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Abstract 
The DIII-D tokamak fusion research experiment’s real- 

time digital plasma control system (F‘CS) is a complex and 
ever evolving system. During a plasma experiment, it is tasked 
with some of the most crucial functions at DIII-D. Key 
responsibilities of the PCS involve sub-system control, data 
acquisitionlstorage, and user interface. To accomplish these 
functions, the PCS is broken down into individual components 
(both software and hardware), each capable of handling a 
specific duty set. Constant interaction between these 
components is necessary prior, during and after a standard 
plasma cycle. Complicating the matter even more is that some 
components, mostly those which deal with user interaction, 
may exist remotely, that is to say they are not part of the 
immediate hardware which makes up the bulk of the PCS. 

The four main objectives of this paper are to 1) present a 
brief outline of the PCS hardwarelsoftware and how they 
relate to each other; 2) present a brief overview of a standard 
DIII-D plasma cycle (“a shot”); 3) using three sets of PCS 
sub-systems, describe in more detail the communication 
processes; 4) evaluate the benefits and drawbacks of said 
systems. 

I. INTRODUCTION 
The DIII-D Tokamak (DIII-D) is a national research 

facility under the auspices of the United States Department of 
Energy (DOE). This facility, located in San Diego, California, 
on the campus of General Atomics (GA), has provided an 
experimental environment for plasma and fusion research for 
over twenty years. The DIII-D Plasma Control System (PCS) 
directly monitors and commands various systems of the 
DIII-D tokamak to produce the desired discharges. This 
includes such systems as power supplies, gas injection, neutral 
beam injection, pellet injection, etc. [l]. In this way, the PCS 
provides real time control of most DIII-D sub-systems 
throughout the entire time cycle of the experiment, commonly 
referred to as a “shot.” 

11. DESCRIPTION OF PCS 
The Plasma Control System is a specialized set of 

computer hardware and software which enables the users to 
manipulate the energy, density, shape and position of plasma 
within the DIII-D vessel [2]. Using the PCS, the user defines 
target parameters for the various sub-systems or defines 
directly the plasma characteristics. The user is allowed to 
select from a finite set of parameters, ranges and algorithms 

depending upon the desired effect to meet these targets. These 
control specifications are implemented within the software of 
the PCS. This gives the user additional ease and flexibility in 
the experiment design [ 11. However, greater flexibility comes 
at the price of a more complicated control system, especially 
within the software. 

Using a feedback loop, the PCS will take target 
parameters and attempt to continuously adjust the control 
settings of all specified devices to meet the intended targets 
for that time segment of the shot. This feedback control is 
done in real-time upon an isolated set of digital computational 
microprocessors, or CPUs. The output settings are then 
transmitted as a group of set-points across a digital or analog 
output system to the various Dm-D components needed in the 
experiment [2]. In a simplistic view, the PCS is dependent 
upon acquiring a set of data which it uses as a reference in 
comparison to the expected target to compute output settings 
for the mechanical devices which then in turn will produce a 
new set of data. The cycle will continually repeat itself until 
instructed otherwise at speeds of up to every 60 ys [2]. This is 
then done for all the requested sub-systems the user has 
included for the given experiment. As the shot progresses, the 
PCS will add archiving its own internal data to the final stages 
of activity. 

The main computational resources accessible to the PCS 
are first its two RISC based workstations. Connected by a 
local area network, these two computers control most of the 
software of the PCS. Additionally six single processor real- 
time computers based upon an Intel i860 RISC designed 
microprocessor manufactured by CSP Inc. are used by the 
PCS. These communicate along the VME bus to the primary 
workstation allowing it to coordinate between the multiple 
CSP Inc. microprocessors as well as with the outside world. 
The peripheral hardware of the PCS allows it to communicate 
to the remaining DIII-D systems as well as an assortment of 
diagnostic systems [3]. 

The software that makes up the PCS consists mainly of 
ten separate subprocesses. Each is tasked with a set of 
responsibilities which define its individual purpose. These 
processes are distributed across the PCS computational 
resources, however a certain set of these PCS processes are 
restricted in their execution due to the hardware. In particular 
those processes which are related to the real-time computers. 
The remaining processes have greater flexibility during 
execution. For example, the main user interface may be run 
remotely from what is traditionally consider the PCS 
hardware. Although this is not normally the case [4]. 

*Work supported by U.S. Department of Energy under Contract No. DE-AC03-99ER54463. 
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111. DIII-D AND PCS SHOT CYCLE 
A standard shot cycle consists of several progressive 

steps, under the direction of operators, which ultimately 
results in the creation of plasma within the DIII-D vessel. A 
single DIII-D plasma experiment, may take anywhere from a 
fraction of a second to several seconds. However the 
preparation and the ramp down/conclusion steps may take 
several minutes to perform. The normal sequence requires the 
coordination of the major sub-systems that contribute to the 
shot. The PCS shot cycle begins far earlier than that of the 
other independent control or acquisition systems. This early 
time is dedicated to preparing the layout of the experiment. 
More importantly, this is where the goals for shape, density, 
etc. are set-up within the PCS. An operator, usually a 
physicist, will define the parameter, waveforms and 
algorithms which will be used throughout the several shot 
stages. After the shot set-up has been configured to the 
satisfaction of the operator, the main DIII-D operations 
system will start in motion a chain of events, which for the 
PCS, will first lockout users from making changes in the shot 
set-up. Pertinent information is passed between the PCS sub- 
processes and timing is synchronized. At this point, the PCS 
will wait for other DIII-D sub-systems to complete their 
preparations and for the operations system to commence the 
shot (“firing the shot”). As the shot is fired, the PCS will 
begin its real-time processing until the conclusion of the 
plasma discharge. Later, the PCS will enter into an archiving 
stage where it will store its various internal information as 
well as time series it maintains throughout the complete 
experiment (Fig. 1). 

IV. PCS INTER-RELATIONS 
The inter-relations of PCS software processes are almost 

entirely dictated by the layout of the PCS hardware. Although 
the software contains the concepts and goals of the plasma 
experiment, it is the constraints of the hardware which 
ultimately limits the control and what can be achieved. Even 
peripheral devices, i.e. Input/Output (YO) dictate the purpose 
and function of specific PCS processes. This is why it is 
important to first grasp an overview of the PCS hardware 
before attempting to understand why PCS processes are 
related to each other. 

From the standpoint of the user, the most visible part of 
the PCS is the user interface. It is through this interface that 
parameters and target vectors are set for an upcoming shot. 
This data however is only temporarily stored within the 
interface (Fig 2). As these values are edited, the information is 
passed along to the waveform server process. Only one 
waveform server process maintains the information for the 
immediate shot. Any number of wave server processes may 
run at any one time to allow for preparations of future shots 
but it is the waveform server designated for the next shot that 
communicates to other PCS processes. When changes are 
made to the set-up of the next shot (by an operator within the 
user interface), these changes are passed immediately onto 
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Fig. 1. DIII-D and PCS shot cycle timeline. 

the waveform server via a TCPDP socket connection. There, 
the information is stored both in resident memory and in NFS 
mounted flat files. This information is then referenced, via the 
same TCPDP socket by any of the PCS processes that may 
request it. 

As the shot cycle nears and the PCS is triggered to 
prepare for the pending shot, the lock server will read the 
trigger from the digital UO input and start the host processes 
for the real-time CPUs in their preparation of the shot. The 
lock server remains in constant communication with each of 
the host processes in order to monitor the current state of each. 
This monitoring will persist throughout the shot cycle and 
even during times in between shots. The lock server will also 
poll the waveform server for vital information about the shot. 
Of all the PCS processes, the lock server is the only one to 
remain in two way communication with the remaining PCS 
processes. It is arguably the simplest of all the PCS processes 
except perhaps for the message server but it serves one of the 
most crucial junctures of the PCS. The real-time host 
processes will poll the waveform server for the parameter, 
targets, algorithms, etc. necessary for the shot. Each host 
server, under the coordination of the lock server, will perform 
its programmed set of duties. 

At anytime before, during, or after the shot, any PCS 
process may communicate to an auxiliary server, called the 
“message server.” The main purpose of the message server is 
to gather textual information passed to it directly on its own 
TCP dedicated socket. This provides PCS processes, which 
have been programmed to display everything from status 
messages to error messages, a place to buffer their 
information. The buffered statements are archived for long 
term needs and passed to client applications, which are part of 
the standard PCS user interface. This process gives the 
programmers a flexible means to convey vital points of 
interest from most PCS processes. The message server/clients 
thus complete a circular flow of data back to the user (Fig 3). 
Like the lock server, the message server is in contact with all 
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Fig. 2. Typical display from the user interface with information 
retrieved from the waveform server. 

the remaining PCS processes, however, the message server 
only receives a one-way communication from those processes 
and transmits data to only one of the PCS processes, the user 
interface. 

v. METHODS OF COMMUNICATION 
All the PCS processes handle data. The flow of data from 

each of the PCS “server” processes is often two-way. That is 
to say, each process will gather information and redistribute 
information (Fig. 4). The responsibilities of the process dictate 
to whom it needs to communicate with throughout the shot 
cycle. 

The communication method of choice for most PCS 
processes is the TCP/IP socket. This means of transmitting 
data is commonplace among UNIX based systems and is quite 
flexible and reliable. TCP sockets also facilitate remote access 
from system to system, enabling the PCS to disperse its 
processes amongst several host machines. Long term storage 
needs are fulfilled by NFS mounted files. These files, which 
pass information to and from some of the PCS processes, as 
well as archive data, are a dependable means to store data 
between different versions of the PCS and when the PCS is 
not running. NFS cross mounted file systems allow for data in 
flat files to be shared remotely, as well. Files can be 
manipulated, via standard operating system (OS) utilities for 
backup purposes, viewing (as in the case of the messaging 
system), copying or duplicating. But as operating system 
utilities can be used beneficially they also pose a threat. In the 
past, crucial files have been vulnerable to corruption and 
deletion by non-savvy users who have accidently or 
unknowingly affected these files. The other well used method 
for communication within the PCS is the sharing of 

Fig. 3. Display of standard PCS messages. 

information through the use of a shared memory segment. 
This method is mostly used for the real-time code. It facilitates 
communication between the CPUs with the least amount of 
overhead. It is very efficient and allows for almost 
simultaneous update and retrieval. 

Each of the methods mentioned above has drawbacks 
related to their use. In  the case of TCP/IP socket 
communication, there may be system issues that need to 
resolved before using sockets. TCP sockets are also 
susceptible to network traffic. Simultaneous communication 
between several processes along a single port is done by 
linearly queueing the correspondences. This may impede the 
performance of all processes as they wait for their turn. 
Programming overhead is more complicated during setup and 
use of sockets than other forms of YO. Also, the protocol of 
the messages themselves must be exact. In general, all this 
makes TCP socket communication trickier. File YO, which is 
the second largest means of communication in the PCS, has its 
own set of drawbacks. Files are best used for large long-term 
storage of information. However they are inefficient for 
transmittal of minute amounts of data. They may be limited by 
available disk space. Data streams may be corrupted by other 
means, i.e. accidental removal of the file. Two way and 
instantaneous communication is terribly difficult when using 
files as a means. Memory sharing, the last method of 
communication, is restricted by physical access to the residual 
memory. It is also extremely limited by the amount of 
memory available. 

Because of the inherent problems in each of the methods, 
it has been best to use a mixture of all methods for the PCS. 
The content and distribution of information has dictated the 
means within the PCS. 
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Fig. 4. Communication flow between PCS subprocesses. 

VI. CONCLUSIONS 
The success of the PCS at control of the DIII-D plasma 

experiments is due to its flexibility and relative ease of use. 

Given its complicated nature and wide array of responsibilities 
during shots, it has performed well over the years that it has 
been in place [4]. Part of this success is due in part to the 
distributed design and shared communication between the 
PCS sub-processes. It continually meets the demands of 
upcoming experimental needs given its outdated hardware. 
With projected improvements and upgrades, interprocess 
communication will become even more critical in order to 
meet new design criteria and functionality. The basic 
formulation described here has room to grow and expand with 
the PCS. Its standard construction should make it easy to port 
to other systems and platforms. 
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