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ABSTRACT 

This paper is a short version of [3]- We study 
a class of discrete dynamical systems that is 
motivated by the generic structure of simula- 
tions. The systems consist of the following data: 
(a) a finite graph Y with vertex set (I,. . . , n )  
where each vertex has a binary state, (b) func- 
tions Fi : -+ E and (c) an update ordering 
T. The functions F; update the binary state 
of vertex i as a function of the state of vertex 
i and its Y-neighbors and leave the states of 
all other vertices fixed. The update ordering 
is a permutation of the Y-vertices. By com- 
posing the functions F; in the order given by 
r one obtains the dynamical system (Sy, r) = 
n:==, F,(i) : E, i-e., a representative 
for the equivalence class of sequential dynam- 
i d  systems ( ~ Y , ? F )  = {(&,r‘) I (ZY,~’) = 
(~Y,T)} which we refer to as SDS. We derive 
a decomposition result, characterize invertible 
SDS and study fixed points. In particular we 
andyse how many Merent SDS that can be ob- 
tained by reordering a given multiset of update 
functions and give a criterion for when one can 
derive concentration results on this number. Fi- 
nally, some specific SDS are investigated. 

Keywords. Sequential dynamical systems, fixed 
points, structure, ordering. 

1. INTRODUCTION 

We build on the ideas presented in the paper 
(21 and introduce Sequentiaf Dynamical Systems, 

(SDS), a new class of dynamical systems implied 
by the formalization of simulation as composed 
local maps. 

An SDS basically consists of (a) a graph Y, ( a i )  
local maps, Le., Boolean functions indexed by 
the vertices and d&ed on the states of the ver- 
tex itself and its corresponding nearest neigh- 
bors and (izi) a permutation of the vertices. The 
full update for the states of the entities gives 
a class of discrete dynamical systems which we 
will refer to as sequential dynamical systems or 
Simply SDS (21- 

Note that the mathematical constituents of SDS 
correspond to the essential elements of a com- 
puter simulation. Simulations typically are com- 
prised of entities having state values and local 
rules governing state transitions, a spatial en- 
vironment in which the entities act or interact, 
and some method with which to trigger an u p  
date of the state of each entity. Schedules for u p  
dates can be time stepped, event driven, scripted, 
etc., and result in the dynamical properties in 
state space that we call a “simulated system”. 

As is seen above and in [2], the general form 
of the support structure for SDS is discrete. It 
is not that this theory is being constructed to 
apply only to simulations that represent space 
discretely. Rather, what is captured is that the 
idea of entity adjacency in the support struc- 
ture is defined by the causal dependency among 
local maps. That is, entities are adjacent in 
the support structure if and only if they can 
interact. This spatial representation (support 
structure), perhaps called %teraction space” or 
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'cause space", is an inherently discrete (graph) 
structure having maps associated to vertices and 
dependency denoted by edges. The support struc- 
ture is a transformation of the Unatural" space 
that particular entities could be defined with re- 
spect to and is, in that important sense, general 
and context free. This is obviously an essential 
issue for a truly general simulation theory. 

Locality, a property of the maps, is dehed  in 
terms of adjacency, a property of the of the s u p  
port structure. The resulting interplay between 
the topological and algebraic properties of SDS 
is very interesting and seem to open new areas 
of purely mathematical investigation. 

2. SEQUENTIAL DYNAMICAL SYSTEMS 

2.1. Definitions. We set N,, = {1,2,. . . , n}- 
Let the set of Y-vertices adjacent to vertex i be 
denoted by Al(i) and set 6; = jAl(i)l. W e  d e  
note the increasing sequence of elements of the 
set &(i) = Al(i)  U {i} by 

Bl( i )  = 0'1 ,... , i  ,... ,&) , (2.1) 

and set d = m a x l ~ i ~ n d i .  Each vertex i has 
associated a binary state zi. Also, let (fk)k with 
fk : @ + F2 where 15 k 5. d+l be some given 
multiset of symmetric functions. For each vertex 
i E N,, we define the map 

projy[il: +I++', 

( ~ 1 , .  . - , zn) * (xjx,. - - , x i , . .  . x j J i )  

Finally, let S k  with k E N denote the permuta- 
tion group on k letters. 

Definition 1 (Y-local maps). Let (fk)llk<d(Y)+l 
be a multiset of Sk-symmetric functions fk : 

Fi,y is a map Fi,y : e + E that updates 
the state of vertex i as a function of the states 
contained in &( i )  and leaves all other vertex 
states ked .  We refer to the multiset (Fi,y)i as 
5Y. 

In particular, let (fk)llk<n be a fixed multiset of 
Spsymmetric functions as defined above. Then 
for each y < Kn the multiset (fk)llk<n induces 
a multiset Zy, i.e., we have a map {Y < Kn} + 
{&-}. Let 7r E Sn. The introduction of the 
maps Fi,y allows us to consider products of the 
form 

n 

(ZY, r) = n Fx(i),Y : E + E - (2-2) 
i=l 

Definition 2 (sequential dynamical system). A 
sequential dynamical system (SDS) over a graph 
Y w.r.t. x is an equivalence class 

BY,*] = { ( ~ Y , z ' )  I ( $ ~ , 4  = (3r,n)I - 
(2-3) 

In this paper we will be particularly interested 
in computing the number of different SDS, i.e., 

a(fh)r. 0') = l{[iT~ i 4 1 E sn)l (2.4) 

for a given multiset (fk)k and for a given graph 
Y. That is, how many dXerent dynamical sys- 
tems can be obtained by rescheduling. 

sometimes the multiset (fk)k is induced by a 
single Boolean function B : E 4 FZ. In this 



3 

case we will say that the corresponding SDS is 
induced by B. The Boolean functions listed be- 
low have this property and will be studied later 
in some detail. Here x = (xi,. . . , zk). Also let 

0 iff z = ( l , l , . . . , l )  
1 else 

PAR* : -+ K 
k 

X C , E X i  
i=t 

1 iff Ai(%) = 1  
0 else 

Although a slight abuse of terminology, we will 
simply write, e.g., UPAR, for these functions in- 
stead of using the full multiset ( fk)& as index. 

2.2. Combinatorial analysis. The function 
u(fk)& (Y) is closely related to a combinatorial in- 
variant of Y itself, namely the number of acyclic 
orientations of Y denoted by a(Y). An acyclic 
orientation is a map that assigns a direction 
to each Y-edge such that the resulting directed 
graph is a forest. Some comments on this rela- 
tion are in order. We will write a permutation T 
as an la-tuple (il, . . . , in) and when nothing else 

is stated the natural ordering (1,. . . , n) is as- 
sumed. Now, SDS can be analysed from a purely 
combinatorial perspective [2]. This approach is 
based on the simple observation that if T = 
(il,. . . ,in) and ?r' = (ii,.. . , ii) are two permu- 
tations differing by a transposition of consec- 
utive coordinates (ik,ik+l) where {ik,ik+l} e 
ew], then independently of the choice of the 
maps &,Y we have [&, T] = [&, 6). This leads 
to an analysis which is independent of the struc- 
ture of the local maps, that is, it only considers 
formal dependencies and is thus determined by 
the underlying graph Y alone. It motivates the 
introduction of the update graph U(Y): 

Definition 3. Let U(Y) be the graph having 
vertex set S, and in which two dierent vertices 
( i l , .  . . ,in), @ I , .  . . , h,) are adjacent iif (a) it = 
hi, f # k, k + 1 a d  (b) {h, i k + l )  $! ewl- 

Write T -Y d iff T and T' occur in a U(Y)- 
path and set [T] = {T' I n' T}. Then for 
T,T' E [u]y we have [&-,K] = [&,?r']. That 
is, U(1')-components do independently of the 
maps Fi,y represent equivalence classes of SDS. 
As shown in [7] the combinatorial analysis al- 
lows us to interprete an equivalence class [?TI= 
as an acyclic orientation of Y. That is, there is 
a bijection 

f(y, ) : [Sn/ WY] + Awc(Y), (2.10) 

where Acyc(Y) is the set of all acyclic orienta- 
tions' of Y. We set a(Y) = IAcyc(Y)I. The 
bijection given in (2.10) shows that each U(Y)- 
component corresponds uniquely to an acyclic 

'The number of acyclic orientations are of indepen- 
dent interest in theoretical computer science, since they 
provide lower bounds on the computational complexity 
of various decision and sorting problems 191. 
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orientation of Y, i.e., the map 

is surjective and we have a( fk ) s (Y)  5 a(Y) .  An- 
other way of stating this is that some compo- 
nents in the update graph U(Y) may merge as 
a result of the specific structure of the Y-local 
maps, see Lemma 1. 

3. FIXED POINTS, BIJECTIVITY AND A 

CONCENTRATION RESULT 

In the following we will write 2 = (~1,. . . , z,). 
We begin by showing that an SDS over the graph 
Y is a direct product of SDS over the Y-components. 

Proposition 1. Let Y be a gmph, [&,XI a n  
SDS, C a Y-wmponerat, nc = IC1 and (Zc, m) = 
nif <ig< ...<igc Fnc (;?),Ye Then we have 

where TC denotes the restriction of the bijective 
map 'IT to  the elements j E v[q.  

Proposition 2. Let Y be a graph and [&,XI 
an SDs over Y. Denote by Fix([$y,r]) the set 
{z I [$y, 7r](z) = 2) .  Then we have 

VuES, :  

We will now give a characterization of bijective 
SDS. 

Proposition 3. [5) Let Y < Kn, and (fk) a 
rnultiset fk  : @ -+ IF2 . An SDS [gy , n] is bajec- 
tive if and only i f  

f a i , y + ~  oprojY[il(.> = x i  or 

fai,,, +I  0 ~rojy[il(.) = xi  f 

- 
Furthermore let ?r = (il,. . . , L - 1 ,  in )  E S,,, A* = 
(in, in -1 , .  . . , il) and [sy ,4 be a bijective SDS. 
Then we have 

[3Y, = [3Y, 'IT*] . 
Remark 1. Obviously, the bijectivity of one pat- 
ticular SDS [&, 7r] implies that any SDS [&, a] 
is bijective. 

In particular we have 

Corollary 1. Let (PARa)l<k<n be the multi- 
set of maps defined in (2.7). m e n  for arbitrary 
Y < K, all SDS induced by (PARt)ilk<+, are 
invertible. 

Proof. Obviously, if 
zi and if zjEAl(i)xj = 1, we derive z; I+ E. 
The corollary now follows from Proposition 3. 

0 

xj = 0, then zi 

Proposition 3 immediately allows one to deter- 
mine all bijective sCA2 [21. 

Corollary 2. There are, independent of n, ex- 
actly 2(") = 16 different bijective S A .  

Proof. An sCA is an SDS over the base graph 
Y = Circn, Le., the cycle graph on n vertices. 

'here we will assume closed boundary conditions 
and nearest neighbor rules. 
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Obviously the corresponding multiset (fk)k con- 
sists of the single map f3 : @ + IF, and Propo- 
sition 3 implies that either 

f3(%-1,Zi ,Zi+l )  = X i  O r  

f3(%--1 ,Zi ,Xi+l )  = R 

where Xi-1 and zi+l are arbitray and i - 1, i, i+ 
0 1 E Z/nZ, proving the Corollary. 

In contrast to this characterization, bijectivity 
of parallely updated CA (PCA) does in fact de- 
pend on the number of cells. For example, CA- 
rule 150 is not bijective for n = 6 and bijective 
for n = 7 [l, 41. 

We next consider SDS over the random graph 
G,,,,, i.e., the probability space consisting of all 
K,,-subgraphs where each edge is selected with 
independent probability p. We will study u(fkIk 
as a random variable w.r.t. the probability space 
G,,, and prove a concentration result for 
log, UNoR(G,,,,). The existence of a concen- 
tration result for log, a(fk)k (Gn,p) can be inter- 
preted as follows: the number of different SDS 
depend only on the number of edges of Y and 
not on the particular choice of Y itself. Insofar 
it can be viewed as a generic property. To begin 
we will define a key property of real valued G,,, 
random variables. 

Definition 4. Let v,,, : G,,,, -+ R be a ran- 
dom variable (r.v.) Then vn,, is called Lipschitz 
if and only if for any two graphs Y,Y' < K ,  
that differ by the alteration of exactly one edge 
one has 

In particular we wiIl be interested in multisets 
(fk)k for which the r.v. log, a(fklk is Lipschitz, 
i.e., 

Lemma 1. Let Y < K,, be an arbitrary graph. 
Then the following assertions hold 

Proof. A detailed proof of (i)-(i i i)  can be found 
in [5] and can be sketched as follows: first one 
proves that 

is injective for (NORk)k. Second one considers 
the bijection in (2.10) and uses the fact that 
log, a(Y) is Lipschitz. 0 

Remark 2 .  The above Proposition implies that 
 PAR is not bijective. A simple example demon- 
strating this is provided by the graph Y = Circq. 
For instance, the two permutations 7r1 = (2134) 
and ?r, = (4132) satisfy ~1 +Y XZ, that is, 
they are contained in different components of 
U(Circ4). However, because of the structure of 
the PAR-function these two components give 
the same sequential dynamical system. The num- 
ber of different SDS is 11 whereas the number of 
acyclic orientations is 14. 
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Theorem 1. Let %,, be L:pschitz. 
G,,, and arbitrary probabality p one has 

Then for 

pn,p({ Ivn,p(GnIp) - 9~n,p(Gn,p)ll > 
X d n m  }) < 2e-X2’2. (3.6) 

In particular, af for some Boolean function B 
the map hB (see 3.5) as bijective, we have 

4ogz(n)  - log, e - log2p - 0(1)1 I 
ql0g z (Gn.p)l- (3.7) 

The first assertion of Theorem 1 is a consequence 
of a general result of Milman and Schechtman 
[8]- It is proved by (a) constructing a finite 
martingale (Xi)i  that converges to the random 
variable V ~ , ~ ( G ~ , ~ ) ,  (b) showing that %,, be- 
ing Lipschitz implies IXi+l - Xi1 < l and (c) 
by applying Azuma’s inequality [SI. The second 
assertion of Theorem 1 follows from Theorem 2 
of [7]. 

In particular we have 

Corollary 3. For the random graph Gn,,, B E 
{NOR, NAND, DFl] and arbatrary probability 
p one has 

PR.P({  110g2 aB(Gn,p) - @ X ~ ~ B ( G ~ , P ) I ~  > 
AJ- 1) < 2e-”j2 , (3.8) 

and we have n[log,(n) - log2 e - log, p - o(l)] 5 
q k z  aB(G%~)l- 

4. ANALYSIS OF SOME SPECIAL SYSTEMS 

In this section we will present some analysis of 
SDS induced by the Boolean functions NOR, 
PAR MIN as listed in (2.5) - (2.8). 

As will be shown below the dynamics for the 
complete graph and the empty graph is well un- 
derstood. To convey information on what one 
can expect for a graph Y < Kn we make use 
of random graph theory. For an SDS [$y,.c] we 
denote by v($Y,T) and y(&,~)  the number of 
different periodic orbits and the size of a largest 
periodic orbit respectively. In the following we 
will study the random variables 

for the functions in (2.5)-(2.8). 

Obviously, pn,p converges for n -+ 00 to the uni- 
form measure on graphs with p(2)  edges. How- 
ever, for small n the deviations between the uni- 
form measure and pn,, are significant. Accord- 
ingly, we will use an adapted version of the mea- 
sure pn,p for the following computer experiments 
as follows: for fixed n E N and a given set of 
graphs, Exp = {Yi,. ..,I&], M E N we ob- 
tain the multiset of probabilities p ( X )  = pi, 
1 5 i 5 M. NOW we take / 3 ~  6 W such that 
&CEIpi  = 1 and define p~ : Exp + R by 
p~ = P E p n , p .  we will denote expectation value 
and variance w.r.t. the measure p~ by EE [ ] and 
VE[ 1. Figures 1-3 show expectations and vari- 
ances for basic properites of SDS induced by the 
Boolean functions mentioned above. 

Let [ ~ Y ~ T ]  be an SDS. The digraph I’[$Y, 7r] 

has vertex set is and its directed edges are 
all pairs of the form ( z , [ ~ y , r ] ( z ) > .  Clearly, 



I'[gy, ?r]-cycles correspond to periodic orbits of 
the SDS [3;, 7r]. 
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FIGURE 1. The number of different SDS, the number of orbits and the size of a largest 
orbit for the NOR-function. Fkom the left: ~ E E  [ONOR], & [NNOR] and EE [rNOR] with 
error bars showing the standard deviation with respect to the measure p ~ .  Here n = 7 
with sample size 50. 

FIGURE 2. The number of k e d  points, the number of different SDS, the number of 
orbits and the size of a largest orbit for the PAR-function. Fkom the left: &[FiXPAR], 
EE~LPAR], ES[NPAR] and IEE[I'PAR] with error bars showing the standard deviation 
with respect to the measure p ~ .  Here n = 7 with sample size 50. 

FIGURE 3. The number of fixed points, the number of different SDS, the number of 
orbits and the size of a largest orbit for the MIN-function. n o m  the left: EE [F~xMIN], 
EE [ ~ M I N ] ,  ~ E E  [NMIN] and IEE [r)MIN] with error bars showing the standard deviation 
with respect to the measure p ~ .  Here n = 7 with sample size 50. 


