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Abstract 

A direct solver method is developed for solving Poisson’s equation 

numerically for the electrostatic potential 4(r ,  z) in a cylindrical region 

( r  < Rwarr, 0 < z < L ) .  The method assumes the charge density p ( r ,  z) 

and wall potential #(r = Rwall, z) are specified, and d#/dz = 0 at the 

axial boundaries (z  = 0, L) .  
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Many calculations in plasma physics require a rapid solution of Poisson’s 

equation 

V2# = -4rp, (1) 

where # is the electrostatic potential, and p is the charge density. This 

paper was motivated by the need to determine the potential variation in an 

axisymmetric Malmberg-Penning trap confining a pure electron plasma [ 1-31. 

Hughes [4] has previously described a direct solver for Poisson’s equation in 

cylindrical ( r , z )  coordinates, but the potentials on axis (r=O) and at some 

radius r = ro must be known. Often, the axial potential is not known a 

priori. Trunec [5] has also developed a direct Poisson solver in cylindrically 

symmetric geometry without requiring knowledge of the axial potential. Both 

Hughes and Trunec utilize a Fourier transform in the axial direction, but 

Trunec approximates the radial solution using the basis functions for cubic 

splines, while Hughes finds a radial solution using only the finite-difference 

form of the radial differential equation. Trunec’s approach allows for unequal 

grid spacing in the radial direction, but the benchmarking results suggest 

that the spline approximation introduces more error than Hughes’ method 

of solving the finite-difference equations directly. The purpose of this Note 

is to extend Hughes’ solver so that it does not require knowledge of the axial 

potential. 

For 8/80 = 0, Poisson’s equation in cylindrical ( r )  z )  coordinates is 

-+--+-- - -4 rp ,  824 184 a2# 
8r2 r 8 r  8z2 
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where q5 is the electrostatic potential, and p is the known charge density. The 

potential is assumed to be specified at radius r = Rwall, and aq5/az = 0 at 

the axial boundaries ( z  = 0, L). The latter assumption is appropriate for the 

applications of interest, but can easily be modified to describe the case where 

q5 = 0 at the axial boundaries or the case of periodic boundary conditions by 

using a sine or Fourier transform instead of a cosine transform. 

We begin the analysis by applying a discrete cosine transform in the 

axial (2) direction to Poisson’s equation. The cosine transform uses cosines 

only to form a complete set of basis functions in the interval from 0 to 

27r, and guarantees that the solution will have zero derivative at the axial 

boundaries [6]. The cosine transform is defined by 

with inverse 

Here, the prime on the summation symbol means that the k = 0 term has a 

coefficient of f multiplying ( 2 / N )  Fo.  

We consider the ( r , ~ )  plane covered by a uniform mesh with constant 

spacing A, and A, in the r and z directions: 

1 
z = (i + 2) -A,,  

r = j - A,, j = 0, 1, ..., NR, 

i = 0, l,,.., Nz  - 1, 

(5) 
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where A, = & and A,. = w. The cosine transform can be written as 

Substituting Eq. ( 6 )  into Poisson's equation ( 2 )  yields 

where p has been similarly transformed. 

The next step is to write these equations in finite-difference form. Away 

from the axis ( j  2 l), Eq. (7) becomes 

Collecting terms yields 
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Defining 

1 
@j = l + $  

7' = 1- -  1 
3 2 j '  

we can rewrite Eq. (9) as 

Equation (11) corresponds to the set of equations 

where it appears that there are NR- 1 equations and N R + ~  unknowns. How- 

ever, we have assumed that the potential is specified at the radial boundary 
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We could similarly assume that the potential on axis, &,o, is specified and 

we would have a set of NR - 1 equations and NR - 1 unknowns. 

Instead, we will find an additional equation utilizing the symmetry on 

axis. To proceed, a finite-difference form of Poisson's equation is required 

that is valid for j = 0. To find such an expression, we take the limit of Eq. 

(7) (the cosine-transformed Poisson's equation in differential form) as r + 0, 

i.e., 

The second term can be expressed differently in this limit. Using L'Hospital's 
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rule, we find 

Thus, in the limit as r +- 0, the cosine-transformed Poisson's equation be- 

comes 

The finite-difference form of Eq. (16) is 

where j = 0 has been substituted since we will use this equation only on axis. 

Next, utilizing the axial boundary condition d4/drlr=o = 0, we find that 

&,-I = & , + I .  This result might have been anticipated simply by noting the 

assumed azimuthal symmetry in the problem. To show that the boundary 

condition also implies this result, recall that a three-point finite-difference 

approximation for a derivative is [7] 

1 
2A = -[f(xo + A) - f ( x 0  - A)]. 

z=20 

The finite difference form for the axial boundary conditions used here is 

therefore 

s l r = o  dr  



or 

Substituting Eq. (19) into Eq. (17) yields 

which can be expressed as 

The complete set of equations then becomes 

... 

... 

s k , O  

s k , l  

This tridiagonal system of NR equations in 
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solved in ~ ( N R )  operations and the solution can be encoded very concisely 

[6]. This process is repeated for each wavenumber IC, and finally the inverse 

cosine transform is used to find the potential +(r, 2). 

A Poisson solver based on Eq. (21) has been written and benchmarked 

against a few analytically solvable cases. The first case is that of constant 

charge density p from r = 0 to r = Rwall(l - E ) ,  0 < E << 1, and constant 

wall potential + I R w a r r  at T = Rwall. The analytic solution (in MKS units) is 

We choose the potential at the wall, +JRWarr = 0, the charge density p = 

1 CouZomb/m3, and the wall radius, = 0.01 m. Substituting into Eq. 

(22) gives 

+(r) = 2.824 - 1 0 ~ O ( 1 0 - ~  - r2) volts. (23) 

Figure 1 shows a plot of the potential calculated directly from Eq. (23) and 

a plot of the difference between the potential calculated using the Poisson 

solver and by using Eq. (23). Thirty-two radial grid points were used for the 

Poisson solver. 

The second case is that of a vacuum potential (zero charge density) with a 

sinusoidal wall potential & cos(2nz/l). The analytical solution. to Poisson’s 

equation is 
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where &(z) is the modified Bessel function of order zero. Figure 2(a) shows 

an r--2 plot of Eq. (24) with = lV, Rwall = 0.02m and L = 0.08m. Figure 

2(b) shows the difference between the analytic solution and the solution found 

from the Poisson solver using 32 radial and 32 axial grid points. 

The maximum error in the potential is found to decrease initially as the 

square of the number of radial grid points used. This is likely due to the error 

involved in the finite-difference approximation of the derivatives. The first 

and second derivatives both have errors that are dependent on the square of 

the grid spacing, i.e., 

1 A2 

1 A2 
12 

f'(z0) = a [ f ( z o  + A) - f(20 - 4 1  - 7f(3)(0' 

fN(z0) = s [ S ( z o  - A) - 2f(.o) + f(.o + A)] - - f ' 4 ' (E ) ,  

(25) 

for some 6 in the interval zo - A < 6 < xo + A [7]. However, the error in the 

potential eventually reaches a minimum and begins to increase with increas- 

ing number of grid points (decreasing grid spacing A) because of round-off 

error. 

In conclusion, the direct solver developed here is a fast and straight- 

forward approach to solving Poisson's equation in cylindrically symmetric 

geometry given only the potential variation at some radius, $(r = Rwall, z ) ,  

and the charge density distribution, p(r, z) .  
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Figure 1: Figure l(a) shows a plot of 4(r)  obtained from Eq. (23). Figure 
l(b) shows the difference between the potential calculated using the Poisson 
solver and by using Eq. (23) normalized to the theoretical potential at r = 0. 
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Figure 2: Figure 2(a) shows a plot of +(r, z)  in Eq. (24) with VO = lV, G a l l  = 
0.02 m and L = 0.08 m. Figure 2(b) shows the difference between the poten- 
tial calculated using the Poisson solver and by using Eq. (24). 
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