Fermi National Accelerator Laboratory

MINOS Detector Steel Magnetic Measurements

Robert C. Trendler and Walter F. Jaskierny
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

February 1999

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Notification

This manuscript has been authored by Universities Research Association, Inc. under contract No. DE-AC02-76CHO3000 with the U.S. Department of Energy. The United States Government and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government Purposes.

MINOS DETECTOR STEEL MAGNETIC MEASUREMENTS

Robert C. Trendler
Walter F. Jaskierny
Fermilab
Box 500
Batatvia, IL 60510

Abstract

Magnetic measurements were made on one steel plate of the MINOS far detector. The conventionally used technique of measuring sense coil voltage induced by step changes in excitation current voltage was successful in providing stable, repeatable measurements. Measurements were made at several locations on the steel and the results are presented.

MINOS DETECTOR STEEL MAGNETIC MEASUREMENTS

Some characteristics of the magnetic properties of iron or steel can be determined by measuring the fields induced in a sense coil by step current changes in a magnetizing coil. In the MINOS detector, a variety of sense coils with a judiciously chosen number of turns were installed on the steel detector plate located in NMS (see Figure 2). The sense coils were readout by the integrator shown schematically in Figure 1 below.

Figure 1
For this circuit,

$$
\begin{equation*}
E_{0}=\frac{-1}{R C} \int_{0}^{T} E_{1} d t \tag{a}
\end{equation*}
$$

where E_{1} is the induced voltage at the winding caused by the change in magnetizing current. From the Faraday induction law:

$$
E_{1}=-N \frac{d \Phi}{d t}
$$

where,

$$
\begin{aligned}
& \Delta \Phi=\text { change of flux } \\
& \mathrm{N}=\text { number of turns }
\end{aligned}
$$

Also, the magnetic flux is related to the magnetic flux density by:

$$
\begin{align*}
\Phi & =\int_{S} B \bullet d S \\
B & =\frac{\Delta \Phi}{S} \tag{b}
\end{align*}
$$

For (a) we can write:

$$
\int_{0}^{T} E_{1} d t=-N \int_{0}^{T} d \Phi / d t=-N(\Delta \Phi)
$$

and from (b) the output of the voltage integrator is related to the change in the flux density as follows:

$$
\begin{aligned}
E_{0} & =\frac{N}{R C} \Delta \Phi \\
E_{0} & =\frac{N S}{R C} B \\
B & =\frac{R C}{N S} E_{0}
\end{aligned}
$$

Since the product of R and C determines the final accuracy of the integrator, it was measured by applying a precisely known (amplitude and width) pulse to the amplifier input and measuring the output. Based upon this calibration, a value of $\mathrm{RC}=4.945 \times 10^{-2}$ was determined and will be used throughout the subsequent discussion.

A series of induction measurements were made on a single plane of the MINOS detector steel to evaluate the efficacy of the measurement scheme and to compare the measurements to those determined by FEA. Initially, five coils were installed on the plane; one single turn coil from center to outside and four additional five turn coils placed equally on radius. As a result of the measurements using these coils, it was decided to add several additional coils in an attempt to better understand the field non-uniformity and the apparent effect of the plane support steel on the field shape. Figure 2 shows the final coil arrangement and identification setup. Figure 3 shows the schematic of the setup for the WHT coil.

As was stated above, several simplifying assumptions were made to evaluate the data; among them uniform flux through the steel volume and no air gaps was assumed. Clearly this is not the case for the MINOS detector plate. Furthermore, the non-uniformity of the flux in the MINOS plate makes it difficult to make a precise estimate of H. Consequently, the plots that follow are of B versus I in amperes. In spite of these limitations, the discussion that follows was used to determine the relative measures of the magnetic flux density versus the exciting current and plot the BI curves shown on pages 5 through 9 .

Figure 2

Figure 3

For the integrator used and the area of the MINOS detector plate sense coils:

$$
\begin{aligned}
& R=10^{4} \text { ohms } \\
& C=4.945 \times 10^{-6} \mathrm{farads} \\
& \text { WHT, GRN, GRY and } 45 \text { DEG WEST RED coils } \\
& \quad N=1 \\
& \quad S=0.074 \mathrm{~m}^{2} \\
& \text { BRN, ORG, VIO and BLK coils } \\
& \quad N=5 \\
& S=0.018 \mathrm{~m}^{2} \\
& \text { IBEAM WEST ORG and IBEAM EAST RED } \\
& N=10 \\
& S=0.011 \mathrm{~m}^{2}
\end{aligned}
$$

Based upon the simplifying assumptions and for these values,

$$
\begin{aligned}
& \Delta B=\frac{4.945 \times 10^{-2}}{(N)(S)} E_{0} \\
& \Delta B=0.6682 E_{0} \text { tesla for the WHT, GRN, GRY and } 45 \text { DEG WEST RED coils } \\
& \Delta B=0.5369 E_{0} \text { tesla for BRN, ORG, VIO and BLK coils } \\
& \Delta B=0.4495 E_{0} \text { tesla for IBEAM WEST ORG and IBEAM EAST RED coils }
\end{aligned}
$$

Table 1 and 2 are the direct results from the measurements for full cycle runs. At the start of each run, the current was run up to a maximum of 150 amperes to fully saturate parts of the steel (100 amperes is the expected maximum operating current). The current was then reduced in steps to zero. The power supply was reversed and the current was run up in steps to a maximum 150 amperes and then run down to zero current. The power supply polarity was once again reversed and the current was increased in steps to 150 amperes (the starting current value and polarity). The step sizes are shown in the Tables and were chosen merely to improve the data plots. The data was then adjusted to minimize the effect of integrator drift and to ensure symmetry. The results are shown on pages 4 through 9 .

Several observations can readily be made; the energizing coil placement is not optimal and the steel support structure strongly affects the field lines in the detector steel. Several measurements were taken in an attempt to quantify the effect of the support steel and the IBEAM sense coils show the results of these measurements. It is clear that a significant field exists and to some extent short circuits the flux in the detector plate.

WHT C OL

BR N C OL

ORG C aL

VIO C aL

Page 7

W EST 45 DEG RED

IBEAM EAS T RED

IBEAM W EST ORG

Integrator: $\mathrm{R}=10 \mathrm{~K}, \mathrm{C}=4.945 \mathrm{uF}$					Current: 1V = 20A				Date:	12/1/98
Temperature @ start=		67 deg F							Name:	
Sensor	WHT				Sensor	BRN			Sensor	ORG
\# of turns	1				\# of turns	5			\# of turns	5
Area=	0.0737	sq meters			Area=	0.018425	sq meters		Area=	0.01843
Polarity	1	1	Integrator	Polarity	1	1	Integrator	Polarity	1	1
(Reset)	amps	volts	volts		amps	volts	volts		amps	volts
F (reset)	150.0	7.50	0.00	F (reset)	150.0	7.50	0	F (reset)	150.0	7.50
67 degF	130.0	6.50	-0.01		130.0	6.50	-0.031		130.0	6.50
	108.4	5.42	-0.03		108.4	5.42	-0.067		108.4	5.42
	89.8	4.49	-0.04		90.0	4.50	-0.109		90.0	4.50
	70.0	3.50	0.06		70.0	3.50	-0.1604		70.0	3.50
	50.0	2.50	-0.09		50.0	2.50	-0.227		50.0	2.50
	40.0	2.00	-0.11		40.0	2.00	-0.27		40.0	2.00
	29.8	1.49	-0.14		30.0	1.50	-0.336		30.0	1.50
	20.0	1.00	-0.19		20.0	1.00	-0.44		20.0	1.00
	10.0	0.50	-0.29		10.0	0.50	-0.663		10.0	0.50
	0.0	0.00	-0.49		0.0	0.00	-1.22		0.0	0.00
R	-10.0	-0.50	-0.48	R	-9.0	-0.45	-3.53	R	-9.0	-0.45
	-20.0	-1.00	-1.14	95 degF	-20.0	-1.00	-4.41		-20.0	-1.00
	-30.0	-1.50	2.17		-30.0	-1.50	-4.7	106 degF	-30.0	-1.50
	-40.0	-2.00	2.38		-40.0	-2.00	-4.85		-40.0	-2.00
	-50.0	-2.50	2.47		-50.0	-2.50	-4.92		-50.0	-2.50
	-70.0	-3.50	-2.57		-70.0	-3.50	-5.01		-70.0	-3.50
	-90.0	-4.50	-2.63		-91.4	-4.57	-5.08		-91.4	-4.57
	-110.0	-5.50	-2.67		-110.0	-5.50	-5.13		-110.0	-5.50
	-130.0	-6.50	-2.71		-130.0	-6.50	-5.17		-130.0	-6.50
77 degF	-150.0	-7.50	-2.74		-150.4	-7.52	-5.2		-150.4	-7.52
	-130.0	-6.50	-2.72		-130.0	-6.50	-5.17		-130.0	-6.50
	-110.0	-5.50	-2.70		-110.0	-5.50	-5.13		-110.0	-5.50
	-90.0	-4.50	-2.68		-90.0	-4.50	-5.08		-90.0	-4.50
	-69.8	-3.49	-2.65		-69.8	-3.49	-5.027		-70.0	-3.50
	-49.8	-2.49	-2.62		-49.8	-2.49	-4.96		-50.0	-2.50
	-39.4	-1.97	-2.59		-40.0	-2.00	-4.91		-40.0	-2.00
	-29.8	-1.49	-2.57		-30.0	-1.50	-4.85		-30.0	-1.50
	-20.0	-1.00	-2.51		-20.0	-1.00	-4.75		-20.0	-1.00
	-9.8	-0.49	-2.41	98 degF	-9.8	-0.49	-4.54		-10.0	-0.50
	0.0	0.00	-2.19		0.0	0.00	-3.95		0.0	0.00
F	10.0	0.50	-1.61	F	10.0	0.50	-1.91	F	10.0	0.50
84 degF	20.0	1.00	-0.96		20.0	1.00	-0.77	110 degF	20.0	1.00
	30.0	1.50	-0.53		30.0	1.50	-0.45		30.0	1.50
	40.0	2.00	-0.30		40.0	2.00	-0.29		40.0	2.00
	50.0	2.50	-0.19		50.0	2.50	-0.204		50.0	2.50
	70.0	3.50	-0.08		70.0	3.50	-0.102		70.0	3.50
	90.6	4.53	-0.01		90.0	4.50	-0.033		90.0	4.50
	110.0	5.50	0.04		110.0	5.50	0.02		110.0	5.50
	130.0	6.50	0.09		130.0	6.50	0.068		130.0	6.50
86 degF	150.0	7.50	0.14	100 degF	150.0	7.50	0.11		150.0	7.50

Table 1

Table 2

Integrator: $\mathrm{R}=10 \mathrm{~K}, \mathrm{C}=4.945 \mathrm{uF}$							Current: 1V = 20A				
Temperature @ start=		67 deg F									
Sensor	TOP GRY					Sensor	BOTTOM GRN				
\# of turns	1					\# of turns	1				
Area=	0.0737	sq meters				Area=	0.0737	sq meters			
Polarity	1	1	Tesla	Int adj	Integrator	Polarity	1	1	Tesla	Int adj	Integrator
(Reset)	volts	amps	0.6682		volts		volts	amps	0.6682		volts
F (reset)	7.5	150	0.71	1.060	0.000	F (reset)	7.5	150	1.280	1.915	0.000
	6.5	130	0.70	1.055	-0.004		6.5	130	1.262	1.888	-0.025
	5.5	110	0.70	1.048	-0.009		5.5	110	1.240	1.856	-0.055
	4.5	90	0.70	1.041	-0.015		4.5	90	1.215	1.819	-0.090
	3.5	70	0.69	1.031	-0.023		3.5	70	1.184	1.772	-0.135
	2.5	50	0.68	1.020	-0.033		2.5	50	1.142	1.710	-0.195
	2.0	40	0.68	1.012	-0.040		2.0	40	1.111	1.663	-0.240
	1.5	30	0.67	0.998	-0.052		1.5	30	1.070	1.602	-0.299
	1.0	20	0.65	0.976	-0.073		1.0	20	0.995	1.489	-0.410
	0.5	10	0.62	0.928	-0.120		0.5	10	0.866	1.297	-0.600
	0.0	0	0.55	0.816	-0.230		0.0	0	0.665	0.994	-0.900
	-0.5	-10	0.18	0.265	-0.780		-0.5	-10	0.115	0.172	-1.720
	-1.0	-20	-0.18	-0.267	-1.31		-1.0	-20	-0.407	-0.610	-2.500
	-1.5	-30	-0.42	-0.628	-1.670		-1.5	-30	-0.756	-1.132	-3.020
	-2.0	-40	-0.53	-0.799	-1.840		-2.0	-40	-0.945	-1.414	-3.300
	-2.5	-50	-0.59	-0.881	-1.920		-2.5	-50	-1.040	-1.556	-3.440
	-3.5	-70	-0.64	-0.961	-1.999		-3.5	-70	-1.128	-1.688	-3.570
	-4.5	-90	-0.66	-0.994	-2.030		-4.5	-90	-1.189	-1.780	-3.660
	-5.5	-110	-0.68	-1.025	-2.060		-5.5	-110	-1.231	-1.842	-3.720
	-6.5	-130	-0.71	-1.056	-2.090		-6.5	-130	-1.272	-1.904	-3.780
	-7.5	-150	-0.73	-1.088	-2.120		-7.5	-150	-1.307	-1.956	-3.830
	-6.5	-130	-0.72	-1.079	-2.110		-6.5	-130	-1.288	-1.928	-3.800
	-5.5	-110	-0.72	-1.070	-2.100		-5.5	-110	-1.270	-1.900	-3.770
	-4.5	-90	-0.71	-1.062	-2.090		-4.5	-90	-1.244	-1.862	-3.730
	-3.5	-70	-0.70	-1.053	-2.080		-3.5	-70	-1.212	-1.814	-3.680
	-2.5	-50	-0.70	-1.045	-2.070		-2.5	-50	-1.174	-1.756	-3.620
	-2.0	-40	-0.69	-1.036	-2.060		-2.0	-40	-1.148	-1.718	-3.580
	-1.5	-30	-0.69	-1.027	-2.050		-1.5	-30	-1.103	-1.650	-3.510
	-1.0	-20	-0.67	-1.009	-2.030		-1.0	-20	-1.031	-1.542	-3.400
	-0.5	-10	-0.64	-0.960	-1.980		-0.5	-10	-0.912	-1.364	-3.220
	0.0	0	-0.56	-0.832	-1.850		0.0	0	-0.686	-1.027	-2.880
	0.5	10	-0.24	-0.353	-1.370		0.5	10	-0.200	-0.299	-2.150
	1.0	20	0.14	0.216	-0.800		1.0	20	0.334	0.499	-1.350
	1.5	30	0.39	0.584	-0.430		1.5	30	0.713	1.067	-0.780
	2.0	40	0.51	0.763	-0.250		2.0	40	0.912	1.365	-0.480
	2.5	50	0.56	0.842	-0.170		2.5	50	1.004	1.503	-0.340
	3.5	70	0.61	0.920	-0.090		3.5	70	1.100	1.646	-0.195
	4.5	90	0.65	0.969	-0.040		4.5	90	1.159	1.735	-0.104
	5.5	110	0.67	1.000	-0.007		5.5	110	1.205	1.803	-0.034
	6.5	130	0.69	1.031	0.025		6.5	130	1.208	1.808	-0.027
	7.5	150	0.71	1.059	0.054		7.5	150	1.278	1.913	0.080

Table 3

Integrator: R=10K, C=4.945 uF							Current: 1V = 20A										
Temperature @ start=		67 deg F				Sensor						Sensor			-		
Sensor	WEST 45 DEG RED						IBEAM EAST RED						IBEAM WEST ORG		from 12/8/98 data		
\# of turns	1					\# of turns	10					\# of turns	10				
Area=	0.0737	sq meters				Area=	0.011	sq meters				Area=	0.011	sq meters			
Polarity	1	1	Tesla	Int adj	Integrator	Polarity	1	1	Tesla	Int adj	Integrator	Polarity	1	1	Tesla	Int adj	Integrator
(Reset)	volts	amps	0.6682		volts		volts	amps	0.6682		volts		volts	amps	0.4495		volts
F (reset)	7.5	150	1.47	2.200	0.000	F (reset)	7.5	150	0.448	-0.670	0.000	F (reset)	7.5	150	0.589	1.310	0.000
	6.5	130	1.45	2.170	-0.026		6.5	130	0.442	-0.661	0.008		6.5	130	0.585	1.303	-0.006
	5.5	110	1.42	2.132	-0.061		5.5	110	0.435	-0.652	0.017		5.5	110	0.581	1.292	-0.015
	4.5	90	1.39	2.085	-0.104		4.5	90	0.428	-0.640	0.028		4.5	90	0.575	1.279	-0.027
	3.5	70	1.36	2.029	-0.156		3.5	70	0.418	-0.625	0.042		3.5	70	0.566	1.260	-0.044
	2.5	50	1.30	1.953	-0.229		2.5	50	0.405	-0.607	0.060		2.5	50	0.554	1.232	-0.071
	2.0	40	1.27	1.895	-0.283		2.0	40	0.395	-0.592	0.074		2.0	40	0.543	1.209	-0.092
	1.5	30	1.22	1.818	-0.356		1.5	30	0.381	-0.570	0.095		1.5	30	0.527	1.172	-0.128
	1.0	20	1.11	1.664	-0.507		1.0	20	0.357	-0.534	0.130		1.0	20	0.497	1.105	-0.193
	0.5	10	0.95	1.427	-0.740		0.5	10	0.310	-0.464	0.200		0.5	10	0.442	0.984	-0.313
	0.0	0	0.71	1.058	-1.105		0.0	0	0.262	-0.392	0.271		0.0	0	0.357	0.795	-0.500
	-0.5	-10	0.09	0.140	-2.020		-0.5	-10	0.155	-0.232	0.430		-0.5	-10	0.150	0.334	-0.960
	-1.0	-20	-0.49	-0.734	-2.890		-1.0	-20	0.001	-0.002	0.660		-1.0	-20	-0.152	-0.338	-1.630
	-1.5	-30	-0.89	-1.338	-3.490		-1.5	-30	-0.146	0.219	0.880		-1.5	-30	-0.359	-0.799	-2.090
	-2.0	-40	-1.12	-1.671	-3.820		-2.0	-40	-0.247	0.370	1.030		-2.0	-40	-0.450	-1.001	-2.290
	-2.5	-50	-1.22	-1.833	-3.978		-2.5	-50	-0.301	0.450	1.110		-2.5	-50	-0.491	-1.092	-2.380
	-3.5	-70	-1.33	-1.989	-4.130		-3.5	-70	-0.348	0.521	1.180		-3.5	-70	-0.528	-1.174	-2.460
	-4.5	-90	-1.40	-2.092	-4.230		-4.5	-90	-0.382	0.572	1.230		-4.5	-90	-0.555	-1.235	-2.520
	-5.5	-110	-1.45	-2.166	-4.300		-5.5	-110	-0.409	0.612	1.270		-5.5	-110	-0.574	-1.277	-2.560
	-6.5	-130	-1.48	-2.220	-4.350		-6.5	-130	-0.436	0.653	1.310		-6.5	-130	-0.588	-1.308	-2.590
	-7.5	-150	-1.52	-2.273	-4.400		-7.5	-150	-0.457	0.684	1.340		-7.5	-150	-0.602	-1.340	-2.620
	-6.5	-130	-1.50	-2.247	-4.370		-6.5	-130	-0.451	0.675	1.330		-6.5	-130	-0.598	-1.331	-2.610
	-5.5	-110	-1.48	-2.211	-4.330		-5.5	-110	-0.445	0.665	1.320		-5.5	-110	-0.595	-1.323	-2.600
	-4.5	-90	-1.45	-2.164	-4.280		-4.5	-90	-0.438	0.656	1.310		-4.5	-90	-0.591	-1.314	-2.590
	-3.5	-70	-1.41	-2.108	-4.220		-3.5	-70	-0.425	0.637	1.290		-3.5	-70	-0.582	-1.296	-2.570
	-2.5	-50	-1.36	-2.032	-4.140		-2.5	-50	-0.419	0.627	1.280		-2.5	-50	-0.574	-1.277	-2.550
	-2.0	-40	-1.32	-1.975	-4.080		-2.0	-40	-0.406	0.608	1.260		-2.0	-40	-0.566	-1.259	-2.530
	-1.5	-30	-1.26	-1.889	-3.990		-1.5	-30	-0.393	0.589	1.240		-1.5	-30	-0.548	-1.220	-2.490
	-1.0	-20	-1.17	-1.753	-3.850		-1.0	-20	-0.367	0.549	1.200		-1.0	-20	-0.509	-1.132	-2.400
	-0.5	-10	-1.02	-1.526	-3.620		-0.5	-10	-0.327	0.490	1.140		-0.5	-10	-0.464	-1.033	-2.300
	0.0	0	-0.74	-1.110	-3.200		0.0	0	-0.261	0.391	1.040		0.0	0	-0.393	-0.875	-2.140
	0.5	10	-0.21	-0.314	-2.400		0.5	10	-0.161	0.241	0.890		0.5	10	-0.241	-0.536	-1.800
	1.0	20	0.41	0.613	-1.470		1.0	20	0.005	-0.008	0.640		1.0	20	0.024	0.052	-1.210
	1.5	30	0.85	1.269	-0.810		1.5	30	0.165	-0.247	0.400		1.5	30	0.275	0.611	-0.650
	2.0	40	1.07	1.605	-0.470		2.0	40	0.252	-0.376	0.270		2.0	40	0.395	0.879	-0.380
	2.5	50	1.18	1.768	-0.304		2.5	50	0.299	-0.448	0.198		2.5	50	0.449	0.998	-0.260
	3.5	70	1.28	1.922	-0.146		3.5	70	0.347	-0.519	0.126		3.5	70	0.497	1.106	-0.150
	4.5	90	1.35	2.014	-0.050		4.5	90	0.378	-0.565	0.079		4.5	90	0.527	1.173	-0.082
	5.5	110	1.39	2.084	0.023		5.5	110	0.403	-0.603	0.041		5.5	110	0.550	1.223	-0.030
	6.5	130	1.43	2.144	0.087		6.5	130	0.426	-0.637	0.006		6.5	130	0.572	1.272	0.020
	7.5	150	1.47	2.196	0.143		7.5	150	0.447	-0.669	-0.027		7.5	150	0.588	1.309	0.058

Table 4

