 
Udo = - x [Lq  +Aq ) h .  (32) d* 

2h w R ~ Y R  ~ L ~ Y L  

h + 0, Equation 32 can be rewritten as: 

In order to test Equation 34 against this result, we obtain 
the first and second derivatives of from Equation 36 and 
insert their values with 0 = 0 into Equation 34. This 
yields: 

Noting that oL I -wR and that the equality will be true as 

J 

Equation 34 could have also been obtained by a L’Hospital 
type of differentiation of the numerator and denominator of 
Equation 12, although the nature of the singularities for this 
case do not appear to fit the L’Hospital rules. It should be 
noted that u d o  is not, strictly speaking, a diffusion Velocity 
but is the velocity of the point at which o = 0 when 
W a y  f 0. As noted previously, the individual strengths 
of the vortex sheets on either side of this point are not con- 
served and must be adjusted according to Equation 3 1 and 
its counterpart for the left hand layer. This point moves in 
response to the local curvature in the ( y ,  o) curve and al- 
ways moves in a direction so as to reduce the curvature. 

In order to test the validity of Equation 34, we examined 
the solution to “Stokes’ second problem” [l 11 which is an 
exact solution for viscous flow near a sinusoidally oscillat- 
ing infinite flat plate. The velocity prdile for this problem 
is given by: 

where Uo is the maximum velocity at the wall and n is the 
frequency of oscillation. The vorticity field is given by: 

which of cou~se is the same result as that obtained for the 
motion of the point where o = 0. 

Another way to avoid having to make calculations for the 
case shown in Figure 5b, altogether, is to break the vorticity 
distribution up into positive and negative distributions, dif- 
fuse them independently, and then add them back together. 
This is permissible since the diffusion process is linear. The 
cancellation of positive and negative vorticity OCCUTS dur- 
ing the addition process and does not otherwise have to be 
accounted for. We found this method to be much more ro- 
bust than that of the previous sections and have used it in 
allofaurcalculations. 

The Numerical Model 
The computer code BDlF simulates the vorticity and veloc- 
ity field for viscous laminar flow over a moving wall of in- 
finite extent with an arbitrary tangential motion. This mod- 
el is also applicable to flow regions which are not too close 
to the ends of a finite length oscillating plate whose time in- 
tegrated tangential velocity is equal to zero. 

At time t = 0 one may specify an initial vorticity distribu- 
tion. If there is an initial vorticity distribution it is first dis- 
cretized into a number of linear blob elements as shown in 
Figure 1. Next, the distribution is expanded to include an 
image distribution for y < 0. This symmetry insures that no 
vorticity flows across the wall during the diffusion process 
associated with the initial distribution. The symmetrical 
distribution is then segmented into segments whose end 
points are the roots (o = 0 ) of the distribution. Segments 
which contain a zero vorticity distribution are discarded. 
Each node of the segment is moved according to either 
Equation 12 or 26. The discrete form of Equation 12 at 
node j is given by: 
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ity of thickness h next to the surface. The vorticity in this 
layer is constant and has a value of o = Ue/h in the clock- 
wise direction. The governing equation for the vorticity is 
given by: 

v o.-oj+l w . - o .  
2mj Y j - Y j + l  Y j - Y j - 1  

Ud0 = --( + - ') + ( 39) 

The discrete forms for the left and right ends of the distri- 
butions where o = 0 are given by: 

and 

respectively, where n is the last node in the distribution. 
Each node is then transported to a new location using a sim- 
ple Euler time integration of the equation given by: 

Equation 13 is then satisfied by maintaining a constant m a  
with respect to time in each of the l i a r  blobs as depicted 
in Figure 1. The discrete equation is given by: 

Next, the segments are added back together and the sym- 
metrical distribution is reduced to a one-sided distribution 
( y  2 0 ). This then represents the distribution of the vortic- 
ity which was present at the beginning of the time step in 
its diffused state at the end of the time step. 

Since the diffusion problem is linear, we may allow the 
vorticity generated at the wall to diffuse independently 
over the course of the time step. Thus, we simply add the 
distribution of wall generated vorticity given by 
Equation 23 to that of the diEused initial vorticity as calcu- 
lated previously. The resulting vorticity distribution now 
becomes the initial vorticity distribution for the next time 
step. 

NUMERICAL RESULTS 

Initially Uniform Vorticity Sheet 
An infinite plate moves at a constant velocity of U, to the 
left. Jnitially, at time t = 0 ,  we assume that the velocity 
profile is as shown in Figure 9. This profile is that of plane 
Couette flow. We do not concern ourselves with how this 
profile might have been generated but simply specify it as 
an initial condition. The linear velocity between y = 0 
andy = h a t t  = 0,impliesthatthereisalayerofvortic- 

2 am a m  
Ti = v -  ay2 ( 43) 

For a constant plate velocity, the slip velocity at the d a c e  
is zero. Equation 19 then yields the following boundary 
condition for Equation 43: 

= Ofory = 0 .  
a Y  

Equation 44 used in conjunction with Equation 14 implies 
that no additional vorticity is being transported across the 
wall for t > 0 which we know to be true since the circula- 
tion in the boundary layer for t 2 0 must remain constant 
in order to satisfy the no-slip condition. 

t = 0.0 

Figure 9. Initial Velocity Profile (Uniform Vorticity 
Sheet) 

An exact analytical solution can be obtained for 
Equation43 subject to the indicated initial and boundary 
conditions. This solution is given by: 

where, a* = ohIU,, y* = ylh, and f* = vt/h2. 

Plots of the vorticity distribution as a function of time using 
the computer code BDIF are given in Figure 10. The "ex- 
act" solution (Equation 45) is also plotted in Figure 10. We 
have removed approximately 50% of the points calculated 
by BDIF to enable one to be able to compare with the exact 
solution. The results using the diffusion velocity are seen to 
be in excellent agreement with the analytical results. The 
biggest error OcCuTs at the edge of the boundary layer 
where w is small  and the diffusion velocity is large. 
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Figure 10. Vorticity Distributions as a Function of 
Time (Initially Uniform Vorticity Sheet) 

Impulsively Started Plate 
We next examine the impulsively started plate sometimes 
referred to as “Stokes’ First Problem.” The exact solution 
for the velocity distribution can be obtained from 
W e  11 11: 

By differentiating Equation 46 with respect to y , the var- 
ticity field is readily obtain&. 

47) 

As a matter of interest, we replot the data for t > 0 from 
Figure 10 in Figure 11 along with the impulsive exact solu- 
tion (Equation 47). 4 s  can be seen from this figure, for non- 
dimensional times t greater than 1 .O the vorticity profiles 
begin to approach that of an impulsively started plate. 
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Figure 11. Vorticity Profiles for Impulsively Started 
Plate versus Initially Uniform Sheet 

In order to simulate an impulsive start using the code BDIF 
we could simp$ run the uniform vorticity sheet case to 
large values of t . One suspects that the exact nature of the 
initial vorticity prgile is unimportant at large times. In Fig- 
ure 12 we show a calculation using BDIF in which the plate 
was accelerated from a zero velocity to the velocity Ue in 
a time step that is equal to O.Olt, The exact calculation 
(Equation 47) is plotted for comparison. Again, we have re- 
moved approximately 50% of the points calculated by 
BDIF. These results show excellent a m e n t  between the 
exact solution and the BDF calculation. 
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Figure 12. Vorticity Profile for Impulsively Started 
Plate 

Sinusoidally Moving Plate 
We next examine the sinusoidally oscillating plate which is 
sometimes referred to as “Stokes Second Problem.” We 
have already noted the exact solution for the periodic state 
@quation 36). Wu et. al. C13land Panton C141 address the 
issue of transient vorticity values for this problem. By 
“transient” we mean the start-up period prior to a periodic 
solution. 

One method of solving both the transient and periodic 
problem, is to use the convolution integral given by Equa- 
tion 22. It can be noted that this integral is simply the con- 
volution of the time rate of change of the slip velocity with 
aunit impulsive start solution. We have developed a simple 
computer code to numerically integrate this equation and 
refer to this method as the convolution integral method or 
CIM. Vorti;ity profiles are given in Figure 13 far three 
phase angles associated with tbe periodic solution. In order 
to insure that a periodic state was reached, the simulation 
covered about 500 cycles. The agreement between the ex- 
act solution and the CIM simulation which is denoted by 
the symbols is seen to be quite good. 
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In Figure 14 we compute the vorticity profiles in the elev- 
enth cycle of oscillation. In this figure the CIM simulations 
form our baseline calculations and are denoted by the solid 
lines. The BDIF code was used to produce the data denoted 
by the symbols. The agreement is seen to be very good. It 
is interesting to note that while the character of Figwe 14 is 
the same as that of Figure 13, the transient effects still lib 
ger &r 10 cycles. 
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Kgure 13. Periodic Vorticity Profiles for Sinusoidally 
Oscillating Plate 
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Figure 14. Vorticity hofiles after 10 Cycles for Sinuso- 
idally Oscillating Plate 

Blasius Solution 
The last solution which we will examine is the case for flow 
over a finite length flat plate. This solution was generated 
by the code WALLYR which represents an exploratory im- 

plementation of the boundary layer solver outlined in the 
section "General Methodology" on page 2. In this particu- 
lar calculation, the size of the wall computational space and 
Reynolds number were chosen to contain all of the vortici- 
ty within the wall region ( y  5 h )  and, hence, the= was no 
need for any of the vorticity to be represented by free two- 
dimensional blobs. Rather, we treat the entire boundary 
layer as a wall flow in which vorticity is introduced at the 
wall, diffused, and canvected. The plate was descritized 
into 50elements with h = 1 .  

The solution was started with the plate moving to the left 
with a velocity of Uo = 1 . The initial vorticity distribution 
was assumed to be uniform along the length of the plate and 
was computed using Equation 21 with At = 1 . Numerical 
experimentation revealed, however, that the starting solu- 
tion did not affect the h a l  results. For the results shown 
here, the solution converged at a non-dimensional time 
t = 200. 

The results of the calculations for a Reynolds number 
based on the length from the plate's leading edge, Re,, of 
l x l d  are shown in Figures 15,16, and 17 along with the 
exact solution given in schlichting [151. Solutions at b y -  
nolds numbers of O.8x1O5, 1.6x105, 2x105, 2.4x105, 
and 3 . 2 ~ 1 0 ~  were also calculated. They produced results 
equivalent to those presented here and are not shown. As 
can be seen from these figures, there is excellent agreement 
between the calculations and the exact solution. The calcu- 
lated values are accurate to within 1% of the exact values 
close to the wall (y = 0). The calculated velocity profile 
(Figure 16) has a maximum error of less than 2% at 
y d m  = 4 .  The calculated transverse velocity (Fig- 
ure 17) has approximately a 4% error at y d m  = 4 
and is less than 2% low at y , / m  = 8 .  
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Figure 15. Blasius Vorticity Distribution 
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Rgure 16. Blasius Velocity Prome 
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Figure 17. Blasius Transverse Velocity Profile 

SUMMARY 
A summary of the work completed to date and the work 
which should immediately follow is given below. 

We have demonstrated the use of the diffusion 
velocity concept in simple boundary layers where 
the diffusion is normal to the wall. The calculations 
show that excellent results can be obtained using 
this method. 

An accurate algorithm for representing the flux and 
distribution of vorticity generated at the wall during 
a given time step has been developed. 

Due to the linear nature of the diffusion equations 
we can treat the diffusion of oppositely signed vor- 
ticity separately and thus do not have to deal with 
the conceptually difficult situation where the vortic- 
ity is zero while the gradient of vorticity is not. 

“Diffusion boundaries” across which existing vortic- 
ity cannot flow are easily produced by using images 
of the vorticity distribution. 

We have demonstrated that good results are obtain- 
able for simple zero pressure gradient flat plate 
flows. 

There is a need to Continue this work by investigat- 
ing simple boundary layer simulations with outer 
free blobs. 

We also need to investigate more complicated 
boundary layer flows such as flows with pressure 
gradients and separating flows. 
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