
Free Boundary, High Beta Equilibrium in a 
Large Aspect Ratio Tokamak with Nearly 

Circular Plasma Boundary 

H. &in A. Reiman 

September 25, 1996 

Abstract 

An analytic solution is obtained for free-boundary, high-beta equi- 
libria in large aspect ratio tokamaks with a nearly circular plasma 
boundary. In the absence of surface currents at the plasma-vacuum in- 
terface, the free-boundary equilibrium solution introduces constraints 
arising from the need to couple to an external vacuum field which is 
physically realizable with a reasonable set of external field coils. This 
places a strong constraint on the pressure profiles that are consistent 
with a given boundary shape at high qOp. The equilibrium solution 
also provides information on the flux surface topology. The plasma 
is bounded by a separatrix. Increasing the plasma pressure at fixed 
total current causes the plasma aperture to decrease in a manner that 
is described. 

PACS: 52.30.Bt, 52.55.Fa, 52.55.-s, 52.65.Kj 

1 Introduction 
It is desirable to achieve high p in tokamaks for the purpose of developing 
an economic fusion reactor. It has long been recognized that there is an 
equilibrium constraint on high ,O tokamaks arising from the appearance of 
a separatrix which moves into the plasma. This effect has been observed 
in TFTR.[l, 21 When E&, is raised to a sufficiently high value, the plasma 
aperture becomes constricted by a naturally arising inboard poloidal field 
null which prevents further increase of the plasma pressure. This is easily 
understood in terms of a simple physical model. As the plasma pressure 
is increased, the externally applied vertical field is increased to maintain IN 
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equilibrium. On the inboard side of the tokamak, the applied vertical field 
opposes the poloidal field produced by the plasma current. A null point is 
produced, which moves into the plasma as the the vertical field is increased for 
a fixed plasma current. This simple model, while explaining the main features 
of the experimentally observed effect, does not take into account the effects 
of changing current and pressure profiles, or the application of multipolar 
external fields. In particular, it has been suggested that the equilibrium /3 
limit can be circumvented by a sequence of “flux-conserving equilibria” which 
maintain the 4 profile. We address these issues in this paper in the context 
of an analytic solution for free-boundary, high-beta equilibria in large aspect 
ratio tokamaks with a nearly circular plasma boundary. 

Cowley et  a1[3] have obtained a fixed boundary tokamak equilibrium so- 
lution valid for large aspect ratio and very high p. In this paper, we extend 
that solution to include the matching to an externally imposed vacuum field, 
under the added assumption that the shape of the plasma boundary is nearly 
circular. For a fixed boundary solution it is possible to arbitrarily and inde- 
pendently specify the shape of the plasma boundary, as well as the pressure 
and 4 profiles in the plasma (where q is the “safety factor”). The free- 
boundary equilibrium introduces constraints arising from the need to couple 
to an external vacuum field which is physically realizable with a reasonable 
set of external field coils. We will see that this places a strong constraint on 
the profiles that are consistent with a given boundary shape at high E&. 

In Section 2 we obtain the solution to the Grad-Shafranov equation in 
the plasma interior, assuming E << p 5 1 (where E is the inverse aspect 
ratio). This is a generalization of the treatment of Cowley et  aZ, who assume 

In Section 3 we match to the solution in the vacuum region under the 
assumption that the plasma boundary is circular, and we describe the topol- 
ogy of the solution. We take the field to be continuous across the plasma- 
vacuum interface. In taking the component of the magnetic field parallel 
to  the boundary to be continuous, we are assuming that there is no surface 
current. 

In Section 4 we perturb about the solution obtained in the previous sec- 
tion to investigate the effect of a small modification in the shape of the plasma 
boundary. 

Finally, in Section 5 we discuss our solutions and present some conclu- 
sions. 

p = O(1). 
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2 Solution of Grad-Shafranov equation in the 
Plasma Interior for << ,O 5 1 

In this section we obtain the solution to the Grad-Shafranov equation in the 
plasma interior, assuming E << p 5 1. We generalize the treatment of Cowley 
et al, who assume ,6' = O(1). We take p = O ( E ~ )  ( 0 5 y < 1). This is to be 
compared with the conventional low ,B tokamak ordering, ,f3 = O(e2) ,  and the 
conventional high p tokamak ordering, p = O ( E ) [ ~ ] .  For y < 1 a boundary 
layer appears in the solution of the Grad-Shafranov equation, with the width 
of the boundary layer depending on the value of y. 

It is convenient to introduce the following normalization[3]: 

(1) 
- z = x/a, Z = z /a ,  R = Ro(l+ E Z ) ,  E = a/Ro,  1c) = 

Here is $ at the plasma boundary, corresponding to p($max) = 0, 
and a is the scale length of the plasma in a poloidal cross-section. In the 
circular boundary case, a is the minor radius. By choosing F = O( 1) and p = 
O ( E ~ ) ( O  5 y < I), we imply that q = O(1) and ,L? = O(E'&,) = O(e?)(O 5 7 < 
l), where &, f ( ~ ' R ~ / $ ~ , ~ ) p ~ p ~ ~ ~ ,  and y is chosen such that €7 = c2&. In 
the normalized variables, we get the dimensionless Grad-Shafranov equation: 

The perturbative solution of this equation with respect to small e is sin- 
gular. It is a boundary layer problem. Physically, the leading order force 
balance is between plasma pressure and toroidal field which does not involve 
the differential operator. Compared with the conventional low p and high 
,l3 ordering, this ordering actually simplifies the problem. From now on, we 
will drop the bars on the normalized variables except where explicitly stated. 
Let: 

y = m/n,a = €'in. ( 4 )  

Where m,n are integers and m < n. When y = 0, we choose m = 0,n = 1. 
Expanding $ and FF'  G in the small parameter a = elin, we have: 

$ = $0 + aldl + cy2& + .-.... , (5) 
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After expanding the Grad-Shafranov equation (see Appendix A for de- 
tails), we obtain the equation determining the core solution: 

2xPl($o) + Gm+n ($0) = 0. (7) 
For given p and G profiles, this equation determines ~($0). In the form of 
unnormalized variables, (7) is: 

2Po%&($o) + aGm+n($o) = 0. (8) 

The domain of validity of the core solution extends to the plasma boundary on 
the inboard side of the mid-plane. If we let a correspond to the z coordinate 
of the inboard intersection of the plasma boundary with the mid-plane, we 
get the relation 

-%&+47mz) + Gm+n($maz) = 0. (9) 

The value of q on each flux surface is dominated by the contribution from 
the core, so that[3] 

When y > 0, Fi = 0, so Fo is a constant. In this case, integration of equation 
(10) yields Fo = 2Xlft, where !Vt is the total toroidal flux. 

For the boundary layer, the differential equation for $0 is: 

where 

and ~ ( 0 )  is the radial coordinate of the plasma-vacuum boundary. 
quantity 

The 
is the width of the boundary layer,where A is defined to be A E 

(1 - Y)/2- 
To 0th and 1st order in 6 the coefficient [l + (h) .I@) 2 ] can be dropped, 

where S is the small parameter measuring the deviation of the boundary 
from circularity. Substituting Gm+,($0) from equation (7) ,  we obtain 
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Multiplying equation (13) by a$O/at, integrating from t = 00 and choosing 
a40/at + 0 as 1cI + $core, we get 

where $o(z) is the core solution for $0 as a function of x. To obtain this 
expression, we have integrated by parts. Assuming that p = 0 on the plasma 
boundary, the radial derivative of $0 there is given by 

The cpp  scaling reflects the fact that the width of the boundary layer scales 
like ( ~ & , ) - l / ~ .  

The thickness of the boundary layer goes to zero at 6' = T .  The boundary 
layer may terminate at a smaller value of 8. In that case, a segment of the 
plasma boundary is described by the core solution, and must be a straight 
line. If the boundary layer extends all the way to 0 = T ,  then it follows from 
equation (16) that 

The leftmost boundary on the mid-plane is then a zero point of the poloidal 
field. 

3 Free-Boundary Solution with Circular Bound- 
ary 

In this section we will match the equilibrium solution in the plasma interior 
to the solution in the vacuum region under the assumption that the plasma 
boundary is circular. We adopt boundary conditions at infinity appropriate 
for the situation where we have a set of equilibrium coils located far from the 
plasma. The matching at the plasma-vacuum boundary will impose a strong 
constraint, uniquely determining the value of the quantity p($O(x)) in the 
plasma interior. We will also look at the topology of the magnetic field, and 
will find that the plasma-vacuum boundary coincides with a separatrix. 

To the lowest order in e,  the vacuum flux $v satisfies Laplace equation: 

(18) 2 v $ t J = O ,  
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whose general solution is: 
03 

$,, = a0 + bo l n r  + x ( a n r n  + b,r-n) cos no. 

We take the plasma-vacuum boundary to be a circle. Th 

n=l 

radiu of the circle, 
a must be consistent with Eq. (9). In normalized form, the equation for the 
boundary is: 

Due to the continuity of the normal component of the magnetic field, $ must 
be continuous across the plasma-vacuum interface: 

Therefore, 

a. = l , a n  = -b,(n > 0) 

There are two pieces to the magnetic field solution in the vacuum region. 
One piece decays radially outward as we move away from the plasma, and 
it corresponds to the field produced by the plasma currents. The second 
piece increases as we move away from the plasma boundary into the vacuum 
region. This part of the field is produced by the currents in the external field 
coils. 

The quantity bo is related to the total current through the plasma. From 
Bp = 9 x 4 and pol t  = J BpdZ, we get: 

We regard the external equilibrium coils as being far from our large aspect 
ratio tokamak plasma. Far from the plasma, the B dependent part of the field 
that is driven by the plasma currents decays like r-n, and is small compared 
to the 8 dependent part of the field that is driven by the external coils. The 
field produced by the coils at large r determines the a, for n > 0. On a 
circular reference surface at r = rl, r1 >> a,  we have 

The 6 independent part of the field far from the plasma is determined by bo: 
r2n 
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This part of the field is determined by the total plasma current, and is inde- 
pendent of the external coils. 

If we make no further assumptions, there will in general be a discontinuity 
in the radial derivative of + at the plasma vacuum interface. This would 
correspond to a surface current. If the equilibrium is rapidly changing, for 
example if the plasma ,8 is being rapidly ramped up, then we have no reason 
to rule out the existence of a localized edge current, and the equations tell 
us that in general such a current will exist. On the other hand, a strongly 
localized current is dissipated quite rapidly by any finite resistivity. If we are 
interested in the equilibrium solution on a somewhat longer time scale, it is 
reasonable to make the assumption that there is no surface current. That 
is what we will assume. The zero surface-current assumption implies the 
continuity of the parallel component of the magnetic field plasma-vacuum 
boundary, giving: 

The boundary layer extends to 0 = T .  (If it did not, that would imply that 
a segment of the plasma boundary would be a straight line, which contradicts 
the assumption that the boundary is circular.) At 8 = 7r we get 

This gives an equilibrium constraint that must be satisfied between the ex- 
ternally imposed equilibrium field and the plasma current: 

00 

bo + a,n(-l)n = 0. (28)  
n=l 

The continuity of the parallel component of the magnetic field, along 
with equations (20) and (16), give us an equilibrium constraint that must be 
satisfied everywhere along the plasma-vacuum interface: 

where we have written p(x) = p($O(x)). Differentiating, we obtain an ex- 
pression for p: 

This gives 
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where the T,(s)(n = 1,2, ...) are Chebyshev polynomials. 
For a given externally applied equilibrium field, and a given total plasma 

current, Eq. (30) determines the pressure as a function of 2 in the plasma 
core. We still have the freedom to specify one additional profile in the interior 
(e.g. the current profile) to uniquely determine the interior solution. Alter- 
natively, if we are given the solution in the plasma interior, p(x) is specified, 
and we can take the square root of Eq. (29) to construct the unique external 
field required to maintain the equilibrium with a circular boundary. 

In practice, only a few low n values of the a, will be non-negligible. The 
higher n Fourier components of the vacuum field decay rapidly away from 
the external field coils. Retaining only the first few terms on the right hand 
side of Eq. (30), we find that only a restricted set of p(x) profiles can be 
reasonably supported with a circular boundary. This is to be contrasted with 
the fixed boundary solution, where the pressure and current profiles could 
be arbitrarily specified. 

Let’s look at the special case where the external field is uniform and 
vertical at infinity. Now the boundary condition for &, at a large radius TI  is 

. 

In this case, it is easy to get 

h, = 1 + bolnr + al (r  - 1 / r )  cos 8, (32) 

and the constraint on the coefficients 

which is the special form of equation (28). The special form here for equation 
(30) is 

1 
1 

P ( $ J O ( ~ ) )  = -b;(l + x). 
2447 

The quantity a1 is related to the vertical field at infinity, 

Equation (33) is the hoop force balance in the high ,f3 case, 

(34) 

(35) 

(36) 



9 

With equation (34) we get an expression for the required vertical field as a 
function of the pressure. Expressing the result in unnormalized variables, 
and using 

we get 

This is to be compared with the low-p result (see, for example, [4]) where be- 
sides pressure several other terms come into the expression for B,. However, 
it is already the case in the conventional high$ ordering that the pressure 
dependence dominates the other terms. [4] 

An important figure of merit for tokamak equilibria is 

This measures the plasma pressure that is supported for a given plasma 
current. In our solution PI can be obtained explicitly from equation (34), 

In unnormalized form, we have 

J p  dV = 2nRo p ( 2 ) 2 ( a 2  - x ~ ) ~ / ~  dx 

Thus, 

This relation is a consequence of our assumption that there is no surface 
current at  the plasma-vacuum interface. 

Now we turn to the topological structure of the vacuum field associated 
with a circular plasma boundary. On the plasma-vacuum boundary, the 
poloidal field vanishes at 6 = 7r and is finite elsewhere. It is straightforward 
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to verify that at  the point (T  = l , B  = T ) ,  the first and the second derivatives 
are all zero. The third derivatives at this point are as follows: 

The identity TA(-l) = (-l)"+'n2 has been used. The Taylor's expansion at 
(T = 1,8 = n) is : 

The equations for the level lines passing through this point can be obtained 
by setting GV = 1, 

(r - - 3(r - 1)(0 - n)2 = 0. (50)  
Thus there are three such lines: 

Since the vacuum solution is valid onto the surface ~ ( 0 )  = 1, which is 
itself a flux surface, we conclude that the topological structure of the flux 
surfaces near the point (T = 1,8 = n) is "K-shaped". More precisely, we can 
verify that at this point all the three angles between these three lines are 
equal (see figure I), 

Figure 1 is the contour plot for the .IClv described by equation (32), where the 
vacuum field is uniform and vertical at infinity. 
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Figure 1: Contour plot for vacuum solution with circular boundary 

Free-Boundary Solution with Perturbed Cir- 
cular Boundary 

In this section we perturb about the solution obtained in the previous section 
to investigate the effect of a small modification in the shape of the plasma 
boundary. We use a parameter S << 1 to measure the deviation of the 
boundary from circularity, rbI(0) z [rb(O) - 11 = O(S). The corresponding 
perturbations in Gm+n and p from those which give a circular boundary are 
also of order S. Our approach is to specify the perturbed plasma boundary 
rb1(8) and solve for the perturbed pressure profile p I ( z )  z pl(+o(z)>. 

Let 
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As before, the an, b, are the coefficients in the series solution of &, which 
satisfies the Laplace equation. The u?), b t )  are the unperturbed coefficients, 
and u t ) ,  b t )  are the first order coefficients with respect to the small distortion 
from a circular boundary. Also, f b 1  is the first order plasma boundary, and 
$$) and are the first order core and vacuum solution. We expand about 
a conveniently chosen circular boundary equilibrium solution. We can arbi- 
trarily specify the major and minor radii of the circular boundary solution. 
We choose them so that the circular boundary coincides with the perturbed 
plasma boundary at the two points where it crosses the mid-plane. The 
perturbed plasma boundary then goes through x = fl, that is: 

rbl(fr) = 0. (58) 
This simplifies the calculation, because p ( x )  and po(x)  have the same domains 
in x .  We are also free to choose to have the same value for the circular 
boundary solution and the perturbed solution. The common value of 
can be normalized to 1. 

One of the boundary conditions at the plasma boundary is: 

$'vlr=i+rbl(e) = $'v ('1 + $L1)Ir=1frbl(e) = 1 = 

To 1st order in 6, the radial derivative at the perturbed boundary is: 

03 + x [ ( u r )  - b(')) n - 2a(')rb1(6)]n n cos no. 
n= 1 

We expand the relation (16) to 1st order: 
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where again y EE  COS^. It follows that 

The zero surface-current assumption connects (64) and (62) and gives: 
co 

a t )  + @) + C[(n + 1)aC) - (n  - 1)b:)l cos nd = 
n= 1 

where we have made use of equation(60). 
an cos ne. Eq. (60) 

then determines the perturbed vacuum field. Substituting the perturbed 
coefficients into Eq. (65)’ we get an equation that determines p l ( z )  when we 
impose the constraints: 

We specify the perturbed boundary, rbl(t9) = 

P l ( f 1 )  = 0 (66) 
When the magnetic field is vertical and uniform at infinity, (60) and (65) 

can be simplified into: 

and 

Fig. 2 shows the equilibrium solution for a perturbed plasma boundary 
with small ellipticity, 

rbl(6) = -0.03(1 - cos28). (69) 
The detailed calculation for the perturbed vacuum field and the perturbed 
pressure is given in Appendix B. 
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Figure 2: (a) Contour plot for vacuum solution, (b) Pressure profile. The 
dashed line is the unperturbed solution, and the solid line is the perturbed 
one. 
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Figure 3: (a) Contour plot for vacuum solution, (b) Pressure profile. The 
dashed line is the unperturbed solution, and the solid line is the perturbed 
one. 
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Fig. 3 shows the equilibrium solution for a perturbed plasma boundary 
with small ellipticity and triangularity, 

fbl(q = -0.05(1- cos 20) + O.O15(cos e - cos 30). (70) 
The detaiIed calculation is again given in Appendix B. 

The perturbation does not alter the main topological features we found 
in the presence of a circular boundary. Even though the global picture of 
$v changes after the perturbation, the K-shaped structure with three equal 
angles at the leftmost boundary is kept to first order of 6. 

Considering equation (58) and (60), we must have two relations between 
the uil), bill: 

and 
co 

- c ( a p  + bp)(-l)nn2 = 0. 
n= 1 

From equation (65) and (58), we obtain another relation between the coeffi- 
cients: 

00 

u p  + b p  + E[(. + 1 ) U p  - ( n  - l ) b 9 ( - 1 ) n  = 0. (73) 
n=l 

Physically, this means that to 1st order in S the poloidal field at the left- 
most boundary in the mid-plane is zero. This conclusion is consistent with 
equation (1 7). 

Using the relations (71), (72) and (73), we find that to first order in S 
all the first and second derivatives vanish at  the leftmost boundary in the 
mid-plane. As in section 3.2, we find: 

Here we have taken the radial and poloidal derivatives of the Laplace equation 
for with the conditions that all the second derivatives at the leftmost 
boundary in the mid-plane vanish. 

Following the argument in section 3.2, we find that the topological struc- 
ture for +v = is the same as that for the unperturbed $$') with 
a circular boundary. See Fig. 2 and Fig. 3 for the perturbed boundary and 
perturbed vacuum solution. 

+ 
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5 Discussion and Conclusions 
For a fixed boundary equilibrium solution, such as that described in reference 
[3], we are free to independently specify the shape of the boundary as well 
as two profiles. We can, for example, specify p(+) plus one other profile such 
as q($) ,  or G(+), or z($). The fixed boundary equilibrium solution does 
not take into account the constraints arising from coupling to a vacuum field 
outside the plasma. The extension to a free-boundary solution requires the 
existence of an appropriate vacuum field that can support the given profiles 
and plasma shape. We need to be concerned about whether the the vacuum 
field to which we couple is physically realizable with a reasonable set of 
external field coils. 

Specification of the fixed boundary solution determines p($o(z)) .  For 
a circular boundary, this quantity is related to the external vacuum field 
through equation (30). The higher rz Fourier components of the vacuum field 
decay rapidly away from the external field coils. It is not desirable to have 
the external field coils very close to the plasma, and in practice only a few 
low n values of the a, will be non-negligible. Equation (30) then dictates the 
limited class of p ( $ o ( z ) )  profiles that are in practice consistent with a circular 
plasma boundary. This is a strong constraint on the practically realizable 
high 

In experiments, we impose the part of the vacuum field produced by the 
coils. The profiles in the plasma are determined by the ohmic current drive 
and by any supplementary current drive, and by the density and tempera- 
ture profiles, which are in turn determined through transport processes. The 
equilibrium equations self-consistently determine the shape of the plasma 
boundary in the presence of these profiles and the imposed external field. 
The solutions obtained in this paper correspond to those profiles which yield 
a nearly circular boundary. For a given boundary shape, and a set of a, 
determined by the external coils, the vacuum field is determined by equa- 
tion (60). Equation (65) in turn gives the p(z)  profile required to yield the 
specified boundary with the given external field. One profile in the plasma 
interior remains arbitrary. We find that at high E&, the pressure profile plays 
a key role in determining the boundary shape, in contrast with the situation 
at low p, where the shape is only weakly affected by the pressure profile. 

Matching to the external vacuum field enables us to examine the topology 
of the flux surfaces. Consistent with the picture of a separatrix moving 
in as cPP is increased, the plasma is bounded by a separatrix in our high 
E& equilibrium solutions. As we raise ,L?1Pp in an equilibrium with circular 
boundary, the aperture decreases as described by Eq. (42). This relation is a 
consequence of our assumption that there is no surface current at the plasma- 

equilibrium solutions that emerges from our analysis. 
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vacuum interface. If we allow a surface current to exist at the plasm-vacuum 
interface, it can prevent the separatrix from moving in as the pressure is 
increased. Even in the absence of a surface current, we can construct a flux 
conserving sequence of equilibria by controlling the current profile as p,,, is 
raised to keep the q profile invariant. In that case, the current increases with 
p,,, to keep invariant, consistent with Eq. (42). 

Appendix A The Derivation of Equation (7) 
We expand equation (3) order by order in the parameter a. To the order ao 
we get: 

Go($o) = 0. 

To the order a', a2, ..., amel: 

To the order of am+n 

The last equation is equation (7). 

Appendix B Calculation of the First Order 
Solution with a Perturbed Bound- 
ary 

We normalizepo(z), p l ( z )  by (~p~)-'(bf))~ and aF) ,ap)  and b:) by b r ) ,  then 
substitute equation (67) into (68), multiply both sides of the equation by 
1 i- cos(O), and equate the corresponding Fourier coefficients. This procedure 
leads us to the following set of equations: 

2 fo = u y )  + 1.5ur)  + b r )  + 0.5b, (1) , 
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...... 

cos(e) where the fn  are the Fourier component of 1-1 pl(s)dz, 
cos(9) 03 

pl(s)da: = C fn  cos no. 
n=O 

The quantity p l ( z )  is given by 

where Tn(z) and U,(x) are Chebyshev polynomials of the first kind and 
second kind. 

Equation (67) gives: 

u c )  = -a0 - 0.5~~1, 

a p )  -I- bf)  = -a0 - a1 - 0 . 5 ~ ~ 2 ,  

b r )  = -0 .5~~1  - a2 - 0 . 5 ~ ~ 3 ,  

...... 
b:) = -0.5an-l - cy, - O . ~ C Y , + ~  (n  > I). 

When a, is specified, u t ) ,  a r ) ,  bill, and p 1 ( 2 )  can be determined from 
the above equations together with constraint pl(f1) = 0. The constraint 
is needed because the above equations have two undetermined degrees of 
freedom. b?) is determined through equation (73). 

For example, when rbl(B) = -0.03(1 -  COS^^), we obtain at’ = 0.03, 
a?) = -0.075, u:) = 0 ( n  > l), b!) = -0.18, b y )  = 0.09, b?) = -0.03, 
b3 - -0.015, b:) = 0 (n > 3)) and p l ( z )  = -0.18 - 0.122 + 0 . 1 8 ~ ~  +O.l2z3. 
The solution is shown in Fig. 2. 

When rbl(8) = -0.05(1- cos 20) t O.O15(cos 8 - cos 38)) we obtain a t )  = 
0.0425, ap)  = 0.01, u p )  = 0 (n > 1)) b c )  = -0.03, b y )  = 0, b y )  = -0.05, 

(1) - ( 1 )  - b3 - -0.01, b4 - 0.0075, hi1) = 0 (n  > 4), and P I ( $ )  = 0.282 + 0 . 3 ~ ~  - 
0 . 2 8 ~ ~  - 0 . 3 ~ ~ .  The solution is shown in Fig. 3 . 

(1) - 
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