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Abstract 

We present a numerical and analytic assessment of the transport in two 

quasi-axially symmetric stellarators, including one variant of the MHH2 

class[l] of such devices, and a configuration we refer t o  as NHH2, closely 

related t o  MHH2. Monte Carlo simulation results are compared with ex- 

pectations from established stellarator neoclassical theory, and with some 

empirical stellarator scalings, used as an estimate of the turbulent transport 

which might be expected. From the standpoint of transport, these may be 

viewed as either tokamaks with large (6 1%) but low-n ripple, or as stel- 

larators with small ripple. For NHH2, numerical results are reasonably well 

explained by analytic neoclassical theory. MHH2 adheres less to  assump- 

tions made in most analytic theory, and its numerical results agree less well 

with theory than those for NFIH2. However, for both, the non-axisymmetric 

contribution to the heat flux is comparable with the symmetric neoclassi- 

cal contribution, and also falls into the range of the expected anomalous 
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(turbulent) contribution. Thus, it appears effort t o  further optimize the 

thermal transport beyond the particular incarnations studied here would 

be of at most modest utility. However, the favorable thermal confinement 

relies heavily on the radial electric field. Thus, the present configurations 

will have a loss cone for trapped energetic ions, so that further optimization 

may be indicated for large devices of this type. 
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1. Introduction 

This work describes an assessment of the confinement characteristics of 

two related stellarators having quasi-axial (QA) symmetry . We present 

results for one variant of the MHH2 concept[l] - a 2-period ( N  = 2) mod- 

ular QA stellarator, and a second system we refer t o  as NHH2, obtained 

from the MHH2 description, but modified in a simple manner (to be de- 

scribed shortly) which makes it conform better to  usual assumptions made 

in existing stellarator transport theory, and therefore permits us  t o  carry 

the analytic development further. The principal objective of such magnetic 

configurations is transport optimization, in this case by eliminating nonax- 

isymmetric components of the magnetic field strength B($, 8 ,  C) in Boozer 

coordinates, ie., those harmonics with n # 0 in the decomposition 

Then the residual neoclassical transport is as in a tokamak. If the ideal of 

this configuration could be achieved, it would have the transport advantages 

of the equivalent tokamak, while retaining the stellarator virtues of need- 

ing no internal current to  provide its rotational transform t ($ )  = q-'($), 

steady-state operation without current drive, and being more resistant t o  

disruptions. 

The  particular variant of MHH2 studied here is a n  N ,  = 16 coil design, 

with major radius Ro = 3m, average minor radius a = .66m, hence inverse 

apsect ratio ea E a/Ro = 1/4.5, and average magnetic field on axis BO = 2 

T. The  shape of the outermost flux surface was specified by P. Garabedian, 

and the magnetic fields computed[2] using the VMEC code.[3] Thus, the 

ripple from the discreteness of the field coils is neglected in this study, and is 
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expected not to  produce appreciable transport except near the edge. NHH2 

is a mathematical construct, having fields and other parameters precisely 

the same as in MHH2, but with the sign of m reversed in each Bmn. 

As desired, the average residual ripple strength S in these systems is small 

in comparison with that typical of stellarators, which have S N E r /&, but 

is appreciable in comparison with that from coil disceteness in realistic toka- 

maks. Since large ripple (S - 1%) can also be problematic in tokamaks, i t  is 

not a priori clear that the systems considered here will have acceptably low 

neoclassical transport. Additionally, the n-value associated with the ripple 

here is about an order of magnitude lower than that normally envisioned 

for rippled tokamaks. Thus ,  MHH2 and NHH2 have features which are not 

strictly in accord with the assumptions made in existing transport theory for 

both stellarators and tokamaks. One result of this work is to  provide some 

calibration of that  theory with the MHH2 design. Especially important in 

these theories is a separation in length scales between the toroidal connec- 

tion length Lt - qRo and the length L,  N Lt/lnq - rnl across a ripple well. 

The reversal of poloidal mode number m in the B,,’s makes this separation 

better for NHH2. Thus one expects, and finds numerically, that  transport 

in NHH2 should adhere better with existing theory than that in MHH2. 

The  remainder of the paper is organized as follows. In Sec. 2 we de- 

scribe the character of the fields and particle orbits in them, and briefly 

review the theoretical transport results t o  which our numerical results will 

be compared. In Sec. 3 we present the numerical results, transport coef- 

ficients obtained from Monte Carlo (MC) simulations done with GC3, a 

guiding-center (GC) code in Boozer coordinates, and compare these with 

the analytical results already introduced. The ensembles used in the MC 
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runs are for monoenergetic particle distributions, in order t o  obtain adequate 

statistics for ensembles of modest size. The approximate agreement between 

the analytic and numerical results for NHH2 shown in Sec. 3 permits us in 

Sec. 4 t o  perform a theory-based extension of the monoenergetic results t o  

the ‘energy-averaged’ expressions applicable to  a local Maxwellian distri- 

bution f ~ ,  for the transport coefficients, particle and energy fluxes, and 

associated confinement times. 

The ion fluxes depend sensitively on the radial electric field E,. N -a,.@ 
[with +(T or $) the ambipolar potential and T (2$/Bo)1/2 a flux function 

with units of length, representing the average minor radius], and these ana- 

lytic expressions for the fluxes put us in a position to  determine those values 

of E,. which satisfy the ambipolarity constraint 

0 = Czsrls, (2) 
S 

where s is a species label, 2, f e,/eo is the charge number for species s, 

eo is the proton charge, and rls is the particle flux for species s. Here, we 

as usual consider a 2-species plasma, electrons and a single ion species. As 

found over a decade ago[4, 51, for some parameters multiple roots of Eq.(2) 

can exist, of which two are stable to  fluctuations in E,.. One, the ‘ion root,’ 

in which ions are held in by the electrons, is the one originally[6] and more 

commonly considered. At the second, ‘electron root’, the electrons are held 

in by the ions, and the particle and heat fluxes can be substantially reduced 

from those in the ion root. Here we show that the version of NHH2 studied 

here should be able to  access this root. MHH2 is expected to  display qualita- 

tively similar behavior. Further reduction of nonaxisymmetric neoclassical 

transport is useful only when it is larger than the rates of both symmetric 
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neoclassical and turbulent transport. Thus, in Sec. 5 we present some sum- 

marizing discussion of the results of earlier sections, including a comparison 

of the transport rates for these three mechanisms, with the turbulent rate 

estimated from some common empirical stellarator confinement scalings. 

2. Fields, Orbits, and Existing Theory 

In Figs. 1 we plot B ( x )  along afield line for one poloidal transit for MHH2 

(la) and NHH2 ( lb)  on the flux surfaee T = a/2. As noted in Sec. 1, one 

sees that the ripple amplitude 6 is smaller than the slower toroidal variation 

(- e). One notes that while MHH2 and NHH2 have precisely the same 

ripple amplitudes B,,, the smaller Lr for NHH2 noted in Sec. 1 makes 

its ripple wells much better defined and deeper than for MHH2. Absent 

in Fig. 1 and throughout this  paper are those higher-n B,, representing 

the discrete nature of the field coils, which are not computed by the fixed- 

boundary VMEC calculations used here, and which should fall off rapidly as 

one moves inward in T from the coils. Additionally, the remaining hundreds 

of harmonics which are produced by VMEC are ranked by size, and sn ly  the 

largest Nh are kept. In Fig. 1 Nh = 10 harmonics are kept, which appears 

to  capture most of the essential physics for the GC motion. Henceforth, it 

is convenient to denote the (m, n)-pairs by (m, .ii = n /N) .  The (m, 5,) s of 

NHH2’s largest harmonics in descending order (those for MHH2 obtained 

simply by taking m + -m as noted earlier) are then (O,O), ( l , O ) ,  (2,-a), 

(2,0), ... and the tenth largest (1,l). B,E = Boo sz Bo,o gives the flux-surface 

averaged field, B1,O/B001r=a N -.127 yields the dominant -e cos 0 toroidal 

component of B,  and Bz,-2/Boo N -.028 is the largest nonaxisymmetric 



contribution. The smallest 

orders of magnitude from  BO,^, and a factor of 4 from B2,-2. 

= B ~ J  kept there is down by about 2 

The general features of orbits in these fields are as envisioned in the 

established literature on particle motion and neoclassical transport in stel- 

larators. In Figs. 2 and 3 we show poloidal projections of some collision- 

less orbits representative of those dominantly contributing to  neoclassical 

transport in NHH2, for three values of the ambipolar field, given by the 

dimensionless variables 4 E Roe;E,/E, or g5 3 ae;E,/Ti (with E, = 3.5 

MeV the alpha birth energy, and Ti the ion temperature, which we take as 

3.5 keV= E,/103.): (a)$ = -.01 (4 = -2.2), (b)J = 0 (4 = 0) , ( c)J = .01 

(4 = 2.2). All are launched with kinetic energy I( = 2 T  = 7 keV at 

0 = 0 = C and at small pitch X v11/v. Those in Fig. 2 have X = 0 and an 

initial phase which makes them ripple trapped, while those in Fig. 3 have 

X = .2, which are toroidally trapped, like normal tokamak bananas. 

For E, = 0, trapped particles [Fig. 2(b)] drift directly out of the ma- 

chine. For nonzero E,., these ‘superbanana’ orbits acquire a poloidal drift 

which for 4 N 1 is large enough that the superbananas are well confined. 

While particles initially ripple trapped sometimes remain trapped for the 

entire poloidal transit [Fig. 2(c)], a more common situation is illustrated by 

Fig. 2(a), where a particle initially ripple trapped can make successive colli- 

sionless transitions from and back to that trapping state. Analytic theory of 

this processl7, 81 assumes that sufficient symmetry in B ( x )  exists tha t  the 

collisionless superbananas approximately close on themselves. This charac- 

teristic is only roughly satisfied for NHH2, so that  one might expect existing 

theory to  capture much of the transport physics here, though not all. Owing 

t o  the larger L, ,  collisionless orbits in MHH2 display less symmetry, with 
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collisionless de- and re-trapping being more frequent and less regular. 

The orbits in Figs. 3 are tokamak-type bananas. Due to  the ripple per- 

turbations (n  # 0), these bananas drift radially. E, affects the size of the 

bananas, as visible in Fig. 3, as well as the toroidal precession rate, and 

thereby the size of the radial excursion these drifting bananas make, giving 

the &.-dependence in the “banana-drift branch” ( b  = bd)  of transport.[9,10] 

In the absence of the n # 0 harmonics, bananas close on themselves, pro- 

ducing the standard axisymmetric transport ( b  = sym) of an ideal tokamak. 

Finally, the ripple trapped particles illustrated in Fig. 2 produce the “su- 

perbanana branch” (6 = sb) of transport. The transport coefficients Db for 

each of these 3 branches b = sym, bd,  sb are plotted in Fig. 4 for the present 

MHH2 parameters. As a rough but standard approximation, to  estimate the 

total transport expected from a system in which all three transport mech- 

anisms are operative, we shall take the sum of the contributions from the 

three individual branches. 

Each Db has various collisionality regimes, denoted by the subscripts. 

Dsym has the familiar banana, plateau, and Pfirsch-Schliiter regimes (the 

last beginning at higher central electron density n,o than the range shown in 

Fig. 4) Di:;l,ps, scaling with collision frequency v c( neO as DiEFs - Y and 

Dsym w yo. Dbd has the less and more collisional banana-drift regimes[9] 

D!i , - l ,  scaling with v and poloidal E x B precession frequency RE c( q5 as 

vl/R$ and v-IQ(&, and the still more collisional ripple-plateau regime[lO] 

Dbd w voR(&. Dsb has the least collisional “superbanana regime”[7, SI D& N 

d / R ;  where trapping and detrapping effects are significant, an intermediate 

regime”[G] D$2 w Y ~ / ~ / Q ~ ~  whose width in v or density vanishes for 

b < 6 ,  as here, and the “1/v regime” DEbl N v-’Q;, probably the most 

Pl 
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commonly used expression for stellarator ripple transport. The expressions 

plotted in Fig. 4 are only the asymptotic forms valid in each collisionality 

regime; a fuller treatment would round off the abrupt transitions which 

appear in Fig. 4. A second rounding effect occurs when the monoenergetic 

results plotted here are averaged over a Maxwellian distribution, as will be 

done in. Sec. 4. 

3. Numerical Results 

As noted in Sec. 1, the numerical transport coefficients D presented in 

this section were computed from MC simulations using GC3, a GC code in 

Boozer coordinates, using numerical equilibria generated using VMEC and 

translated to  Boozer coordinates using the JMC code.[2] GC3 uses a Lorentz 

collision operator, and each value of D was computed from a monoenergetic 

ensemble of 352 particles launched at r / a  = .5, with x = K/T = 2, and 

evenly distributed in initial values of O , < ,  and A. D is calculated from the 

Fokker-Planck form 

D = ( ( W 2 / ( 2 4 ) ,  (3) 

where (. . .) is an ensemble average, Sr(r )  r ( ~ )  - ( r ) ,  and I- is the orbit 

run time. To yield a genuine diffusion coefficient, T must be longer than a 

radial decorrelation time, indicated by a transition to a behavior ( ( 6 ~ ) ~ )  N T 

in a plot of ( ( 6 ~ ) ~ )  versus T as T becomes long enough. This is satisfied for 

most of the numerical results shown here. However, for small 4 and at 

low collisionality, trapped ions can walk nondiffusively out of the machine. 

When a particle escapes, 7 is given by the run time for that  particle, and 

r ( ~ )  in Sr is given by a. When most particles contributing to  the transport 
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have nondiffusive motion, D in Eq.(3) no longer has a strict interpretation as 

a diffusion coefficient, but still is a n  average reciprocal confinement time[ll] 

(times a constant), and so is still a good measure of the confinement quality 

of the machirre. 

In Fig. 5 are shown numerical and analytic transport coefficients for 

NHH2 versus density n,o (or Y), for 4 = 0. The 4 curves with symbols 

are numerical results, and the 4 heavier curves without symbols are analytic 

ones. The 3 lower analytic curves show each of the 3 transport branches, and 

the top curve is their sum. The curve with diamond symbols shows MC re- 

sults taking Nh = 2, i .e. ,  taking only the two largest harmonics (O,O)+( l ,O) ,  

thus simulating the ideal tokamak nearest to  the full MHH2 system. This 

latter is approximated by the curve labeled Nh = 10 (star symbols). First 

comparing the Nh = 2 curve with DsYm, one notes approximate agreement 

between the numerical diffusion and the axisymmetric neoclassical predic- 

tion. Additionally, comparing the Nh = 10 ‘full’ results with the total (solid) 

analytic curve, one again notes rough agreement. As ne0 + 0, the analytic 

curves become infinite, with the onset of the 1/v regime, while of course the 

numerical results remain finite, and represent transport which is no longer 

diffusive. As already noted, the NHH2 fields do not fully satisfy assumptions 

made in the original stellarator theories yielding the analytic expectations 

plotted here, and thus the approximate agreement in Fig. 5 is as good as 

one might expect. 

Two other MC curves appear in Fig. 5 ,  the results of two truncations of 

the full fields t o  test the contribution to  the transport of particular B,fis. 

The curve labeled Nh = 3 (rectangular symbols) shows the transport from 

keeping only the largest n # 0 harmonic (2,-2) in addition to  the two 
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(O,O)+( l ,O)  kept for the Nh = 2-truncation. One sees that the (2,-2) alone 

accounts for about half the ripple transport of the full Nh = 10 system. 

The curve labeled NI, = 4 (triangular symbols) gives the results of keeping 

only the (O,l)+(O,-1)  harmonics in addition to the (0,0)+(1,0) axisymmet- 

ric ones. These yield a mirroring field which can be problematic for some 

stellarator configurations[l2]. For the present case, however, one sees the 

transport contribution from this mirroring perturbation is rather small. 

Fig. 6 shows a sweep of MC results versus 4 at n,o = 3 x 1013/cm3, for 

the full Nh = 10 and axisymmetric N h  = 2 cases. For simplicity, the value 

for the ripple-strength 6 required for the analytic curves is computed using 

only the largest contributor B2,-2. This makes the width of the analytic 

peaks around 6 or Q E  = 0 broader for both Dbd and DSb than one actually 

expects as both mechanisms make the transition from their 1/v t o  their 

v/R& behavior, and one sees the the Ni, = 10 numerical results do indeed 

have the peaked form of the analytic curves, but fall off somewhat faster 

with 4. 
In Fig. 7 we compare the simulation results for NHH2 already discussed 

with those for MHH2. One notes that while being of comparable size, the 

scaling of D with n,o is somewhat different for MHH2, and is not as close t o  

the analytic prediction. Again, in general terms, this is expected, because 

of the closer adherence in NHH2 of the spatial separation Lt/L,. >> 1. And 

qualitatively, the lower transport levels for low n,o is probably due t o  the 

more prevalent collisionless detrapping enhancing the effective collision fre- 

quency in this regime. However, a fuller understanding of the transport scal- 

ing in MHH2 probably requires a theory different from the traditional ones 

considered so far. Some work has been done[l3] generalizing the banana- 
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drift branch to  perturbations which, like those here, have low-n and m # 0. 

Whether theory along these lines can clarify the MHH2 results in Fig. 7 

is under study. For the present, however, both analytic and numerical in- 

dications are that one may take the more complete results given here for 

NHH2 as an estimate of the transport levels and scalings one may expect 

for MHH2. 

4. Energy Averaging and Ambipolar Potential 

We have seen that existing analytic theory for stellarator transport pro- 

vides an approximate understanding of the monoenergetic simulation results 

for NHH2, though that configuration is somewhat different from the more 

‘classical’ stellarators for which the theory was first developed. On this ba- 

sis, we analytically develop an expectation for the fluxes one may expect 

from a local Maxwellian distribution f ~ ,  and from these expressions, which 

depend on the ambipolar electric field E,, obtain a solution for the expected 

ambipolar field and predictions for the particle and heat fluxes in the pres- 

ence of that  E,. The general procedure is like that used earlier[6, 41, but 

includes the two transport branches b = sym, bd in addition to  the sb-branch 

considered in that earlier work. 

For any function g(z = K / T )  of the kinetic energy, the radial flux of 9 

for species s due to transport branch b is given by 

where the normalized flux 7jS is defined to  have units of inverse time, so 

tha t  the confinement time 7, for 9 is approximately given by 1/(4+yg). @ ( a : )  
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is the monoenergetic diffusion coefficient examined in Sec. 3. Specializing g 

t o  z', for any power r ,  one may perform the velocity integration, finding[4] 

where yin E -&In no, KT 

ob(.) = E, D:(x = l)I(z, + mp +.)I? is ob(.) averaged over energy, and 

hence over successive collisionality regimes q.  The energy integral is given 

by the incomplete Gamma function r ( n  + 1, x) 3 I ( z ,  n) = J" dz1x?e-"l, 

and the limits I ?  denote those values x& at which the collisionality regime 

q of the transport mechanism changes. As mentioned in Sec. 2, the effect 

of performing this integration is to  smooth the abrupt transitions in the 

transport coefficients plotted in Fig. 4. From Eqs. 4 or 5, the normalized 

particle flux is y1 (Le., r = 0), and the heat flux is yz (i.e., r = 1). 

-8,. In T, 4s f aesEr/Ts, and 

The symmetric contributions ysym to  the particle fluxes are intrinsically 

ambipolar, and thus do not play a role in determining E,.. Thus, in Fig. 8 

are plotted the nonaxisymmetric portions yna = ybd + ySb of y versus 4, for 

both ions and electrons, along with the constituent parts ybd and ySb. The 

point #1 = -.01 at which yl";" = yy," is a self-consistent solution for E,. at 

the single radius ro = u/2 for which this caIculation has been carried out. 

4 = 41 < 0 is the 'ion root' more commonly considered. For the present 

parameter choice, the second 'electron root' 4 2  > 0 of the ambipolarity 

constraint (2) does not occur, essentially because the ion flux or diffusion 

coefficient does not fall off rapidly enough above 4 = 0 to  drop below the 

slowly declining electron flux 71e before it fall's below 0 due to  #e in Eq.(5). 

Plotting the full energy fluxes yzs versus 4, and superposing the value 

4 = 41 established from Fig. 8, in Fig. 9 one reads off the expected ion and 
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electron heat fluxes for that  case, and from th i s  in Fig. 10 the predicted 

neoclassical ion and electron energy confinement times T E ~  rZs, (s = i, e ) ,  

finding T E ~  N 44ms, and TEe N 68ms. 

The width of the peak in 7;"" is proportional to collisionality. Thus, one 

way of accessing the electron root for this system would be to  operate at 

lower density (or higher temperature). (A more precise criterion is given in 

Ref. 4.) This is illustrated in Fig, 11, where the density is lowered by a factor 

of 3, t o  ne0 = 1013. Now the electron root does appear, at & N .03, while 

the ion root is at $1 N -.004. One notes the property of 4 2  making it most 

interesting: While at 41 the fluxes are 7:" N l.g/sec,y,nia N 12.0/sec, and 

7;: c? 3.5/sec, at $2 these are substantially reduced: 7y" N .26/sec,y;r N 

1.6/sec, and 7;: N 1.6/sec. 

5 .  Discussion 

The NHH2 system employed in this work provides a bridge between 

MHH2, which is the configuration of principal interest, for which adequate 

analytic theory does not yet exist, and the more idealized existing analytic 

theory. It is noteworthy that 2 systems having identical descriptions ex- 

cept for the mapping m + -m which distinguishes them, can have rather 

different transport scalings. However, we have also found that the overall 

transport levels from the 2 systems are similar, so that our more detailed 

understanding of NHH2's transport can be used to  estimate that for MHH2. 

Tailoring the harmonic content of the B m ~ s  t o  further reduce yna might 

be worthwhile for MHH2 if yna were large enough to dominate the sym- 

metric neoclassical contribution ysYm as well as the anomalous (turbulent) 
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contribution yan. To estimate the last of these, here we evaluate some com- 

mon empirical stellarator scaling laws. However, i t  should be kept in mind 

that ,  as recent tokamak experiments with transport barriers show, turbu- 

lent transport is also a mechanism which may be amenable t o  substantial 

reduction. 

The nonaxisymmetric neoclassical contributions yna to  the fluxes are 

comparable t o  the symmetric ones, and for NHH2 yna is dominated by 

ySb.  At the ambipolarity solution 4 = $1, for example, one finds yzf” 

2.93,~:: N 2.23,yLf N 0.24. Most ions are in the ripple-plateau regime of 

ybd,  which has an n-scaling 0:: N n. Thus, since for the present system 

n N 4 is small compared with that (n  N 20) producing TF ripple in a normal 

tokamak, ybd is smaller by about a factor of 5 than its value for a normal 

tokamak with comparable ripple, making the banana-drift contribution sub- 

dominant. 

Turning to  the comparison of yna with yan, we evaluate the confine- 

ment expected from the Lackner-Gottardi[l4] and International Stellarator 

Scaling[15] expressions. As in Ref. 15, the units here are MKS, except for 

line-averaged density ii19, which is in uni ts  of 10”/m3 = lOl3/cm3, heating 

power PMW, which is in MW, and Tev, which is in eV. 

Combining either of these with the power balance relation 

TE N 2r2Rn2iiT/P N (.316 x 10-4)ii19Tev/P~w 
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yields a relation for TE as a function of R, a, B,  q ,  and fi19. For fi19 = 3, one 

finds riG N 522msec, while ~ j $ ~ ~ ~ ~  N almsec, with rbG independent of 7219, 

and riSsg5 only weakly dependent on fi19. 

Thus, if ~ j $ ~ ~ ~ ~  is assumed an accurate measure of turbulent transport, 

tha t  transport dominates the neoclassical transport computed earlier, and 

further transport optimization from the configurations studied here would 

be of no use. On the other hand, if riG is taken as proper measure, then 

the transport would be neoclassically dominated. However, since y:ym N 

7::) as noted above, even complete elimination of yna would only result in 

modest gains i n  the total T E ~ .  Thus, further effort at optimization of thermal 

transport from the configuration adopted here seems of limited utility. 

While thermal transport is thus acceptably low in the present configu- 

rations, it is strongly dependent on the radial field E, for being so, with 

yzi reduced a factor of N 8 from its 4 = 0-value at the operating point 41. 

Thus, these systems will have a loss region for energetic ions. The existence 

of this loss channel has sometimes been regarded as a virtue,[l6] providing 

a built-in means of alpha ash removal in return for a tolerable level of loss. 

If the loss rate is judged excessive, however, little optimization has been 

attempted on the configuration, and i t  seems likely that the loss could be 

further reduced with additional effort at tailoring the magnetics. 
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Figures 

Fig. 1. Plot of magnetic field strength B(x) along B for one poloidal transit 

at r = u / 2  in ( la )  MHH2, (lb)NHH2. 

Fig. 2. Collisionless GC orbits launched with X = 0,8 = 0 = C, kinetic 

energy I< = 7 keV, and for 3 values of the ambipolar field (a)$ = -.01, 

(b)$ = 0, and (c)$ = .01. 

Fig. 3. As Fig. 2, but with initial X = 0.2. 

Fig. 4. Analytic predictions for transport coefficients Db for each of the 

three operative transport branches b = sym, bd,  sb, for 141 = .002 and a 

monoenergetic distribution with x 3 K/T = 2, or 2 3 K/Ea = -002. 

Fig. 5. Numerical (curves with symbols) and analytic (heavier curves with- 

out symbols) transport results versus n,o for $ = 0. See text for details. 

Fig. 6. Transport results versus 6 for n,o = 3 x 1013/cm3. See text for 

details. 

Fig. 7. D versus n,o for d; = 0, comparing transport in MHH2 with NHH2. 

As in Fig. 5 ,  the analytic theory is shown by curves without symbols. 

Fig. 8. Plots of yy: = yt: + 7s; and 7;: and 7:; versus 4, for s = e ,  i and at 

n,o = 3 x 10'~. 

The point 41 where -yy = 7T: is a self-consistent solution for the am- 

bipolar field E,. 

Fig. 9. Plot of yzs for s = i, e versus 4, for the same parameters as in Fig. 8. 
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Fig. 10. Plot of energy confinement times T E ~  for s = i , e ,  for the same 

parameters as in Figs. 8 and 9. 

Fig. 11. Plot of yls for s = i, e versus 6) for the same parameters as in Fig. 8, 

except at lower density (ne* = 1013), in order t o  access the electron root 

6 2 ,  as well as the ion root $1 present in Fig. 8. 
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