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Abstract 

We present a simple t r a c  micro-simulation model that models the effects of capacity 
cut-off, i.e. the effect of queue built-up when demand is exceeding capacity, and queue spill- 
back, i.e. the effect that queues can spill back across intersections when a congested link 
is filled up. We derive the model’s fundamental diagrams and explain it. The simulation 
is used to simulate traffic on the emme/2 network of the Portland (Oregon) metropolitan 
region (20 000 links). Demand is generated by a simplified home-to-work assignment which 
generates about half a million trips for the AM peak. ftoute assignment is done by iterative 
feedback between micro-simulation and router. Relaxation of the route assignment for the 
above problem can be achieved within about half a day of computing time on a desktop 
works tat ion. 
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1 Introduction 
In transportation forecasting for planning applications) the generation of the transportation 
demand is crucial for useful forecasts. Activity-based demand modeling [l, 21 is a promising 
technology here. This means that one attempts to  predict people’s activities (work, shop, sleep, 
. . .) and to  obtain the transportation demand because activities at different locations need to  
be connected via transportation. Yet, it is clear that the impedance of the transportation 
system plays a critical role for activity patterns and activity locations. For example, high 
congestion may be an incentive to  drop intermediate stops at home between activities, or it 
may be an incentive to  do activities at home instead of somewhere else. Thus, a critical part of 
an activity-based transportation forecasting system is the representation of the transportation 
dynamics. 

Any such approach needs to achieve “consistency” between modules. By this it is meant that 
the congestion assumptions on which people plan their activities need to actually be encountered 
when people execute their plans. Otherwise, people will adjust their plans in reaction to  the 
traffic conditions they just found, and so the result is not stable and thus useless for forecasting. 

This consistency criterion between planning and transportation dynamics can be formulated 
as a fixpoint problem [3, 41. Fixpoints can, under certain conditions, be found via relaxation. 
In our case this means: make all plans; execute the micro-simulation with all plans; let (some or 
all) people change their plans according to the simulation result; etc.; until the simulation result 
is consistent with people’s expectations. Since for time-dependent problems with a dynamically 
correct representation of congestion dynamics no better approach is currently known, this is 
what is done by many groups [5, 4, 61. 

From a conceptual point of view, there is no need to use a micro-simulation for the rep- 
resentation of the traffic dynamics. Indeed, traditional assignment models rely on link delay 
functions, i.e. link travel times depend directly on the demand. It is clear though that this 
approach becomes dynamically wrong once demand is higher than capacity, and queue spill- 
back spreads through the system [7, 81. In how far this is important in practice remains an 
open question. But since metropolitan regions are becoming ever more congested) one should 
develop and test a methodology that includes a dynamically correct representation of conges- 
tion. Montecarlo simulations are a common approach to deal with complex systems such as a 
congested traffic network. Yet, since they often exhibit non-linear behavior, they are unlikely 
to  be treatable analytically. 

A large scale approach to  this problem is currently pursued by the TRANSIMS project [9]. 
The next TRANSIMS case study will attempt to simulate the whole city of Portland (1.5 million 
people) on the level of activities generation, on the level of modal choice and route planning, 
and on the level of the transportation and traffic dynamics. The main difference to  most other 
projects wilI be that on all levels the approach will model individual people. The advantage 
of this is that the approach remains conceptually extensible since the behavioral rules of the 
individuals are directly accessible. The challenge with this approach is computational, since 
the problem is not only big (1.5 million individuals as said above, and also 200000 links in the 
transportation network for a realistic representation), but the relaxation iterations means that 
the micro-simulation needs to  be run many times (up to  one hundred times for one relaxation). 

TRANSIMS approaches this problem via a combination of fast hardware and a computa- 
tionally relatively fast traffic simulation approach [lo]. Nevertheless, fast hardware is not always 
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available, such code is data intensive, and it takes time to write. Mostly for the last reason, 
TRANSIMS itself uses simplified micro-simulations in order to  test the other modules (route 
planner, activities planner) and in order to test the interactions (feedback) between the mod- 
ules. Simplified Monte Carlo simulation models for traffic, such as queueing networks [ll, 12,7] 
or cellular automata [ lOJ  are very simple and straigthforward tools to get accurate estimates 
of traffic flows. Although simulating remains demanding on computers even with simple mod- 
els, it usually obtains better results than standard approximate methods such as mean-field 
theory [13] or queueing network approximations [ll]. 

In this paper, we will (Sec. 2) present a simple approach to traffic dynamics in a road 
network, such as a metropolitan area. The dynamics of the model concentrates on the two 
arguably most important elements of congestion: capacity cut-offs, and queue spill-back. Ca- 
pacity cut-offs are modelled by not letting more vehicles leave a link per time slice than is 
possible according to  that link’s capacity; and queue spill-back is modelled by a “storage” con- 
straint, i.e. a link can only absorb a limited amount of incoming vehicles. This is followed by 
a short summary of results for a Dallas scenario (Sec. 3) and by a description of simulation 
results for Portland (Sec. 4). The paper is concluded by a discussion and a summary. 

2 Different models based on queueing theory 
2.1 Simao and Powell’s queueing model 
In 1992, Simao and Powell introduced a simple queueing model based on FIFO (First In First 
Out) queues [ll]. In this model, each node is represented by one unloading queue and as 
many departing queues as there are departing links. When a customer arrives at a node, he is 
automatically transferred to  the unloading queue. A sorting step takes place to  position each 
customer on the departure queue i with probability pa, or out of the system with probablity 
1 - C p i .  In the departure queue, the customer can leave or be hold depending on the service 
rate for this queue. 

Links are divided into sub-links. Vehicles move forward from one sublink to the next at 
every time step. The travel time between two consecutive nodes is therefore deterministic. 
It is interesting to  notice the similarity with cellular-automata (CA) based simulations which 
decompose links into a series of fixed-length boxes. 

The simplicity and the main purpose of the queueing model by Simao and Powell is to 
allow some analytical investigations. Simao and Powell showed that in some simple cases the 
approximation method is more appropriate; but it fails for general conditions. 

The main question about this model is if it contains the minimal description necessary to 
reproduce microscopic traffic characteristics. In fact, the introduction of an unloading queue 
with infinite storage does not allow the creation of spill backs, so typical of a crowded network. 
Spill backs are caused by links that become full, which happens when demand is higher than 
capacity, i.e. more vehicles enter the link than can leave. Full links do not accept any further 
vehicles, thus clogging up links which contain vehicles that want to enter the full link. In this 
way, a single link where demand exceeds capacity can cause congestion to  spread through a 
network . 
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2.2 Gawron’s model 
In 1997, Gawron introduced a model similar to  Simao and Powell’s model in its architecture 
[12, 71. The main difference to the previous model resides in the modelling of spill-backs. The 
number of vehicles leaving a link is constrained by the capacity of the link, and by the number 
of cars which can fit on the destination links. If its destination link is full, a vehicle will stay 
where it already is. 

Each time a car enters a link, an expected travel time is calculated. An early version of 
this model proposed to calculate this travel time from the length and the current state of the 
link. A fundamental diagram proposes a desired velocity according to  the current density [12]. 
A newer version only assumes to  consider the free flow velocity to calculate the travel time [7]. 
We will use the same simulator in this paper and present new results on the Portland network. 

2.3 Fundamental diagram 
One of the most important feature of the queueing model is to produce reasonable travel 
times in the laminar and congested regimes. A fundamental diagram can be extrapolated 
from the parameters of the model itself. Let us consider a queue with free flow velocity vo 
in (rnls). We call L the length of the link, C its capacity (vehicleslsecond) and nlanes the 
number of lanes of the link. The maximum number of vehicles that can be added to the link 
is Nsi t e s  = L - nlanes/esi te  where we set the space taken by one vehicle in a jam to the inverse of 
the jam density: l s i t e  = l / p j a m .  For this paper, Zsite is set to 7.5 meters. The number of sites 
of the link, N s i t e s ,  is also the maximum number of vehicles in the queue. Free flow travel time 
is given by the relation TO = L/vo. 

For illustration, let us now put n vehicles in the queue at time t and suppose that when a 
vehicle is allowed to leave the link, it is automatically put at the end of the same queue (“traffic 
in a loop with one stop light”). We therefore keep the density constant and define different 
regimes according to  the density. There are three regimes: 

Laminar regime. In the laminar regime, demand is smaller than capacity. In the 
queueing model case, it basically means that nobody spends more than TO seconds on the 
link. The average velocity is simply given by vug. 

Capacity regime. As soon as the build-up of the queue is longer than what the capacity 
of the link can dissolve in TO seconds, we can consider the queue in the congested regime. 
In our closed system, this simply means that the first vehicle released from the queue 
after the start of the simulation will be ready to  leave again (according to  TO) before the 
vehicle in front of it has left. The critical density for which vehicles begin to  wait longer 
than To is given by 

C * To 
Nsi t e s  

P I = - *  

When the density p is higher than pel, the expression of the travel time can be given by 
t = t o  + (n - C - to)/C = n/C, which simply means that one can leave the link once all 
n vehicles in front have left the link, and this takes a time of n/C. 
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This leads to  the expression for the velocity: 

c 1  K 
nlanes P P 

- - 21 = - - - 

where K = laiteXC. The velocity in the capacity regime is thus a product of a model 
parameter ( t s i t e ) ,  a link parameter ( C / n l a n e s ) ,  and the inverse of the density. 

Wanes 

0 Jammed regime. The velocity goes towards zero when the queue is almost full and 
vehicles have difficulties t o  leave the queue because there is no space available. For this, 
it is easier to  imagine that the closed loop is composed of two links. During one time 
step, the first link is picked. Vehicles leave until all empty spaces in the second link are 
filled up, and vehicles are moved forward on the first link. Then, the same happens for 
the second link. Clearly, the number of vehicles n(t) that leave the link by time step is 
the same as the number of empty sites, nemptv(t). Since n( t )  is the same as the flow, and 
density p(t) = (Nsites - nemPty(t))/Nsites, one obtains p = ( N s i t e s  - g) /Ns i t e s .  The link is 
in this regime for 

p L p2 = 1 - C / N s i t e s  

A typical fundamental diagram would look like Fig. 1. Velocities in the queueing model do not 
go “smoothly” to  zero for p -+ 1; instead, they have a “kink” at p = 1 - C/Nsites. The velocity 
here is K - L / ( L  - K ) .  This means that if the link is long enough, this value is close to K ,  
which depending of the characteristics of the link, is not necessarily close to zero. 

The physical reason for this is that “holes” can travel in one time step from the beginning of 
the link to the end in the queue model. This is opposed to real traffic, where, say, a light turns 
green, then the first car moves and opens up space for the second, then the second car moves 
and opens up space for the third, and it takes quite some time until this effect has travelled up 
a link. 

The consequence of this behavior for traffic simulation purposes is that simulated traffic 
will be more “fluid” in the very congested regime than when using a model where speed goes 
“smoothly” to zero for p + 1. Having somewhat fluid traffic in the very congested regime is 
though not necessarily a disadvantage since, in a network context, current similation-models 
seem to  grid-lock more easily than reality [14, 151. 

2.4 
The description in the last section should be sufficient to obtain a model similar to ours. 
Nevertheless, in this section we want to  give a more precise description of the algorithm that 
we used. We call Cl ink  the capacity of a link in vehicles/second. Ndink is the number of vehicles 
which already left the link during the same time step, and rand is a random number between 
0 and 1. We denote lxJ the floor of x. 

Algorithm of the queueing model 

0 For all links DO: 
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* If the free speed arrival time is larger than the current time, then break and go 

* Check if the destination link has space. If not, break and go to the next link. 
* Calculate the expected arrival time on the end of the next link: 

to the next link. 

Arrival time = Current time + length/freespeed 
(length and freespeed of the destination link) 

* If passing is allowed, insert vehicle into the destination queue sorted by time 
* If passing is not allowed, insert vehicle at the end of the destination queue 

ENDDO 

ENDDO 

Passings allow the model to handle vechicles with different maximum velocities, for example 
cars and buses. In this case, priority queues are necessary. 

Note that the simulation runs on precomputed route plans, as explained below. Such a 
simulation can become “stuck” or grid-locked, for example when a loop of full links forms, and 
the first car on each of these links wants t o  move into another of these full links [14, 151. In 
order to  prevent this, we remove vehicles that are first in a queue and have not moved for Twait 
time steps of the simulation. For the simulations in this paper, we used.Twait = 300 seconds 
(= 300 simulation time steps). In the iterative procedure (explained later), many such vehicles 
were removed in the first iterations, but their number is less than 0.5% in the 40th iteration 
(Fig. 2 c). 

3 Previous results on a Dallas case study 
We compared the queue model (QM) with two other, more realistic micro-simulations in the 
context of the TRANSIMS Dallas-Fort Worth case study [16]. Comparisons of link densities 
and of accessibility can be found in [17], comparisons of turn counts (also with field data) can be 
found in [18]. For these studies, all three simulations used the same trip table (origin-destination 
matrix), and they used the same router for iterations between simulation and re-routing. The 
major result of these comparisons was that the results of all three simulations were remarkably 
similar, indicating that deviations from reality are currently most probably to  a larger extent 
caused by the travel demand generation algorithms and by the routing algorithm than by the 
micro-simulations. 

4 Simulation results on Portland 
In this paper, we want to  concentrate on results for Portland (Oregon), which is the study area 
for the next TRANSIMS case study. 

4.1 Activities and iterative replanning 
TRANSIMS [9], in its full design, uses data on demographics and in transportation infrastruc- 
ture as input. The following steps are then performed: 
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e Synthetic population disaggregation: As the first step, it generates a synthetic popu- 
lation from the demographic data [19], that is, TRANSIMS looks at synthetic individuals 
and their decision-making process rather than at the behavior of aggregated quantities. 
The synthetic individuals possess many relevant attributes such as the number of persons 
living in the same household or the number of cars per family. 

e Activities generation: Travel demand is generated via activity patterns and activity 
locations. This synthetic population is then combined with the land use data to  produce 
activity assignements. This basically tells us where a person works and what her other 
schedules are. 

e Modal and route choice: A modal choice and routing module generates explicit “travel 
plans” for each synthetic individual. 

0 Travel: The micro-simulation (such as the QM model presented in this paper, or more re- 
alistic micro-simulations) executes all travellers’ plans simultaneously and thus computes 
the nature of the interactions between travellers, especially congestion. 

It is well-known that the above steps cannot be performed uni-directionally because backward 
causalities exist. For example, congestion will make people change their mode of transportation 
and/or their routes. If that does not help enough, they may change their activity locations 
and/or their activity schedule. 

TRANSIMS (and several other projects [5, 4, 61) approach this problem via feedback, i.e. 
iterations between the modules. Initial activities and travel plans are generated, the micro- 
simulation runs based on these plans, some synthetic travellers change modes and/or routes, 
the micro-simulation is run again, etc., until some stopping criterion is fulfilled. 

For the Dallas case study, the activities generation module was not yet in place. Thus, the 
Dallas case study used conventional trip tables as starting point and essentially performed an 
assignment of the trip table on the network, except that the trip tables were explicitely time- 
dependent, the assignment was performed on the level of individual drivers, and the dynamics of 
congestion and queue spill-back (and much more) was explicitely and realistically represented. 

The activities used for this paper were a simple home-to-work assignment. This is not done 
with the intention of being as realistic as possible but with the intention of understanding 
the dynamics of the computational process by using a simplified partial problem. The input 
data here is (i) a list of all synthetic individuals in the simulation who work, and (ii) a list 
of all workplaces. Workers and workplaces are assigned by using a distance-based preference 
function [20]. This activity set leads to  approximately 500000 trips, all between 4am and loam. 

Routing is done using time-dependent fastest path. Link travel times are given in 15-minute 
aggregates from the last iteration of the microsimulation. For the initial route plan set, free 
speeds on the links are used. Travellers only have cars available; the integration of other modes 
is currently being done but not yet operational. For route re-planning, we only change routes 
for a fraction of the population. This fraction is approximately 5%, and selection is done with 
a heavy bias towards individuals who have not re-planned their route for a large number of 
iterations ( “age-dependent re-planning” , [21]). By iterating this process, we reach a relaxed 
state, where no more changes are observed from one iteration to the next, except from random 
fluctuations. For morning peak simulations, this typically takes 20 to 40 iterations, see Fig. 2. 
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The network that we used was the same that the Portland MPO (“Portland Metro”) uses 
for their emme/:! runs. The important information for our model were: length of links, capacity 
of links, free speeds or speedlimits, and storage capacity for full link (computed via length and 
number of lanes). Except for the storage capacity, this is the same information that is used for 
traditional assignment. The network has 20,024 uni-directional links and 8,564 nodes. 

We simulated traffic between 4am and noon; in order to simulate these 8 hours with half a 
million trips on the above network, we needed about 17 minutes on a 250 MHz SUN UltraSparc 
CPU. Computational speed on a Pentium CPU should be about the same or faster. 

4.2 emme/2 results 
For comparison, we use results from a Portland emme/2 AM peak assignment (Fig. 3). These 
results were provided by the Portland MPO (Portland Metro) and were run on the same network 
that we were using. Yet, we are not using the same origin-destination table as the emme/% 
assignments since we are generating transportation demand via activities as described above. 
For that reason, the results are not strictly comparable and the emme/:! results should be 
considered as a baseline only. 

Note that even if we were using the same demand table as emme/2, this would not help 
much because in the end we want to match reality, not some other model. In consequence, 
a truly useful comparison study with traditional assignment would need field data (such as 
turn counts), and one would also have to compare the traditional way of demand generation 
with the activity-based demand generation, both for the traditional assignment and for the 
simulation-based assignment. Although such a study would certainly be useful, it is outside 
the scope of the current TRANSIMS project. 

4.3 Queue model simulation results 
Fig. 4 shows results of our microsimulation-based assignment using the simplified home-to-work 
activities. As mentioned earlier, the simulations run on the same network as the emme/2 as- 
signment except that some additional information is needed in order to get the storage capacity 
of the links. We show results of the 40th iteration of the feedback process. 

The plots show average hourly speeds on all links according to the legend; red links have 
low speed, probably caused by congestion. Underneath, links are marked in light gray, with 
the width corresponding to  their capacity, in order to  identify high-capacity links. Since our 
method is explicitely time-dependent, we show plots for the periods 6-7am and 7-8am. 

Clearly, even after many iterations, there remains a significant number of bottlenecks that 
prevent traffic from going to  their destinations. Contrary to traditional assignment, the simula- 
tions cannot “ p ~ s h ’ ~  demand through bottlenecks at a rate higher than capacity, so that traffic 
jams up and spills back. 

Fig. 5 shows comparisons to  the emme/2 assignment for the different hourly periods. The 
shown volumes are hourly volumes; for example, Fig. 5 b corresponds to  the volume between 
7am and 8am. This is also the time slot where the dynamics is probably closest to the emme/2 
assignment. 

In the 6-7am time slot (Fig. 5 a) we have much more traffic aut of the city than the emme/2 
assignment. This is probably a result of the overly simplistic assumptions of the workplace 
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assignment (which is homogeneous in space). 
In the 7-8am period (Fig. 5 b), there are two dominant features when compared to the 

emme/2 assignment: (i) we have much more traffic northbound across the bridges. This comes 
out of assigning too many workplaces in Washington to workers living in Oregon, see [20]. 
Better sets of workplace assignments should correct this. (ii) We have significantly less flow on 
1-84 westbound, which is the somewhat zigzagging green line extending east from downtown. 
Further inspection yields that this is not the result of not enough traffic but rather of too much 
traffic, which jams up when it tries t o  reach the bridges across the Williamette River and then 
spills back into the interstate. Similar effects, although to a lesser extent, can be found on 
some other of the freeways, especially where they merge and upstream from there. This effect 
is not necessarily unrealistic since it is a consequence of the most important dynamic difference 
between traditional assignment and simulation-based assignment, although it seems to be a bit 
too strong on 1-84. Field data (planned for Portland) would be necessary to clarify this issue. 

5 Discussion 
As usual, we are left with the unsatisfactory feeling that we now know some differences between 
the approaches, but we still do not know which approach is better at what aspects of reality. Al- 
though Portland Metro is working on it, there is currently no field data for comparison purposes 
available. Even when it becomes available, this will not be the solution to  all problems because 
differences to  data can be caused by the activities generator, the router, the micro-simulation, 
or even by network changes (for example, Portland closed the Hawthorne Bridge across the 
Williamette river for a year for maintenance). As mentioned further above, a comprehensive 
comparison study would certainly be useful. This study would have to include systematic eval- 
uations of the demand generation, to  circumvent the problem that current origin-destination 
matrixes may be adjusted to work well with the emme/2 technology (and may thus work less 
well with the simulation-based assignment). And it seems a bit too early for such a study since 
the microsimulation-based technique is not yet well enough understood on its own. 

Yet, the fact that we can run the complete microscopic dynamic assignment of half a million 
trips on a 20 000 link network in less than half a day on a single workstation CPU is an astound- 
ing feat in itself. Clearly, technology has enabled us to  make a big jump in what is feasible, and 
much work remains to be done to  make these opportunities useful for transportation planning. 

6 Conclusion 
We presented a simplified traffic micro-simulation. This micro-simulation is consistent with 
a microscopic approach to  demand generation, that is, it operates on individual route plans. 
The approach is based on the simulation of queues, where vehicles can leave a queue only if 
capacity restrictions allow it and if there is space on the destination link. In addition, a vehicle 
needs to  spend at least the free speed travel time on a link. This achieves that situations 
where demand is larger than capacity automatically lead to  queue formation, and because of 
limited “storage” capacity on the link, the jam will eventually spill back through the network. 
The model essentially needs emme/:! type network data as input, plus the number of lanes to  
compute the storage capacity. 
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We showed a first application of this model for Portland. The emme/:! network that Portland 
Metro uses has 20000 links; we ran about half a million home-to-work trips through this 
network. Feedback iterations were used to relax the routes; results of the final iteration were 
shown and compared to  emme/=! results. Because of lack of field data, no final conclusions 
can currently be drawn. Yet, the fact that such studies can be done on a single workstation 
CPU in less than half a day of computing timeis an enormous technological achievement, and 
exploratory studies such as the one described in this paper are necessary to understand this 
new technology better and to  obtain a broad technology base in the area. 
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Figure 1: Fundamental diagrams flow vs. density and velocity vs. density for the Q-model when 
run in a closed loop. 

Figure 2: Different indicators of routing relaxation. (a) Sum of all travel times vs. iteration 
number. (b) Number of vehicles in the simulation as function of the time-of-day. Different 
curves for different iteration numbers. (c) Number of removed cars. As explained in the text, 
cars that are first in the queue but do not move for time steps because their destination 
link is full are removed from the simulation. 

Figure 3: Result of the emme/2 assignment. The width of the light gray denotes capacity. 
Green, red, and dark red colors mark links with “emme/2 volume”-to-capacity ratios 0.5-1, 
1-1.2, and > 1.2, respectively. 

Figure 4: Result of our own route assignment using simplified home-to-work trips, and feedback 
iteration between a fastest path re-planner and the queue model (QM) micro-simulation. The 
width of the light gray denotes again capacity. The colors denote average hourly speeds, as 
indicated in the legend. (a) Averaged from 6 to  7 am; (b) Averaged from 7 to 8 am. 

Figure 5: Using the same simulation results as in Fig. 4 and comparing them to the emme/2 
assignment. The width of the light gray denotes again capacity. The colors show differences 
between our simulation results and the emme/2 assignment flow results; red means that we 
have more flow, green means that we have less flow. (a) Averaged from 6 to 7 am; (b) Averaged 
from 7 to  8 am. 
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