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Abstract 

A linear gyrokinetic system for arbitrary wavelength electromagnetic modes is de- 

veloped. A wide range of modes in inhomogeneous plasmas, such as the internal kink 

modes, the toroidal Alfv6n eigenmode (TAE) modes, and the drift modes, can be re- 

covered from this system. The inclusion of most of the interesting physical factors 

into a single framework enables us to look at many familiar modes simultaneously and 

thus to study the modifications of and the interactions between them in a systematic 

way. Especially, we are able to investigate selfconsistently the kinetic MHD phenom- 

ena entirely from the kinetic side. Phase space Lagrangian Lie perturbation methods 

and a newly developed computer algebra package for vector analysis in general coor- 

dinate system are utilized in the analytical derivation. In tokamak geometries, a 2D 

finite element code has been developed and tested. In this paper, we present the basic 

theoretical formalism and some of the preliminary results. 
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1 Introduction 

The motivation of this research project is twofold: to develop an alternative, more compre- 

hensive and self-consistent approach for kinetic MHD theory, and to add electromagnetic 

effects to a global kinetic analysis of low frequency microinstabilities with the goal of achiev- 

ing a better understanding of anomalous transport in toroidal geometry. Basically, the pre- 

vious focus has been on the electrostatic drift type instabilities and on pure fluid type MHD 

modes. However, in order to realistically assess the stability properties in high temperature 

(high beta) plasmas, it becomes necessary to systematically analyze kinetic MHD modes and 

electromagnetic drift waves. Developing the required methods of analysis and the associated 

codes constitute fundamental problems in the field of plasma stability. It is believed that 

the interaction between kinetic effects and MHD modes, such as the fishbone modes and the 

TAE modes, is the key physical reason for many bewildering phenomena in fusion plasmas. 

In addition, there are possible new applications of kinetic-MHD, such as collisionless recon- 

nection, which is thought to be relevant to magnetic storms in the magnetosphere and to the 

sawtooth instability commonly seen in modern tokamaks. For drift type microinstabilities 

and the associated transport theory, the inclusion of electromagnetic effects has long been 

recognized as being necessary. For example, the examination of electromagnetic vi modes 

in slab geometry [l] and in toroidal geometry [a, 31 revealed that increasing plasma beta 

can provide a stabilizing effect, especially when finite Larmor radius (FLR) effects of ions 

become import ant. 

These problems can be put into a single theoretical framework - the gyrokinetic the- 
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Figure 1: The multi-scale-length structure of the internal kink mode. 

ory of arbitrary wavelength electromagnetic modes. On the one hand, including magnetic 

components in the kinetic analysis and extending it to long wavelength modes formally leads 

us into the kinetic-MHD regime from the kinetic side. An example of this approach is the 

kinetic MHD ballooning mode theory. [4] Using this formalism we are able to recover those 

familiar MHD results entirely from the kinetic point of view, and more importantly to obtain 

kinetic modifications. Compared with previous hybrid kinetic-MHD theory, the approach 

from the kinetic side is more rigorous, selfconsistent and comprehensive. On the other hand, 

the drift type microinstabilities and the associated transport can be also investigated sys- 

tematically in this theoretical framework. Not only do we recover the existing results such 

as the electrostatic limit, [5, 61 the long wavelength limit, [7] and the ballooning limit, but 

also we can explore many new problems, for example, the intermediate wavelength regime 

and the coupling between drift waves and shear AlfGen waves. 

Furthermore, in magnetized plasmas there exist a lot of multi-scale-length modes. Ac- 

tually the well-known internal kink mode is indeed a multi-scale-length mode (See Figure 

1). 

For an unstable internal kink mode, there is a boundary layer around the rational surface, 
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inside which the scale length is much shorter than that outside. FLR effects are important 

inside the boundary layer, whereas outside the boundary layer it is just a long wavelength 

MHD mode. Obviously this structure can not be described by the conventional approaches, 

neither the long wavelength ideal MHD nor the short wavelength kinetic theory. An arbitrary 

wavelength kinetic approach will provide us with a tool for this kind of multi-scale-length 

structure. 

In this paper, we present our gyrokinetic theory for arbitrary wavelength electromagnetic 

modes. First, the linear gyro-kinetic equation (GKE) valid for arbitrary wavelength is derived 

using the phase space Lagrangian Lie perturbation method. [8, 9, 10, 11, 121 The existing 

gyrokinetic equations are mainly derived for the high modenumber (i.e. short wavelength) 

modes, [19] for which some of the background inhomogeneities are not important and are 

left out. However the most crucial physical factors driving the long wavelength modes, such 

as the toroidal Alfvkn eigenmode (TAE)[13, 141 mode and the internal kink mode,[l5, 16, 171 

are the background inhomogeneities which include the inhomogeneities of the magnetic field, 

temperature and density. Part of the inhomogeneity of the magnetic field enters through 

the current distribution. In our GKE, all the background inhomogeneities are fully retained. 

Then a gyrokinetic system for the shear Alfvkn modes is developed. This system consists 

three basics equations: the gyrokinetic equation, the gyrokinetic quasineutrality condition, 

and the gyro-kinetic moment equation (GKM) which is derived by combining the parallel 

Ampere’s law and the 0th moment of the GKE. In this system, all the interesting physical 

factors are kept. Many classical results obtained before by different theories can be put 

into a single framework in our theory. Therefore, it is also a good framework to study the 

modifications of and the interactions between these classical modes. 

The solution methods for this system are also developed. Even though this is a fully 
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kinetic approach, the differential equations which need to be solved numerically can be cast 

rigorously into the configuration dimensions. This is accomplished by solving the linear GKE 

using the method of integrating along characteristic lines, and substituting the solution of 

the distribution function in terms of perturbed fields back into the quasineutrality condition 

and the GKM. A 2D numerical code for tokamak geometries has been developed and tested. 

[6,7] The newly developed computer algebra package for vector analysis in general coordinate 

systems is also utilized in solving the equation system.[l8] In section 2, we derive the linear 

GKE for arbitrary wavelength modes and the corresponding gyrokinetic Maxwell’s equations. 

The gyrokinetic system for shear Alfvkn physics is presented in section 3. Then, in section 4 

we compare our system to other existing equations and especially the ideal MHD equation. 

Section 5 is about the analytical and numerical solution methods. Two simple applications, 

the local dispersion relations for electrostatic drift waves and the instabilities of the internal 

kink mode in a straight tokamak, are given in section 6. The last section is the conclusions 

and some discussion on our future work. 

2 Linear gyrokinetic equation for arbitrary wavelength 

electromagnetic modes 

Different versions of the GKE have been derived many times by different methods in different 

representations.[l9, 20, 21, 22, 11, 121 Usually, it is derived for short wavelength modes for 

which many of the equilibrium inhomogeneities can be neglected. However the essence of the 

GKE is to average out the fast time scale gyromotion. The wavelength can be left unspecified 

and all the equilibrium inhomogeneities can be kept in. We will derive the linear GKE for 

arbitrary wavelength modes using the phase space Lagrangian Lie perturbation method. 
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The derivation here is similar to that of Brizard for the nonlinear GKE.[l2] However, here 

we consider arbitrary wavelength modes, and all the equilibrium inhomogeneities are fully 

retained. We use the U representation instead of the pi1 representation, where U is the 

parallel velocity and p11 = U/R. Also, unnormalized real physical units are used. 

The equilibrium is assumed to be magnetostatic. In the extended guiding center coordi- 

nates ( X ,  U, p, 6, w, t ) ,  the extended phase space Lagrangian is[& 10, 121 

YE =;3~ - HBdT 
e me me 
C e e = ( - A  + mUb - p - W )  - dX + -pdt - wdt - ( H  - w)dr, 

where X is the configuration component of the guiding center coordinate, U is the parallel 

velocity, p is the magnetic moment, is the gyrophase angle, and 

b 
W = R +  -(be 2 V x b) ,  R =  (Vel).  e2. 

b = B / B .  el and e2 are unit vectors in two arbitrarily chosen perpendicular directions, and 

el and e2 are perpendicular to each other. To deal with the time-dependent Hamiltonian, the 

regular phase space is extended to include the time coordinate and its conjugate coordinate 

energy w. ; 3 ~  is the extended symplectic structure, HE = H - w is the extended Hamiltonian, 

and H is the regular Hamiltonian defined as 

mU2 
H = -  + pB.  2 
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The corresponding Poisson bracket is obtained by inverting the symplectic structure y ~ i j ,  

e d F d G  d F d G  cb d F  d G  
{F ,G}  - --) - -. [ ( V F  + W - )  x (VG + W-)]  

(3) 
mc d( dp dp d( eBi at at 

B* d F  dG dG d F  d F d G  d F d G  
ataw), + - * [ ( V F  + W-)-  - (VG + W--)-] + (%at - mBi at dU dU 

where 

B* = B + U V  x b, Bi = b x B*. (4) 

When the perturbed electromagnetic field is introduced, the extended phase space La- 

grangian is perturbed accordingly: 

where TGC* is the push-forward transformation induced by the guiding center transformation, 

and TG& is its inverse. 

where 

and EB is the ratio between the gyroradius and the scale length of the equilibrium magnetic 
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field. 

To derive the linear GKE, we usually don’t need higher orders of the guiding center trans- 

formation. The leading order expression, 

will be sufficient for our purpose. Expanding d(TiA,X), we obtain: 

The essence of the Lie perturbation method is to introduce a near identity transformation 

from the equilibrium guiding center coordinates 2 = ( X ,  U, p, 5, w, t )  to the gyrocenter coor- 

dinates 2 = (X, U ,  p ,  c, w, f) when the perturbed field is present such that the transformed 

extended phase space Lagrangian 7 can be gyrophase independent. 

We emphasize that there are three different coordinate systems appearing in our for- 

malism. ( X ,  V )  is the particle ‘physical’ coordinate system. 2 = ( X , U , p , J , w , t )  is the 

(extended) ‘guiding center’ coordinate system in an equilibrium magnetic field. When the 

time-dependent electromagnetic field is introduced, we use the ‘gyrocenter’ coordinate sys- 

tem 2 = (X, U ,  p ,  f, w, f) to describe the gyrocenter motion. Among other things, the 

most well-known difference between the guiding center motion and gyrocenter motion is 

the polarization drift motion due to the time-dependent electrical perturbation. We follow 

Brizard[l2] in using the terms ‘gyrocenter’ and ‘guiding center’ to distinguish these two 
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different coordinate systems. 

For the transformation 

the leading order transformed extended phase space Lagrangian is: [9] 

where WEO = dyE0, S is the gauge function, and ~ G W E ~  is the interior product between the 

vector field G and the two form WEO. There are several ways to make and H E d r  gyrophase 

independent. We will choose G and S such that there is no perturbation on the symplectic 

structure, 

This will effectively transfer the perturbation into the Hamiltonian. Since we choose not to 

change the time variable t ,  Gt = 0. Other components of G are solved for from = 0. 
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The transformed Hamiltonian is 

in which 

In the calculation related to the gyrocenter transformation, we will only keep the lowest 

order in terms of CB, because the background FLR effects normally are not important. 

We choose 

where ( ) represents the gyrophase averaging operation. This leads to the equation deter- 

mining the gauge function s: 

where&(X+p,,t) andv-Al(X+po,t) arethegyrophasedependent partsof q51(X+po,t) 

and v . A1(X + po, t )  respectively. 
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To the lowest order, 

Since TEl = 0, the Poisson bracket in the gyrocenter coordinates is the same as that in the 

guiding center coordinates, which is give by Equation (3). 

Now we are ready to obtain the linear GKE. Unless clarity requires us to use the barred 

notation, we will drop the bars for the gyrocenter coordinates thereafter. In the gyrocenter 

coordinates (X, U, p, 5, w, t ) ,  the distribution function F ( X ,  U,  p, E ,  w, t )  satisfies the Vlasov 

equation: 

d F  . d F  .dF d F  d F  ( F ,  H ~ )  = - + ( F ,  H )  = - +x- + U- +e- = 0. dt  at d X  dU at 

We prove that F is gyrophase independent. Let 

F = F(O) + e ~ F ( l )  + c ~ F ( ~ )  + .... 

The leading order is: 

F(O) is gyrophase independent. To the next order: 

Since all the terms except for dF( ' ) /de  are gyrophase independent, gyrophase averaging this 
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equation gives, 

and therefore 

- 0. 

By the same way, we can prove that F is gyrophase independent to all orders. 

The linear GKE in its geometric form (coordinate independent form) can be written as: 

or 

where 
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In the coordinates (X, U, p,  [, w, t ) ,  the linear GKE is, 

af 1 c 1 aH1 aF0 - + (Ub  + ~ 3 )  * V f - -b V H o  = -b * (OF0 x V H 1 )  - -b * (VFO- - VHI-).  at m e B  m dU dU 

Another set of gyrocenter coordinates (X, E ,  p ,  E ,  w, t )  is often used. E is the total energy 

in the unperturbed field, that is 

In this set of gyrocenter coordinates, the linear GKE is: 

8.f C aF0 - + (Ub + ~ d )  - O f  = (- x V F o )  * V H 1 +  -(Ub + ~ d )  - VH1.  at e B  de 

An alternative form of this equation is written in term of the nonadiabatic part of f, 

af C dFo 3 - + ( U b + ~ d ) - V f  =(- x V F o * V - - - ) H i .  at eB a& at (34) 

The gyrokinetic Maxwell equations are as important as the GKE itself. The differences 

between different versions of the GKE can be usually resolved when the corresponding gy- 

rokinetic Maxwell equations are taken into account in appropriate coordinate systems. 
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The Poisson equation is 

where 

Ampere’s law is 

where 

In above equations, d 6 2  is understood to be (Bi/rn) d 3 X d U d p d t .  T& is the pull-back 

transformation, which transforms the perturbed distribution f in the gyrocenter coordinates 

into that in the guiding center coordinates. TG& is the inverse of the push-forward TGC* that 

transforms the particle physical coordinates ( T ,  v, t )  into the guiding center coordinates. We 

assume T&, TGC*, T& and T G ~ *  are one-one onto (bijective). Generally for a macroscopic 

quantity Q(r)  in the particle coordinates, we have 
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In the guiding center coordinates 2 = (X, U, p,  [), 

Treating 2 in the above equation as a dummy variable, and replacing it by the gyrocenter 

coordinates 2 = (X, u, p, [, w, E) , we get, 

The pull-back transformation from the gyrocenter coordinates to the guiding center coordi- 

nates is easily obtained from the expression for G given by Equation (14)) 

where LGF represents the Lie derivative of F with respect to the vector field G. 

We will use A and 4 to notate the perturbed field thereafter; the subscript “1” will be 

dropped. 

3 Arbitrary wave-length electromagnetic gyrokinetic 

system for shear Alfv6n physics 

As discussed before, the most influential factors which solely define the characteristics of 

long wavelength modes are the background inhomogeneities, including the inhomogeneities 

of equilibrium temperature, density, magnetic field, and current. We need to describe these 
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inhomogeneities properly in the kinetic context in order to develop a successful kinetic theory 

for arbitrary wavelength electromagnetic modes. At first thought, one would suggest a simple 

solution: express all the background inhomogeneities by an inhomogeneous and anisotropic 

equilibrium distribution function, and carry out the rest of the process straightforwardly. But 

for more realistic systems, such as a tokamak, this simple solution won’t work out easily. 

The reason is that when we put all the physical effects, the background inhomogeneities and 

the kinetic effects, into the distribution function, they entangle together in such a complex 

way that the problem is not tractable anymore. 

Another method is necessary. To proceed, let’s observe some basic facts associated with 

the anisotropic distribution function 

The equilibrium current produced by the inhomogeneity of the B field can be separated out 

from the unperturbed distribution function by taking the first moment, 

vFjd3v = njuj, J (44) 

which suggests singling out the equilibrium current in deriving the GKM equation. Another 

fact is that the anisotropy of the equilibrium distribution function turns out to be weak. For 

example, to create the toroidal current for the poloidal field in a tokamak, 

C C B P  J = enu N - V x B , ,  U N -  47r 47rena. (45) 
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For standard tokamak parameters, 

IO-’, electrons; 

ions. 

c2 1 A; 
N 2--- N 

U2 - 
Vt2h V?*PP 

This estimate suggests that we can almost assume the unperturbed distribution to be 

isotropic. But we have to assume an anisotropic distribution, since the equilibrium in- 

homogeneities can’t be ignored. The answer to this seeming paradox is that the bulk of the 

plasma doesn’t contribute to the magnetic field inhomogeneity; the anisotropic part of the 

plasma is the only source for the magnetic field inhomogeneity although its population is 

extremely small. Hence we can’t throw away the anisotropic component for this reason. For 

other effects, like perturbed pressure effects, collision effects, and Landau damping, where the 

contribution from the isotropic part is non-vanishing, the contribution from the anisotropic 

part can be ignored completely. Our methodology here is to separate out the terms related 

to the anisotropy in velocity space during the process of deriving the GKM, after which the 

unperturbed distribution function will be assumed to be isotropic. 

Most of the important non-electrostatic long wavelength eigenmodes in tokamak geometry 

are shear Alfvkn waves, that is, the parallel magnetic perturbation is much smaller than the 

perpendicular magnetic perturbation. Kink modes and TAE modes fall into this category. 

In a homogeneous medium, the shear Alfv&n wave is the branch with the dispersion relation 

u2 = /$vi. It has several characteristics: 

pi = 0,p l  = 0, and V - w1 = 0. 

For the shear Alfvkn wave in an inhomogeneous plasma, these properties are not all true. 
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We will restrict ourselves to large aspect ratio tokamak geometries. We define the shear 

Alfv6n modes in a large aspect ratio tokamak as the modes with 

A i  = 0. (47) 

This definition is consistent with the normal meaning of shear Alfv6n wave, because from 

B1 = V x A = V x (Allbo) = VAll x bo + AllV x bo (48) 

we get the estimate 

We also have V - 5 x 0. From 

B1= v x ([ x Bo) = -BoV .[+ (Bo.V)[- (<-V)B,, 

and Bill << B11, it is easy to observe 

That is ICL -eL << kL[I  - kt. 
Other shear Alfv6n characteristics in a homogeneous medium generally are not valid in 

tokamak geometries. However, the pressure perturbation sometimes can be treated as a 

small correction by the virtue of the low /3 assumption. This is obvious from the motion 
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equation: 

Overall, the shear Alfv6n waves that we will study in the large aspect ratio low ,B toka- 

maks are those almost incompressible eigenmodes with zero perpendicular vector potential 

perturbations, small parallel magnetic perturbations, and small pressure perturbations. 

For shear Alfv6n physics, 

We need three equations to complete the system. Besides the GKE, the gyrokinetic Poisson 

equation and the gyrokinetic parallel Ampere's law are used. Carrying out the gyrophase 

averaging, we obtain 

In this equation and other equations appearing latter, Jo(vLVL/ii-l) should be viewed as a 

symbol for the differential operator defined below: 

v p 2 ,  ) = 1 + -  + .... V l V l  

J o ( r  4i-l 

To derive the explicit forms of the gyrokinetic Maxwell's equations, we first look at the 
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pull-back transformation T& f .  The special form of Equation (20) for shear Alfvkn modes 

is 

(53) 
dS e 1 
at C I 

a- = -po - [V$(X , t )  - -UVAll(X,t)]. 

Using Equation (42)) we get the pull-back transformation for shear Alfvbn modes, 

The perturbed density, perturbed flow, and perturbed current can be derived from the 

general form of Equation(41). 

The physical meaning of this equation is clear. The perturbed density in particle coordinates 

consists of three parts, the perturbed density in gyrocenter coordinates, the guiding center 

residue, and the gyrocenter residue. The guiding center residue is related to the equilibrium 

FLR effect and thus can be ignored. After some lengthy algebra, 
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where d3w = 2n(B/m)dUdp. For the perturbed parallel flow, 

Again, the algebra here is straightforward but involved. The final result is: 

Therefore, the quasi-neutrality condition is 

and parallel Ampere's law is 

In the above equations, the spatial variable is the particle coordinate T .  However T is a 

dummy variable. What matters is the functional forms. We can replace T by the spatial 

coordinate of the gyrocenter coordinate 2. The Equations (59) and (60) will be referred 

to as the gyrokinetic quasineutrality condition and the gyrokinetic parallel Ampere's law 

respectively. 
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Instead of using the parallel Ampere's law directly, we usually combine it with the 0th 

moment equation of the GKE to get the gyrokinetic moment equation (GKM) and use this 

as the third equation in our equation system. This equation is often referred as the GKM 

, in spite of the fact that it is distinct from the gyrokinetic equation because Ampere's law 

has been utilized to derive it. We use the linear GKE in ( X ,  U, p, 0, Equation (30). The 

0th moment of it is 

It is obvious that the 4th term on the left hand side and the 2nd term on the right hand 

side vanish. Applying Cj ej, we have 

Using the quasineutrality condition, Equation (59), we replace the first term by 

d e  n 3e v: n 
dt  m 4m f12 Cn - -(-vl@vL4 + ---V",). 

3 
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For the second term, we have 

HI d F  
?e / [ U b  - V f - b - V(--)] d3v 

m dU 
= F e / b - V ( U f  ---) HI d F  d3v 

m aU 

d F  
B .  mc dU 

1 c  e2no v: -- 
mc 2a2 B 47r 

= B - V { l  / e[Uf + “ ( U A I I ) - - ] ~ ~ B  dpdU} 
3 

= B V{-[-(V x V x AII)II  - V2,Alll). 
j 

We note that only in ( X ,  U, p,  t) coordinates can we freely move U in and out of V. But we 

should not move b or B in and out V. This is important for arbitrary wavelength modes, for 

which the equilibrium inhomogeneities are crucial. It will later be clear that this accuracy 

enables us to exactly recover the ideal MHD equation from our gyrokinetic system. For short 

wavelength modes, the background variations are normally ignored, and B,  no, and b can 

be brought in and out of V when necessary. 

After some calculation, the third term is 

As before, no approximations regarding the equilibrium inhomogeneities are made in this 

calculation. 

Finally, the GKM is: 
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where the J e v d  - V f d3v is evaluated in ( X ,  U, p, r )  coordinates. In ( X ,  E ,  p, 6) coordinates, 

it should be replaced by s ( v d  - V f + v d  VBaf /dcp)  d3v. However, in a low p plasma, 

because 

We will introduce another field variable $11 to replace All. $11 is defined by 

(67) 
c 

All ;(V$ll)Il* 

It is easy to solve for f in (X, E ,  p,  6) coordinates. The non-adiabatic part of the perturbed 

distribution functions g is solved for in terms of # and $11 from the gyro-kinetic equation 

(34) by integrating along the characteristic lines. The formal solution is given as: 
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In conclusion, our gyrokinetic system for the arbitrary wavelength shear Alfvhn modes 

consists of three equations, the gyrokinetic equation, Equation(34), the gyrokinetic quasineu- 

trality condition, Equation(59), and the gyrokinetic moment equation, Equation(64). 

4 Comparison and Recovery 

Two simplified versions of our GKM have been derived before to study kinetically TAE 

related problems. The first one is the equation derived by Rosenbluth and Rutherford; [23] 

this equation was used by Fu and Van Dam [14] as the starting equation for their kinetic 

Alfv6n modes. Though some inhomogeneities are kept to give the desired result, most of 

the important inhomogeneities in toroidal geometry, which would affect the final result, were 

left out. Being aware of this shortcoming, Berk, et al derived a new equation for the same 

purpose from ideal MHD theory;[24] then they replaced the pressure perturbation term by 

a kinetic counterpart such that the crucial kinetic effects are able to be picked up. Clearly 

this is the standard hybrid kinetic-MHD treatment, which is not always selfconsistent. 

The advantage of our fully gyrokinetic formalism and the GKM equation is apparent by 

comparison. First, our selfconsistent, fully kinetic approach is valid for general inhomoge- 

neous plasmas, and all the important physical factors are captured. Therefore, it is capable 

of delineating the fine structure of these long wavelength modes we are interested in. As we 

can see from the left hand side of the GKM, the kink terms are more detailed than those 

in References 1231 and [14], and also the right hand side, in addition to being selfconsistent, 

has kinetic terms that are more comprehensive than those in References [23],[14], and [24]. 

The kink mode is harder to describe because it appears in the order of O(c2), while the 

TAE comes out in the order of O(c). Most alternative theories, including Strauss’s reduced 
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MHD,[25] consider physical effects only to the order O(E), and thus are not capable of pro- 

viding information order O(e2). Specifically, the internal kink modes can not be recovered 

by these models.[25, 26, 271 Our system can recover TAE modes as well as kink modes in 

tokamaks. It is the only known alternative approach for the classical yet still important 

kink instabilities studied before by MHD theory. Moreover, with the ability to examine the 

interaction between ideal MHD kink modes and kinetic effects, our system will be a key 

to investigate systematically some bewildering questions in today’s fusion plasma physics. 

Secondly, the physical features captured in our GKM equation are separated. The back- 

ground inhomogeneities responsible for the TAE modes, the kink instabilities, and other 

ideal MHD modes is completely isolated in the left hand side; meanwhile the equilibrium 

pressure effects, the Landau damping effects, and the FLR effects appear on the right hand 

side of the equation. It is possible to look at each one of them individually. Finally, our 

formalism is an arbitrary wavelength description. It is able to recover the results for short 

wavelength modes. We will use this as a benchmark, while concentrating on the long wave 

length electromagnetic modes and their kinetic modifications. 

Now, we show that our GKM can recover the ideal MHD equations. From V - j ,  = 0, we 

The linearized motion equation is 

dv 1 1 .  
at c C 

PO- = -jl x Bo + -j0 x B1- Vpl ,  



from which we obtain 
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BO BO d~ Bo BO 
Bo d t  Bo2 BO Bo2 c P ~ ~  X - - - x (io x B I )  + c2 x Vpl = - x ( j l  x B ~ ) .  

Also, we have the ideal Ohm’s Law 

Bo x v = cE1. 

We combine Equation (69), (71), and( 72) to get: 

(73) 

For shear Alfvkn modes, this is 

where we have expressed the perturbation field in terms of q5 and +[I, and B1 = V x (All&) II 

B11 N VAll x bo, j ,  = (c/47r)V x B1. This equation is the ideal MHD eigenequation for 

shear Alfvkn modes in terms of perturbed electromagnetic fields. It can be recovered from our 

GKM when the FLR effect is neglected and the first term on the left hand side of the GKM 

is replaced by its ideal MHD counterpart cVp1- V x (BolB;). The kinetic generalization of 

ideal MHD is represented by the left hand side of the GKM, i.e., the kinetically generalized 

pressure perturbation term and the FLR terms. Therefore it is reasonable to expect our 

kinetic approach to recover all the important MHD results. Indeed, in the simplest limit, we 
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have 

mc v: V B  
B 2 B  Vf d3v = E - b  x [--+ U2b 

j 

Vb] V f d3v 

= z [ b x V B . V x  f p $ 3 v + b x b - V b - V ~ / f r n U 2 d 3 v ]  
B j J j 
C V B  
B B M -b x (- + b * Bb) Vpl 

V B  xb  
M c(b x - B2 + v y ) * v P l  

(75) 

B 
= cVp1. v x -. B2 

5 Solution methods in tokamak geometry 

In this section, we discuss briefly the solution methods for our equation system. More details 

will be presented in future publications. 

One of the difficulties in solving the basics Equations (34), (59), and (60) is that it 

is a integral-differential equation system in a 6D space - 3D configuration space and 3D 

velocity space. Though these equations can be studied directly by particle simulation, the 

linear eigenmode problem can be rigorously projected onto the 3D configuration space by 

solving the linear GKE for the perturbed distribution function in terms of field variables, 

and substituting the solution back into the the quasi-neutrality condition and the GKM. 

When combined with boundary conditions, an eigenvalue problem is formed. 

This method has been successfully applied to the kinetic theory of both short wave length 

electromagnetic modes and long wavelength electrostatic modes. In the latter case, of course, 

the quasi-neutrality condition itself will complete the system; the GKM is not used. 

When applying the equation system to the geometries of large aspect ratio tokamaks, we 

encounter another difficulty. As one can imagine, the left hand side of the GKM equation as 
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a scalar function of $11 and 4 is extremely complicated in tokamak geometries. To study the 

TAE modes kinetically, we have to evaluate this equation to order O(E) .  For internal kink 

modes, it has to be calculated to order 0 ( e 2 ) .  Even assuming circular concentric magnetic 

surfaces, the total number of terms involved to order 0 ( c 2 )  is about 1,500, which is obviously 

problematic if calculating by hand. 

We have developed a computer algebra package for vector analysis in general coordinate 

systems, called GVA, in the context of symbolic computation system Muthernatica. [18, 281 

GVA can perform symbolic vector calculation in any mathematically well defined coordinate 

system. Asymptotic analysis capability is built into this package, and any analytical result 

can be expanded as an asymptotic series. With the help of the GVA, we are able to work out 

the required vector calculation to any order of E quickly with 100% accuracy after specifying 

an equilibrium magnetic field and a coordinate system. 

The simplest toroidal model equilibrium assumes circular, concentric flux surfaces, and 

uses the coordinates ( r ,  8, S) shown in the Figure 2. 

The magnetic field is given by 

where 

r 
q e )  1 + 8, (77) 



Figure 2: Circular concentric tokamak coordinate system. 

Assuming the general 2D expansion[29] 

m 

let’s work out the left hand side of the GKM equation in this coordinate system to the order 

of O ( E ) ~ .  There are more than 100 terms. 

d c2 1 c (V x V x A )  Bo + (V x A)i  V- j o t ,  --[-v * (+.+)I + z(Bo - 0) at 47r VA Bo2 BO 
(79) 

30 
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O4 = D2e2ie + U2e-2ie + S. (81) 

where 0 2 ,  03, 04, etc are differential operators acting upon every pair of +lim(r) and 4m(r).  
0 2 ,  0 3  and 0 4  are O(E') , O(E') and O(e2) respectively. The 0 3  term can be separated into 

D1 which couples downward by one poloidal harmonic, and U1 which couples upward by one 

poloidal harmonic ; the O4 term can be separated into 0 2  which couples downward by two 

poloidal harmonics, U2 which couples upward by two poloidal harmonics, and S which is 

the self-coupling term. S can be divided further into the self-coupling term from a straight 

tokamak S" and that from toroidicity St, i.e. S = s" + St. Inside every term, there are 

terms related to $11 representing by subscript "$" and terms related to 4 representing by 

subscript "#'. For example, s" = S$ + S:. The expressions for these operators are listed 

below in Appendix A. 

The equation for straight tokamak geometry is a special case and can be recovered when 

the toroidal coupling terms are set to zero. In this case, poloidal harmonics are decoupled. 

For each one of them, we have: 

a c2 1 c (V x V x A )  - Bo + (V x A)I 0"" 

(82) 
at 47r V A  47r Bo2 BO 

--[--0 - (+h4)] + -(Bo - -0) 

0 2  S" =(- + -). 
Ri R: 

The equation system in tokamak geometries is generally a coupled system. There are 

an infinite number of ordinary differential equations coupled together. However, considering 

the fact that the inverse aspect ratio is a small parameter, we can utilize some perturbation 

techniques to simplify the system. The important observation is that the coupling between 
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different harmonics is proportional to E ,  as is apparent from Equation (79). The order O(co) 

term is 0 2 ,  which is decoupled. The order O ( 8 )  term is O3 which couples to the harmonics 

higher by one and lower by one. In the order O(c2) term, 0 4 ,  we find terms coupled to the 

harmonics higher by two and lower by two. In other words, the coupling, like E itself, is a 

m + 2  

0 
E 

Figure 

m - 2  

1 2 
E E 

~ Toroidal coupling diagram. 

weak effect. The strongest coupling of a harmonic to other harmonics is in order O(cl), and 

only to its nearest neighbors. The longer the interval between two harmonics, the higher 

order is the coupling between them. This situation is shown in the coupling diagram in 

Figure 3. 

The method of asymptotic decoupling, that we propose, is based upon this fact. To 

order O(E'), all harmonics are decoupled. Therefore we can pick an eigenmode for E = 0, 

for example (m, n) = (1, l), and ask what the perturbation on this mode is when the small 

parameter E is introduced. It is easy to see that to order O(E'), two new harmonics appear 

- the m - 1 and m + 1 harmonics. There are only three harmonics in the system now. We 
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can solve for the m - 1 and m + 1 harmonics and the perturbation on the eigenfrequency 

and the m harmonic. We can go on to the next order, O(c2),  to solve €or the rn - 2 and 

m + 2 harmonics and the second order perturbations on other quantities. This process can 

be carried out to any order. 

One thing we need to realize about this asymptotic decoupling method is that the number 

of differential equations involved varies as the perturbation process is carrying out. The 

higher the order, the more the equations. To order O(cn), there are 2n - 1 equations in the 

system, but only 2 new variables are introduced by each increase of one order. 

For those modes whose leading order contains many decoupled harmonics, the asymp- 

totic method will become intractable. Numerical solution is needed. Also, for kinetic effects 

like trapped particle effects, a numerical code including all the interesting physics are indis- 

pensable. 

Our gyrokinetic system can be converted into a system of coupled ODES of the following 

form: 

where Apm, Bpm, and Cp, are 2 x 2 block matrices whose two rows correspond to the 

quasi-neutrality condition and the gyrokinetic moment equation respectively, with each block 

spanning the poloidal harmonics. Here ' denotes the radial derivative. Note that Apm, Bpm, 

and Cp, are functions of T as well as w. 

After truncation to some proper number of poloidal harmonics, this eigenvalue problem 

is solved numerically using a finite element method in the radial direction . The actual code 
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will appear as a version of the two-dimensional kinetic code (KIN-2D) developed over the 

past 20 years by Tang, Rewoldt, Marchand, and Artun at the Princeton Plasma Physics 

Laboratory.[G, 7, 30, 311 

6 Two simple applications 

In this section we give two simple applications of our gyrokinetic formalism for arbitrary 

wavelength electromagnetic modes. As the first application, we derive the local dispersion 

relation of electrostatic drift waves in slab geometry. Then we recover the classical ideal 

MHD result of the internal kink mode in a straight tokamak. More interesting applications 

such as global drift modes, internal kink modes in toroidal geometry, and TAE modes will 

be covered in future publications. 

For the local dispersion relation of electrostatic drift waves in slab geometry, we employ 

the electrostatic limit of the Equation (32), 

V 4 x b  j 

B d€ VFoj - ejV4 * bU- = 0, 
d ( g  + U b  - V)fj - 

whose solution is given by: 

where w*j = (klT/mfl)jdnjo/dx is the diamagnetic drift frequency, and q j  = dlnTj/dlnnjo. 
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This solution is substituted in the quasineutrality condition, 

to derive the dispersion relation. Normally, Foj can be assumed to be Maxwellian in the 

gyrocenter coordinates. Then the density response in the gyrocenter coordinates can be 

expressed in the following familiar form, 

where ( = w/kllvt. It is sufficient to only keep the gyrocenter residue of ions, because 

azm, >> S2:m;. As usual, electrons are assumed to be hot, that is te << 1, and ions to be cold, 

that is, >> 1. We also assume that T, = Tj. Working out the algebra straightforwardly, 

we obtain the dispersion relation, 

where b, = T e k ~ / ( m i l n ~ ) + .  b, comes directly from the gyrocenter residue which is due to 

the polarization drift in the perturbed time-dependent electrical field. Without the kinetic 

correction on the right hand side, it is the well-known fluid result. We emphasize that the 

appearance of the ion gyrocenter residue in the quasineutrality condition guarantees us a 

complete recovery of the fluid result. 

The second application here is the classical internal kink mode in a straight tokamak. 

The familiar ideal MHD result from the energy principle can summarized as follows, 
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m2 # 1 All modes are stable to O(8‘) 

q(r = 0) > 
q(r = 0) < 

stable to O(eo) 

neutral to O ( P )  

unstable to O(c2) 

In the straight tokamak approximation, all poloidal harmonics are decoupled. Our GKM 

gives: 

-+-+/vd-Vf 0 2  s” d 3 v = 0 .  
% fG 

Because J vd - Of d3v is the smallest order term appearing in the equation, we can use the 

lowest order solution of f here. The lowest order solution for f from the GKE is: 

Substituting this solution into the quasineutrality condition, ignoring all the FLR effects, 

and making use of the usual cold-ion and hot-electron expansions, we easily get the expected 

relationship between $11 and 4, 

This is consistent with ideal MHD in which 

1 E = -V x B. 
C 
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It is obvious that 

Therefore 4 = $11 in the ideal MHD limit. 

When the solution for f and the relationship between 4 and $11 are substituted into 

Equation( 89))  the eigenequation is formed: 

where 

and 

Performing the operation &’ dr r4 on Equation (94), we get 

W 2  SW 
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where 

SW = SW, + SW4. (99) 

SW2 is the 2nd order contribution 

0 r-)2 + (m2 - 1)d2] dr, o r  dr 

and SW4 is the 4th order contribution , 

Using the fact that L1 and L2 are Sturm-Liouville operators, we can show that if for all 

trail functions SW > 0, then all modes are stable; if there exits a trial function 4 for which 

SW < 0 , then there is at least one unstable eigenmode. 

We immediately reach the following conclusions: 

0 If m2 # 1, then the modes are stable with SW N O(c2). 

0 If m2 = 1, q(r = 0 )  > l /n ,  then the modes are stable with 6W - O(c2). 

For the case of m2 = 1 and q(r = 0) < l / n  (assuming q(r = a )  > l /n),  there exists a 

rational surface at r,. We can choose the trail function as 

r, r < r,  

0,  r > rs. 
449 = 
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It is obvious that SW, = 0 and 

sw = sw4 - O(E4). (103) 

The mode is neutral to the order O(e2),  and the instability is determined by SW4. Using 

the familiar family of q profiles: 

we can verify that for a wide range of u and qo, SW4 is indeed less than zero. Therefore the 

m = 1 internal kink mode is unstable when q(r = 0) < l /n.  In Figure 4 we plot SW, against 

qo and v for the (n, m) = (1,l) case. 

Figure 4: The gyrokinetic result for SW for a straight tokamak. 

To compare with the ideal MHD result, we also plot the minimizing SW from the ideal 

MHD energy principle for the same case[l6](see Figure 5). Our kinetic results agree with 
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10 0.1 

Figure 5: The ideal MHD result for SW for a straight tokamak. 

the classical ideal MHD results both quantitatively and qualitatively. 

7 Conclusions 

The gyrokinetic system for arbitrary wavelength electromagnetic modes developed in this 

paper can cover a wide range of phenomena in inhomogeneous plasmas, from the electrostatic 

drift waves to ideal MHD modes, from the short wavelength ballooning modes to the long 

wavelength kink modes. Even though this system is comprehensive, it is also extremely 

accurate. As we have seen, this system is capable of recovering the delicate internal kink 

mode which can’t be recovered by all the existing reduced systems such as Strauss’s reduced 

MHD. With newly developed symbolic computation facilities and the 2D comprehensive 

numerical code, our fully kinetic approach enables us to investigate important kinetic-MHD 

modes selfconsistently in great detail. It is an effective equation system to use to study the 



41 

multi-scale-length behavior as well. These topic will be the focus of our future work and 

publications. 

Appendix A Expressions for terms in the GKM in cir- 

cular concentric tokamak geometry 

4'W -imr sin(8) 2mnr cos(8) + 
2 i m r sin(8) q'(r) 

8 w2 R; 7r r cos ( 8) p( r ) 
- 2 n2 r cos(8)) $(((r)  - 

BO2 q(r )  
0 3  = ( 

q(rI2 
2 m n r cos(8) q'(r) 2 i n  sin(8) i m sin(8) 2 m n cos(8) 

q(r)  
+ - - - 

4 w 3  q(rl2 a(.> 4('12 
+ (  

+ 

+ (  

-8w2Ri7rr cos(O)p'(r) 20w2Rg7r cos(O)p(r) I 
14 ( r )  - m2 cos(8) 

BO2 BO2 
- 3 n2 cos(8)) $(I(r) + ( m2 

-2 i m sin(8) q'(r) 4 m n cos(8) q'(r) 2 m2 cos(8) q'(r) 2 i m3 sin(8) + 
2 m2 n2 cos(8) 

r 

- + 
4 w 3  q W 2  4(rI3 

i m n2 sin(8) 2 m3 n cos(@ 
r r 44 Q ( f )  

2 m n cos(8) 
) +lr(r> + - - - 

-12 i m w2@ 7r p(r )  sin(8) 
Bo2 r 

8 m2 w2@ 7r cos(8) p(r)  
Bo2 r >4(r)*  + + (  
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-6mw2R$7rp(r) 
+ Bo2 r Bo2 r 

4m2w2R$7rp(r) >4w + (  



6 i n r  cos(0) sin(0) 2 m n r ~ o s ( 0 ) ~  rn2rcos(0)2 + - - + 6 n2 r cos(19)~)  $ i ( r )  
d r )  a(r )  4(rI2 

) 4 W  -4w2R$7rr2 cos(0)2pf(r)  - -  16w2R$7rr cos(O)'p(r) 

4 i m r  cos(8) sin(0)qf(r)  G m n r ~ o s ( 0 ) ~  q'(r) 2m2rcos (0 )2q f ( r )  - m2sin(0)2 

2 i rn3 cos(8) sin(0) 

BO2 BO2 

4 ( d 3  Q(r)2 4 w 3  4 w 2  
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- + 3 i m n2 cos(e) sin(0) + + 
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4 w2 Ri x r2 p ( r )  V ( r )  

4 w2Ri x r2 p'(r) 

12 w2 Ri x r p(r )  
Bo2 q(r)2 

-8 m2 w 2 g  x p(r)  

8 w2Ri x r2 p(r)  q'(r) 

8 m n w2R; x p(r) 
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Bo2 q(r)3 
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Bo2 q(r)2 
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