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Abstract 
Rock properties in volcanic units at Yucca Mountain, Nevada are controlled largely by rel- 

atively deterministic geologic processes related to the emplacement, cooling, and alteration his- 
tory of the tuffaceous lithologic sequence. Differences in the lithologic character of the rocks have 
been used to subdivide the rock sequence into stratigraphic units, and the deterministic nature of 
the processes responsible for the character of the different units can be used to infer the rock mate- 
rial properties likely to exist in unsampled regions. This report proposes a quantitative, theoreti- 
cally justified method of integrating interpretive geometric models, showing the three- 
dimensional distribution of different stratigraphic units, with numerical stochastic simulation 
techniques drawn from geostatistics. This integration of soft, constraining geologic information 
with hard, quantitative measurements of various material properties can produce geologically rea- 
sonable, spatially correlated models of rock properties that are free from “stochastic artifacts” for 
use in subsequent physical-process modeling, such as the numerical representation of ground- 
water flow and radionuclide transport. 

Prototype modeling conducted using the GSLIB-Lynx Integration Module computer pro- 
gram, known as GLINTMOD, has successfully demonstrated the proposed integration technique. 
The method involves the selection of stratigraphic-unit-specific material-property expected values 
that are then used to constrain the probability function from which a material property of interest 
at an unsampled location is simulated. In its current Fortran implementation, GLINTMOD draws 
upon soft information from the geologic framework only at those locations for which the geo- 
statistical search algorithm is unable to locate a user-specified number of either measured condi- 
tioning data or previously simulated grid nodes within a user-specified neighborhood. Material- 
property models created using the initial version of GLINTMOD reproduce an underlying synthetic 
framework model Its a much greater degree than otherwise identical models simulated using only 
hard conditioning data. 
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Use of Stratigraphic Models as Soft Information to 
Constrain Stochastic Modeling of Rock Properties: 
Development of the GSLIB-Lynx Integration Module 

Introduction 

Numerical models of rock material 
properties will be used to evaluate the behavior 
of various engineered features and the waste- 
isolation performance of the potential Yucca 
Mountain nuclear waste repository site in 
southern Nevada. Pre- and post-closure perfor- 
mance assessment activities must evaluate not 
only the effects of the geometric distribution of 
rock types within the subsurface, but also the 
impacts of heterogeneities in the distribution 
of material properties within that geometry. 

Nuclear Regulatory Commission 
licensing requirements to make quantitative 
predictions of repository-system behavior for 
extended periods into the future necessitate 
some type of assessment of the uncertainty 
associated with those predictions. A widely 
held assumption is that uncertainty assessment 
probably will take the approach of some kind 
of Monte Carlo simulation, in which the mate- 
rial properties and other parameters of a physi- 
cal-process model are varied in a way that 
reflects the uncertainty in those values. Varia- 
tions in the input parameters are propagated 
through a numerical representation of the 
physical process under investigation, and this 
variability is captured in a range of some per- 
formance measure-ground-water travel times 
or cumulative radionuclide releases, for exam- 
ple. Geostatistical simulation has been recog- 
nized as a preferred method for developing 
material-property models for input to these 
Monte Carlo-style uncertainty assessments, 
specifically because this type of simulation 
describes the spatial continuity of properties 
that may control performance of repository 

systems. The importance of spatial continuity 
in performance modeling dictates that mate- 
rial-property models be generated (simulated) 
and evaluated as a whole, in contrast to the 
more conventional Monte-Carlo approach that 
simply samples either uniform or spatially ran- 
dom property values from a univariate distri- 
bution. 

This report describes an approach to 
the Monte-Carlo generation of spatially corre- 
lated material property models of a complex 
geologic system in a data-sparse environment 
for use on the Yucca Mountain Project. The 
approach is designed to incorporate soft, exter- 
nal geologic knowledge to produce geologi- 
cally reasonable property models in  a 
relatively data-poor modeling environment. 

Geologic and Modeling 
Framework 

Volcanic Geology of Yucca Mountain 

Yucca Mountain is located in the south- 
western Nevada volcanic field, in the southern 
basin-and-range province of Nevada. The 
geology comprises a thick sequence of Tertiary 
volcanic rocks, consisting largely of a series of 
vqiably welded and nonwelded ash-flow tuffs 
that are separated from one another by interca- 
lated intervals of air-fall tuffs and reworked or 
“bedded” tuffaceous deposits. A defining char- 
acteristic of the entire Tertiary sequence, 
which extends to depths of more than 6,000 
feet in the vicinity of the potential repository 
(Carr and others, 1986), is stratigraphic and 
stratiform layering. Layering exists on several 
scales and originates through the geologic pro- 
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cesses responsible for the emplacement of 
these rocks. The layering is thus relatively 
deterministic in nature, and this deterministic 
nature can be used in creating material-prop- 
erty models of the Yucca Mountain site. 

At the largest scale, layering is induced 
through the very essence of the volcanic pro- 
cess responsible for formation of the south- 
western Nevada volcanic field. Large-volume 
ash-flow tuffs, which form the dominant rock 
type present at and near Yucca Mountain, orig- 
inate through massive, eviscerating eruptions 
of pyroclastic material from large magma 
chambers in the subsurface. These massive 
eruptions generally are associated with col- 
lapse and subsidence of rock units overlying 
the magma chamber into a resulting caldera. 
Although much of the erupted magmatic mate- 
rial appears to fall back into the actively sub- 
siding caldera, many cubic kilometers of 
particulate material is deposited outward from 
the caldera as pyroclastic flows. These flows 
produce first-order, stratigraphic layering of 
eruptive products that may be separated widely 
in time, composition, volume, and other char- 
acteristics that determine the rock properties 
associated with a particular ash-flow sheet. 

Other geologic processes operated 
within the thick, large-volume ash-flow tuffs 
to produce second-order, mostly stratiform, 
layering. Following large-volume ash-flow 
eruptions, the deposited material cools by loss 
of heat both to the underlying, former topo- 
graphic surface and to the exposed, land-sur- 
face environment. Internally, the still-hot mass 
of glass shards and other debris compacts to 
varying degrees under its own weight, forming 
a welded tuff. Magmatic gasses still contained 
within the glassy, fragmented material exsolve 
to form a free vapor phase; these gasses act to 
alter both primary volcanic glass and early 
devitrification mineral assemblages to second- 
ary assemblages that exhibit different material 
properties from their unaltered precursors. 
These compaction, cooling, and alteration phe- 

nomena are controlled largely by temperature 
and pressure gradients within the laterally 
extensive, tabular deposits. These gradients 
are, in gross form, perpendicular to the strati- 
graphic top and bottom of these sheet-like 
deposits, although marked divergence from 
this general geometry may occur locally. Thus, 
the distribution of these alteration zones, 
which are generally parallel to isograds, is 
generally stratiform. These welding and alter- 
ation zones, however, are the result of second- 
ary phenomena superimposed on a primary 
stratigraphic layering, which may cause what 
appears to be a stratabound feature within a 
limited geographic area actually to cut across 
time-stratigraphic layering at a low angle when 
observed on a larger scale. 

Additionally, time-stratigraphic layer- 
ing is produced when the upper parts of thick 
pyroclastic-flow deposits are reworked by sed- 
imentary processes. These processes winnow 
fines from the volcanic debris, deposit clays, 
and otherwise impact the nature of the material 
and affect the resulting material properties. 
Small-volume volcanic eruptions produce 
well-sorted air-fall deposits of coarse pumice 
or fine ash. The sorting of these time-strati- 
graphic volcanic deposits induces material 
properties quite different from those associated 
with the more-catastrophically deposited ash 
flows. 

Finally, following complete cooling of 
the deposits of the southwest Nevada volcanic 
field and even following the cessation of vol- 
canic activity in the region, widespread geo- 
logic processes that affected the distribution of 
material properties continued to operate, Surfi- 
cia1 weathering continued to alter the near-sur- 
face portions of the different rock units. The 
presence of certain ground-water conditions in 
the subsurface may have altered any remaining 
volcanic glass to zeolitic materials (Bish and 
Aronson, 1993). Zeolitic and lesser develop- 
ment of clay minerals may alter hydrologic 
flow properties independently of the bulk 

2 Use of Stratigraphic Models as Soft Information to Constrain Stochastic Modeling of Rock Properties: Development 
of the GSLIE-Lynx Integration Module 



properties of the rock, because these minerals 
are effectively grown in-place, the result of 
partial dissolution of pre-existing glass and the 
precipitation of new mineral forms. These 
types of late-stage alteration zones are typical- 
ly even less stratabound than early-stage cool- 
ing-related phenomena. 

Stratigraphic Control of Material 
Properties 

The distribution and variation in rock 
material properties within the volcanic se- 
quence at Yucca Mountain is the result of the 
complex interplay of a number of different, but 
relatively well defined, geologic processes. 
The resulting features of the rock are determin- 
istic to the extent that their observation at one 
location virtually assures the existence and 
proximity of similar and/or related features in 
roughly predictable locations elsewhere in the 
same general region. Recognition of the con- 
trol of rock characteristics or material proper- 
ties by stratigraphy is not new. In a qualitative 
sense, stratigraphic control of rock properties 
is the fundamental basis for recognizing a lay- 
ered, genetic geologic system and for subdi- 
viding the rock column into geologic units. 
Major differences in rock type, phenocryst as- 
semblages, chemical composition, and post- 
emplacement alteration have been used to sub- 
divide the volcanic rocks of the southwestern 
Nevada volcanic field (table 1) for many de- 
cades (Christiansen and Lipman, 1965; Lip- 
man and McKay, 1965; Lipman and others, 
1966; Byers and others, 1976; Scott and Bonk, 
1984; Spengler and Fox, 1989; Sawyer and 
others, 1994; Geslin and Moyer, 1995). 

More quantitative efforts to  use 
stratigraphy as a basis for predicting material 
properties are not new, either. An early attempt 
relevant to the Yucca Mountain Project was 
work by Scott and others (1983), who recog- 
nized a distinction between conventional geo- 
logic units and material-property units, and 
who provided some generalized, average mate- 

rial-property values for this non-conventional 
subdivision of the volcanic section. A similar, 
but more formal, classification was work by 
Ortiz and others (1963, who subdivided the 
volcanic rocks at Yucca Mountain into units 
that exhibited similar thermal, mechanical, and 
hydrologic characteristics. Effectively, this 
thermal/mechanical stratigraphic subdivision 
(table 1) ignored genetic considerations, and 
emphasized the distinction between welded 
and nonwelded rock types as the first-order 
control on material properties (figure 1). This 
distinction based upon degree of welding func- 
tionally translates to a first-order material- 
property subdivision based upon porosity. Ad- 
ditional second-order subdivisions related to 
post-emplacement alteration were also recog- 
nized by Ortiz and her coworkers. So success- 
ful was this classification at capturing 
material-property variability at the Yucca 
Mountain site (despite other weaknesses), that 
this “thermal/mechanical stratigraphy” has 
formed the basis for most subsequent large- 
scale performance modeling (Dudley and oth- 
ers, 1988; Barnard and Dockery, 1991; Bar- 
nard and others, 1992; Wilson and others, 
1994). 

More recently, outcrop-transect sam- 
pling studies at Yucca Mountain (Rautman and 
others, 1991; 1993; 1995; Rautman and Flint, 
1992; Istok and others, 1994; Flint and others, 
1996) have identified smaller-scale variations 
in material-property distributions that appear 
related to “microstratigraphic” or informal 
zonal units (figure 2). These units are also in- 
ferred to originate in the geologic processes re- 
sponsible for formation of the tuffs at Yucca 
Mountain). For example, t h e  histograms 
shown in figure 2(a) illustrate several distinct- 
ly separate populations of porosity values as- 
sociated with four of the zones, all within the 
welded part of the Topopah Spring Tuff, rec- 
ognized by Scott and Bonk (1984) in their geo- 
logic mapping of Yucca Mountain. These 
different, but closely related, welded zonal 
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Table 1 : Comparison of several stratigraphic subdivisions of volcanic rocks at Yucca 
Mountain and encountered on the Yucca Mountain Site Characterization Project. 
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Figure 1. Porosity distributions for different major rock types at Yucca Mountain in (a) histogram format; 
(b) cumulative distribution function (cdt) format. Cdk are used in the balance of this report because of their 
easier conceptual tie to probability distributions. Porosity data are from drill hole USW SD-9; 
measurements provided by L.E. Flint (U.S. Geological Survey). 
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Figure 2. Histograms showing porosity values obtained by outcrop sampling of (a) four welded zones 
within the Topopah Spring Tuff as subdivided by Scott and Bonk (1984); and (b) separate geographic 
locations for the upper lithophysal zone (tul). Unit codes: tc-caprock zone; tr-rounded zone; tul-upper 
lithophysal zone; tll-lower lithophysal zone; all zones belong to the Topopah Spring Tuff (table 1). 
Location codes: UZ-6s-transect west of drill hole USW UZ-6s; BB-Busted Butte; all-all locations 
aggregated. Data are from Rautman and others (1993) and Flint and others (1996). 

Geologic and Modeling Framework 5 



units are characterized by distinctly different 
modal porosity values, the ranges of measured 
values clearly overlap one another, and the 
units are distinctly heterogeneous. Selecting 
the porosity data for one of the four zanes (the 
upper lithophysal zone of the Topopah Spring 
Tuff) and subdividing the data by geographic 
location [figure 2(b)] indicates that the within- 
unit variability is generally less than the varia- 
tion between different welded zones. These 
same outcrop studies have also demonstrated 
that the internal material properties are spa- 
tially correlated (Rautman and others, 1993; 
Istok and others, 1994; McKenna and Raut- 
man, 1995), although the range of spatial cor- 
relation observed depends to some extent upon 
the subdivision considered. 

Level of Stratigraphic Subdivision 

The stratigraphic-comparison chart of 
table 1 indicates that there are many different 
ways to subdivide a complex volcanic 
sequence, such as that present at Yucca Moun- 
tain. Given that a number of different 
approaches to stratigraphic classification are 
possible, an important issue is to determine 
what level of subdivision is appropriate for 
material-properties modeling? As the number 
of small-scale layers increases, additional spa- 
tial resolution is possible. However, the model- 
ing effort increases as well, and the number of 
sample data per unit decreases leading to 
reduced statistical confidence. Note that the 
modeling effort includes not only the computa- 
tional requirements to create the individual 
material-properties models, but also the 
“bookkeeping” required to put the various 
individual models back into a single property 
model for physical-process (e.g., flow) model- 
ing. For example, if there are k distinct mate- 
rial-property layers to be represented in a 
material-property model, and subsequent 
Monte Carlo evaluation requires that n differ- 
ent simulations be evaluated, the total number 
of material property models that must be con- 

structed is k x n . The number of Monte Carlo 
runs involved in a typical uncertainty assess- 
ment may easily exceed one hundred. Even if 
the number of conditioning data is adequate, if 
k becomes as large as indicated by some of the 
columns in table 1 (30 or more), the overall 
rock-property modeling effort may become 
intractable. This is, perhaps, the most serious 
difficulty involved in creating detailed, deter- 
ministically layered, stochastic rock-property 
models. 

Another major difficulty with the dis- 
crete representation of many separate layers in 
a material-property model is that the geometric 
position of the various units also must be rep- 
resented. This geometric modeling require- 
ment raises two separate issues, both involving 
the question of certainty in the spatial positions 
of these contacts. First, modeling layers as sep- 
arate entities implies that there is little or no 
uncertainty in the location of the contacts and 
thicknesses of these units in three-dimensional 
space. If the spatial geometry of the different 
material-property layers is being developed 
from sparse subsurface data, or largely from 
outcrop mapping projected into the subsurface, 
the positions and/or thicknesses of the differ- 
ent units at various locations may be interpre- 
tive at best and speculative at worst. Typically, 
however, there is very little attempt to quantify 
the uncertainty associated with such geologic 
interpretations, and almost never is there an 
effort to quantify the effects of such geometric 
uncertainty on the higher-level physical-pro- 
cess. Some performance assessment modeling 
of Yucca Mountain (Kaplan, 1993) has shown 
that ground-water travel times (for example) 
may be quite sensitive in general to the thick- 
ness of different geologic units possessing 
markedly different hydrologic properties. 
However, most performance analyses have 
emphasized uncertainty in (uncorrelated) 
material properties and have accepted the geo- 
logic framework as a deterministic given (for 
example: Barnard and Dockery, 1991, Barnard 
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and others, 1992; Wilson and others, 1994). In 
a notable exception to this focus on material- 
property uncertainty, Wilson and Robey (1994) 
demonstrated that it is possible for cumulative 
radionuclide releases over a 10,000-year 
period (another higher-level performance mea- 
sure) from one-dimensional flow columns to 
vary over several orders of magnitude when 
the thicknesses of geologic units composing 
the columns were modeled stochastically. 

The second issue of geometric uncer- 
tainty involves the nature of the contact 
between one unit and its neighbor. Many, in 
fact most, of the finer-scale subdivisions in 
table 1 involve the distinction of one type or 
degree of roughly stratiform alteration from 
another, or from essentially unaltered materi- 
als. These types of “contacts” are gradational. 
Whereas the rock type exposed in one outcrop 
may be quite different from that in another out- 
crop some distance away, and a contact may 
easily be drawn between the positions of the 
two observations (this is the principle underly- 
ing classical field mapping), the actual change 
in rock type from one alteration zone to 
another may, in fact, be quite gradational in the 
subsurface. Gradations in rock type or in the 
nature and degree of alteration add to the 
uncertainty in describing and modeling the 
positions of these contacts, and somewhat 
arbitrary criteria may be required to define a 
contact. Unless such criteria are quite explicit 
and readily applied, inconsistent application of 
those criteria by different investigators 
describing the rocks at different locations may 
add yet another degree of uncertainty in the 
location of specific geologic contacts. Uncer- 
tainty in the locations of contacts between rock 
units propagates throughout a three-dimen- 
sional model, particularly if that model is con- 
structed using relatively automated, computer- 
based algorithms. 

The issues of geometric uncertainty are 
only complicated in the presence of faulting or 
other post-depositional deformation of the 

rock mass. The discussion thus far has 
involved only stratigraphic issues related to 
the modeling of a particular contact or contacts 
at a given spatial position given incomplete 
information or a gradational change in rock 
type. The question of spatial position related to 
structuraE deformation of the rock units can 
increase greatly the uncertainty associated 
with the three-dimensional position of a given 
contact. The more arbitrary the definition of a 
contact, the more difficult it is to reconstruct 
the effects of faulting and folding. Confound- 
ing palinspastic reconstruction at Yucca Moun- 
tain is the fact that there almost certainly have 
been multiple episodes of fault displacement, 
some of which may have taken place prior to 
development of some of the alteration phe- 
nomena that are invoked to define stratigraphic 
“units” in the more detailed classifications 
(table 1). 

A mostly separate issue involved in 
gradational, and hence arbitrary, contacts is 
that the physical behavior modeled numeri- 
cally at a sharp contact between two units of 
markedly different character may be quite dif- 
ferent from the actual physical behavior occur- 
ring in real rocks exhibiting a gradational 
change in properties. Generally, as the magni- 
tude of the discontinuity in material properties 
between two adjacent  model ing cel ls  
increases, the time steps necessary to solve the 
partial differential equations involved in the 
numerical process model become progres- 
sively smaller, requiring longer execution 
times. Thus, a side benefit to a more realistic 
representation of gradational material-property 
transitions may be enhanced performance of 
physical-process modeling codes. This 
enhanced performance would be especially 
beneficial in a Monte-Carlo modeling exercise 
involving many hundreds of flow or flow-and- 
transport simulations. 

Geologic and Modeling Framework 7 



Material-Property Modeling of Yucca 
Mountain and a Proposed Modeling 
Technique 

A regulatory requirement exists to 
model the physical system of Yucca Mountain, 
and many different types of models have been 
constructed. The data available for use in con- 
structing material-property models of Yucca 
Mountain vary greatly in their nature, quantita- 
tive rigor, number, and geographic distribu- 
tion. For example, qualitative, descriptive 
information obtained from areally extensive 
geologic mapping, small-area outcrop studies, 
and linear drill-hole observations of various 
types (core, cuttings, geophysical log traces) 
are typically used to construct geologic (geo- 
metric) models. These different types of 
descriptive observations are generally reduced 
to three-dimensional spatial coordinates for 
various desired contact “picks,” and these 
picks are then connected via some modeling 
method (interpolation). This modeling method 
may be nothing more sophisticated than the 
drawing of pencil lines on paper between two 
spatially positioned contacts using a straight- 
edge (for example, the cross-sectional model 
of Scott and Bonk, 1984). Alternatively, one of 
several computer-based algorithms may be 
used to connect a series of spatially distributed 
points and define a complex surface (Ortiz and 
others, 1985). The interpolation method may 
be applied in a relatively mechsanistic and auto- 
matic fashion, or a significan: amount of geo- 
logic judgement and interpretation may enter 
into the final geologic model (Buesch and oth- 
ers, 1993; Fridrich and others, 1994). This 
interpretive information presumably makes 
use of what is known generally about relevant 
geologic processes (see, for example “Volcanic 
Geology of Yucca Mountain” on page 1). This 
type of geologic modeling in a data-sparse 
environment is invariably rather interpretive. 

At the opposite end of the modeling 
spectrum, numerical models of material prop- 
erties are generally constructed from quantita- 

tive laboratory or other measurements of 
specific physical properties (porosity, hydrau- 
lic conductivity, compressive strength). Typi- 
cally, these measurements involve samples of 
subsurface materials from drill holes or under- 
ground excavations. Drill-hole measurements 
are frequently spatially biased, with abundant 
measurements available along a drill-hole 
trace; the number of individual drill holes may 
be relatively limited. Although definition of 
the process by which quantitative material 
Properties will be modeled also involves a sig- 
nificant amount of geologic experience and 
judgement, once the modeling parameters are 
defined, the modeling activity itself is gener- 
ally highly automated and mathematical in 
execution. In this respect, numerical properties 
modeling is frequently considered “objective.” 

Geostatistical modeling comprises one 
set of mathematical algorithms for modeling 
material-property values from spatially distrib- 
uted quantitative observations. What distin- 
guishes geostatistical methods from other 
algorithmic property-modeling approaches is 
the use of a calculated measure of spatial cor- 
relation, the spatial covariance function, which 
is more generally referred to as the vuriogrurn. 
Although geostatistical modeling methods 
attempt to use measures of spatial continuity 
developed from the specific data being mod- 
eled, there are limits to the ability of the meth- 
ods to produce geologically reasonable models 
from sparse data. Beyond the range of spatial 
correlation, there is little information con- 
tained in a set of data that bears directly on the 
local values present or likely to exist at a given 
location, especially if “units” containing dif- 
ferent properties have been aggregated. Geo- 
statistical algorithms are unable to interpret 
general geologic principles to supply addi- 
tional information not available in the data 
provided to the modeling algorithm (Rautman 
and Robey, 1994). 

A potential solution to difficulties 
encountered in modeling material properties 
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quantitatively in a data-sparse environment is 
to combine interpretive geologic (geometric) 
modeling methods that can incorporate docu- 
mented quasi-deterministic trends and features 
with geostatistical modeling techniques that 
provide a relatively objective means of inte- 
grating information from different sources and 
of quantifying the resulting uncertainty. A 
three-dimensional, computer-based geologic 
model of Yucca Mountain is used as soft infor- 
mation to constrain the material-property Val- 
ues that are allowed to be simulated within that 
domain. Such a model contains a geologist’s 
understanding of the overall geologic environ- 
ment, and it allows interpretation of the geo- 
logic unit present at every point within the 
modeled domain. The geologic information is 
“soft,” in that there is no one-to-one corre- 
spondence of geologic unit with some “repre- 
sentative” (or average) material property. 
Additionally, the control exerted by the inter- 
pretive geologic model is soft, in that the pres- 
ence of “hard,” quantitative measurements of a 
particular material property will override the 
soft information at the locations of that hard 
data. The degree of influence of measured data 
on the simulation of unsampled locations not 
corresponding to a hard datum is described by 
the model of spatial continuity used in the 
modeling process. 

More specifically, the incorporation of 
soft, constraining data into geostatistically 
simulated material-property models should 
enhance reproduction of geologically reason- 
able spatial continuity. Lateral variability will 
be well-described with little uncertainty near 
conditioning observations. Where there are 
few or no hard conditioning data, uncertainty 
will be greater (i.e., there will be increased 
variation among individual simulations), but 
the persistence of the material-property unit 
and the value about which the simulated values 
vary will be constrained by the expected value 
obtained from the framework model. Contacts 
of all types will be well defined where con- 

strained by data. Sharp changes in material 
properties will be fairly abrupt and conditioned 
to the hard measurements. Gradational transi- 
tions will, in fact, be gradational. Away from 
actual measurements, however, both types of 
contacts will be relatively uncertain, reflecting 
the increased uncertainty that is associated 
with a lack of hard data. In summary, models 
generated using this integrated approach 
should be spatially correlated, stochastic repre- 
sentations that are consistent with both known 
properties data and geologic interpretations. 

In the sections of this report that fol- 
low, we describe a specific implementation of 
this approach of using stratigraphic models as 
soft information to constrain stochastic model- 
ing of rock material properties. The strati- 
graphic framework model consists of a 
geologic interpretation of data from the Yucca 
Mountain site similar to that described by Bue- 
sch and others (1993). The model has been 
developed using the Lynx Geotechnical Mod- 
eling System (GMS), a comprehensive geo- 
logic-modeling software package marketed by 
Lynx Geosystems, Incorporated, of Vancouver, 
British Columbia.+ The geostatistical material- 
property modeling algorithm is taken princi- 
pally from the program SGSIM, in the GSLIB 
library of geostatistical algorithms and ancil- 
lary programs developed at Stanford Univer- 
sity (Deutsch and Journel, 1992). GSLIB 
programs are public-domain software. The 
software code that implements this integration 
of GSLIB geostatistical modeling with soft 
information taken from a Lynx geologic model 
is termed the GSLIB-Lynx Integration Mod- 
ule, or program GLINTMOD. 

%e use of trade, product, industry, or firm names is 
for descriptive purposes only and does not imply 
endorsement by the U.S. Government. 
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Theoretical Foundation of 
Integration 

Review of Geostatistical Simulation 

Geostatistical simulation is a modeling 
technique used to produce an attribute field 
that honors the spatial variability and global 
character of the sampled values of a variable. 
Simulation is relevant in situations where 
extreme (high or low) values of a vari- 
able-and particularly the connectivity of 
those extreme values-may strongly influence 
the operation of a physical process, such as 
hydrologic flow or radionuclide transport. 
Simulation is also relevant in situations in 
which it is necessary to assess characterization 
uncertainty, the type of uncertainty that results 
from less-than-exhaustive description and 
sampling of a geologic site. 

A number of different simulation algo- 
rithms have been described historically. We 
have adopted the sequential simulation 
approach first described by Journel and Ala- 
bert (1989), and implemented in published 
algorithms by Gomez-Hernandez and Srivas- 
tava (1990) and Deutsch and Journel(l992). 
To construct a simulated model using the 
sequential approach, a random path is defined 
through a discretized (gridded) domain that 
will visit each grid node once and only once. 
At each location, a search is conducted for 
nearby measured data (or previously simulated 
values), and a local, conditional, cumulative- 
distribution function (ccdfi is estimated. The 
ccdf is interpreted as a probability distribution 
function, and a value is sampled randomly 
from that probability distribution. The gener- 
ated value is assigned to that grid node, and the 
simulation process moves to the next location 
along the random path. Note that simulated 
values are added sequentially to the collection 
of values that are used in the estimation of the 
ccdf at subsequent grid nodes. Values simu- 
lated early in the process influence the simula- 
tion of later locations, and thus contribute to 

the propagation of spatial correlation structure 
within the resulting model. 

Because geostatistical simulation is 
based on sampling from the appropriate local, 
conditional cumulative-distribution function of 
the random variable being modeled, it is nec- 
essary to describe the expectation and form of 
that ccdf. The expected value of the local ccdf 
is estimated through kriging data values that 
have been transformed to represent the posi- 
tion of each measured datum on the population 
cumulative probability distribution. To under- 
stand this type of transformation, consider the 
sample population portrayed in figure 3(a). 
Each measured value is represented by a value 
along the x-axis. If the data are rank ordered, 
each measurement also corresponds to a value 
measured along the y-axis, representing the 
cumulative probability value associated with 
that measurement. For example, in figure 3(a), 
a value of 0.1 (assume 10 percent porosity) 
corresponds approximately to the 80th percen- 
tile of the cumulative distribution function, or 
0.80. Furthermore, as figure 3(b) indicates, 
each measurement can be converted through 
this quantile-preserving process to an equiva- 
lent value of a computationally-friendly distri- 
bution, such as the standard normal (or any 
other valid distribution). In the example, the 
original measurement value of 0.1 corresponds 
to a standard normal (p=O, 02=1) transformed 
value of 0.85; the relationship is that both of 
these values represent the 80th percentile of 
their respective cumulative distribution func- 
tions (cdfs). 

Use of the normal-score transformed 
values offers several computational benefits. 
Any kriged estimate represents the theoretical 
expectation of the relevant spatially distributed 
random variable (Journel, 1983; Isaaks and 
Srivastava, 1989). If we can assume a multi- 
variate Gaussian random variable, then the 
shape or form of the distribution is fixed, and 
the probability distribution of that random 
variable is specified completely by its mean, 
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Figure 3. Graphical representation of transformation from the space of (a) a real-world variable to 
(b) normal-score space. The transformation preserves the quantile rankings of the data (redrawn 
after lsaaks and Srivastava, 1989). 

its variance, and its spatial covariance. The 
covariance enters into the calculation through 
the kriging process and the use of the specified 
variogram model of spatial continuity. If, for 
convenience, we work with a standardized 
normal distribution, the variance is one by def- 
inition, and we have now specified the single 
remaining parameter, the expected value, 
through kriging the nearby transformed data. 
We have thus completely specified the local, 
conditional cumulative-distribution function 
required for generation of the simulated value 
simply through the process of kriging the 
transformed, surrounding data 

This estimation process is represented 
conceptually in figure 4. The left side of the 
diagram represents measured values located by 
a search of nearby data for two different neigh- 
borhoods surrounding two unsampled loca- 
tions to be simulated. These several values are 
transformed to their normal-score equivalents, 
as shown graphically in the figure (center), and 
the expected normal-score value for the spe- 
cific location considered is computed through 
kriging. For simplicity, the values shown on 

the figure assume an isotropic spatial continu- 
ity structure and equal distances from the mea- 
sured values to the point being simulated 
(leading to equal weighting of the data). For 
neighborhood number 1, all of tne surrounding 
measurements represent low values of poros- 
ity; accordingly, the associated normal scores 
are low, and the ccdfat this location has a rela- 
tively low expected normal-score value of 
-1.15. For neighborhood 2, the nearby porosity 
measurements are much higher, the normal- 
score transformed values are high, and the 
expectation at this unsampled location is for a 
porosity with a normal-score value of 1.65. 

The remainder of the simulation pro- 
cess is illustrated conceptually in figure 5. A 
random number, uniformly distributed in the 
inclusive interval from zero to one ([O,l]) is 
generated, and the cumulative-probability 
position of this random number is projected to 
the corresponding cumulative-probability 
value of the locally conditioned Gaussian ccdf. 
In figure 5, the illustrated ccdf represents that 
determined for neighborhood number 1 of fig- 
ure 4 (E{Z(u)}=  -1.15). In the example, a ran- 
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Figure 4. Conceptual representation of the process of determining the local, conditional 
cumulative distribution function for a spatially distributed random variable through kriging. Arrows 
indicate schematic projection from one distribution to another. 
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Figure 5. Conceptual representation of the simulation process. A random number uniformly 
distributed in the interval [0,1] is drawn and projected onto a local ccdfwith an expected value 
computed by kriging nearby, standard-normal-transformed, measured values. Ultimately, this 
simulated normal-score value is projected back onto the standard-normal cdf of the original 
variable and the simulation process is complete. 

dom value of 0.71 is  generated, which 
translates through the projection process to a 
normal-score value of approximately -0.60. 
This value of -0.60 is added to the set of infoor- 
mation available to condition as-yet unsimu- 
lated grid nodes, and it will influence the 
normal-score -values assigned to those nodes in 
association with all other measured data and 

previously simulated values as weighted by the 
spatial covariance structure. When the simula- 
tion is complete, the value of -0.60 will be 
back-transformed to the space of the original 
variable, as suggested by the right-hand por- 
tion of figure 5 ,  corresponding to a value of 
approximately 0.066 (6.6 percent porosity). 
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eq. 2 

Note that a variable that exhibits a non- 
Gaussian histogram may still possess multi- 
variate Gaussian spatial behavior. In fact, as 
illustrated by the example of figure 3, virtually 
any distribution may be transformed so that it 
exhibits a “normal” histogram without chang- 
ing the spatial covariance structure of the data. 

which preserves the quantile relationships of 
the original data, does not alter the spatial cor- 
relation structure exhibited by the variable. 
The variogram of the transformed values is 
virtually identical to the variogram Of the orig- 
inal values, because the variogram [2y(h)l is a 
function of the diflerences between values at 
two locations (Journel and Huijbregts, 1978): 

approximately normal. Journel (1983) states 
that if a random variable is bivariate normal, 
the sills of the indicator variograms for any 
particular threshold corresponding to the 
univariate, cumulative distribution function 
value, F(z), can be computed as: 

= F ( z )  - F  ( z )  , 2 2 
This univariate transformation of a population, 

where s2 is the magnitude of the indicator vario- 
gram sill and F(z) is expressed as a decimal in 
the range [(),I]. For the median indicator 
threshold [F(z)=O.5], the sill should be a maxi- 
mum at 0.5 - 0.5 = 0.25, and the sill should 
decrease symmetrically for quantiles F(z) = 
1 - F (2) . Highly asymmetric indicator vario- 

1 2 gram sills for equivalent high and low quantile 
thresholds (first and third quartile or first and 
ninth decile, for example) are fairly good evi- 

2 

2Y (h) = Gc [z (U) - z ( U  + h) 1 3 1 

dence that a variable is not completely multi- 
variate Gaussian in nature. where Z(u) is the value of the measured vari- 

able at spatial location u, and Z(u + h) is the 
value of the variable at another location a vec- 
tor distance h from u. N is simply the number 
of such pairs considered. Thus, although the 
absolute magnitudes of the original and trans- 
formed variables are different, for each separa- 
tion distance (h), the difference term involves 
values of essentially the same quantile units for 
a spatially correlated variable. If, for h=h,, 
[ Z (u) - Z (u + h) 3 is a small value on aver- 
age relative to that corresponding to h=h,, it 
will be a small value whether computed in the 
space of the original variable or computed in 
the space of the transformed variable. The 
range of spatial correlation, defined as the sep- 
aration distance at which the variogram value 
reaches an essentially constant level equal to 
the univariate variance of the data, remains 
constant, and the quasi-constant sill value is 
rescaled by the variance of the original distribu- 
tion. 

A practical test that the variable of 
interest exhibits multivariate Gaussian spatial 
behavior is to show that the bivariate cumula- 
tive distribution function (OF variogram) is 

If the variable does not exhibit an 
acceptable degree of multivariate Gaussian 
spatial behavior, determining the form of the 
probability function is more difficult, and the 
ccdfmust be estimated in a more brute-force 
manner using nonparametric techniques, such 
as indicator coding of the histogram (Journel, 
1983). Indicator simulation would then be 
required to estimate the appropriate ccdf at 
each location to be simulated (Gomez-Hernan- 
dez and Srivastava, 1990; Deutsch and Jour- 
nel, 1992). A full description of indicator 
geostatistics is beyond the scope of this discus- 
sion. 

Simple and Ordinary Kriging 

The proposed method for incorporating 
soft information, such as that contained in the 
Lynx geometric model, builds upon the basic 
linear-regression algorithm known as simple 
kriging (Journel and Huijbregts, 1978; Clark, 
1979; Deutsch and Journel, 1992). In its most 
general form, simple kriging attempts to esti- 
mate the deviation of a spatially distributed 
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random function at a given location from the 
local expected value of that function based on 
a weighted linear combination of the devia- 
tions of nearby measured values from their 
appropriate expectations. Thus, 

z*,’jK [ (u) -rn (u) 1 = 

a=l 

where Z*,, (u) is the simple kriging (Sa 
estimator at an unsampled location, u; Z(u) is 
the random function model at location u; the 
Z(u,) are the n data at locations u,, a=l ,  2 ,..., n, 
being used to construct the estimate; and 
rn(u)=E{ Z(u)} is the location-dependent 
expected value of the variable Z(u). The 
weights (A,) applied to the data-value devia- 
tions to obtain the simple kriging estimate are 
determined from the appropriate two-point 
covariance matrices, involving both the data- 
to-data covariance, C(u,,u,), a=1, 2 ,..., n; p=1, 
2,...,n, and the data-to-unknown-location cova- 
riance, C(u,u,), a=1,2 ,..., 12. 

This generalized formulation of the 
simple kriging algorithm requires prior knowl- 
edge &e., knowledge external to the estima- 
tion problem) of the n+ 1 location-specific 
expected values, m(u) and rn(u,), a=1, 2 ,..., n. 
Because of this restriction, practical imple- 
mentation of simple kriging as an estimation 
procedure typically requires a prior decision of 
stationarity of the random function Z(u), such 
that E {  Z(u)}=rn(u)=rn(u,)=rn is constant 
across the model domain. This simplification 
allows the simple kriging estimator to be 
reduced to its stationary form: 

a = l  L a = l  J eq.4 

The covariance function necessary to calculate 
the various weights, A,, is similarly simplified 

through the assumption of stationarity to 
depend only upon the separation distance 
between two locations, (u-u,), and not upon 
the actual positions, u and u,. 

Equation 4 offers us an opportunity to 
solve the problem of modeling material prop- 
erties in a probabilistic manner throughout a 
domain that is locally data-poor. If we can esti- 
mate an expected value, E*{Z(u)}=rn*(u), at 
all locations within the model domain rather 
than simply assuming a global expectation, rn, 
this value can be substituted in eq. 4 and used 
to constrain the expected value of the probabil- 
ity distribution used for simulation, even at 
those locations for which no “nearby” data or 
previously simulated values can be found. 

A properly constructed three-dimen- 
sional geologic model (one without overlaps or 
gaps in the various volume components) 
shows the geologic unit interpreted to be 
present at every physical location within the 
modeled volume. The interpretation may or 
may not be correct in actual fact, but a well- 
constructed geologic model will provide a 
plausible and logically consistent geometric 
arrangement of rock types and other geologic 
units that can incorporate the full extent of a 
geologist’s understanding of that and other 
similar physical systems. If there are a reason- 
able number of measured values for a desired 
material property that can be tied to the geo- 
logic units used in the geometric modeling 
process, it should be possible to develop an 
estimated expected value, E* {Z(u)}=m*(u), 
for that material property corresponding to 
each appropriate aggregation of modeled geo- 
logic units, (u). Note that here u corresponds 
to both a spatial location [(x,y,z,)] and the geo- 
logic unit present at that spatial location. This 
development of a material-property expecta- 
tion follows directly from the logic shown by 
the histograms of figure 2(a). 

It is important that the expected values 
(m*) be as unbiased as possible, because any 
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bias in this term of will be propagated globally 
throughout the model. If portions of the model 
domain are particularly data poor, the expecta- 
tion may, in fact, be the principal source of 
information used in the simulation process. 
Over- or undersampling of different geo- 
graphic regions or geologic zones may contrib- 
ute to development of biased expected values. 
Clustering of sampling in geologically “inter- 
esting” or conveniently accessible regions is 
nearly inevitable in most site-characterization 
investigations; however, it is geostatistically 
undesirable and should be eliminated or com- 
pensated for in developing material-property 
expectations (Journel, 1983; Deutsch, 1989). 

As to precedent for the practice of sub- 
stituting an estimate, m*, for the true-but- 
unknown expectation, E { Z ( u ) }  in eq. 3, and 
the degree of error that is introduced through 
that substitution, consider another, alternative 
method of estimating the random function 
Z(u). This modeling method is also based on a 
linear combination of surrounding data, but it 
involves eliminating the second term of eq. 4 
by requiring that the weights sum to one. This 
alternative method of estimation has been 
termed ordinary kriging (OK) and the estimator 
is obtained by simplifying eq. 4, and substitut- 
ing a different set of weighting factors, va, for 
the ha, which are constrained such that E v a  (u) = 1 .  Thus, we can write: 

n 

z*,, (u) = c v, (u) Z ( U a >  7 eq. 5 
a = l  

that can be considered in computing the neces- 
sary weights from the applicable covariance 
function. For this reason, kriging is generally 
applied only to the n nearby data, where the 
neighborhood of nearby data for consideration 
moves along with the location u being esti- 
mated. 

Now if we estimate the random func- 
tion Z(u) using, for practical computational 
reasons, only a limited number of nearby data 
values in eq. 5 ( n  is chosen smaller than the 
total number of data available, N), it is appar- 
ent that we are giving greater weight to the n 
nearby data than to the remaining, N-n, more- 
distant data (in OK) or to the global, stationary 
mean, m (in S K ) .  Indeed, in both eq. 4 and 5 ,  
the overall weight assigned to the global mean 
is explicitly zero. This amounts to implicitly 
re-estimating that prior expected value for 
each such neighborhood of nearby data. If we 
conduct a separate data search for each loca- 
tion u being estimated, we are estimating rn as 
a function of u, thus we have a location-spe- 
cific estimate, rn*(u). 

Although m*(u) is only an estimate of 
the true (but unknown) location-specific 
expected value, m, it seems more satisfying 
intuitively to hold that local estimates would 
be reflected more accurately by deviations 
about a local mean (in contrast to deviations 
about a global and constant mean), assuming 
there are suflicient data to provide a good esti- 
mate of that local mean. 

where P o K ( u )  is the ordinary kriging esti- 
mator at location, u. The covariance function 
for the ordinary kriging system is identical to 
that defined for the stationary simple kriging 
system, with the addition of matrix entries nec- 
essary to assure that the weights sum to one. 

If there are many data involved in an 
estimation problem, the computations 
involved in solving large matrix equations 
generally restrict the number of data values 

Substituting our local, estimated 
expectation, m*, into eq. 4, we can write 

a =  1 
n 

a.= 1 

which demonstrates 

n 

that the ordinary kriging 
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estimator is effectively a simple kriging esti- 
mate incorporating a location-dependent est& 
mute of the prior expected value, m*(u) = 
E{Z(u) } .  It is this implicit re-estimation of the 
local mean at every point that accounts for the 
well-known robust nature of the ordinary krig- 
ing estimator (Armstrong and Boufassa, 1988; 
Boufassa and Armstrong, 1989; Englund, 
1990). 

Were there sufficient measured mate- 
rial-property data to use ordinary kriging in the 
estimation of the local ccdfs in a simulation 
problem, there would be no need for an exter- 
nal source of soft data. It is precisely because 
we are forced to model in a data-sparse envi- 
ronment that the ability to add that external 
information, the E[Z(u)}=m* in eq. 4 and 6 ,  
can greatly improve the geologic reasonable- 
ness and robustness of the resulting models. 

GS L I B - Ly nx Integration 
Development of a piece of computer 

software necessarily becomes an undertaking 
that emphasizes specifics. The development of 
GLINTMOD is no exception. However, the algo- 
rithm underlying the integration of GSLIB 
simulation subroutines with geologic frame- 
work models constructed using the Lynx GMS 
is completely general. The critical feature is 
the ability to extract from a geometric frame- 
work model the identity of the geologic unit 
inferred to exist at an arbitrary, unsampled 
location within the model domain, at which a 
simulated material-property value is required. 
Beyond the specific coding necessary to read 
and write common file formats and to execute 
the necessary translations and rotations of 
potentially different model-coordinate sys- 
tems, neither the GSLIB subroutines nor the 
Lynx GMS are mandatory components of the 
integration process. The methodology is 
closely allied with the concept of sequential 
Gaussian simulation, because of the simplicity 
and general applicability of this approach for 
modeling continuous variables (Deutsch and 

Journel, 1992). However, the GSLIB subrou- 
tine SGSIM is only one possible implementation 
of the sequential simulation concept. In similar 
manner, there are many three-dimensional 
geometric modeling packages available. Virtu- 
ally any other program that produces three- 
dimensional geometric models of geology 
could be substituted for the Lynx GMS as a 
source of soft information in the GLINTMOD 
integration approach. 

Conceptual Development 

Conceptually, the integration process 
incorporated into the initial implementation of 
GLINTMOD is fairly straightforward. The pro- 
cess is essentially nothing more than a check 
of the results of the standard SGSlM data 
search, followed by a call to the Lynx model 
export file if  appropriate. The logic of the 
Lynx-GSLIB relationship is illustrated in the 
flow diagram of figure 6 .  The major part of the 
conventional SGSlM simulation procedure is 
located on the left-hand side of the flow dia- 
gram (part 0 of figure 6) .  Additions to the 
simulation logic are indicated by boxes and 
logical connections shown in the heavier line- 
weight items mostly on the right-hand side of 
the figure (0). 

The sequential Gaussian simulation 
process is initiated in the conventional manner 
(Deutsch and Journel, 1992) by mapping the 
hard conditioning data into model coordinates 
and defining the random simulation path 
through the model domain. At each node to be 
simulated, SGSlM searches a user-specified 
neighborhood surrounding that location for 
hard conditioning data. These data presumably 
provide the most reliable, local conditioning 
information, and thus they are examined first. 
The algorithm then searches for previously 
simulated grid nodes. SGSlM allows the user to 
specify both a minimum and a maximum num- 
ber of original data to use in simulating a 
vacant grid node, as well as to specify the 
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Figure 6. Flow chart illustrating the logic of the GSLIB-Lynx integration algorithm. Circled 
numbers are keyed to discussion in text. 
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maximum number of previously simulated val- 
ues for consideration. 

The number of previously simulated 
values that can be located by the search strat- 
egy during the early stages of simulation is 
small. In a data-sparse modeling environment, 
it is also likely that the search process will not 
find any of the original conditioning data. The 
unmodified SGSIM algorithm handles this 
lack of local information either by leaving the 
grid node unsimulated or by selecting a value 
at random from the global cumulative distribu- 
tion function. However, as indicated by the 
first decision point in the logic diagram of fig- 
ure 6 (@), GLINTMOD recognizes that inade- 
quate conditioning information has been found 
within the search neighborhood and issues a 
call to the Lynx export file containing the 
stratigraphic-unit information for soft data. 

GLINTMOD then reconciles the SGSIM 
model coordinate system with the Lynx model 
coordinate system and uses the proper three- 
dimensional spatial description to locate the 
proper Lynx-model cell containing the grid 
node to be simulated. GLINTMOD assumes that 
the simulation grid forms a subset of the host 
Lynx model. If the current simulation node 
falls outside the Lynx model domain, GLINT- 
MOD returns a null value to the simulation dgo- 
rithm, effectively skipping simulation at that 
location (@). This procedure restricts simula- 
tion to regions of interest defined by the Lynx 
geologic model. The principal reasoning 
behind this procedure is to allow simulation to 
be limited to “meaningful” Lynx volume ele- 
ments, such as below the topographic surface 
or to a specific geologic unit. 

Once GLINTMOD has identified the 
appropriate Lynx-model cell, the algorithm 
queries the Lynx export file and obtains the 
identity of the dominant geologic unit con- 
tained within that cell. The expected material- 
property value corresponding to that geologic 
unit is then identified, transformed to normal- 

score space using the same normal-score trans- 
form used for the hard conditioning data, and 
passed back to the main SGSlM simulation pro- 
gram (@). This process effectively repositions 
the central tendency of the cumulative distri- 
bution function, conditioning it to the subglo- 
bal, unit-specific expected value. The actual 
material-property value assigned to the current 
grid node is sampled randomly from this new 
unit-specific ccdf (@), and the likelihood is 
that the simulated value will be consistent with 
the material-property values that are generally 
associated with that unit. However, uncertainty 
considerations dictate that there is a finite 
probability that the simulated material prop- 
erty may be quite different. The newly simu- 
lated node is added to the set of “previously 
simulated values,” and the simulation process 
continues until the entire simulated grid is 
completed. 

Gridded Model Representation 

The Lynx GMS currently has dimen- 
sion limitations that allow a maximum of 200 
uniformly spaced grid cells in each principal 
direction. This limitation makes it likely that 
the Lynx grid, in any particular model, will 
need to be constructed in such a way that will 
maximize its areal coverage and minimize het- 
erogeneity of unit classifications within each 
grid cell. 

The two modeling packages must use a 
consistent method to transfer information 
between the Lynx geometric model and the 
GSLIB simulation routine. The most direct 
method of passing consistent location informa- 
tion between the two software packages is to 
use “real-world” coordinates. On the Yucca 
Mountain Project, these consist of Nevada 
state plane coordinates (east, north, and eleva- 
tion). The Lynx GMS package simultaneously 
maintains internal references to grid blocks 
both in terms of real-world, global coordinates 
and of a user-specified model-grid coordinate 
system. The user-specified grid may be 
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defined in any desired orientation and consists 
of volume elements that are identified by their 
centroid coordinate location. GSLIB model- 
ing algorithms, however, rely solely upon an 
integer-indexed orthogonal grid that is refer- 
enced to a user-specified origin. 

If both the Lynx geometric model and 
the GSLIB simulated material properties 
model use the same directions as their princi- 
pal coordinate axes [e.g., (x,y,z) = east, north, 
elevation], conversion between coordinate sys- 
tems is relatively straightforward, and consists 
simply of multiplying the relevant index by the 
grid-block size and adding offsets related to 
local grid origin. However, if the geology 
being modeled requires use of an off-angle 
local grid, translation between model coordi- 
nates and global coordinates will require both 
rotation and translation computations. 

Programming Considerations 

GLINTMOD was developed using struc- 
tured Fortran-77 programming consistent with 
that of the GSLIB software library. A single 
main subroutine executes the integration of the 
two models by calling both new and existing 
subroutines and functions from the SGSIM sim- 
ulation program of GSLIB. Most of the major 
steps in the integration process (figure 6 )  are 
written as independent subroutines. This pro- 
gramming approach imparts a modular nature 
to the overall integration. However, the 
approach also requires consistency in coding 
between the pre-existing GSLIB subroutines 
and the new subroutines that provide the link 
between the two main packages. Each subrou- 
tine is independent of its calling program. As 
such, each program segment could be devel- 
oped separately and tested against manual cal- 
culations for verification of proper function. 

Prototype Model Demonstration 

The completed GLINTMOD hterface was 
tested in a prototype mode to demonstrate the 

functionality of the module. Prototype, syn- 
thetic models were devised that tested specific 
aspects of the desired integration function. 
One prototype modeling exercise consisted of 
a simple, two-dimensional model grid in 
which the coordinate axes of the Lynx “model” 
file and the SGSlM model were parallel to each 
other. Another test exercise consisted of a sim- 
ulated model for which the axes were rotated 
with respect to the global coordinate system 
used by the constraining geometric model. 

Parallel-G rids ExamDle 

The parallel-grids prototype modeling 
exercise was designed to test performance of 
GLINTMOD in a situation that was known to pro- 
duce geologically unrealistic results when soft 
information was not incorporated. This type of 
model would be similar to some of those pro- 
duced by Rautman and Robey (1  994; Wilson 
and others, 1994) in three-dimensions, in 
which conditional simulations were con- 
structed in regions extending significantly 
beyond the range of available conditioning 
data. These earlier models, while statistically 
similar to one another and to the hard, condi- 
tioning measurements, exhibited the presence 
of stochastic artifacts that appear as rock units 
in locations incompatible with geologic under- 
standing (figure 7). 

A hypothetical model of layered 
stratigraphy was defined consisting of four 
geologic units, as shown in figure 8. This con- 
ceptualized geologic model is broadly similar 
to the layering exhibited by ash-flow deposits 
at Yucca Mountain. The overall layering was 
defined as horizontal and parallel to the 
orthogonal simulation grid used for SGSIM. The 
hypothetical model was then discretized to 
simulate the format of an export file from a 
typical Lynx geometric block model. Soft 
information, consisting of an “expected” 
porosity value appropriate to each different 
geologic unit, was assigned to each discretized 
block location. 
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Figure 7. Cross section showing simulated stochastic artifacts that appear as high- 
porosity rock units in geologically unreasonable positions in the right-hand three-quarters 
of the figure. Geology consists of horizontal, alternating low-high-low porosity units as 
represented on the left-hand portion of the figure. Arrows indicate positions of conditioning 
drill holes. From information in Rautman and Robey, 1993. 

A set of artificial drill-hole records 
(figure 9) was fabricated based on the concep- 
tual geologic model to serve as hard, condi- 
tioning data for the simulator. These data were 
generated in a manner intended to be consis- 
tent with the general nature and availability of 
field data encountered during previous model- 
ing exercises at Yucca Mountain. The data are 
irregularly spaced in the horizontal dimension, 
in a manner intended to represent somewhat- 
clustered drill-hole locations. The vertical 
spacing is much closer than the horizontal 
spacing, again consistent with the actual spac- 
ing of samples along drill holes. The vertical 
extent of data along any particular drill-hole 
trace varies as well; some drill holes contain 
intervals of missing data, much as might be 
encountered in the field as a lost-core zone. A 
statistical summary of the hypothetical condi- 
tioning data is presented in table 2. 

The drill hole records have been posi- 
tioned within the model domain to demon- 
strate how the addition of soft, constraining 
information will improve the simulation of 
porosity values consistent with the underlying 
geologic model, specifically in those portions 
of the domain that are beyond the range of spa- 
tial correlation captured by the variogram. 
Drill holes 1 and 2 are relatively close to each 

other. Together, these conditioning data plus 
the range of spatial correlation provided as 
input to the simulator will constrain stochastic 
modeling in this portion of the model. Note 
that these holes do not extend vertically 
through the entire model domain. Drill hole 3, 
on the other hand contains a long record that 
provides information on every unit. However, 
there are no supporting data within the range 
of correlation (arbitrarily set equal to 1,000 
feet or one quarter of the domain width) that 
will allow this information to propagate 
beyond the immediately adjoining region, as 
required by the underlying conceptual geo- 
logic model. This is the modeling situation that 
has, in the past, allowed unconstrained genera- 
tion of stochastic artifacts inconsistent with the 
conceptual geologic framework (figure 7). 

Geostatistical simulation of porosity 
was performed on a two-dimensional grid dis- 
cretizing the domain shown in figure 9. The 
simulation grid consists of 40 cells horizon- 
tally and 30 cells vertically; dimensions of 
these cells are assumed to be 100 feet long and 
50 feet .high. The geometric model (figure 8) 
was discretized to represent a Lynx block 
model comprised of blocks 200 feet long by 
100 feet high covering the same model extent. 
This difference in scale of resolution is 
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Figure 8. Hypothetical, four-layer geologic model used as the basis of the parallel-grids 
prototype model. Locations of hypothetical drill holes indicated, as are sampled intervals 
within drill holes. Discretization of Lynx model uses 100x200-ft cells (illustrated in lower left 
corner). Dimensions in feet. 
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Figure 9. Three fabricated drill-hole porosity records generated based on the 
hypothetical, four-layer geologic model of figure 8. Dimensions in feet; porosity as a 
fraction. 

Table 2: Statistical Summary of the Four Hypothetical Geologic Units from the Parallel-Grids 
Prototype Model 
[Values are assumed porosity as a fraction; the coefficient of variation is defined as the standard deviation divided by the mean] 

Layer 1 Layer2 Layer3 Layer4 Composite 

Mean 0.23 0.42 0.27 0.60 0.37 
Standard Deviation 0.04 0.05 0.10 0.07 0.16 

Coefficient of Variation 17% 12% 37% 12% 44% 
Minimum 0.20 0.35 0.10 0.50 0.10 
Maximum 0.30 0.50 0.90 0.75 0.75 

No. of Data 7 9 21 11 48 

GSLIB-Lynx Integration 21 



intended to capture an anticipated emphasis on 
detailed resolution of material properties for 
subsequent physical-process (i.e., flow) mod- 
eling while geometric information probably 
will be extracted from a framework model of 
the entire Yucca Mountain site, for which the 
block size is controlled by the 200-cell limita- 
tion (see page 18). 

Modeling parameters for the simula- 
tion were selected specifically to demonstrate 
the impact of soft information on portions of 
the model not adequately constrained by hard 
drill-hole data. A simple variogram model was 
constructed using a single spherical structure 
with a horizontal range of spatial correlation 
equal to one quarter of the model domain 
(1,000 feet). This range of correlation is neces- 
sarily a composite range, such as that dis- 
cussed by Rautman and Flint (1992). The 
vertical range of correlation was provided 
through assignment of a vertical-to-horizontal 
anisotropy ratio of 0.15; thus the vertical range 
of correlation is 150 feet. A small nugget effect 
of one-tenth the total sill was added to reflect 
added variability of values at very short sepa- 
ration distances. 

The search neighborhood for the simu- 
lation algorithm was specified as 300 feet in 
the horizontal dimension, with an anisotropy 
ratio of 0.15. This value is smaller than might 
be used in a real modeling exercise of similar 
size and extent. The restricted search neigh- 
borhood was imposed to force GLINTMOD to 
refer to the Lynx export file for soft informa- 
tion. Recall that the initial version of GLINT- 
MOD branches to the Lynx model “on demand” 
only at those grid nodes where no hard data or 
previously simulated values are found within 
the search neighborhood. 

Figure 10 shows a single stochastically 
simulated model of porosity values for the 
model domain produced using only the hard 
drill hole data (no GLINTMOD). This model hon- 
ors the hard data at the location of those data 

(by construction), and the statistical character 
of the overall model is quite similar to that of 
the input data (figure 11). The model is some- 
what horizontally layered as specified by the 
input variogram model and its associated 
anisotropy ratio, and these layers, which are 
identifiable as lenses of similar grey level, can 
be observed to persist for distances of up to 
about 1 ,OOO feet (one-quarter of the 4,000-foot 
model domain). Correlation within individual 
lenses is stronger at short distances, and the 
degree of that correlation progressively dimin- 
ishes as separation distances approach 1,000 
feet. 

However, the layers of figure 10 are 
markedly more lenticular and discontinuous 
than the desired, underlying conceptual geo- 
logic model (figure 8). Closer observation 
indicates that the concept of a four-layer model 
is captured to a slight degree. Generally, there 
is a tendency for higher porosity values (darker 
greys) to occur in the lower one-half of the 
model and again somewhat in the middle part 
of the upper-half. A weak band of lower poros- 
ity values (lighter greys) occurs approximately 
in the middle of the figure and again, although 
to a lesser extent, near the top. Nevertheless, it 
is clear that this model is only poorly condi- 
tioned by the data. This effect of inadequate 
conditioning data has been accentuated by the 
choice of a limited search neighborhood, 
which allows data values to be located only 
within about one-third of the actual range of 
spatial correlation. 

Figure 10 serves as a basis of compari- 
son for a property model incorporating the soft 
information from a Lynx-style geometric 
model, which is shown in figure 12. During 
simulation of this porosity model, if no condi- 
tioning data (or previously simulated values 
that presumably already reflect the influence 
of hard conditioning information) were located 
within the 300 by 45-foot, elliptical search 
neighborhood, the GLINTMOD main program 
issued a call for soft information from the 
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Figure 10. Simulated porosity model generated using only the hard conditioning drill- 
hole data of figure 9. Dimensions in feet, porosity as a fraction. 
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Figure 11. Histograms comparing (a) drill-hole data from figure 9; (b) porosity model 
simulated using only hard conditioning data; and (c) porosity model simulated using hard 
conditioning data and soft information from conceptual model of figure 8. Vertically shaded 
regions each represent one standard deviation. 
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Figure 12. Simulated porosity model generated using both the hard conditioning drill- 
hole data of figure 9 and material-property expectations from conceptual geologic model 
of figure 8. Dimensions in feet, porosity as a fraction. 
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Lynx export file (figure 6, 0). The soft infor- 
mation represents an a priori expectation of 
the material property, given that the otherwise 
unconditioned grid node belongs to a specified 
geologic unit. After a specific value for the 
simulation node is sampled from the unit-spe- 
cific distribution having that a priori expected 
value, the simulation process moves to the 
next node along the random path, and the sim- 
ulated value enters the set of grid nodes that 
will be searched and incorporated into subse- 
quent simulated nodes as appropriate. 

The differences between figures 10 and 
12 are obvious. Porosity values are distinctly 
more continuous across the entire model 
domain in the simulation produced using soft 
information extracted from the geometric 
model via GLINTMOD. In particular, reproduc- 
tion of the lowermost, high-porosity unit, 
which was conditioned by only the one drill 
hole (hole number 3; figure 8) is much 
improved over the model of figure 10. The 
existence and persistence of this particular unit 
at distances of more than about one-half the 
spatial correlation length away from the drill 
hole location is due solely to the soft informa- 
tion incorporated into this model. The persis- 
tence of the alternating low- and high-porosity 
units in the upper portion of the model is also 
much improved over the model that uses only 
the hard data. 

Similar to the model shown in figure 
10, the GLINTMOD version of figure 12 honors 
the conditioning data at the drill hole locations. 
The variogram is honored as well; compare, 
for example, the horizontal and vertical extent 
of the various distinct-color lenses within the 
four generalized geologic units. However, as 
indicated by the histogram of the GLINTMOD- 
produced model in figure 11, the statistical 
character of the input data is not strictly repro- 
duced. Additional information not contained in 
the histogram has been added to the model, 
only in this case, that additional information 
consists of a geologist’s conceptual representa- 

tion vis-a-vis the Lynx export file. It is unclear 
exactly to what degree the statistics of the hard 
conditioning data should be reproduced. If the 
available drill hole data are representative of 
the overall domain to be modeled, presumably 
the two different types of information are con- 
sistent, and the statistics of the simulated 
model will resemble those of the input hard 
data. If the sampled hard data are biased with 
respect to the overall geologic model, it is only 
reasonable to expect that the statistical proper- 
ties of that overall domain will depart from 
those of the limited and nonrepresentative hard 
data. In the present case, note that the lower- 
most high-porosity unit of figure 8 is repre- 
sented only poorly by one drill hole (compare 
figure 9). The histograms of figure 11 reflect 
the influence of this undersampling of a later- 
ally extensive, high-porosity layer. 

Note that although the lateral continu- 
ity of the four conceptual geologic units is 
much improved in the GLINTMOD-generated 
version of figure 12, the exact position of the 
“contacts” between units and the exact magni- 
tude of porosity values at any specific location 
is uncertain. This uncertainty is as it should be 
for real geologic units sampled by only three 
drill holes extending through only part of the 
vertical extent of those units. Although soft, 
interpretive geologic information, such as 
would be represented by a real Lynx geometric 
model, has been added, that addition does not 
result in a single-valued, deterministic repre- 
sentation of material properties. 

Figures 13 and 14 illustrate aspects of 
this geologic uncertainty. Figure 13 shows an 
expected-value profile for the model generated 
using only hard drill hole data. Figure 14 is the 
equivalent expected-value representation of 
the model generated using GLINTMOD and the 
Lynx export file. Both illustrations were pre- 
pared by simulating ten different stochastic 
realizations, all of which are equally likely and 
depend only on the random number seed used 
to initiate the simulation process. The ten sto- 
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chastic images were then averaged, pixel by 
pixel, and the resulting mean (expected) value 
displayed on the cross sections. As the number 
of simulations combined into an expected- 
value summary becomes large, the result typi- 
cally approaches the value modeled through 
the geostatistical algorithm known as ordinary 
kriging (Deutsch and Journel, 1992; Rautman 
and Istok, in press). 

The resemblance of figure 14 to the 
conceptual geologic model of figure 8 is par- 
ticularly noticeable. All four layers are repro- 
duced quite well, although there is a modest 
amount of internal variability that may be 

DH #3 

related principally to the small number of sim- 
ulations (10) averaged to  produce the 
expected-value representation. Some variabil- 
ity is also caused by the different values con- 
tained in the drill hole data. The expected- 
value profile of figure 13 does a significantly 
poorer job of reproducing the expected, con- 
ceptual geologic model. This failure is attrib- 
uted principally to the unrealistically small 
search neighborhood specified for the model- 
ing exercise, a neighborhood that was selected 
specifically to push the limits of hard-data sim- 
ulation. 

DH#2 DH#1 

Figure 13. Expected-value profile produced using only hard drill-hole data from figure 
to condition ten individual stochastic realizations of porosity. Compare to single realization 
of figure 10. Dimensions in feet, porosity as a fraction. 
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Figure 14. Expected-value profile produced using both hard drill-hole data from figure 9 
and soft geometric information from figure 8 to condition ten individual stochastic 
realizations of porosity. Compare to single realization of figure 12. Dimensions in feet, 
porosity as a fraction. 
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Rotated-Grids ExamDie 

A second prototype modeling exercise 
was developed to test the software in situations 
where the simulation grid and the soft-infor- 
mation grid are not aligned. In this exercise, 
the hypothetical geometric model consisted of 
four geologic units, essentially identical to 
those of the parallel-grid prototype; however, 
the strata were rotated 6 degrees in the x-z 
plane to represent dipping stratigraphic units 
(figure 15). The geometric block model used 
to discretized this dipping geology (pseudo- 
Lynx export file) was oriented parallel to the 
dip. The hard, drill-hole porosity data were not 
rotated, but were positioned as vertical drill 
holes located in the same three positions. The 
objective of this modeling exercise was to 
examine the performance of GLINTMOD in a sit- 
uation requiring rotation of two completely 
independent grid systems. 

All other modeling parameters and grid 
specification details were identical to those 
used in the parallel-grids example. The simula- 
tion consisted of 40 cells horizontally by 30 
cells vertically; each cell was 100 feet by 50 
feet. The geometric model consisted of cells 
double the dimensions of the simulation grid: 
200 feet by 100 feet. The range of spatial cor- 
relation was set arbitrarily at 1,000 feet in the 
direction of maximum continuity, dipping 6 
degrees from the horizontal toward the “east,” 
with an anisotropy ratio of 0.15. The search 
radius was also set to dip 6 degrees from hori- 
zontal, with a range of 300 feet in the direction 
of maximum continuity and with a 0.15 anisot- 
ropy ratio. Because the two local coordinate 
systems are aligned in different directions, a 
portion of the “horizontal” simulation grid lies 
outside the physical volume represented by the 
constraining, “dipping” geometric model. 
Thus there is no soft information in the geo- 
metric model to constrain the simulation of 
certain material-property nodes. Although a 
number of alternative actions could have been 
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defined in the case where GLINTMOD issued a 
call to the non-existent portion of the geomet- 
ric model, the simplest solution, not simulating 
the node at all, was adopted for this prototype 
modeling exercise. This alternative might cor- 
respond to interpreting the upper limit of the 
dipping geometric model as surface topogra- 
phy and “missing values” in the corresponding 
portion of the simulation grid to represent 
“air.” 

Expected-value profiles representing 
ten separate stochastic simulations of this 
rotated-grid model are presented in figures 16 
and 17. Figure 16 represents the base case in 
which only the hard drill-hole data are used to 
condition the simulations, and figure 17 repre- 
sents the case where GLINTMOD accessed the 
geometric model at those grid nodes for which 
no conditioning data or previously simulated 
values were located within the search ellipse. 

The general impression from these 
rotated-grid expected-value profiles is much 
the same as that gained from examination of 
the parallel-grid examples in figures 13 and 
14. The model created using only the limited 
hard data values is relatively unstructured and 
does a poor job of reproducing a well-layered 
geologic system of contrasting porosity units. 
The conditioning drill-hole data are propa- 
gated away from the drill-hole locations in the 
proper manner; a definite dip of lenticular 
units toward the east is apparent in the figure. 
However, without the ability to constrain sim- 
ulated nodes to the appropriate unit-specific 
expected material property or a measured 
value (an effect purposely produced by the 
short search distance), widely varying porosity 
values are generated at the same position in 
different simulations and then propagated into 
adjoining regions. When these lenses of 
widely varying porosity values are averaged 
across the suite of ten realizations to create the 
expected-value profile, they largely “cancel” 
each other and yield the “visually bland,” aver- 
age porosity cross section of figure 16. 
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Figure 15. Hypothetical geometric model corresponding to the rotated-grid example. 
Four geologic units dip at 6 degrees to the east. Drill-hole locations shown in figure 8. 
Dimensions in feet, porosity as a fraction. 

Figure 16. Expected-value profile for the rotated-grid model created using only the hard 
drill-hole data shown in figure 9. Direction of maximum spatial continuity has been rotated 
6 degrees from horizontal toward the right. Dimensions in feet, porosity as a fraction. 
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Figure 17. Expected-value profile for the rotated-grid model created using calls to 
GLINTMOD and the conceptual framework model of figure 15. Dimensions in feet, porosity 
as a fraction. 
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The GLINTMOD-generated expected- 
value profile of figure 17, however, faithfully 
reproduces the four-layer conceptual geomet- 
ric model, complete with dipping strata. The 
white region in the upper right-hand corner of 
the model domain corresponds to the region 
that is undefined in the rotated Lynx-model 
export file. Although distorted by the 100x50- 
foot grid-cell discretization, this “topographic” 
surface between low-porosity “rock” and 
“sky” dips at the desired 6-degree angle, as do 
the various geologic layers. Note that even 
though the four geologic units are relatively 
well defined and distinct from one another, 
there is definite internal heterogeneity repre- 
sented in the expected-value profile. 

An interesting feature can be observed 
in geologic layer 2 near the right-hand side of 
the model. This region is strongly influenced 
by drill holes 1 and 2 (figure 8), as the two 
holes are close together geologically (well 
within the range of spatial correlation), and 
close enough physically that simulated grid 
nodes between the two holes are influenced by 
the presence of data from both holes within the 
search neighborhood. Layer 2 is relatively well 
developed on the left-hand side of the model. 
The layer extends as a discrete entity across 
the model, dipping at about 6 degrees, until it 
reaches the vicinity of the two drill holes. Here 
the layer breaks-up, almost appears to bifur- 
cate and then reforms immediately adjacent to 
the right-hand boundary of the model. This 
“modeled confusion” is a consequence of 
inconsistency between the hard, drill-hole- 
based information and the soft (interpretive), 
geometric information. 

The drill hole porosity data (figure 9) 
were fabricated to represent a horizontally lay- 
ered geologic conceptual model. When these 
data were applied to the rotated-grid example 
case, the spatial “intercepts” of high- and low- 
porosity samples in the drill holes were not 
adjusted in keeping with the newly imposed 
concept of dipping layers (mostly for the sake 

of simplicity). Therefore, GLINTMOD calls at 
grid nodes located far from the hard condition- 
ing data generated simulated values consistent 
with a dipping higher-porosity unit throughout 
the left-hand two-thirds of the model domain 
and also adjacent to the right-hand boundary. 
The laterally extensive unit to the west almost 
certainly was conditioned to measured poros- 
ity values in drill hole number 3. However, 
grid nodes within about 300 feet on either side 
of the two closely spaced drill holes were sim- 
ulated in light of both an externally imposed 
dipping correlation structure and hard data 
indicating equivalent porosity values at essen- 
tially the same vertical positions, indicating a 
near-horizontal correlation structure. The 
“breakdown” of the conceptual model in the 
presence of actual hard data conflicting with 
that conceptual model is interpreted as a good 
indicator that soft information from the geo- 
metric model does not overly constrain the 
simulation process. GLINTMOD was developed 
to provide a numerical-simulation algorithm 
with guidance in cases where actual knowl- 
edge is effectively absent: a model is then sub- 
stituted for observations.  If sufficient 
observations are present, the data take priority 
and drive the simulation process. 

Discussion 
The prototype test modeling conducted 

using GLINTMOD indicates that the integration 
of soft, constraining information from a geo- 
metric geologic model is feasible, and that it 
results in simulated numerical material-prop- 
erty models that do reflect the underlying 
model conceptualized in the geologic-model 
output files. Turning the GLINTMOD interface 
“off’ destroys this reproduction of the concep- 
tual model and results in effectively uncon- 
strained property models that would be judged 
geologically unreasonable in an actual model- 
ing application. 

Whether the prototype version of 
GLINTMOD is producing truly geologically real- 
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istic models in an actual application is another 
question. Most numerical modeling algorithms 
involve the specification of a large number of 
modeling parameters, some of which have 
immediate and obvious influences on the mod- 
eling output and others of which have more 
subtle or obscure influences. GLINTMOD is no 
exception. Early application of GLINTMOD to 
modeling of Yucca Mountain geology as part 
of ground-water travel time modeling exer- 
cises for 1995 (GWTT-95) has indicated that 
there are a number of these secondary, subtle- 
influence parameters that require modeling 
judgement. This section discusses a few of the 
more notable observations resulting from early 
application of GLINTMOD in attempting to gen- 
erate material-property distributions for sev- 
eral cross sections of Yucca Mountain that are 
compatible with the general conceptual model 
of the site. Although resolution of these issues 
is beyond the scope of the prototype model 
development and testing exercise described in 
this report, these issues and their associated 
work-around or modifications suggest that 
additional development and testing activities 
with respect to GLINTMOD will be required. 

When to Use Soft Information? 

As described in the section on “Con- 
ceptual Development” on page 16, the proto- 
type version of GLINTMOD calls ,for a material- 
property expectation from the Lynx geologic 
model only when no neighboring data or, more 
generally, inadequate data, are found (figure 6, 
0). What, then, determines an “adequate” 
quantity of conditioning information? Origi- 
nally, the intent was to call GLINTMOD only in 
the case where the number of hard data or pre- 
viously simulated values located by the neigh- 
borhood search was equal to zero. The 
examples shown in this report were produced 
in this manner (figures 8 through 17). 

In applying GLINTMOD to actual model- 
ing of Yucca Mountain, it quickly became 
apparent that models produced using this 

approach appeared more random than sug- 
gested by the conceptual geologic model. 
Experimentation with the triggering flag for 
issuing the subroutine call to the Lynx export 
file (figure 6) suggested that setting the test 
value to eight (or fewer) conditioning points 
produced simulations that followed the input 
geologic model reasonably well. Examination 
of the behavior of this flag during execution of 
an individual simulation indicates that the 
Lynx framework model is accessed frequently 
during the earliest stages of the simulation pro- 
cess (figure 18). However, because the sequen- 
tial path through the model domain is random, 
the soft information extracted from the frame- 
work model is spatially distributed throughout 
that domain and quickly constrains the entire 
simulated property model so that the number 
of external calls plateaus rapidly at approxi- 
mately 5 to 10 percent of the total number of 
nodes in the domain. 

I I I I 

Number of Nodes Simulated (x105) 

Figure 18. Graph showing the cumulative number 
of GLINTMOD calls to the framework Lynx model as 
a function of the total number of nodes simulated. 

Use of Unit-Specific Variances 

Another parametric value involved in 
the geologic reasonableness issue involves the 
variance of the ccdffrom which the simulated 
value is generated (figure 5). The unmodified 
SGSlM sequential Gaussian simulation algo- 
rithm (Deutsch and Journel, 1992) uses two 
alternative values in this simulation process. 
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First, if sufficient data are located by the 
search algorithm, SGSlM computes both a 
kriged value and a kriging variance, which are 
taken as the expectation and variance (respec- 
tively) of the location-specific c d !  This fol- 
lows from multivariate Gaussian spatial 
theory: the kriging variance is equal to zero at 
a data location, and it increases to a limit of the 
variogram sill value (= 1.0) at large distances 
from data. Second, if sufficient data (original 
plus previously simulated values) cannot be 
located by the spatial search, the algorithm 
assumes a standardized normal Gaussian dis- 
tribution with 02=1 as the basis of this locally 
unconditioned cdf. This, too, follows from 
spatial theory: if no additional information is 
available, the uncertainty associated with an 
unsampled location ought to approach the vari- 
ability associated with the data taken without 
regard to spatial position. The difficulty with 
these rules is that additional information is 
being incorporated at unsampled locations 
through the GLINTMOD approach. However, that 
information is “soft” and consists of the rock 
unit inferred (but not known) to exist at an 
unsampled location. 

Note that although globally the normal- 
score variance of the population is, in fact, 
equal to one, the variances of the subpopula- 
tions within individual geologic units are not. 
If the identity of the subpopulation (the rock 
unit) is known, the global variance of one 
probably overestimates the uncertainty at any 
specific (local) unsampled grid node. To 
understand this difference between global and 
local statistics, refer to the illustration of figure 
4. In this conceptual diagram, the variance of 
the overall population (left-hand side distribu- 
tion) is transformed so that it equals one for the 
standard normal distribution (right-hand side 
of the main figure). However, for neighbor- 
hoods similar to neighborhood number 1 
(which could be considered to represent low- 
porosity welded rocks), or separately for those 
similar to neighborhood number 2 (high- 
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porosity nonwelded rocks), the variances of 
values from these local neighborhoods are 
demonstrably less than one. When data are 
present (the case actually shown in figure 4), 
this variability is captured through the simple 
kriging variance. The problem remains to 
determine an appropriate variance for use 
when data are not present but when the likely 
rock-unit identity of the simulation node is 
known. 

An obvious solution for determining 
the proper “width” of the probability density 
function is to tie the variance of the empirical 
cdf at all unsampled-but-soft-conditioned loca- 
tions to the variance of the hard data used to 
estimate the unit-specific expected value. 
Thus, instead of looking up only an expecta- 
tion to use in the case of “inadequate condi- 
tioning data found,” the call to the Lynx export 
file would return both an expected value and 
an “expected” variance. This alternative is log- 
ically appealing, and it probably will be the 
alternative ultimately implemented, should 
development of GLINTMOD continue. Unit-spe- 
cific variances will need to be estimated care- 
fully, as estimates of the second moment of 
any distribution are significantly more sensi- 
tive to bias in the underlying data than is esti- 
mat ion of the f i r s t  moment  (mean or  
expectation). Outliers resulting from measure- 
ment error, misclassification of samples, local 
departures from true multiGaussian spatial 
behavior, or simply locally anomalous physi- 
cal samples exert a disproportionate influence 
on the second moment through the squared- 
deviation term in the computational formula 
for a variance. 

Because there has not yet been ade- 
quate time to develop and evaluate unit-spe- 
cific variances for the prototype version of 
GLINTMOD and to implement the necessary 
software calls after identification of the issue, 
a reasonable heuristic device has been imple- 
mented for preliminary modeling. After pro- 
gress ive ly  reducing  the  var iance  by 
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experimentation and comparing the resulting 
models in a semiquantitative manner, the 
within-unit variance was set to a value of 0.2 
[relative to the standard normal (02=1) distri- 
bution]. The rationale underlying this appar- 
ent ly  a rb i t ra ry  va lue  i s  based on the 
coefficients of variation of porosity data avail- 
able for Yucca Mountain. The coefficient of 
variation is a standardized measure of variabil- 
ity, and it is defined as the standard deviation 
divided by the mean. The observed coeffi- 
cients of variation for porosity are essentially 
constant across many different geologic units 
at Yucca Mountain (see also table 2). Prelimi- 
nary analyses indicate that the standard devia- 
tions of unit-specific porosity data were 
roughly 40-45 percent of the standard devia- 
tion of the combined porosity data. Therefore, 
if the standard deviation of the normal-score 
transformed data is one by definition and con- 
struction, the appropriate standard deviation of 
values for an individual geologic unit is 
approximately 0.40 to 0.45. Converting these 
values to variances (by squaring) suggests that 
the variance of the appropriate ccdfshould be 
on the order of 0.16 to 0.20. We selected the 
larger value of 0.20, corresponding to a some- 
what more variable probability function. 

Resolution of Thin, Hydrologically 
Significant Units 

A final, preliminary issue involved in 
modeling a real-world cross section of Yucca 
Mountain involves the coarseness of resolution 
available through the Lynx GMS. A Lynx 
model is currently limited to a maximum of 
200 uniformly spaced grid cells in each princi- 
pal direction. This absolute limit and the 
requirement that the cells be evenly spaced in a 
particular dimension means that it is difficult 
to achieve fine-scale resolution of thin, poten- 
tially very significant hydrologic units in a 
thick vertical sequence that also contains large 
vertical intervals of relatively similar material. 
Although the‘lynx export file contains a com- 

plete listing of all model components con- 
tained within each cell, GLINTMOD by default 
simply reports the volumetrically dominant 
geologic component as “the” unit present 
within each cell. 

Because the Tiva Canyon and Topopah 
Spring Tuffs at Yucca Mountain contain quite 
thin, but also laterally extensive low-porosity 
vitrophyre units near their upper and lower 
margins (units Tpcpv3, Tptrvl, and Tptpv3 in 
table 1) that are thought to influence ground- 
water flow and transport disproportionately to 
their volumetric representation in the Lynx 
model, a modification to the Lynx export-file 
query subroutine has been developed. Specifi- 
cally, the look-up routine was modified so that 
if one of the vitrophyres composes more than 
approximately 10 percent of the volume of the 
Lynx grid cell corresponding to a simulation 
node requiring soft information, the subroutine 
returns “vitrophyre” as the rock type regard- 
less of the actual, volumetrically dominant unit 
present in that grid block. 

Conclusions 
Prototype modeling using GLINTMOD 

has successfully demonstrated the viability of 
a proposed approach for integrating soft, inter- 
pretive information contained in geometric 
framework geologic models into stochastic 
numerical-properties modeling using a geo- 
statistical simulation methodology. The 
method involves selection of a unit-specific 
expected value to control the distribution of 
potential values from which the material prop- 
erty of interest at an unsampled location is ran- 
domly selected. In the current Fortran 
implementation, GLINTMOD refers to the under- 
lying geologic framework model’ only at those 
locations for which the standard simulation 
search algorithm is unable to locate either 
hard, measured conditioning data or previ- 
ously simulated grid nodes within a user-speci- 
fied search neighborhood. The concept is that 
if there are no relevant observations close to 
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the location to be simulated, the best prior esti- 
mate of the material property likely to exist at 
that point is the expected (mean) property of 
that overall rock type. 
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