
LA-UR- 8 -
A oved for public release;
&Lion is uniimiteci.

Title:

Author@):

Submitted to:

Los Alamos

An Adaptive Synchronization Protocol
For Parallel Discrete Event Simulation

Keith R. Bisset

1998 Advanced Simulation Technologies Conference
3 1st Annual Simulation Symposium
April 54,1998, Boston MA

N A T I O N A L L A B O R A T O R Y
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the
US. Department of Energy under contract W-7405ENG-36. 8y acceptance of this article, the puMisher recognizes that the U.S.
Government retains a nonexclusive. royalty-free license to putjiish or reproduce the publshed form of this contribution, or to allow
athers to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article
as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports
academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not emforse the viewpoint
of a puMication or guarantee its technical correctness. Form 836 (lo/%)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liabiiity or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spc-
cific commercial product, proctss, or service by trade name, trademark, manufac-
turer, or otherwise dots not necessarily constitute or imply its endorsement, m m -
mendation. or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

An Adaptive Synchronization Protocol for Parallel Discrete Event Simulation

Keith R. Bisset
TSA 5, MS F602

Los Alamos National Laboratory
Los Alamos, NM 87545

kbisset@lanl.gov

Abstract
Simulation, especially discrete event simulation

(DES), is used in a variety of disciplines where numerical
methods are dificult or impossible to apply. One problem
with this method is that a suficiently detailed simulation
may take hours or days to execute, and multiple runs may
be needed in order to generate the desired results. Paral-
lel discrete event Simulation (PDES) has been explored for
many years as a method to decrease the time taken to ex-
ecute a simulation. Many protocols have been developed
which work well for particular types of simulations, but
perjorm poorly when used for other types of simulations.
Often it is dificult to know a priori whether a particular
protocol is appropriate for a given problem. In this work,
an adaptive Jynchronization method (ASM) is developed
which works well on an entire spectrum ofproblems. The
ASMdetermines, using an artificial neural network (m),
the likelihood that a particular event is safe to process.

1 Parallel discrete event simulation
Simulation, especially discrete event simulation

(DES), is used in a variety of disciplines where numerical
methods are =cult or impossible to apply. One prob-
lem with this method is that a sufficiently detailed sim-
ulation may take hours or days to execute, and multiple
runs may be needed in order to generate the desired re-
sults. In general there are three ways to speed up the ex-
ecution of a DES: the algorithms in the simulation can be
improved (both in the model and in the simulation frame-
work), the simulation can be executed on a faster machine,
and the simulation can be run in parallel on several proces-
sors. The last method, parallel discrete event simulation
(PDES), is the focus of this research.

The typical method to paralleliie a discrete event s-m-
ulation is to divide the model that is being simulated into
separate sub-models, called physical processes. For ex-
ample, in a manufacturing plant simulation each machine
could be considered a separate physical process. Each

physical process is then simulated by a logical process
(LP).

An LP communicates with another LP by transmit-
ting a message that contains an event. An event consists
of an execution time (the timestamp), which indicates the
simulation time at which the event is to be executed on the
destination LP, the model-specific actions to be performed,
and the source (i-e., transmitting) and the destination (i.e.,
receiving) LPs. It is possible for the source LP and des-
tination LP to be the same. When an LP receives a mes-
sage, the event that is contained in the message is sched-
uled for execution. The source LP is said to have generated
the event that is scheduled on the destination LP. Each LP
maintains its own independant simulation clock, called the
local virtual time (LVT). The LVT is the timestamp of the
last event that has been executed. There is also a global
virtual time (GVT), which is defined as the minimum of
all the LVTs and any messages in transit in the simulation.
The GVT records the global progress of the simulation.

The behavior of a PDES is influenced by many fac-
tors, including the model that is being simulated, the hard-
ware on which the simulation is executing, the comuni-
cation network that connects the processors, and the simu-
lation framework (the infrastructure upon which the model
is built). The situation becomes even more complex when
the simulation is run on a heterogeneous collection of ma-
chines with varying computation power.

Reynolds [141 has identified nine design variables that
can be used to describe the spectrum of PDES synchro-
nization. The two which are most directly related to this
work are aggressiveness and risk.

Aggressiveness is the willingness of an LP to process
an event that may turn out to be incorrect. An LP that
never executes events out of timestamp order has zero ag-
gressiveness. An LP that allows events to be executed out
of order, but later corrects the errors that result, is aggres-
sive.

Risk is the willingness of an LP to transmit messages
that later may have to be retracted because an event was
processed incorrectly (Le., out of order). Nonzero risk im-

mailto:kbisset@lanl.gov

plies that the simulation has some method to undo the ef-
fects of erroneous messages (e.g., anti-messages).
1.1 Conservative PDES

The conservative simulation protocol [3, 21 prevents
out of order execution of events. Using the terminology
of Reynolds [14], it is non-aggressive and non-risb. An
event is not executed by an LP unless it can be guaranteed
that no other event with a smaller timestamp (a straggler)
will be received. Such an event is called a safe event. If
there are no known safe events, the LP will block until a
safe event becomes available. A safe event can become
available in one of two ways: a new event is received and
determined to be safe, or a previously received event is de-
termined to be safe, usually because an event was received
from another LP.

In general, messages from one LP to another must be
sent in increasing timestamp order. A message from LP1
to LP2 with timestamp t is a guarantee by LP1 to LP2 that
LP1 will not send another message with a timestamp less
than t. In this way, an LP can determine if an event is safe
to process. If an LP has received a message from every
other LP with a timestamp larger that the timestamp of the
event in question, the event is safe. To prevent deadlocks,
LPs send out null messages, messages with no correspond-
ing event, only a timestamp. These messages simply serve
to update the minium timestamp on messages from a par-
ticular LP.
1.2 Optimistic PDES

In contrast to conservative simulation, optimistic sim-
ulation [8] assumes that every event is safe. Again using
Reynold’s [141 terminology, optimistic simulation is ag-
gressive and most optimistic protocols are risky. When
the assumption that an event is safe to process is proved
wrong, by the receipt of a straggler (Le., an event which
should have been processed in the past), events which have
already been processed and have a timestamp greater than
that of the straggler must be rolled back. This rollback
may include the sending of anti-messages to cancel mes-
sages transmitted in error.

An anti-message is simply a copy of the original mes-
sage with the sign reversed. If the positive message to be
canceled has not yet been executed by the destination LP, it
is simply removed from the message queue of the destina-
tion LP. If the message has been processed, the destination
LP must be rolled back to a time prior to that of the times-
tamp of the canceled message, in order to undo any effects
of the incorrect message.

Message cancellation may either be aggressive (ev-
ery message transmitted by a rolled back event is canceled
immediately), or lazy (only events which are not regen-
erated when the rolled back event is reexecuted are can-
celed) [6, 91. Aggressive cancellation increases the speed

at which messages are canceled, at the risk of canceling
some messages unnecessarily. Lazy cancellation only cor-
rects truly erroneous messages, at the risk of more erro-
neous messages being executed, possibly increasing the
number of rollbacks.

2 Adaptive simulation
Many protocols have been developed to reduce the

aggressiveness and risk of optimistic protocols (e.g., [13,
161) and to increase the aggressiveness and risk of con-
servative protocols (e.g., [4, 151). These protocols do not
answer the basic question: “Is a particular event safe to
process?” The approach taken in this research is to deter-
mine, using an Adaptive Synchronization Method (ASM),
the lielihood that a particular event is safe to process.

Other attempts at adaptively controllig PDES (e.g.,
[1, 11, 5 , 7, 101 have used adaptively controlled parame-
ters such as blocking windows (the amount of wall-clock
time to block after each event is processed). These proto-
cols do not treat each event individually. As a (simplified)
example, take a simulation with two types of events, tl
and t2. Events of type tl almost always are rolled back,
while events of type t2 are almost never rolled back. As
ASM would execute events of type t2 immediately, but
block for some amount of walk-clock time before execut-
ing events of type t2 in order to reduce rollbacks. An adap-
tive protocol that works on an per LP basis would have to
determine a balance between executing events of type tl
immediately, and blocking before executing events of type
t2, makiig a choice which is not optimal for either type of
event.

In a complex simulation, the appropriate action may
depend not only on the type of event, but possibly on the
events source, destination, the amount of aggressive pro-
cessing on the destination LP, or the type of LP as well.
Given this complex (and possibly changing) set of depen-
dencies, using an ASM to decide, on a per event basis, how
much time to wait prior to executing an event makes sense.

The ASM takes as input several parameters describ-
ing the state of the LP and the event in question (e.g., event
type, LP type, the difference between the local and global
virtual times, or the number of rollbacks by this LP). All
of these parameters are local to the LP, thus do not in-
cur any communication overhead. Given these parame-
ters, the ASM will return a prediction of the likelihood
that the event is safe to process (i.e., will not roll back).
This likelihood is similar to a probability, but may have
some differences, depending on the implementation of the
ASM. For instance, it may not be limited to the range 0 to
1. Given this l iel iood, a decision will be made whether
or not to execute the event. In this way aggressiveness can
be controlled on a per event basis.

The ASM can be implemented using any adaptive

Output Layer Input Layer Hidden Laye1

Y

Figure 1: Neural network architecture with inputs
X I , X2,. . . , X,, output Y , and one hidden layer.

method, including an artificial neural network (ANN),
fuzzy logic, or a genetic algorithm. For this work, an ANN
was chosen. The reason for this choice is a ANN'S ability
to deal with a high-dimension input space, and the ability
to interpolate between known data points.

3 Artificial neural networks
An in-depth treatment of artificial neural networks

(ANN) is beyond the scope of this paper, more complete
descriptions can be found in [121. A brief introduction is
presented below.

An ANN is a simplified model of neural processing of
the brain, consisting of simple interconnected processing
units. It is able to learn to approximate any function, by
using example data. An ANN is arranged into layers: an
input layer, an output layer, and one or more hidden lay-
ers, so called because they are not directly connected to
the network's inputs or outputs. An ANN with one hid-
den layer is shown in Figure 1. The X i are inputs to the
network, and Y is the output of the network.

One of the most cornmon ANN architectures is the
multr-layer perceptron (MLP). An MLP unit is shown in
Figure 2. The output of a unit is a function of the weighted
sum of its inputs, as shown in Equation 1. The network
learns by adjusting the weights on the inputs to achieve the
desired output. The output function is a non-liiear func-
tion which maps its input to the range (0,l). A common
output function is the sigmoid function shown in Equa-
tion 2.

Figure 2: Detail of an ANN unit.

The network is trained by presenting example inputs
and adjusting the weights of the network to miniiize the
error. Trainiig can be either supervised or unsupervised.
In supervised training, the desired output is presented with
each set of inputs and the network is trained to produce
the desired output. Unsupervised training only presents
the inputs to the network, It is up to the network itself to
group similar sets of inputs to produce the same output.
This is useful in classification, where the actual output is
not important, only that inputs which belong to the same
class produce similar outputs. Only supervised training is
considered in this work.

A common learning algorithm for A N N s is back prop-
agation. The difference between the actual output, Y, and
the target output, Y(t) , is computed and propagated from
the output layer, back through the hidden layers to the in-
put layer, adjusting the weights on the inputs. The weight
change between unit j and unit i is shown in Eiquations 3-
5, where 77 is the learning rate, which controls how fast the
network learns.

sj =
(s) (yr) - y j) i f j is an output unit

(&) E, W,jS, if j is a hidden unit

(4)

netj = w~,x, (5)
Q

Training can be either off-line or online. In off-line
training, all of the training examples are collected before
training starts, and presented to the network as a group.
Online training presents training examples individually,
and can be interleaved with network evaluation. Usually
online training examples are generated by the application
as it executes.

4 Simulation framework
An object oriented PDES Mework, object oriented

parallel simulation system (OOPSS), was written to de-
velop and test new simulation protocols. Through the use
of inheritance and polymorphism, parts of the simulation
framework can be replaced (e.g., substitute an optimistic
protocol for a conservative one) without changing the rest
of the framework, or the models being tested. This allows
different protocols to share much of the code, allowing fair
comparisons to be made between them.

OOPSS also features an abstract parallel machine in-
terface, which currently has two implementations: mes-
sage passing interface (MPI), and a distributed simulation
simulator (DSS) . The MPI interface allows OOPSS to run
on any parallel machine or network which supports MPI,
which includes many recent parallel computers as well as
networks of workstations. DSS allows OOPSS to run on
a single processor, but simulate a run on multiple proces-
sors. DSS uses threads to interleave the computation from
each simulated processor, and simulates the interconnec-
tion network using a fixed delay for each message, but
does not simulate network contention.

5 Models used for testing
The model used to evaluate optimal simulation is a

s i p l e queuing network that can be configured to make it
more efficiently simulated under the conservative or opti-
mistic protocol. The LPs are arranged into two rings, the
odd numbered LPs in a slow ring and the even numbered
LPs in a fast ring. LPs in the fast ring process events ten
times faster than LPs in the slow ring. Two types of events
are used: intra-ring and inter-ring. The LP configuration is
shown in Figure 3.

An intra-ring event executed at time t causes a intra-
ring event to be scheduled at time t + 2 on the next LP
in the ring. Additionally, an inter-ring event is scheduled
on the corresponding LP in the other ring at time t + 1,
with probability p. An inter-ring event does not cause any
other events to be scheduled. Each LP starts with a single
intra-ring event scheduled at time t = 1.

An intra-ring event takes 10000 psecs on a slow LP
and 1000 psecs on a fast LP. An inter-ring event takes no
time to process on either ring. In this way the amount of
time taken by event processing is independent of p, and
any differences in execution time for the same size prob-

n

Figure 3: Model used for testing.

lem are due to simulation overheads.
The adjustable parameter, p, changes the behavior of

the simulation so that it is more efficiently simulated by
conservative or optimistic protocols. If p = 0, no inter-
ring events are scheduled. The model is more efficiently
simulated with an optimistic protocol. Each LP in a ring
has the same number of events to process, so the LVT of
LPs within a ring stay fairly close. Since there is no com-
munication between rings, they can be simulated indepen-
dently. Under an optimistic protocol, the cost of rollbacks
is small, since no LP simulates far into the future of an LP
from which it received events. Under a conservative pro-
tocol, after a fast LP finishes executing an intra-ring event,
the LP must block until the corresponding LP in the other
ring has finished executing its intra-ring event and sends a
null-message. This forces the two rings to stay synchro-
nized.

If p = 1, an inter-ring event is sent by every intra-
ring event. The model is more efficiently simulated with a
conservative protocol. Under a conservative protocol, af-
ter a LP on the fast ring executes an intra-ring event, the
LP blocks until it receives a inter-ring event fiom the cor-
responding LP in the other ring. Under an optimistic pro-
tocol, after a intra-ring event is executed by a fast LP, the
LP proceeds to execute additional intra-ring events until
the inter-ring event is received. At this point the LP must
rollback the additional intra-ring events just executed.

Five different methods for choosing p are used for
testing. The first three methods use the same value of p

1.8

1.6

1 A

12

1

0.8

0.6

0.4
0 5 10 15 20 25 30 35

hocessors

Figure 4: Comparison of different models under conservative
synchronization.

for each LP in the system, 0,0.5,1, and are referred to as
fiedo,fied.s, andfixedl, respectively. The fourth method
chooses p from a uniform distribution for each LP. In this
method, p remains fixed for the duration of the simulation.
This method is referred to as space, since p varies in space
(across LPs). The fifth method changes p after every ten
events are executed, and is referred to as space-time, since
p varies in space and time.

Each combination of synchronization protocol and p
is run on varying problem sizes, ranging from 2 to 32 LPs.
Each LP is run on its own processor. The simulation is
run until a simulation time of 300 seconds is reached. For
each simulation run, the execution time, overhead due to
blocking and overhead due to rollbacks are measured.

Figure 4 shows the effect of varying p under the con-
servative protocol. The execution time remains fairly con-
stant no matter what value of p is used, however the effi-
ciency is very different. This is due to the protocol's con-
servative nature. After an intra-ring event is executed on a
fast LP, it must block until the corresponding slow LP fin-
ishes executing. The slow LP will send either an intra-ring
event (model fixedl), or a null-message (model fixe&).
If an LP has blocked waiting for a null-message, the LP
could have processed the next event, it simply lacked the
information needed to make that decision. Any time spent
blocked is simply wasted. If an LP is blocked waiting for
a real message, the correct execution depends upon that
message and the block is necessary.

Figure 5 shows the effect of varying p under the opti-
mistic protocol. The fixe& model is executed efficiently,
due to the absence of inter-ring events. Each LP receives
events fiom only one other LP, in increasing timestamp
order, so no rollbacks occur. Once inter-ring events are
introduced into the simulation (i.e., p > 0), the cost of a

h

P

0 5 10 15 20 25 30 35
Processors

Figure 5: Comparison of different models under optimistic syn-
chronization.

rollback becomes high. In the course of one event execu-
tion time on a slow LP, 10 intra-ring events can be executed
on a fast LP, which will in turn lead to 9 intra-ring events
executed on the next fast LP, and so on. At least 55 intra-
ring events may have to be rolled back due to the rollback
of the first event. This number may increase due to the
propagation delays of anti-messages.

6 Adaptive synchronization method
The ASM protocol was implemented using the

Stuttgart Neural Network Simulator (SNNS) [171, devel-
oped by the Institute for Parallel and Distributed High Per-
formance Systems at the University of Stuttgart. SNNS
features a graphical user interface for developing and train-
ing ANNs and a kernel which can be embedded in another
application in order to use an ANN during runtime.

An MLP network with one hidden layer comprising
of 21 units was chosen, using the standard backpropaga-
tion algorithm for training. The training set was gener-
ated from instrumented runs of the fixed0 and fixed1 mod-
els using the optimistic protocol. A training example was
generated for each event that was executed, along with an
indication of whether the event rolled back or not. The
collected data was processed to to remove duplicates, cre-
ating a trahhg set consisting of 3019 examples, 1240 for
events which were rolled back, and 1779 for events which
were not rolled back.

The input to the ANN consisted of seven parameters:
event type, source LP type, destination LP type, source
aggressiveness, destination aggressiveness, rollbacks per
time, and rolled back events per time. The source is the
LP that generated an event, and the destination is the LP
on which the event is to be executed. The type of an LP is
the ring which contains the LP (fast or slow). The aggres-

h

P

.- B

d

v

F E

a
0

fixed1 +-

space -*-
space-time -* --

fixed5 -;+;

fix& I
1.8 r I

1.6 -

1.4 -

1.2 -

1 -

0.8 -

.__._.._.__.__.. ---- e ___.___.._..__......... --. _ _ _ _ _ -________. 0 ____..____.._.._.... -.-
O A I v.-

0 5 10 15 20 25 30 35
Processors

Figure 6: Comparison of different models under adaptive syn-
chronization.

siveness of the source is measured by the difference be-
tween the source's LVT when the event was generated and
the GVT when the event is executed. The aggressiveness
of the destination is the difference between the LVT on
the destination and the GVT, when the event is executed.
Rollbacks per time is a measure of how many times the
destination LP has rolled back for each unit of simulation
time it has executed. Rolled back events per time is a mea-
sure of the seriousness of those rollbacks. These parame-
ters were chosen so that they each have a limited range (as
opposed to LVT, which can increase without bound), and
can be computed locally on the destination LP (except for
LVT of the source, which is transmitted with the event).

The ASM protocol is similar to the Optimistic proto-
col, with one major difference. Prior to executing an event,
information about the event (the input parameters) is given
to the ANN, which returns 1, an estimate of the likelihood
that the event will have to be rolled back. If I is less than an
adjustable threshold (0.5 was used in this work), the event
is executed immediately. Otherwise the event is not exe-
cuted and control is retumed to the simulation framework.
Other outstanding work is completed (e.g., adding newly
arrived events to the event queue, or updating GVT). When
this work is done, the process repeats. The event evaluated
by the network may be different, if an event with an earlier
timestamp was received.

Figure 6 shows the effect of varying p under the adap-
tive protocol. The use of the ASM combines the strengths
of the conservative and optimistic protocols while control-
liig their weaknesses. It allows the fast LPs to block where
necessary (waiting on a real message) while proceeding
where possible (waiting on a null-message).

Figures 7 and 8 compare the amount of time spent
rolling back under the optimistic and adaptive protocols.

0 = ' 2 ' I
5 10 15 20 25 30 35

Processors

Figure 7: Amount of time spent rolling back under optimistic
synchronization.

0.025
fixed, -+- h.

0.02 -

0 5 10 15 20 25 30 35
ProCsSQIS

Figure 8: Amount of time spent rolling back under adaptive syn-
chronization.

The rollback time increases greatly as more LPs are added,
showing that the number of rollbacks is increasing, dwarf-
ing the amount of time needed to process the events. Under
the adaptive protocol, the time spent rolling back remains
fairly constant, showing that the protocol allows some ag-
gressive processing, but limits the amount of aggressive-
ness.

Figures 9 and 10 compare the amount of time spent
blocked under the conservative and adaptive protocols.
The amount of time spent blocked under the conservative
protocol increases slightly as the number of LPS increases,
due to the increased number of null messages which must
be sent, but the time spent blocked remains fairly close un-
der each model. The adaptive protocol only blocks when
the number of rollbacks start to increase, so more time is
spent blocked under model fixedl than model fix&.

Figure 9: Amount of time spent blocked under conservative syn-
chronization.

0.12

0.1

0.08

j 0.06

0.04

0.02

0

fixed1 +

- - -
5 10 15 20 25

processors
30 35

Figure 10: Amount of time spent blocked under adaptive syn-
chronization.

7 Futurework
There are several areas left to explore. Perhaps the

most exciting is adding the capability to do online train-
ing. As the simulation is running, the A N N s for each LP
can be trained against the events that are being processed.
This method has the capability to fine-tune each network
for the specific LP it is running on, as well as adapting to
changing behavior in the simulation. An example of such
changing behavior is a battlefield simulation moving from
the alert phase to the conflict phase. In the alert phase,
units are mostly moving and observing, without much in-
teraction. When the simulation moves into the conflict
phase, units are actively engaging each other, with a much
greater amount of interaction. A possible drawback to on-
line learning is the amount of processing time needed for
trainiig. This problem can be alleviated by using one or

more dedicated processors to do the training, or only train-
ing when the effectiveness of a network falls below some
threshold.

Another area to be explored is using ANNs to make
other decisions in the simulation framework. Anyplace an
arbitrary number is used, an ANN can adaptively select
that number, possibly increasing performance. Examples
of this include the periodic state saving interval and the
GVT update interval. A N N s can also be used to select
between different methods during the course of the sim-
ulation, such as the choice between periodic state saving
and incremental state saving.

There are also m y different ANN architectures and
training methods which can be explored to attempt to in-
crease the accuracy of the network. Using the simple
methods presented in this paper, it has been shown that us-
ing an ANN to control the aggressiveness of an optimistic
simulation has the potential for increasing the efficiency of
PDES, and should be explored further.

References
[11 Duane Ball and Susan Hoyt. The adaptive time-warp

concurrency control algorithm. In David Nicol, ed-
itor, Proceedings of the SCS Multiconference on Dis-
tributed Simulation, volume 22, pages 174477,1990.

Simulation of packet communica-
tions architecture computer systems. Technical Report
MIT-LCS-TR- 188, Massachusetts Institute of Tech-
nology, 1977.

[3] K. Mani Chandy and Jayadev Misra. Distributed sim-
ulation: A case study in design and verification of
distributed programs. IEEE Transactions on Software
Engineering, 5(5):440452,1979.

[4] Phillip M. Dickens and Paul E Reynolds, Jr. Srads
with local rollback. In David Nicol, editor, Proceed-
ings of the SCS Multiconference on Distributed Simu-
lation, volume 22, pages 161-164,1990.

Self-adaptive logi-
cal processes: The probabilistic distributed simulation
protocol. In Pmceedings of the 27th Simulation Sym-
posium, pages 78-88. IEEE Computer Society, 1994.

[6] Anat Gafni. Rollback mechanisms for optimistic dis-
tributed simulation systems. In Brian Unger and David
Jefferson, editors, Proceedings of the SCS Multicon-
ference on Distributed Simulation, volume 19, pages
61-67. SCS, 1988.

[7] Donald 0. Hamnes and h a n d Tripathi. Feedback
based adaptive risk control protocols in parallel dis-
crete event simulation. In International Conference on
Parallel Processing, volume 111, pages 93-96, 1995.

[2] R. E. Bryant.

[5] Alois Ferscha and G. Chiola.

[SI David R Jefferson. V i a l time. ACM Transactions
on Programming Languages and Systems, 7(3):404-
425,1985.

[9] Yi-Sing Lin and Edward D. Lazowska. A study of
Time Warp rollback mechanisms. ACM Transactions
on Modeling and Computer Simulation, 1(1):5 1-72,
199 1.

[lo] Bradley L. Nobel and Roger D. Chamberlain. Pre-
dicting the future: Resource requirements and predic-
tive optimsim. In Pmceedings of the SCS Multicon-
ference on Parallel and Distributed Simulation, vol-
ume 25, pages 157-164,1995.

[1 11 Avinash C. Palaniswamy and Philip A. Wilsey. Pa-
rameterized time warp (PTW): An integrated adaptive
solution to optimistic PDES. Journal of Parallel and
Distributed Computing, 37(2): 134-145,1996.

[121 Duc Truong Pham and Xing Liu. Neural Networks
for Identzcation, Prediction and Control. Springer-
Verlag, 1995.

[131 P. Reiher, E Wieland, and D. Jefferson. Limitation of
optimism in the time warp operating system. In E.A.
MacNair, K.J. Musselman, and P. Heidelberger, edi-
tors, Pmceedings of the 1989 Wnter Simulation Con-
ference, pages 765-770,1989.

[141 Paul E Reynolds, Jr. A spectrum of options for par-
allel simulation. In M. Abrams, P. Haigh, and J. Com-
fort, editors, Pmceedings of the 1988 mnter Simula-
tion Conference, pages 325332,1988.

[151 Jeff S . Steinman. Interactive SPEEDES. In Pmceed-
ings of the 24th Annual Simulation Symposium, pages
149458,1991.

[16] Jeff S. Steinman. Breathing time warp. In Rajive
Bagrodia and David Jefferson, editors, Proceedings of
the SCS Multiconference on Parallel and Distributed
Simulation, volume 23, pages 109-1 18,1993.

[17] Andreas Zell et al. Snns user manual, version 4.1.
Technical report, Institute for Parallel and Distributed
High Performance Systems, University of Stuttgart,
1995.

- 4

[SI David R. Jefferson. V i a l time. ACM Transactions
on Programming Languages and Systems, 7(3):404-
425,1985.

[9] Yi-Bing Lin and Edward D. Lazowska. A study of
Time Warp rollback mechanisms. ACM Transactions
on Modeling and Computer Simulation, 1(1):5 1-72,
1991.

[lo] Bradley L. Nobel and Roger D. Chamberlain. Pre-
dicting the future: Resource requirements and predic-
tive optimsim. In Proceedings of the SCS Multicon-
ference on Parallel and Distributed Simulation, vol-
ume 25, pages 157-164,1995.

[111 Avinash C. Palaniswamy and Philip A. Wilsey. Pa-
rameterized time warp (PTW): An integrated adaptive
solution to optimistic PDES. Journal of Parallel and
Distributed Computing, 37(2): 134445,1996.

[121 Duc Truong Pham and Xing Liu. Neural Networks
for Identijication, Prediction and Control. Springer-
Verlag, 1995.

[131 P. Reiher, F. Wieland, and D. Jefferson. Limitation of
optimism in the time warp operating system. In E.A.
MacNair, K.J. Musselman, and P. Heidelberger, edi-
tors, Proceedings of the 1989 Winter Simulation Con-
ference, pages 765-770,1989.

[14) Paul E Reynolds, Jr. A spectrum of options for par-
allel simulation. In M. Abram, P. Haigh, and J. Com-
fort, editors, Proceedings of the 1988 mnter Simula-
tion Conference, pages 325332,1988.

[151 Jeff S. Steinman. Interactive SPEEDES. In Pmceed-
ings of the 24th Annual Simulation Symposium, pages
149-158,1991.

(161 Jeff S. Steinman. Breathing time warp, In Rajive
Bagrodia and David Jefferson, editors, Proceedings of
the SCS Multiconference on Parallel and Distributed
Simulation, volume 23, pages 109-1 18, 1993,

[17] Andreas Zell et al. Snns user manual, version 4.1.
Technical report, Institute for Parallel and Distributed
High Performance Systems, University of Stuttgart,
1995.

