
GA-A23150

Q ST4
INTERPROCESS COMMUNICATION WITHIN THE DIN-D

PLASMA CONTROL SYSTEM
~ O A + - Y ~ O 6/7--

by
D.A. PIGLOWSKI, B.G. PENAFLOR, and J.R. FERRON

JUNE 1999

ASTER

C€N€RAL ATOMICS

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or a n y agency thereof.

DECLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

GA-A23150

INTERPROCESS COMMUNICATION WITHIN THE DIII-D
PLASMA CONTROL SYSTEM

by
D.A. PIGLOWSKI, B.G. PENAFLOR, and J.R, FERRON

This is a preprint of a paper to be presented at the 11th IEEUNPSS Real Time
Conference, June 14-18, 1999, Santa Fe, New Mexico and to be published in
Transactions on Nuclear Science.

Work supported by
the US. Department of Energy

under Contract No. DE-AC03-99ER54463

GA PROJECT 30033
JUNE 1999

D. A. PiGLO WSKI, et al.

Interprocess Communication within the DIII-D Plasma Control System*

D.A.Piglowski, B.G. Penaflor, and J.R. Ferron
General Atomics, P.O. Box 85608, San Diego, California 92186-5608

Abstract
The DIII-D tokamak fusion research experiment’s real-

time digital plasma control system (F‘CS) is a complex and
ever evolving system. During a plasma experiment, it is tasked
with some of the most crucial functions at DIII-D. Key
responsibilities of the PCS involve sub-system control, data
acquisitionlstorage, and user interface. To accomplish these
functions, the PCS is broken down into individual components
(both software and hardware), each capable of handling a
specific duty set. Constant interaction between these
components is necessary prior, during and after a standard
plasma cycle. Complicating the matter even more is that some
components, mostly those which deal with user interaction,
may exist remotely, that is to say they are not part of the
immediate hardware which makes up the bulk of the PCS.

The four main objectives of this paper are to 1) present a
brief outline of the PCS hardwarelsoftware and how they
relate to each other; 2) present a brief overview of a standard
DIII-D plasma cycle (“a shot”); 3) using three sets of PCS
sub-systems, describe in more detail the communication
processes; 4) evaluate the benefits and drawbacks of said
systems.

I. INTRODUCTION
The DIII-D Tokamak (DIII-D) is a national research

facility under the auspices of the United States Department of
Energy (DOE). This facility, located in San Diego, California,
on the campus of General Atomics (GA), has provided an
experimental environment for plasma and fusion research for
over twenty years. The DIII-D Plasma Control System (PCS)
directly monitors and commands various systems of the
DIII-D tokamak to produce the desired discharges. This
includes such systems as power supplies, gas injection, neutral
beam injection, pellet injection, etc. [l]. In this way, the PCS
provides real time control of most DIII-D sub-systems
throughout the entire time cycle of the experiment, commonly
referred to as a “shot.”

11. DESCRIPTION OF PCS
The Plasma Control System is a specialized set of

computer hardware and software which enables the users to
manipulate the energy, density, shape and position of plasma
within the DIII-D vessel [2]. Using the PCS, the user defines
target parameters for the various sub-systems or defines
directly the plasma characteristics. The user is allowed to
select from a finite set of parameters, ranges and algorithms

depending upon the desired effect to meet these targets. These
control specifications are implemented within the software of
the PCS. This gives the user additional ease and flexibility in
the experiment design [11. However, greater flexibility comes
at the price of a more complicated control system, especially
within the software.

Using a feedback loop, the PCS will take target
parameters and attempt to continuously adjust the control
settings of all specified devices to meet the intended targets
for that time segment of the shot. This feedback control is
done in real-time upon an isolated set of digital computational
microprocessors, or CPUs. The output settings are then
transmitted as a group of set-points across a digital or analog
output system to the various Dm-D components needed in the
experiment [2]. In a simplistic view, the PCS is dependent
upon acquiring a set of data which it uses as a reference in
comparison to the expected target to compute output settings
for the mechanical devices which then in turn will produce a
new set of data. The cycle will continually repeat itself until
instructed otherwise at speeds of up to every 60 ys [2]. This is
then done for all the requested sub-systems the user has
included for the given experiment. As the shot progresses, the
PCS will add archiving its own internal data to the final stages
of activity.

The main computational resources accessible to the PCS
are first its two RISC based workstations. Connected by a
local area network, these two computers control most of the
software of the PCS. Additionally six single processor real-
time computers based upon an Intel i860 RISC designed
microprocessor manufactured by CSP Inc. are used by the
PCS. These communicate along the VME bus to the primary
workstation allowing it to coordinate between the multiple
CSP Inc. microprocessors as well as with the outside world.
The peripheral hardware of the PCS allows it to communicate
to the remaining DIII-D systems as well as an assortment of
diagnostic systems [3].

The software that makes up the PCS consists mainly of
ten separate subprocesses. Each is tasked with a set of
responsibilities which define its individual purpose. These
processes are distributed across the PCS computational
resources, however a certain set of these PCS processes are
restricted in their execution due to the hardware. In particular
those processes which are related to the real-time computers.
The remaining processes have greater flexibility during
execution. For example, the main user interface may be run
remotely from what is traditionally consider the PCS
hardware. Although this is not normally the case [4].

*Work supported by U.S. Department of Energy under Contract No. DE-AC03-99ER54463.

GENERAL ATOMICS REPORT GA-A23150 1

111. DIII-D AND PCS SHOT CYCLE
A standard shot cycle consists of several progressive

steps, under the direction of operators, which ultimately
results in the creation of plasma within the DIII-D vessel. A
single DIII-D plasma experiment, may take anywhere from a
fraction of a second to several seconds. However the
preparation and the ramp down/conclusion steps may take
several minutes to perform. The normal sequence requires the
coordination of the major sub-systems that contribute to the
shot. The PCS shot cycle begins far earlier than that of the
other independent control or acquisition systems. This early
time is dedicated to preparing the layout of the experiment.
More importantly, this is where the goals for shape, density,
etc. are set-up within the PCS. An operator, usually a
physicist, will define the parameter, waveforms and
algorithms which will be used throughout the several shot
stages. After the shot set-up has been configured to the
satisfaction of the operator, the main DIII-D operations
system will start in motion a chain of events, which for the
PCS, will first lockout users from making changes in the shot
set-up. Pertinent information is passed between the PCS sub-
processes and timing is synchronized. At this point, the PCS
will wait for other DIII-D sub-systems to complete their
preparations and for the operations system to commence the
shot (“firing the shot”). As the shot is fired, the PCS will
begin its real-time processing until the conclusion of the
plasma discharge. Later, the PCS will enter into an archiving
stage where it will store its various internal information as
well as time series it maintains throughout the complete
experiment (Fig. 1).

IV. PCS INTER-RELATIONS
The inter-relations of PCS software processes are almost

entirely dictated by the layout of the PCS hardware. Although
the software contains the concepts and goals of the plasma
experiment, it is the constraints of the hardware which
ultimately limits the control and what can be achieved. Even
peripheral devices, i.e. Input/Output (YO) dictate the purpose
and function of specific PCS processes. This is why it is
important to first grasp an overview of the PCS hardware
before attempting to understand why PCS processes are
related to each other.

From the standpoint of the user, the most visible part of
the PCS is the user interface. It is through this interface that
parameters and target vectors are set for an upcoming shot.
This data however is only temporarily stored within the
interface (Fig 2). As these values are edited, the information is
passed along to the waveform server process. Only one
waveform server process maintains the information for the
immediate shot. Any number of wave server processes may
run at any one time to allow for preparations of future shots
but it is the waveform server designated for the next shot that
communicates to other PCS processes. When changes are
made to the set-up of the next shot (by an operator within the
user interface), these changes are passed immediately onto

D.A. PIGLOWSKI, et al.

T=-2(mins) T = - 9 T = 0 T=+6 T=+5(mins)
I ,

Fig. 1. DIII-D and PCS shot cycle timeline.

the waveform server via a TCPDP socket connection. There,
the information is stored both in resident memory and in NFS
mounted flat files. This information is then referenced, via the
same TCPDP socket by any of the PCS processes that may
request it.

As the shot cycle nears and the PCS is triggered to
prepare for the pending shot, the lock server will read the
trigger from the digital UO input and start the host processes
for the real-time CPUs in their preparation of the shot. The
lock server remains in constant communication with each of
the host processes in order to monitor the current state of each.
This monitoring will persist throughout the shot cycle and
even during times in between shots. The lock server will also
poll the waveform server for vital information about the shot.
Of all the PCS processes, the lock server is the only one to
remain in two way communication with the remaining PCS
processes. It is arguably the simplest of all the PCS processes
except perhaps for the message server but it serves one of the
most crucial junctures of the PCS. The real-time host
processes will poll the waveform server for the parameter,
targets, algorithms, etc. necessary for the shot. Each host
server, under the coordination of the lock server, will perform
its programmed set of duties.

At anytime before, during, or after the shot, any PCS
process may communicate to an auxiliary server, called the
“message server.” The main purpose of the message server is
to gather textual information passed to it directly on its own
TCP dedicated socket. This provides PCS processes, which
have been programmed to display everything from status
messages to error messages, a place to buffer their
information. The buffered statements are archived for long
term needs and passed to client applications, which are part of
the standard PCS user interface. This process gives the
programmers a flexible means to convey vital points of
interest from most PCS processes. The message server/clients
thus complete a circular flow of data back to the user (Fig 3).
Like the lock server, the message server is in contact with all

2 GENERAL ATOMICS REPORT GA-A23150

D.A. PIGLOWSKI, et al.

Fig. 2. Typical display from the user interface with information
retrieved from the waveform server.

the remaining PCS processes, however, the message server
only receives a one-way communication from those processes
and transmits data to only one of the PCS processes, the user
interface.

v. METHODS OF COMMUNICATION
All the PCS processes handle data. The flow of data from

each of the PCS “server” processes is often two-way. That is
to say, each process will gather information and redistribute
information (Fig. 4). The responsibilities of the process dictate
to whom it needs to communicate with throughout the shot
cycle.

The communication method of choice for most PCS
processes is the TCP/IP socket. This means of transmitting
data is commonplace among UNIX based systems and is quite
flexible and reliable. TCP sockets also facilitate remote access
from system to system, enabling the PCS to disperse its
processes amongst several host machines. Long term storage
needs are fulfilled by NFS mounted files. These files, which
pass information to and from some of the PCS processes, as
well as archive data, are a dependable means to store data
between different versions of the PCS and when the PCS is
not running. NFS cross mounted file systems allow for data in
flat files to be shared remotely, as well. Files can be
manipulated, via standard operating system (OS) utilities for
backup purposes, viewing (as in the case of the messaging
system), copying or duplicating. But as operating system
utilities can be used beneficially they also pose a threat. In the
past, crucial files have been vulnerable to corruption and
deletion by non-savvy users who have accidently or
unknowingly affected these files. The other well used method
for communication within the PCS is the sharing of

Fig. 3. Display of standard PCS messages.

information through the use of a shared memory segment.
This method is mostly used for the real-time code. It facilitates
communication between the CPUs with the least amount of
overhead. It is very efficient and allows for almost
simultaneous update and retrieval.

Each of the methods mentioned above has drawbacks
related to their use. In the case of TCP/IP socket
communication, there may be system issues that need to
resolved before using sockets. TCP sockets are also
susceptible to network traffic. Simultaneous communication
between several processes along a single port is done by
linearly queueing the correspondences. This may impede the
performance of all processes as they wait for their turn.
Programming overhead is more complicated during setup and
use of sockets than other forms of YO. Also, the protocol of
the messages themselves must be exact. In general, all this
makes TCP socket communication trickier. File YO, which is
the second largest means of communication in the PCS, has its
own set of drawbacks. Files are best used for large long-term
storage of information. However they are inefficient for
transmittal of minute amounts of data. They may be limited by
available disk space. Data streams may be corrupted by other
means, i.e. accidental removal of the file. Two way and
instantaneous communication is terribly difficult when using
files as a means. Memory sharing, the last method of
communication, is restricted by physical access to the residual
memory. It is also extremely limited by the amount of
memory available.

Because of the inherent problems in each of the methods,
it has been best to use a mixture of all methods for the PCS.
The content and distribution of information has dictated the
means within the PCS.

GENERAL ATOMICS REPORT GA-A23150 3

D.A. PIGLOWSKI, et al.

J. J.
-_------.--------

b Shared Memory d

_____.) Messageserver -
I

Fig. 4. Communication flow between PCS subprocesses.

VI. CONCLUSIONS
The success of the PCS at control of the DIII-D plasma

experiments is due to its flexibility and relative ease of use.

Given its complicated nature and wide array of responsibilities
during shots, it has performed well over the years that it has
been in place [4]. Part of this success is due in part to the
distributed design and shared communication between the
PCS sub-processes. It continually meets the demands of
upcoming experimental needs given its outdated hardware.
With projected improvements and upgrades, interprocess
communication will become even more critical in order to
meet new design criteria and functionality. The basic
formulation described here has room to grow and expand with
the PCS. Its standard construction should make it easy to port
to other systems and platforms.

ACKNOWLEDGMENTS
I would like to thank the personnel at the DIII-D facility

who aided me in the preparation of this paper. A special
thanks is extended to A1 Hyatt and Jim Broesch, Bob Johnson
and Mike Walker for their insights to the Plasma Control
System as well as their knowledge of the other DIII-D sub-
systems, diagnostics and users point of view.

~ F E R E N C E S
J.R. Ferron, et al., “A Flexible Software Architecture for
Tokamak Discharge Control Systems,” Proc. 16th
IEEENPSS Symp. on Fusion Engineering, September
30-October 5, 1995, Champaign, Illinois.
B.G. Penaflor, et al., “A Structured Architecture for
Advanced Plasma Control. Experiments,” Proc. 19th
Sym. on Fusion Technology, September 16-20, 1996,
Lisbon, Portugal.
J.R. Ferron, et al., “Application Programmer’s Guide to

the DII-D Plasma Control System,” \to be published.
B.G. Penaflor, et al., “Current Status of DIII-D Real-
Time Digital Plasma Control,” these proceedings.

4 GENERAL ATOMICS REPORT GA-A23150

