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ABSTRACT 

The Jeffreys noninformative prior distribution for a single unknown parameter is 
the distribution corresponding to a uniform distribution in the transformed model where 
the unknown parameter is approximately a location parameter. To obtain a prior 
distribution with a specified mean but with diffusion reflecting great uncertainty, a 
natural generalization of the noninformative prior is the distribution corresponding to 
the constrained maximum entropy distribution in the transformed model. Examples 
are gjven. 
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SUMMARY 

The Jeffreys noninformative prior distribution for a parameter 8 can be viewed 
as the distribution for 8 that corresponds to a maximum entropy (i.e. uniform) distribu- 
tion, in the parameterization where the unknown parameter 4(8) is approximately a 
location parameter. The constrained noninformative prior, a generalization of the 
Jeffreys prior, is therefore defined as the distribution for 8 corresponding to the 
maximum entropy distribution on 4 subject to a constraint. When the constraint is 
E(8) = 8,, the constrained noninformative prior has the form 

cexp(b8) J112(8) 

where J is the Fisher information. 

For a Poisson(Xt) random count, where t is the observation period and X is the 
event rate, the noninformative prior constrained by E(X) = A, is gamma with shape 
parameter 1/2 and mean A,. For binomial data, the constrained noninformative prior is 
not conjugate to the binomial distribution, but a.n approximation to the conjugate 
(beta) distribution is tabulated. 

An example from risk assessment shows that the constrained noninformative 
prior can produce much more realistic answers than the Jeffreys prior distribution. 
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CONSTRAINED NONINFORMATIVE PRIORS 

1. INTRODUCTION 

In many risk assessments, the probability of a rare event must be estimated. 
Two examples are: 

0 A reliable mechanical system serves as a standby safety system in an operating 
facility. The unreliability 
(probability of failure to function on demand) must be estimated, and the uncertainty 
in the estimate must be quantified. The system could fail to function because it is out 
of service for testing or maintenance, or because it fails to start, or because it fails to 
run for the full required time. Different data sets are relevant for the different failure 
modes. Each contributing set of data may be sparse, but all should be used if possible. 

It is occasionally demanded, and it is periodically tested. 

0 A radioactive or toxic waste repository is planned. One quantity to estimate is 
the probability that the release exceeds a regulatory limit in some specified time. Many 
possible release scenarios must be considered, such as natural migration of the waste, 
disruption of the containment barriers by earthquakes, etc. The risks from these 
scenarios must be combined, and the overall uncertainty quantified. 

Often, as in the examples, the process being analyzed is divided into submodels, 
which must be combined to yield a final answer. Therefore, Bayesian methods are 
frequently used, because the posterior distributions for the submodels can be propagated 
easily to yield an overall estimate, with a quantified uncertainty. (For example, see 
Martz and Waller 1990.) In such an analysis, it is desirable to use only diffuse prior 
distributions, because the risk assessment will be challenged by people with various 
agendas. From the viewpoint of defensibility, a noninformative prior is ideal. 

From the viewpoint of realism, however, a noninformative prior can be defective. 
The posterior mean is pulled toward the prior mean, and the noninformative prior mean 
can be quite unrealistic. Sometimes, few of the rare events have ever been observed, in 
which case the pull toward the prior mean is strong. For example, the noninformative 
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prior distribution for a binomial probability has mean 1/2. In the first example above, 
it is ridiculous to use a prior distribution that says: the equipment will be out of service 
half the time; when it is in service, each modeled portion of the system will fail to start 
half the time; and when the system starts, each portion of the system will fail to run 
half the time. 

In some situations the analysts truly have prior information, leading to a well- 
justified informative prior. In other cases, however, the analysts have only a vague idea 
of the realistic values. A desirable prior distribution would have a mean specified by 
such understanding, but would be otherwise uninformative. That is, the dispersion of 
the distribution would be large enough that, in some objective sense, it corresponds to 
ignorance. This is the subject of this note. 

2. NONINFORMATIVE PRIORS 

Some standard facts about noninformative priors are summarized here, to set the 
stage for constrained noninformative priors. 

b 

A 

2.1 General Results 

First, note that for a one-dimensional location parameter, the uniform distribu- 
tion is an (improper) noninformative prior. Box and Tiao (1973, p. 26) argue that this 
statement is obvious. Lindley (1958) showed the related fact that the fiducial distribu- 
tion for a parameter (the distribution that formally gives confidence intervals) is the 
same as the Bayes posterior distribution if and only if, possibly after a model transfor- 
mation, the parameter is a location parameter with a uniform prior distribution. 
Therefore, the uniform prior for a location parameter gives posterior intervals that agree 
numerically with confidence intervals, which by their definition use only the data, not 
any prior information. 

These considerations motivate the Jeffreys noninformative prior. Transform the 
original model so that the transformed parameter is approximately a location 
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parameter. Take a uniform distribution on the transformed parameter, and find the 
corresponding distribution on the untransforrned parameter. This distribution is 
approximately noninformative. The only detail still to be discussed is the 
transformation. 

Box and Tim (1973) derive the transformation in general, but the derivation is 
especially simple when there is a one-dimensional sufficient statistic, that is, when the 
original distribution is in the exponential family. Let 8 be the parameter in the original 
model, and, without loss of generality, let the sufficient statistic be the maximum 
likelihood estimator, 8. For large samples, 8 is approximately normal with mean 8 and 
variance proportional to J - l ( O ) ,  where J ( 8 )  is the Fisher information in a single 
observation. Now define 

so that d+/d@ = J1/2(0). (This is the standard asymptotic variance-stabilizing transfor- 
mation.) Therefore, 3 is approximately normal with mean # and constant variance, 
that is, #J is approximately a location parameter. Let f denote the density 8, and let g 
denote the density of 4, with the densities related by 

Therefore, f is proportional to J1/2(8) when g is a uniform density. This is the Jeffreys 
noninformative prior. 

2.2 Special Cases 

Box and Tim work out two examples of interest here. 

Binomial Data 

When the data are binomial(n,p), the transformation is #J = sin-'@, and the 
noninformative prior density is proportional to p -'12(1 - p)-l/'.  his is analytically 
convenient because this distribution is beta(l/2, 1/2), and the beta distributions are 
conjugate priors to the binomial distribution. When p is the probability of a failure on 
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demand, and f failures and s successes are observed in f + s  demands, the posterior 
distribution of p is beta(f + 1/2, s + 1/2). The noninformative prior can be thought of 
as equivalent to observing half a failure on one trial. 

Poisson Data 

When the data are Poisson(p), the transformation is q5 = @, and the noninforma- 
tive prior density is proportional to p-1/2. This is an improper distribution, but except 
for the constant multiplier its form is a limit of a gamma(a, p) density with Q = 1/2: 

This is analytically convenient because the gamma distributions are conjugate priors to 
the Poisson distribution. When p is the expected count of events in some time period t ,  
and p has a gamma(aprior, prior distribution, then the posterior distribution 
based on n events in the time period is gamma(apost, ppost)  with apost = aprior + n, 
and Ppost = Pprior+ 1. Formally, if the prior parameters are aprior = 1/2 and 
pprior = 0, the posterior distribution is gamma(n + 1/2, 1). 

If X is the rate of events per unit time, set p =  At.  Then a gamma(a, P )  
distribution for p corresponds to a gamma(a, Pt )  distribution for A. The 
noninformative prior for X is proportional to and the corresponding posterior 
distribution based on n events in time t is gamma(n+1/2, t).  The mean of the 
posterior distribution is (n + 1/2)/t, and the noninformative prior may be thought of as 
equivalent to half an event in no time. 

8 
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3. CONSTRAINED NONINFORMATIVE PRIORS 

This section extends the above results to the case where the prior distribution of 
8 satisfies a constraint, specifying the mean. 
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3.1 General Results 

Basic Definition 

Let 8 be the parameter in the original model, and let 4, defined by Equation (l), 
be the approximate location parameter in the transformed model. The one-to-one 
relation between 8 and d, will sometimes be denoted by d, =4(8) and 8 = 8(4). A 
constrained noninformative prior for 8 will be a distribution corresponding to a density 
for Q that is as nearly uniform as possible, subject to any specified constraints. The 
constraint considered in this note is on the mean of 8: E(8) = So, for some specified 8,. 
The term “nearly uniform distribution” is defined precisely as the constrained 
maximum entropy distribution. Harris (1982) states that for a multinomial distribution 
with unordered cells, “entropy is best interpreted as a measure of heterogeneity.” It 
follows, by taking a continuous distribution as a limit of a multinomial distribution with 
the number of cells becoming infinite, that the entropy of a continuous distribution can 
be interpreted as a measure of flatness of the density, with large entropy corresponding 
to near flatness. Entropy is not the only such measure, but it is a widely used one, and 
is used here. 

The constrained noninformative prior on 8 is obtained by substituting the correct 
g into Equation (2). For a constrained 
noninformative prior, it is shown in the appendix that 9[4(8)] is of the form cexp(b8). 
The constrained noninformative prior on 8 is therefore of the form 

For a noninformative prior, g is constant. 

cexp(b8)J 1/2 ( $ ) . (3) 

The constants b and c are such that the density integrates to 1.0 and has the specified 
mean 8,. 

Refinements in Application 

If the constrained noninformative prior has an inconvenient form, the user may 
wish to approximate it by a similar distribution with an analytically attractive form. 
This is carried out below when the data are binomial, and is seen to be unnecessary 
when the data are Poisson. 
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The constrained noninformative prior is supposed to represent ignorance except 
for the constraint E(8) = 8,. If 8, is a number that is estimated from data, then the 
prior should also represent the uncertainty in 8,. Kass and Steffey (1989) give methods 
for accomplishing this. They consider empirical Bayes priors, but their ideas can be 
easily adapted. In particular, their Equation (3.8) adjusts the posterior variance to 
account for uncertainty in the parameters of the prior distribution. This idea is not 
considered further here because it goes beyond the main point of this report. 
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3.2 Special Cases 

Poisson Data 

Consider Poisson data corresponding to failure rate A in time t. From Equation 
(3), the form of the noninformative prior constrained by E(X) = A, is 

This is a gamma density. 
posterior distribution is gamma(n + 1/2, t + 1/2X,). 
thought of as equivalent to half a failure in time 1/2X0. 

Its mean is (1/2)/b, so b is forced to equal 1/2X,. The 
The prior distribution may be 

> 

Binomial Data 

Now consider binomial data with parameter p. From Equation (3), the form of 
the noninformative prior constrained by E(p) = p, is 

This is not a simple form to use. Its integral is the confluent hypergeometric function, 
and is familiar to anyone who has worked with the moment generating function of a 
beta distribution. The integral can be evaluated numerically using the power series 
expansion of the exponential and the known properties of the beta density (for example, 
see Section 13.1.2 of Abramowitz and Stegun 1964). By exchanging the roles of p and 
1 - p, we see that the density of 1 - p is the density of p with the sign of b reversed. 
Therefore, the integral of the density may be calculated using a negative b, 

< 
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corresponding to a mean < 1/2, or using a positive b, corresponding to a mean > 1/2. 
The case that is not calculated directly can then be found from symmetry. The 
calculation involves less numerical error for large positive b than for equally large 
negative b. 

Let p be the probability of a failure and 1 - p the probability of a success. 
Assuming that failures and successes are independent events, the posterior distribution 
based on f failures and s successes is proportional to 

whose moments and quantiles can be found numerically. 

A beta density would be much more convenient. Therefore, Table 1 gives the 
parameters a and p of a beta density that has the same mean and variance as the 
density (4)) for selected values of p ,  5 0.5. For values of po 2 0.5, reverse the roles of cy 

and p. To interpolate for a value p, that is not in the table, use the column for cy, and 
the relation p = CY( 1 - po)/po. 

To see how good the beta approximation is, let us compare the constrained nonin- 
formative cumulative distribution to the cumulative beta distribution, at selected 
percentiles of the beta distribution. Table 2 gives this comparison. The beta percen- 
tiles were found by the IMSL (1987) function BETIN, and the exact distribution was 
integrated with the IMSL subroutine QDAWS. The results were the same when the 
double precision version was used and the allowed relative errors, for calculating b and 
for integrating the distribution, were decreased. Table 2 shows, for example, that at 
when po = 0.10, the exact noninformative prior assigns probability 0.957 to the interval 
to the left of the 95th percentile of the beta approximation. The difference between 
0.957 and 0.95 is fairly small, and all such differences in the table seem small enough to 
be adequate for practical use. 
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Table 1. Parameter b of exact constrained noninformative prior, and beta parameters a 
and /3 that match the mean and variance. 

Po 

0.50 
0.48 
0.46 
0.44 
0.42 
0.40 
0.38 
0.36 
0.34 
0.32 
0.30 
0.29 
0.28 
0.27 
0.26 
0.25 
0.24 
0.23 
0.22 
0.21 
0.20 
0.19 
0.18 
0.17 
0.16 
0.15 
0.14 
0.13 
0.12 
0.11 
0.10 
0.09 
0.08 
0.07 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 

b 

0. 
-0.1601 
-0.3210 
-0.4835 
-0.6484 
-0.8166 
-0.9891 
-1.167 
-1.352 
-1.545 
-1.748 
-1.854 
-1.964 
-2.078 
-2.196 
-2.319 
-2.447 
-2.582 
-2.723 
-2.873 
-3.031 
-3.201 
-3.383 
-3.579 
-3.793 
-4.027 
-4.287 
-4.579 
-4 * 910 
-5.292 
-5.743 
-6.285 
-6 - 958 
-7.821 
-8.978 

-10.61 
-13.08 
-17.22 
-25.53 
-50.52 

0.005 -100.5 
0.001 -500.5 
0. -00 

(Y 

0.5000 
0.4808 
0.4630 
0.4464 
0.4311 
0.4168 
0.4035 
0.3911 
0.3795 
0.3689 
0.3590 
0.3544 
0.3501 
0.3459 
0.3420 
0.3383 
0.3349 
0.3317 
0.3289 
0.3264 
0.3243 
0.3225 
0.3213 
0.3206 
0.3205 
0.3211 
0.3227 
0.3254 
0.3293 
0.3349 
0.3424 
0.3522 
0.3648 
0.3802 
0.3980 
0.4171 
0.4358 
0.4531 
0.4693 
0.4848 
0.4925 
0.4985 
0.5000 

B 
0.5000 
0.5208 
0.5435 
0.5682 . 
0.5953 
0.6252 
0.6583 
0.6952 
0.7368 
0.7839 
0.8378 
0.8678 
0.9002 
0.9352 
0.9733 
1.015 
1.060 
1.111 
1.166 
1.228 
1.297 
1.375 
1.464 
1.565 
1.683 
1.820 
1.982 
2.177 
2.415 
2.709 
3.081 
3.561 
4.195 
5.051 
6.235 
7.925 

10.46 
14.65 
22.99 
48.00 
98.00 

498.0 
co 
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Table 2. Cumulative distribution of exact constrained noninformative prior, at selected 
percentiles of the beta approximation. 

~~ ~ 

Nominal (beta) probability 
- -  0.90 0.95 0.99 Po - 

0.50 0.900 0.950 0.990 
0.45 0.892 0.943 0.987 
0.40 0.888 0.936 0.983 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 
0.05 
0.01 

0.887 
0.891 
0.898 
0.906 
0.914 
0.916 
0.908 
0 * 901 

0.933 0.979 
0.932 0.975 
0.935 0.973 
0.942 0.975 
0.951 0.979 
0.957 0.986 
0.955 0.989 
0.951 0.990 

4. EXAMPLE 

The high pressure coolant injection (HPCI) system in boiling water nuclear 
power plants was studied (Grant et al. 1994). This is a standby system to inject water 
into the reactor vessel when water inventory is low and ordinary means of injection are 
degraded or lost. It is occasionally used and is periodically tested. The data covered 
seven years, and the customer wanted to see if the unreliability (probability of system 
failure to function when demanded) had varied during the study period. 

Y 

Because of the structure of the data and because of engineering considerations, 
several failure modes were considered. Recovery occurs after a failure if an operator 
sees that the system is not functioning and takes some simple action to make it 
function. For example, if the system does not actuate automatically on a start signal, 
the operator may be able to turn a switch and manually actuate the system. The 
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failure modes considered were: (1) out of service for testing or maintenance (MOOS), 
(2) failure to start for reasons other than injection valve failure (FTSO), (3) failure to 
start because the injection valve failed to open (FTSV), (4) failure to recover from 
failure to start (FRFTS), ( 5 )  failure to run as long as needed (FTR), and (6) failure to 
recover from failure to run (FRFTR). 

I) 

Failure of the system when demanded equals 

MOOS or [(FTSO or FTSV) and FRFTS] or (FTR and FRFTR) , 

and the unreliability is the probability of system failure on demand. 

The failure and demand counts were extracted from the failure reports and 
testing frequencies, and are given in Table 3. The numbers account for facts such as 
the following: The data from unplanned demands were relevant for all failure modes, 
but the data from tests were relevant only for FTSO and FTR. Some failures to start 
did not allow the system to attempt to run, while others allowed running, perhaps after 
a delay. Although at first glance the tabulated demand counts may seem inconsistent, 
they were established with great care. 

Table 3. Data summary (failures/demands) for HPCI reliability study. 

Year 
1987 
1988 
1989 
1990 
1991 
1992 
1993 

MOOS FTSO 
0/16 3/28 
0/10 1/23 
1/7 1/24 
0/13 1/28 
0/9 3/26 
0/6 0/24 
0/2 2/17 

FTSV 
0/16 
1/10 

0/6 
0/12 

0/9 
0/4 
0/2 

FTR 
1/26 
0/23 
1/24 
1/27 
2/25 
2/24 
0/18 

Total 1/63 11/170 1/59 0/5 7/167 2/3 
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The chi-squared goodness of fit test found no significant difference between years 
for any failure mode. Confirming this, for each failure mode an attempt to fit a beta- 
binomial distribution to the data (estimating the parameters of the beta distribution by 
maximum likelihood) was unable to fit a nondegenerate distribution. Therefore, the 
most realistic analysis of the data in Table 3 uses the row labeled “Total.” 

Based on the data totals, find the unreliability as follows. For each failure mode, 
use the Jeffreys noninformative prior, the failure count f ,  and the demand count d to 
obtain a posterior distribution, beta(f + 1/2, d - f + 1/2), for the probability of that 
failure mode. Treat the events in Expression ( 5 )  as independent events, and write the 
probability of Expression ( 5 )  in terms of sums and products of the probabilities of the 
six failure modes. Treat the six Bayes distributions of these probabilities as indepen- 
dent distributions, and find the mean and variance of the overall expression in terms of 
the means and variances of the six distributions. This results in the exact Bayes mean 
and variance of the unreliability. To obtain an approximate 90% interval for the 
unreliability, approximate the distribution as a beta distribution having the mean and 
variance just found, and use the 5th and 95th percentiles of that beta distribution. This 
is the approximation advocated by Martz and Waller (1990). All this is easy to 
accomplish with a computer program that contains very small subprograms or macros, 
such as a macro to find the probability of the union of two independent events and a 
macro to find the variance of a product of independent random variables. The 
calculations for this report were performed with SAS (1988). Based on the last row of 
Table 3, the mean system unreliability is 0.058, and an approximate 90% interval (5% 
Bayes probability in each tail) is (0.024, 0.103). This is shown at the right in Figure 1. 
The dotted horizontal line marks the mean system unreliability, 0.058. 

However, the customer wanted to see if the unreliability varied from year to 
year. Although no significant variation between years was seen for any one failure 
mode, it was conceivable that a trend or pattern might emerge when the failure modes 
were combined. Therefore, the unreliability was calculated for each year. 

For the first attempt at a calculation, the year-specific unreliability was found in 
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the same way as the overall unreliability, by updating the Jeffreys prior with the year’s 
data for each failure mode, and combining the posterior distributions for the failure 
modes. The results are given in Figure 1, with the open circles showing means and the 
bars showing 90% intervals. This could be called an example of the Lake Wobegon 
effect-all the years are worse than average. The reason is that, for each failure mode, 
the so-called noninformative prior pulls the probability toward 0.5. 

J 

Therefore, for each failure mode and each year, the distribution for the 
probability of failure was obtained by updating the beta approximation of the 
constrained noninformative prior. For example, Table 3 shows that FRFTS had a total 
of 0 failures in 5 trials. To obtain a mean corresponding to the total counts, even when 
no failures were observed, the Jeffreys prior was updated with the overall data. The 
resulting posterior distribution for P(FRFTS) was beta(0.5, 5.5), with mean 0.5/5.5 = 
0.0909. This mean was used as a constraint when the FRFTS data from an individual 
year were analyzed. The beta approximation to the constrained noninformative prior 
with this mean is beta(0.3603, 3.963); these values could have been obtained accurately 
enough by interpolating Table 1 for CY at po = 0.0909, but actually the software that 
generated Table 1 was used to find Q and p. This prior distribution was updated with 
each year’s FRFTS data to find the year-specific posterior distribution for P(FRFTS). 
The other failure modes were treated similarly, and the year-specific unreliability was 
found by combining the failure modes. 

a 

The results are given in Figure 1, with solid circles showing the means and bars 
showing 90% intervals. The means are comparable to the overall unreliability, and the 
uncertainty intervals are larger. These results could be shown to the customer without 
raising questions about the unreasonably large numbers. 

Apart from the general fact that the Jeffreys prior leads to larger posterior 
unreliabilities than the constrained prior does, the two sets of answers in Figure 1 seem 
consistent except for 1993. That year has the largest mean, based on the Jeffreys prior, 
and one of the smaller means, based on the constrained prior. The explanation lies in 
the fact that only two unplanned demands occurred in 1993. Therefore, the means for 
P(MO0S) and P(FTSV) are pulled strongly toward the prior means, 0.5 for the 
Jeffreys prior and much smaller values for the constrained prior. 
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APPENDIX 

This section finds the density g(4) that maximizes the entropy 

subject to the constraint E[8(4)] = 8,. First, convert the problem to one of finite 
dimension. Choose a finite interval (a,  b )  on the &axis, and divide it into subintervals 
at values 4j. Let Ai denote ~ $ ~ - 4 ~ - , ,  and let gi denote g(4i) .  As the interval (a, b) 
grows large and the Ai’s grow small, the integral is approximated by a finite sum. Now 
the task is to maximize 

- Ci[log(gi) Si Ail 

subject to the constraints 

Ei[gjAjJ = 1 

and 

with respect to the gj’s, A,, and A,. The derivative with respect to gj is 

Set this to zero, to see that log(gi) must be of the form a + bo(#;). Therefore, we have 

15 



Therefore, in the limit g(d) must equal cexp[b8(4)], for all 4. When 4 is written as a 
function of 8, this expression is g[$(e)] = cexp(b8) . 

16 
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